An invitation to formalising mathematics

Michael B. Rothgang (he/him)

Symplectic geometry group Humboldt-Universität zu Berlin

Learning Lean

BMS Student Conference 2024 February 21, 2024

Slides at www2.mathematik.hu-berlin.de/~rothganm/

Outline of today's talk

- What is a proof?
- 2 What is formalisation?
- What has been formalised?
- 4 How to formalise?
- **5** Learning Lean

What is a proof?

Proof: formal definition

A mathematical proof is a sequence of *formal* logical deductions, starting from a set of axioms.

Proof: practical definition

A mathematical proof is a sequence of arguments convincing an educated reader.

What is a proof?

Proof: formal definition

A mathematical proof is a sequence of *formal* logical deductions, starting from a set of axioms.

Proof: practical definition

A mathematical proof is a sequence of arguments convincing an educated reader. *In principle*, all details can be filled in.

Proof correctness is a social convention!

- proof correctness is a social convention
- folklore results: believed true but no written proof

- proof correctness is a social convention
- folklore results: believed true but no written proof
- most papers have errors: most are minor and fixable, some errors are grave

- proof correctness is a social convention
- folklore results: believed true but no written proof
- most papers have errors: most are minor and fixable, some errors are grave

- proof correctness is a social convention
- folklore results: believed true but no written proof
- most papers have errors: most are minor and fixable, some errors are grave

Example (Poincaré's, stability of the solar system)

Every single issue of Acta Mathematica retracted and reprinted.

Example (Four-colour theorem)

Proofs by Kempe and Tait (around 1880) each believed correct — for 11 years.

Example (Classification of finite simple groups)

Gap (quasi-thin case), only closed after 21 years

Some papers are wrong

Example (Baker's theorem, 1970)

- key lemma is false (Rempe-Sixsmith 2019)
- many papers using it can be fixed; another bunch is now open
- five much-cited papers "generalised" the argument

Some papers are wrong

Example (Baker's theorem, 1970)

- key lemma is false (Rempe-Sixsmith 2019)
- many papers using it can be fixed; another bunch is now open
- five much-cited papers "generalised" the argument

Example (Hilbert's 21st problem)

"Proof" by Plemelj (1908) found wrong in 1970s solved in 1990 with different answer

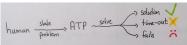
Example (Hilbert's 16th problem, part 2)

Solution by Dulac (1923), found wrong in 1981

What does formalisation mean?

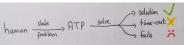
answer 1: humans write more detailed proofs

```
pr. s. bods
                                  to a ball (sa) (ban) and (60) and (... 4
                               Felyade x \neq bad 1.0 hall and 0. wit to x = by((pa) = p)x(pa) \cdot y \cdot b(a) and 0. wit to y = y \cdot x \cdot y \cdot y \cdot a

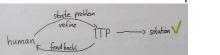

x \cdot x \cdot y \cdot x \cdot b \cdot a (read) and 0 \cdot y \cdot b \cdot a.
  If, a_{\alpha} \circ_{\beta} a_{\beta} ye we start a topos ye synthetic 0.7 and 11.
                                 abat a legis (650) and 13.
  26. 0, 0; 0; ye = 0 .
                                   MANUFACTURE BOT MT No. 12.
 27. v. v. v. v. v. . . . .
                                 50.0.2004
  11. 0, 0, 0, 11 m t 27 m t 27 m t
                                  98.0.00
 0.0,0,0,0,00000000
                                 by year a
                                                      000 set 11.
  77.00
                                                     (8) and 37-1 of the did
(3) yet a olympic to be as
(8) and 39-
 20. 17.00
                                  brere e
  No. 160y ay # 4
                                  38'60'g 8
                                  tyle yeg .
  22. 0, 0, 0, 27 = 1
                                  3y ye s a (lant), $60 and $5., $5.
  Mary eyes and property
                                   2y yu. s. s.
                                    subject with the same of the same of the
Ebbinghaus/Flum/Thomas, Einführung in die mathematische Louis (Introduction to
```

problem: impractical in the large how to formalise "draw a picture"?

What does formalisation mean? (cont.)


answer 2: automated theorem proving

problems: hit or miss; opaque


What does formalisation mean? (cont.)

answer 2: automated theorem proving

problems: hit or miss; opaque

answer 3: interactive theorem proving

Why formalise?

Why formalise?

- verification: peer reviewer's dream only check definitions and theorems make sense
- understanding: reader chooses amount of detail
 Demo by Patrick Massot and Kyle Miller:
 https://www.imo.universite-paris-saclay.fr/
 ~patrick.massot/Examples/ContinuousFrom.html

Why formalise?

- verification: peer reviewer's dream only check definitions and theorems make sense
- understanding: reader chooses amount of detail
 Demo by Patrick Massot and Kyle Miller:
 https://www.imo.universite-paris-saclay.fr/
 ~patrick.massot/Examples/ContinuousFrom.html
- database of theorems: searching known and related results only requires statements of main results
- creation: can this lemma be generalised? unused assumptions?
- collaboration: less trust required

What has been formalised already: let's guess

- Banach–Schauder open mapping theorem
- Birkhoff Ergodic Theorem
- Mandelbrot set is connected
- Cauchy-Kovalevskaya Theorem on existence of an analytical solution of an analytical PDE.
- Denjoy's theorem: a C^2 orientation-preserving diffeomorphism of the circle with an irrational rotation number is conjugate to a rotation.
- Sphere eversion
- Existence of Haar measure
- Existence of a smooth partition of unity
- Feit–Thompson theorem/odd order theorem
- Fermat's Last Theorem
- Four colour theorem
- Galois correspondence
- Herman-Yoccoz theorem on linearization of a circle diffeomorphism
- Jordan curve theorem
- Liouville theorem: an entire holomorphic function is a constant
- Hilbert's Nullstellensatz
- Picard-Lindelöf theorem (existence and uniqueness of solutions of ODEs)
- Poincaré-Bendixson Theorem
- Poincaré recurrence theorem
- Sard's Theorem
- The continuum hypothesis is independent of ZFC.

Let's guess: the answer

Only 5 are not formalised yet (AFAIK)

- Cauchy-Kovalevskaya Theorem on existence of an analytic solution of an analytic PDE
- Denjoy's theorem on rotation number
- Herman-Yoccoz theorem on linearization of a circle diffeomorphism
- Fermat's Last Theorem
- Sard's Theorem

Let's guess: the answer

Only 5 are not formalised yet (AFAIK)

- Cauchy-Kovalevskaya Theorem on existence of an analytic solution of an analytic PDE
- Denjoy's theorem on rotation number
- Herman-Yoccoz theorem on linearization of a circle diffeomorphism
- Fermat's Last Theorem (in progress)
- Sard's Theorem (in progress)

2005 Four colour theorem2012 Odd Order Theorem

- 2005 Four colour theorem
- 2012 Odd Order Theorem
- 2014 Kepler's conjecture (Hales et al)
- 2019 Ellenberg-Gijswijt's result on the cap set conjecture
- 2022 Liquid Tensor Experiment (Commelin et al): fundamental lemma about condensed mathematics

```
2005 Four colour theorem
2012 Odd Order Theorem
2014 Kepler's conjecture (Hales et al)
2019 Ellenberg-Gijswijt's result on the cap set conjecture
2022 Liquid Tensor Experiment (Commelin et al):
        fundamental lemma about condensed mathematics
2022 unit fractions project
2023 upper bound on diagonal Ramsey numbers
```

```
2005 Four colour theorem
2012 Odd Order Theorem
2014 Kepler's conjecture (Hales et al)
2019 Ellenberg-Gijswijt's result on the cap set conjecture
2022 Liquid Tensor Experiment (Commelin et al):
     fundamental lemma about condensed mathematics
2022 unit fractions project
2023 upper bound on diagonal Ramsey numbers
2023 polynomial Freeman-Rusza conjecture (Tao et al)
```

```
2005 Four colour theorem
2012 Odd Order Theorem
2014 Kepler's conjecture (Hales et al)
2019 Ellenberg-Gijswijt's result on the cap set conjecture
2022 Liquid Tensor Experiment (Commelin et al):
     fundamental lemma about condensed mathematics
2022 unit fractions project before referee report
2023 upper bound on diagonal Ramsey numbers before referee report
2023 polynomial Freeman-Rusza conjecture (Tao et al)
```

```
2005 Four colour theorem
2012 Odd Order Theorem
2014 Kepler's conjecture (Hales et al)
2019 Ellenberg-Gijswijt's result on the cap set conjecture
2022 Liquid Tensor Experiment (Commelin et al):
     fundamental lemma about condensed mathematics
2022 unit fractions project before referee report
2023 upper bound on diagonal Ramsey numbers before referee report
2023 polynomial Freeman-Rusza conjecture (Tao et al)
     took 3 weeks; complete before paper submitted
```

Some ongoing projects

- Almost Periodicity in Arithmetic Progressions
- Existence of an aperiodic monotile
- Prime Number Theorem (Kontorovich-Tao et al)
- Fermat's Last Theorem (Buzzard)

A zoo of interactive theorem provers

- four widely used interactive theorem provers: Coq, Isabelle/HOL, Mizar and Lean
- large mathematics libraries: mathcomp, Archive of formal proofs, Mizar Mathematical Library, mathlib
- Coq: standard tool for software verification
- Isabelle: simple foundations, powerful automation
- Mizar: huge library
- Lean: newest (<10 years old), fast-growing

Formalising research mathematics

- need a large library of mathematics
- need an integrated library: connecting different fields, in a compatible way

Formalising research mathematics

- need a large library of mathematics
- need an integrated library: connecting different fields, in a compatible way
- Why mathlib?
 - large integrated library
 - growing fast
 - system and tools are improving quickly
 - friendly and diverse community (github, zulip)

Short demo

What is formalisation like?

- fussy; has learning curve
- it's fun like a video game or programming
- makes you understand mathematics better

Demo: backup in case of technical issues

```
∀ □ …
Mathlib > Topology > UniformSpace > ≡ Compact.lean
          intro v nxv
156
          simp [comap const of not mem (compl singleton mem nhds hxy) (Classical.not not.2 rfl)]
       #align uniform_space_of_compact_t2 uniformSpaceOfCompactT2
160
       ### Heine-Cantor theorem
161
162
163
       /-- Heine-Cantor: a continuous function on a compact uniform space is uniformly
164
165
       continuous. -/
       theorem CompactSpace.uniformContinuous of continuous [CompactSpace \alpha] {f : \alpha \rightarrow \beta}
166
167
           (h : Continuous f) : UniformContinuous f :=
      calc map (Prod.map f f) (U α)
168
         = map (Prod.map f f) (N^s (diagonal \alpha)) := by rw [nhdsSet diagonal eq uniformity]
       ≤ N° (diagonal B)
                                                  := (h.prod map h).tendsto nhdsSet mapsTo prod map diagonal
170
                                                  := nhdsSet_diagonal_le_uniformity
       _ ≤ U β
       #align compact space.uniform continuous of continuous CompactSpace.uniformContinuous of continuous
       /-- Heine-Cantor: a continuous function on a compact set of a uniform space is uniformly
174
       continuous. -/
176
       theorem IsCompact,uniformContinuousOn of continuous \{s : Set q\} \{f : q \rightarrow B\} \{hs : IsCompact s\}
          (hf : ContinuousOn f s) : UniformContinuousOn f s := by
178
        rw [uniformContinuousOn_iff_restrict]
        rw [isCompact iff compactSpace] at hs
180
        rw [continuousOn iff continuous restrict] at hf
181
        exact CompactSpace.uniformContinuous of continuous hf
       #align is_compact.uniform_continuous_on_of_continuous IsCompact.uniformContinuousOn_of_continuous
182
183
```

▼ Expected type

f: a → B

▶ All Messages (0)

▼ Compact.lean:168:0

α: Type u_1
β: Type u_2
y: Type u_3

inst † 2 : UniformSp
inst † 1 : UniformSp

inst†: CompactSpa

► UniformContinuo

h: Continuous f

Learning Lean

Learning Lean

- play the natural number game:
- textbook: mathematics in Lean
 https://leanprover-community.github.io/mathematics_in_lean/index.html
- further resources: https://leanprover-community.github.io/learn.html
- questions? ask on zulip

Lean tutorials

- upcoming: Edinburgh, May 27-31 (women and mathematicians of minority gender); registration by Feb 26
- past/registration closed:
 - Düsseldorf (September 2023)
 - Regensburg (September 2023)
 - Rome (Jan 2024)
 - Marseille (March 2024)
 - Bonn (May 2024)
- up-to-date list: https: //leanprover-community.github.io/events.html

Lean in Berlin

- Lean study group, summer 2024 (email me if interested)
- Sebastian Pokutta, Tibor Szabó: Lean-related project
- Marc Kegel had a student using Lean
- ask your master's thesis advisor :-)

Lean in Berlin

- Lean study group, summer 2024 (email me if interested)
- Sebastian Pokutta, Tibor Szabó: Lean-related project
- Marc Kegel had a student using Lean
- ask your master's thesis advisor :-)

Thanks for listening! Any questions?

Comparing mathematical libraries: a closer look

- Archive of formal proofs: 4.1 million lines not integrated, articles are re-developing theory about half is "computer science" (e.g., properties of algorithms and programs)
- Coq's library: different focus from standard mathematics (e.g., care about constructivism)
- MML: large and integrated; no statistics on size
- mathlib: 1.5 million lines, integrated

My contributions to mathlib

Sard's theorem: prerequisites and reduction to normed spaces

- measure zero subsets of a manifold
- locally Lipschitz maps
- nowhere dense, meagre and sigma-compact sets
- local diffeomorphisms

Other mathematics

- interior and boundary of a manifold
- inverse function theorem for manifolds
- immersions, submersions and embeddings

Sphere eversion project: cleaning up, moving code into mathlib

Long-term vision: formalising the foundations of symplectic geometry

