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Multistage stochastic programs

Let {ξt}T
t=1 be a discrete-time stochastic data process defined on

some probability space (Ω,F , P) and with ξ1 deterministic. The

stochastic decision xt at period t is assumed to be measurable with

respect to Ft := σ(ξ1, . . . , ξt) (nonanticipativity).

Multistage stochastic optimization model:

max

{
E

[
T∑

t=1

〈bt(ξt), xt〉

]∣∣∣∣xt ∈ Xt, xt is Ft-measurable, t = 1, . . . , T

At,0xt + At,1xt−1 = ht(ξt), t = 2, . . . , T

}
where the sets Xt, t = 1, . . . , T , are closed and their convex hulls

polyhedral, the vectors bt(·) and ht(·) are affine functions of ξt.

Typical applications: Power production and trading planning,

revenue and portfolio management models.

Question: How to incorporate risk into multi-period models ?
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Axiomatic characterization of single-period risk

Let Y = Lp(Ω,F , P) = Lp(F), 1 ≤ p ≤ +∞. A mapping

A : Y → R is called acceptability functional if it satisfies the

following conditions for all Y, Ỹ ∈ Y , r ∈ R, λ ∈ [0, 1]:

(A1) A(Y + r) = A(Y ) + r (translation-equivariance),

(A2) A(λY + (1− λ)Ỹ ) ≥ λA(Y ) + (1− λ)A(Ỹ ) (concavity),

(A3) Y ≤ Ỹ implies A(Y ) ≤ A(Ỹ ) (monotonicity).

An acceptability functional A is called

positively homogeneous if A(λY ) = λA(Y ), ∀λ ≥ 0, Y ∈ Y .

strict if A(Y ) ≤ E(Y ), ∀Y ∈ Y .

version-independent ifA(Y ) depends only on the distribution P Y −1.

Given an acceptability functional A, the mappings

ρ := −A and D := E−A

are called capital risk and deviation risk functional, respectively.

References: Artzner-Delbaen-Eber-Heath 99, Föllmer-Schied 02, Pflug-Römisch 07
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Examples:
(a) Lower semi standard deviation corrected expectation:

A(Y ) := E(Y )−
(
E([Y − E(Y )]−)2

)1
2

(Markowitz’ mean-(lower)variance model)

(b) Average value-at-risk

The Average value-at-risk of Y at level α ∈ (0, 1] is defined as

AV@Rα(Y )=
1

α

∫ α

0

G−1(u)du=max

{
x− 1

α
E([Y − x]−) : x ∈ R

}
,

where G is the distribution function of Y .
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Conditional risk mappings

Let (Ω,F , P) be a probability space and let F1 be a σ-field con-

tained in F . Let Y = Lp(Ω,F , P) and Y1 = Lp(Ω,F1, P) for some

p ∈ [1, +∞), hence Y1 ⊆ Y . All (in)equalities between random

variables in Y are intended to hold P-almost surely.

A mapping A : Y → Y1 is called conditional acceptability mapping

(with observable information F1) if the following conditions are

satisfied for all Y , Ỹ ∈ Y , Y (1) ∈ Y1, λ ∈ [0, 1]:

(CA1) A(Y +Y 1) = A(Y )+Y (1) (predictable translation-equivariance),

(CA2) A(λY + (1− λ)Ỹ ) ≥ λA(Y ) + (1− λ)A(Ỹ ) (concavity),

(CA3) Y ≤ Ỹ implies A(Y ) ≤ A(Ỹ ) (monotonicity).

The conditional acceptability mapping A is called

positively homogeneous if A(λY ) = λA(Y ), ∀λ > 0.

upper semicontinuous if E(A(·)1B) : Y → R is upper semicontin-

uous ∀B ∈ F1.
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For a conditional acceptability mapping with observable informa-

tion F1 we will use the notations A(·|F1) or AF1. The mapping

ρ = ρF1 := −AF1 is called conditional risk mapping (with observ-

able information F1).

Theorem 1: (representation theorem)

Let A = AF1 : Y → Y1 be an upper semicontinuous and pos-

itively homogeneous conditional acceptability mapping. Then the

representation

E(A(Y )1B) = inf
Z∈SB

{E(Y Z) : Z ≥ 0, E(Z|F1) = 1B}

is valid for every Y ∈ Y and B ∈ F1 with a closed convex set

SB = {Z ∈ Lq(F) : AB(Z) ≥ 0}, where 1
p + 1

q = 1 and

AB(Z) := inf{E(Y Z)− E(A(Y )1B) : Y ∈ Y}

for every Z ∈ Lq(F) and B ∈ F1.
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A partial converse of Theorem 1 on L1:

Theorem 2: (existence theorem)

Let S be a closed convex subset of L∞(F) such that 1 ∈ S and

Z1B ∈ S for every B ∈ F1 and Z ∈ S. Then the equations

E(A(Y )1B) = inf
Z∈S

{E(Y Z) : Z ≥ 0, E(Z|F1) = 1B}, ∀B ∈ F1,

define an upper semicontinuous and positively homogeneous con-

ditional acceptability mapping A : L1(F) → L1(F1).

Proof: using the Radon-Nikodym theorem for σ-additive signed measures

which are absolutely continuous with respect to P on F1.

Proposition: (continuity)

A conditional acceptability mapping A : Y → Y1 is continuous if

it is locally bounded at some element of Y .

Proof: follows from a more general continuity result for cone-convex map-

pings, see a survey of Nikodem 03.
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Examples:

(a) Conditional expectation: The defining equation for the condi-

tional expectation E(· |F1), namely,

E(E(Y |F1) 1B) = E(Y 1B) (∀B ∈ F1)

can be recovered from Theorem 2 by

E(E(Y |F1)1B) = inf{E(Y Z) : 0 ≤ Z ≤ 1, E(Z|F1) = 1B}
= E(Y 1B).

It is a mapping from Lp(F) onto Lp(F1) for p ∈ [1,∞).

(b) Conditional average value-at-risk: AV@Rα(Y |F1) is defined on

L1(F) by the relation

E(AV@Rα(Y |F1)1B) = inf{E(Y Z) : 0 ≤ Z ≤ 1

α
1B,

E(Z|F1) = 1B}.

for every B ∈ F1. Due to Theorem 2 and the Proposition

the mapping Y 7→ AV@Rα(Y |F1) is positively homogeneous,

continuous and satisfies conditions (CA1)–(CA3).
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Multi-period acceptability functionals

Let a filtration of σ-fields FF = (Ft)
T
t=0 with Ft ⊆ Ft+1 ⊆ F and

F0 = {∅, Ω} (information flow for income processes) be given.

A functionalA = A(· ;FF) : Y := ×T
t=1Lp(Ft) → R is called multi-

period acceptability functional if it satisfies the following conditions

for all Y, Ỹ ∈ ×T
t=1Lp(Ft):

(MA0) Ft ⊆ F ′
t, ∀t, implies A(Y1, . . . , YT ;FF) ≤ A(Y1, . . . , YT ;FF ′)

(information monotonicity),

(MA1) Ỹt ∈ Lp(Ft−1) implies A(Y1, . . . , Yt + Ỹt, . . . , YT ) = E(Ỹt) +

A(Y1, . . . , YT ) ((predictable) translation-equivariance),

(MA2) A is concave on Y (concavity),

(MA3) Yt ≤ Ỹt, ∀t, implies A(Y1, . . . , YT ) ≤ A(Ỹ1, . . . , ỸT ) (mono-

tonicity).

Notation: A(Y ;FF) or A(Y1, . . . , YT ;F1, . . . ,FT ).

The functionals ρ := −A and D(Y ) :=
∑T

t=1 E(Yt) − A(Y ) are

called a multi-period capital risk and deviation risk functionals.



Home Page

Title Page

Contents

JJ II

J I

Page 10 of 27

Go Back

Full Screen

Close

Quit

Weaker translation-equivariance conditions:

(MA1)’ A(Y1, . . . , Yt + ct, . . . , YT ;FF) = ct +A(Y1, . . . , YT ;FF) for all

ct ∈ R, t = 1, . . . , T (weak translation-equivariance).

(MA1)” A(Y1 + c1, Y2, . . . , YT ;FF) = c1 +A(Y1, Y2, . . . , YT ;FF) for all

c1 ∈ R (first-period translation-equivariance).

General translation-equivariance condition: (Frittelli-Scandolo, Math.Fin. 06)

(MA1)∗ A(Y +W ;FF) = A(Y ;FF) +π(W ) for all W ∈ W , where W
is a closed linear subspace of Y and π : W → R is linear and

continuous ((π,W)-translation-equivariance).

Special cases:

(MA1) ⇔ (MA1)∗ : W := ×T−1
t=0 Lp(Ft)

(MA1)’ ⇔ (MA1)∗ : W := RT

(MA1)” ⇔ (MA1)∗ : W := R× {0}T−1

 π(W ) :=

T∑
t=1

E(Wt).
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Dual representations and properties

Let Z denote the topological dual of Y for p ∈ [1, +∞), i.e.,

Z := ×T
t=1Lq(Ft) with 1

p + 1
q = 1, and let 〈Z, Y 〉 =

∑T
t=1 E(ZtYt)

be the dual pairing between Z and Y .

A multi-period acceptability functional A = A(· ;FF) is called

proper if A(Y ) < +∞ for all Y ∈ Y and its domain dom(A) :=

{Y ∈ Y : A(Y ) > −∞} is nonempty.

The conjugate A+ : Z → R of A is given by

A+(Z) := inf
Y ∈Y

{〈Z, Y 〉 − A(Y )}.

The Fenchel-Moreau-Rockafellar theorem implies

A(Y ) = inf
Z∈Z

{〈Z, Y 〉 − A+(Z)}

ifA is a proper and upper semicontinuous multi-period acceptability

functional. If, in addition, A is positively homogeneous, then

A(Y ) = inf
Z∈S

〈Z, Y 〉,

where S is the closed convex set S := dom(A+).

(Ruszczyński-Shapiro, MOR 06)
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Theorem 3:
Let A = A(· ;FF) : Y → R be a proper, positively homogeneous

and upper semicontinuous multi-period acceptability functional sat-

isfying (MA1)∗. Then the representation

A(Y ) = inf
Z∈S

{ T∑
t=1

E(ZtYt) : π(·) = 〈Z, ·〉, Zt ≥ 0, t = 1, . . . , T
}

is valid for every Y ∈ Y , where S = dom(A+) ⊆ Z . Notice that

(MA1) π(·) = 〈Z, ·〉 ⇔ E(Zt|Ft−1) = 1, t = 1, . . . , T ,

(MA1)’ π(·) = 〈Z, ·〉 ⇔ E(Zt) = 1, t = 1, . . . , T .

Conversely, if A can be represented as above with a nonempty,

closed and convex set S ⊆ Z , then A is a proper, positively homo-

geneous and upper semicontinuous multi-period acceptability func-

tional satisfying (MA1)∗.

Moreover, A is locally Lipschitz continuous, superdifferentiable and

Hadamard directionally differentiable on int dom(A)

(Ruszczynski-Shapiro, MOR 06).
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Examples: (Separable constructions)

(a) Separable multi-period acceptability functionals:

A(Y ;FF) :=

T∑
t=1

At(Yt),

where At are single-period acceptability functionals, satisfy

(MA1)’, (MA2) and (MA3), but do not depend on FF .

(b) SEC multi-period acceptability functionals:

A(Y ;FF) :=

T∑
t=1

E(At(Yt|Ft−1))

whereAt(· |Ft−1), t = 1, . . . , T , are conditional (single-period)

acceptability functionals, satisfy (MA0)–(MA3).

Example: (Multi-period average value-at-risk, Pflug-Ruszczyński 04)

mAV@Rα(Y ;FF):=

T∑
t=1

E(AV@Rα(Yt|Ft−1))

= inf
{ T∑

t=1

E(YtZt):Zt∈ [0,
1

α
], E(Zt|Ft−1)=1,∀t

}
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Multi-period polyhedral acceptability functionals

It is a natural idea to introduce acceptability and risk functionals

as optimal values of certain stochastic programs.

Definition: (Eichhorn-Römisch, SIAM J. Opt. 05)

A multi-period functional A on ×T
t=1Lp(Ft) is called polyhedral if

there are kt ∈ N, ct ∈ Rkt, t = 1, . . . , T , wtτ ∈ Rkt−τ , t =

1, . . . , T , τ = 0, . . . , t − 1, (convex) polyhedral sets Vt ⊂ Rkt,

t = 1, . . . , T , such that

A(Y )=sup

{
E

[ T∑
t=1

〈ct, vt〉
]∣∣∣∣vt ∈ Lp(Ft; Rkt), vt ∈ Vt,∑t−1

τ=0〈wt,τ , vt−τ〉 = Yt, t = 1, . . . , T

}
.

Result: There exist multi-period polyhedral acceptability function-

als satisfying (MA0), (MA1) ((MA1)’,(MA1)”), (MA2), (MA3)

(strictness, positive homogeneity).
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Multi-period polyhedral acceptability functionals preserve linear-

ity, decomposition structures and stability properties of multi-stage

stochastic programming models. When replacing E by A we obtain

a linear multi-stage stochastic program of the form

max

E

[
T∑

t=1

〈ct, vt〉

]∣∣∣∣∣∣
vt and xt Ft-measurable, vt ∈ Vt, xt ∈ Xt,∑t−1

τ=0〈wt,τ , vt−τ〉 = 〈bt(ξt), xt〉, t = 1, . . . , T,

At,0xt + At,1xt−1 = ht(ξt), t = 2, ..., T.


by introducing the additional variables vt, t = 1, . . . , T .

Examples:
(a) Multi-period average value-at-risk mAV@R.

(b)A2(Y ) := AV@Rα(
∑t(·)

τ=1 Yτ ), where t(·) is uniformly distributed

on {1, . . . , T} and independent of (Yτ )
T
τ=1, is polyhedral (Eichhorn 07).

(c) A6(Y ) := AV@Rα(min{Y1, . . . ,
∑t

τ=1 Yτ , . . . ,
∑T

τ=1 Yτ})
is polyhedral (Eichhorn 07; Artzner-Delbaen-Eber-Heath-Ku 07).

Both acceptability mappings satisfy (MA0), (MA1)”, (MA2), (MA3)

and positive homogeneity.
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Composition of conditional acceptability mappings

Let a probability space (Ω,F , P) and a filtration FF = (F0, . . . ,FT )

of σ-fields Ft, t = 0, ..., T , with FT = F be given. We consider

the Banach spaces Yt := Lp(Ft) of Ft-measurable (real) random

variables for t = 1, . . . , T and some p ∈ [1, +∞).

Let, for each t = 1, . . . , T , conditional acceptability mappings

At−1 := A(· |Ft−1) from YT to Yt−1 be given satisfying the follow-

ing conditions for all YT and ỸT in YT . We introduce a multi-period

probability functional A on Y := ×T
t=1Yt and a family (A(t))Tt=1 of

single-period probability functionals A(t) by compositions of the

conditional acceptability mappings At−1, t = 1, . . . , T , namely,

A(Y ;FF) := A0[Y1 + · · · +AT−2[YT−1 +AT−1(YT )]·]
A(t)(YT ) := A0 ◦ A1 ◦ · · · ◦ At−1(YT )

for every Y ∈ Y and YT ∈ YT .

(Ruszczynski-Shapiro, Math. OR 06)
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Proposition: (Ruszczynski-Shapiro, Math. OR 06)

The multi-period functional A(·;FF) : Y → R satisfies the con-

ditions (MA1’), (MA2) and (MA3). Every A(t) : YT → R is a

(single-period) acceptability functional. Moreover, it holds

A(Y ;FF) = A(T )(Y1 + · · · + YT ).

The functionals A and A(t), t = 1, . . . , T , are positively homoge-

neous if all At are positively homogeneous.

Example:
We consider the conditional average value-at-risk (of level α ∈
(0, 1]) as conditional acceptability mapping

At−1(Yt) := AV@Rα(· |Ft−1)

for every t = 1, . . . , T . Then the multi-period probability functional

nAV@Rα(Y ;FF)=AV@Rα(· |F0) ◦ · · · ◦ AV@Rα(· |FT−1)
( ∑T

t=1
Yt

)
satisfies (MA0), (MA1’), (MA2), (MA3) according to the Proposi-

tion. It is called the nested average value-at-risk.
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Proposition:
The nested nAV@R has the following dual representation:

nAV@Rα(Y ;FF) = inf{E[(Y1 + . . . + YT )ZT ] : 0 ≤ Zt ≤
1

α
Zt−1,

E(Zt|Ft−1) = Zt−1, Z0 = 1, t = 1, . . . , T}.

Notice that the (dual) process (Zt) is a martingale and that nAV@R

isn’t polyhedral, but given by a linear stochastic program (with

operator constraints).
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Electricity Portfolio Management

We consider the electricity portfolio management of a municipal

electric utility. Its portfolio consists of the following positions:

• power and heat production (by company-owned thermal units),

• (physical) (day-ahead) spot market trading (e.g., EEX) and

• (financial) trading of derivatives (here, futures).

Schematic diagram for the optimization model components

(Eichhorn-Römisch-Wegner 05, Eichhorn-Heitsch-Römisch 07)
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The yearly time horizon is discretized into hourly intervals.

Objective: Maximizing the expected revenue and/or the accept-

ability of its production and trading decisions.

For the stochastic input data of the optimization model, here (yearly

electricity and heat demand, and electricity spot prices), a statisti-

cal model is employed. It is adapted to historical data as follows:

- cluster classification for the intra-day (demand and price) profiles

- 3-dimensional time series model for the daily average values (de-

terministic trend functions, a trivariate ARMA model for the (sta-

tionary) residual time series)

- simulation of an arbitrary number of three dimensional sample

paths (scenarios) by sampling the white noise processes for the

ARMA model and by adding on the trend functions and matched

intra-day profiles from the clusters afterwards.

- generation of scenario trees as in Heitsch-Römisch 05.
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 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

Scenario tree with 40 scenarios for electricity and heat demand, and spot prices

Test runs were performed on real-life data of the utility DREWAG

Stadtwerke Dresden GmbH leading to a linear program containing

T = 365 · 24 = 8760 time steps and about 150.000 nodes. The

objective function is of the form

Maximize γA(Y ) + (1− γ)E(
∑T

t=1
Yt)

with a (multi-period) acceptability functional A and coefficient γ ∈
[0, 1] (γ = 0 corresponds to no risk). E(

∑T
t=1 Yt) denotes the

overall expected revenue.
The model is implemented and solved with ILOG CPLEX 9.1 on a 2 GHz Linux PC with 1 GB
memory.
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Zoom of total revenue with A = mAV@R0.05 and γ = 0.9
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The risk aversion strategies ofA2 andA6 by trading at derivative markets require less than additional
1% of the optimal expected revenue.
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Conclusions

• Concepts for multi-period acceptability and risk functionals and

their dual representations were presented,

• several approaches for deriving multi-period acceptability func-

tionals and specific examples were proposed,

• an application to risk management in electricity production and

trading was discussed.
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Risk, World Scientific, Singapore, 2007.


