Isolated singularities, minimal discrepancy and exact fillings

Michael B. Rothgang (he/him)

Symplectic geometry group
Humboldt-Universität zu Berlin
Working geometry group seminar
February 22, 2021

Outline

- Motivation: $\mathbb{R P}^{2 n-1}$ is not exactly fillable
- Background: varieties, isolated singularities and their links
- Main results: minimal discrepancy and highest minimal index
- Outline of proof

Exact fillability of projective space

hierarchy of symplectic fillings: in order of strictness,

$$
\text { tight }<\text { weak }<\text { strong }<\text { exact }<\text { Stein }=\text { Weinstein. }
$$

Theorem (Zhou 2020)
$\left(\mathbb{R}^{2 n-1}, \xi_{s t d}\right)$ is not exactly fillable for $n \neq 2^{k}$.
Consider the action of \mathbb{Z}_{k} on \mathbb{C}^{n} (multiply by $e^{2 \pi i / k}$ in each component)
Theorem (Zhou 2020)
If k is prime and satisfies (a topological condition which implies $n>k$), the quotient $\left(\mathbb{S}^{2 n-1} / \mathbb{Z}_{k}, \xi_{s t d}\right)$ has no exact filling.

Exact fillability of projective space: about Zhou's proof

Theorem (Zhou 2020)
If k is prime and satisfies (an topological condition which implies $n>k$), the quotient $\left(\mathbb{S}^{2 n-1} / \mathbb{Z}_{k}, \xi_{s t d}\right)$ has no exact filling.

Proof outline.

- If W is an exact filling of $\left(\mathbb{S}^{2 n-1} / \mathbb{Z}_{k}, \xi_{\text {std }}\right)$ for $n>k$, $\oplus_{i} H^{2 i}(W ; \mathbb{R}) \leq k$ and $\oplus_{i} H^{2 i+1}(W ; \mathbb{R}) \leq k-2$. Uses neck-stretching + spectral sequence for a clever filtration of SH.
- Using the top. assumption, deduce a contradiction

Symplectic part uses only $n \geq k+1$!

Putting Zhou's proof in context

- $\mathbb{C}^{n} / \mathbb{Z}_{k}$ is an (affine) algebraic variety, with an isolated singularity at 0
- $\mathbb{S}^{2 n-1} / \mathbb{Z}_{k}$ is the link of the singularity at 0

Miracle
$n \geq k+1 \Leftrightarrow 0$ is a terminal singularity of $\mathbb{C}^{n} / \mathbb{Z}_{k}$.
Conjecture (Zhou 2020)
If $G \leqslant \mathrm{U}(n)$ finite and \mathbb{C}^{n} / G has a terminal singularity at 0 , its link has no (symp. aspherical or Calabi-Yau) filling.

Algebraic geometry concepts: algebraic varieties

- (complex) affine space is $A^{n}:=\left\{\left(a_{1}, \ldots, a_{n}\right): a_{i} \in \mathbb{C}\right\}$
- affine (algebraic) variety

$$
X=V\left(f_{1}, \ldots, f_{k}\right)=\left\{a \in A^{n}: f_{1}(a)=\cdots=f_{k}(a)=0\right\}
$$

for $f_{k} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$

- equivalently, consider $R:=k\left[t_{1}, \ldots, t_{n}\right] /\left\langle f_{1}, \ldots, f_{k}\right\rangle$
is a finitely generated \mathbb{C}-algebra, coordinate-free definition
- X is irreducible iff there are no algebraic sets $Y, Z \subset X$ s.t. $X=Y \cup Z$.

Algebraic geometry concepts: singularities

Let $X=V\left(\left\langle g_{1}, \ldots, g_{r}\right\rangle\right) \subset A^{n}$ be an algebraic variety.

- $a \in X$ is regular iff the Jacobian $\left(\frac{\partial g_{i}}{\partial x_{j}}(a)\right)$ has maximal rank, otherwise a singular point or singularity
- tangent space of $a \in X$ is $T_{a} X=\left\{v \in \mathbb{C}^{n}: J(a) v=0\right\}$, where $J(a)=\left(\frac{\partial g_{i}}{\partial x_{j}}(a)\right)_{i j}$ is the Jacobian of the g_{i}
- X has dimension $\operatorname{dim} X=n-\operatorname{rk}(J(a))=n-\operatorname{dim} T_{a} X$, where $a \in X$ is any regular point.
- singular set $\operatorname{Sing}(X)=\{a \in X:$ singular $\} \subset X$
is (Zariski) closed proper subset, hence an algebraic subvariety
$\Rightarrow X \backslash \operatorname{Sing}(X) \subset X$ is an open dense subset

Key concepts: link of a singularity

$A \subset \mathbb{C}^{N}$ irreducible affine (algebraic) variety with $\operatorname{dim}_{\mathbb{C}} A=n$
$0 \in A$ isolated singularity (perhaps smooth, i.e. a regular point)

- link of A is $L_{A}:=A \cap\left\{\sum_{i=1}^{N}\left|z_{i}\right|^{2}=\epsilon^{2}\right\}$ for small $\epsilon>0$.
- Fact. L_{A} depends only on the germ of A near 0 ; in particular, L_{A} is independent of the choice of ϵ.
- Fact. L_{A} is a differentiable manifold of (real) dimension $2 n-1$.
- Observation. Near $0, A$ is homeomorphic to a cone over L_{A}.
- Trivial Example. If A is smooth at 0 , then L_{A} is diffeo to a sphere.
- Fact. $\xi_{A}:=\left.\xi_{\text {std }}\right|_{T L_{A}}$ is a contact structure on L_{A}.
- Observe that $\xi_{A}=T L_{A} \cap J_{\text {std }}\left(T L_{A}\right)$

A peek at different kinds of singularities

- (regular points)
- normal singularities \longrightarrow normalisation (then: $\operatorname{codim} \operatorname{Sing}(X) \geq 2$)
- topologically smooth singularities: $L_{A} \cong{ }_{\text {diff }} \mathbb{S}^{2 n-1}$
- For an isolated singularity in $\operatorname{dim}_{\mathbb{C}}(A) \geq 2$, num. \mathbb{Q}-Gorenstein $\supset \mathbb{Q}$-Gorenstein \supset complete intersection sing.; 0 is numerically \mathbb{Q}-Gorenstein $\Leftrightarrow c_{1}\left(\xi_{A}\right)=c_{1}\left(\left.T A\right|_{L_{A}}\right)$ is torsion.
- canonical singularity: numerically \mathbb{Q}-Gorenstein and $\operatorname{md}(A, 0) \geq 0$
- terminal singularity: numerically \mathbb{Q}-Gorenstein and $\operatorname{md}(A, 0)>0$

Capturing local behaviour: local rings

- type of singularity is "local behaviour"
capture local behaviour near $x \in X$ using the local ring at x
- R non-zero unital communitative ring
- $I \subset R$ is an ideal of R iff $I \leqslant(R,+)$ and $r i=i r \in I$ for all $i \in I, r \in R$
- a proper ideal $I \subset R$ is prime iff $a b \in I$ implies $a \in I$ or $b \in I$
- a proper ideal $I \subset R$ is maximal iff \nexists ideal J s.t. $I \subsetneq J \subsetneq R$
- maximal ideals are prime
- Fact. For $a=\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$, each
$\mathfrak{m}_{a}:=\left\langle x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right\rangle \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is a maximal ideal of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, and every maximal ideal is of this form.

Capturing local behaviour: local rings

- type of singularity is "local behaviour"
capture local behaviour near $x \in X$ using the local ring at x
- R non-zero unital communitative ring
$-I \subset R$ is an ideal of R iff $I \leqslant(R,+)$ and $r i=i r \in I$ for all $i \in I, r \in R$
- a proper ideal $I \subset R$ is prime iff $a b \in I$ implies $a \in I$ or $b \in I$
- a proper ideal $I \subset R$ is maximal iff \nexists ideal J s.t. $I \subsetneq J \subsetneq R$
- maximal ideals are prime
- Fact. For $a=\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$, each
$\mathfrak{m}_{a}:=\left\langle x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right\rangle \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is a maximal ideal of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, and every maximal ideal is of this form.
- given a prime ideal $\mathfrak{p} \subset R$, localisation at \mathfrak{p} is $R_{\mathfrak{p}}:=\{r / s: r \in R, s \in R \backslash \mathfrak{p}\} / \sim$, equivalence by cancellation.
- Definition. The local ring of a variety $X \subset A^{n}$ at $a \in X$ is the localisation $k[X]_{\mathfrak{m}_{a}}$ of the coordinate algebra $k[X]$ of X at the maximal ideal \mathfrak{m}_{a} corresponding to a.
- local ring $\mathcal{O}_{p}(X)$ encodes local properties of X at p

Normal singularities

- Definition. Let $\phi: R \rightarrow S$ be a ring homomorphism (" S is an R-algebra"). $x \in S$ is integral over R iff $f(x)=0$ for some monic polynomial $f \in R[t]$
- Fact. The set of integral elements of S is a subalgebra of S, called the normalisation of S.
- Definition. An integral domain R is normal iff it equals its normalisation in its quotient field.
- Definition. An affine variety X is normal at $x \in X$ if the local ring at this point is normal. X is normal iff it is normal at every point.

Normal singularities (cont.)

X irreducible affine variety

- Definition. X is normal at $x \in X$ if the local ring at this point is normal. X is normal iff it is normal at every point.
- Theorem. X is normal at every regular point.
- Theorem. The singular locus $\operatorname{Sing}(X)=\{a \in X: X$ singular at $a\}$ is a proper algebraic subset of X.
- Proposition. If X is normal, $\operatorname{dim} \operatorname{Sing}(X) \leq \operatorname{dim} X-2$.

Normal singularities: geometric intuition

Figure: Pictures reproduced from Eisenbud: Commutative algebra (1995), page 128.

- Consider $f=y^{2}-x^{3}$ resp. $f=y^{2}-x^{2}(x+1) \in \mathbb{C}[x, y]$
- compute: $X=V(f)$ has one singular point, $p=(0,0)$
- consider $y / x \in \mathcal{O}_{p}(X)$: bounded along X near p
- algebraically: y / x is integral, e.g. $(y / x)^{2}-x=0$ (left)

Normal singularities: geometric intuition

Figure: Pictures reproduced from Eisenbud: Commutative algebra (1995), page 128.

- Consider $f=y^{2}-x^{3}$ resp. $f=y^{2}-x^{2}(x+1) \in \mathbb{C}[x, y]$
- compute: $X=V(f)$ has one singular point, $p=(0,0)$
- consider $y / x \in \mathcal{O}_{p}(X)$: bounded along X near p
- algebraically: y / x is integral, e.g. $(y / x)^{2}-x=0$ (left)

Theorem. An element $p(x) / q(x)$ of the quotient field is integral over $\mathbb{C}[X]$ iff each $x \in X$ has a neighbourhood U s.t. $\left|\frac{p(x)}{q(x)}\right|$ is bounded at all points of U where q is non-zero.

Normalisation and resolution of varieties

- normalise a variety X using its coordinate algebra $R:=\mathbb{C}[X]$
- Recall. anti-equivalence of categories \{affine algebraic varieties\} \longleftrightarrow \{finitely generated \mathbb{C}-algebras\}, variety $X \longmapsto$ coordinate algebra $\mathbb{C}[X]$
- normalisation \widetilde{R} of R corresponds to the normalisation \widetilde{X} of X
- natural inclusion $R \hookrightarrow \widetilde{R}$ into normalisation \widetilde{R}
- induces a birational map $\pi: \widetilde{X} \rightarrow X$
- A resolution of an algebraic variety X is a non-singular variety \widetilde{X} together with a proper birational map $\pi: \widetilde{X} \rightarrow X$.
- Theorem (Hironaka '64). Every variety has a resolution.

Normalisation: geometric intuition

consider $X=V(f)$ for $f=y^{2}-x^{3}$ or $f=y^{2}-x^{2}(x+1) \in \mathbb{C}[x, y]$

Figure: Normalisation of the curves from the previous example.
Pictures reproduced from Eisenbud: Commutative algebra (1995), p. 141.
algebraically: normalisation of $R=\mathbb{C}[X]$ is $\mathbb{C}[t]$ geometrically: normalisation $\widetilde{X} \cong \mathbb{C}$

Known results about singularities and their links

- Theorem (Mumford '61). In complex dimension two, every normal topologically smooth singularity is smooth.
- Many counterexamples in dimension ≥ 3, such as $A:=\left\{x^{2}+y^{2}+z^{2}+w^{2}=0\right\} \subset \mathbb{C}^{4}$.
- Theorem (Ustilovski '99). For each $m>0$, there are infinitely many singularities with links diffeomorphic to $\mathbb{S}^{4 m+1}$, but not contactomorphic.
- Theorem (Kwon-van Koert '16). For weighted homogeneous hypersurface singularities $\left\{\sum z_{j}^{k_{j}}=0\right\},\left(L_{A}, \xi_{A}\right)$ determines whether $\sum_{j} 1 / k_{j}>1 \Leftrightarrow 0$ is a canonical singularity.

The highest minimal index

- $\left(C^{2 n-1}, \xi=\operatorname{ker} \alpha\right)$ co-oriented contact manifold \rightarrow symplectic vector bundle ($\left.d \alpha\right|_{\xi}, \xi$)
- first Chern class $c_{1}(\xi):=c_{1}(\xi, J) \in H^{2}(C ; \mathbb{Z})$ for J compatible acs on $\left.d \alpha\right|_{\xi}$
- Suppose $N c_{1}(\xi)=0$ and $H^{1}(C ; \mathbb{Q})=0$ \longrightarrow Conley-Zehnder index $C Z(\gamma) \in \frac{1}{N} \mathbb{Z}$ of a Reeb orbit γ
- lower SFT index

$$
\operatorname{ISFT}(\gamma):=C Z(\gamma)+(n-3)-\frac{1}{2} \operatorname{dim} \operatorname{ker}\left(\left.D_{\gamma(0)} \phi_{L}\right|_{x i}-i d\right)
$$

- minimal SFT index $\operatorname{mi}(\alpha):=\inf _{\gamma} \operatorname{ISFT}(\gamma)$
- highest minimal SFT index $\operatorname{hmi}(C, \xi):=\sup _{\alpha} \operatorname{mi}(\alpha)$.
- Observation. hmi (C, ξ) is a contact invariant.

Main results: relating minimal discrepancy and hmi

Main Theorem (McLean '15)
Suppose A has a normal isolated singularity at 0 that is numerically \mathbb{Q}-Gorenstein with $H^{1}\left(L_{A} ; \mathbb{Q}\right)=0$. Then,

- if $\operatorname{md}(A, 0) \geq 0$ then $\operatorname{hmi}\left(L_{A}, \xi_{A}\right)=2 \operatorname{md}(A, 0)$,
- if $\operatorname{md}(A, 0)<0$, then $\operatorname{hmi}\left(L_{A}, \xi_{A}\right)<0$.

Main results: relating minimal discrepancy and hmi

Main Theorem (McLean '15)
Suppose A has a normal isolated singularity at 0 that is numerically \mathbb{Q}-Gorenstein with $H^{1}\left(L_{A} ; \mathbb{Q}\right)=0$. Then,

- if $\operatorname{md}(A, 0) \geq 0$ then $\operatorname{hmi}\left(L_{A}, \xi_{A}\right)=2 \operatorname{md}(A, 0)$,
- if $\operatorname{md}(A, 0)<0$, then $\operatorname{hmi}\left(L_{A}, \xi_{A}\right)<0$.
- Recall. 0 is canonical if $\operatorname{md}(A, 0) \geq 0$, terminal if $\operatorname{md}(A, 0)>0$

Main results: relating minimal discrepancy and hmi

Main Theorem (McLean '15)

Suppose A has a normal isolated singularity at 0 that is numerically \mathbb{Q}-Gorenstein with $H^{1}\left(L_{A} ; \mathbb{Q}\right)=0$. Then,

- if $\operatorname{md}(A, 0) \geq 0$ then $\operatorname{hmi}\left(L_{A}, \xi_{A}\right)=2 \operatorname{md}(A, 0)$,
- if $\operatorname{md}(A, 0)<0$, then $\operatorname{hmi}\left(L_{A}, \xi_{A}\right)<0$.
- Recall. 0 is canonical if $\operatorname{md}(A, 0) \geq 0$, terminal if $\operatorname{md}(A, 0)>0$
- Conley-Zehnder indices on L_{A} determine whether 0 is canonical or terminal

Main results: relating minimal discrepancy and hmi

Main Theorem (McLean '15)
Suppose A has a normal isolated singularity at 0 that is numerically \mathbb{Q}-Gorenstein with $H^{1}\left(L_{A} ; \mathbb{Q}\right)=0$. Then,

- if $\operatorname{md}(A, 0) \geq 0$ then $\operatorname{hmi}\left(L_{A}, \xi_{A}\right)=2 \operatorname{md}(A, 0)$,
- if $\operatorname{md}(A, 0)<0$, then $\operatorname{hmi}\left(L_{A}, \xi_{A}\right)<0$.
- Recall. 0 is canonical if $\operatorname{md}(A, 0) \geq 0$, terminal if $\operatorname{md}(A, 0)>0$
- Conley-Zehnder indices on L_{A} determine whether 0 is canonical or terminal

Main results: relating minimal discrepancy and hmi

- Definition. If (M, ξ) is contactomorphic to some link $\left(L_{A}, \xi_{A}\right)$, it is Milnor fillable, and A is a Milnor filling of M.
- Example. $\left(\mathbb{S}^{2 n-1}, \xi_{\text {std }}\right)$ is Milnor fillable; its Milnor filling is \mathbb{C}^{n}.
- Corollary. If A is normal and $\left(L_{A}, \xi\right)$ is contactomorphic to $\left(\mathbb{S}^{5}, \xi_{\text {std }}\right)$, then A is smooth at 0 .
$\Rightarrow\left(\mathbb{S}^{5}, \xi_{\text {std }}\right)$ has a unique smooth Milnor filling up to normalization.
Extends Mumford's results to complex dimension three.
- Observation. Milnor fillable contact structures are strongly fillable.
- Conjecture (Shukorov '02). If A is normal and numerically \mathbb{Q}-Gorenstein with $\operatorname{md}(A, 0)=n-1$, then A is smooth at 0 .
- Corollary. If the conjecture holds, A is normal and $\left(L_{A}, \xi_{A}\right) \cong\left(\mathbb{S}^{2 n-1}, \xi_{\text {std }}\right)($ any $n)$, then A is smooth at 0 .

Canonical bundles and \mathbb{Q}-Cartier divisors

- Definition. X non-singular algebraic variety with $\operatorname{dim}_{C} X=n$. The canonical bundle of X is $\Omega=\Lambda^{n} T^{*} X$.
- X normal variety. A (Weil) \mathbb{Q}-divisor is a finite formal linear combination $D=\sum_{j=1}^{k} a_{j} E_{j}$ with $a_{j} \in \mathbb{Q}, E_{j} \subset X$ irreducible codimension 1 subvariety.
- A \mathbb{Q}-divisor D is \mathbb{Q}-Cartier if we can choose the E_{j} to be locally defined by one equation.
- Fact. If X is non-singular, every \mathbb{Q}-divisor is \mathbb{Q}-Cartier.
- Fact. Every line bundle on a normal variety X is the class of some Cartier divisor.

Numerically \mathbb{Q}-Gorenstein singularities

A (irreducible) algebraic variety with an isolated singularity at 0

- A smooth normal crossings divisor is a Cartier divisor whose components only intersect transversely. Near each point, the divisor looks like the intersection of coordinate hyperplanes.
- Take a resolution $\pi: \widetilde{A} \rightarrow A$ of A s.t. $\pi^{-1}(0)=\bigcup_{i} E_{i}$ for smooth normal crossing divisors E_{i}, and π is an isomorphism away from these divisors.
- Definition. A is numerically \mathbb{Q}-Gorenstein iff there exists a \mathbb{Q}-Cartier divisor $K_{A}^{n} / A=\sum_{j} E_{j}$ s.t. $C \cdot\left(K_{\tilde{A} / A}^{\text {num }}-K_{\widetilde{A}}\right)=0$ for any projective algebraic curve $C \subset \pi^{-1}(0)$.

Defining the minimal discrepancy

- Definition. A is numerically \mathbb{Q}-Gorenstein iff there exists a \mathbb{Q}-Cartier divisor $K_{A / A}^{n u m}:=\sum_{j} E_{j}$ s.t. $C \cdot\left(K_{\widetilde{A} / A}^{\text {num }}-K_{\widetilde{A}}\right)=0$ for any projective algebraic curve $C \subset \pi^{-1}(0)$.
- Fact. The $a_{j} \in \mathbb{Q}$ are unique; a_{j} is called the discrepancy of E_{j}.
- Definition. The minimal discrepancy $\operatorname{md}(A, 0)$ of A is the infimum of a_{j} over all resolutions π.
- Proposition. If π is a fixed resolution, not the identity, then

$$
\operatorname{md}(A, 0)= \begin{cases}\min _{j} a_{j} & \text { if } a_{j} \geq-1 \\ -\infty & \text { otherwise }\end{cases}
$$

If A is smooth at 0 , we have $\operatorname{md}(A, 0)=\operatorname{dim}_{\mathbb{C}} A-1$.

Strategy of McLean's proof

- easier part: $\mathrm{hmi}\left(L_{A}, \xi_{A}\right) \geq 2 \operatorname{md}(A, 0)$
- harder parts: If $\operatorname{md}(A, 0) \geq 0$ then $\mathrm{hmi}\left(L_{A}, \xi_{A}\right) \leq 2 \operatorname{md}(A, 0)$; if $\operatorname{md}(A, 0)<0$ then $\operatorname{hmi}\left(L_{A}, \xi_{A}\right)<0$.
- model case: A is the cone over a projective variety X; we skip explaining the proof in the general case

Model case: cone singularity

- Model case: $A \subset \mathbb{C}^{N}$ is the cone of a smooth connected projective variety $X \subset \mathbb{C P}^{N-1}$
- resolution \widetilde{A} by blowing up at the origin; $\mathcal{O}(-1)=(\tilde{\pi}: \widetilde{A} \rightarrow X)$ is the tautological line bundle
- numerically \mathbb{Q}-Gorenstein $\Leftrightarrow c_{1}\left(K_{\widetilde{A}} \mid L_{A} ; \mathbb{Q}\right)=0$
$-L_{A} \rightarrow \widetilde{A} \backslash X$ is a homotopy equivalence: $c_{1}\left(K_{\tilde{A}} \mid \widetilde{A} \backslash X ; \mathbb{Q}\right)=0$
- for some $N>0, K_{\neq A}^{\otimes N}$ has a smooth section s which is transverse outside a compact set
- discrepancy of A is the $a \in \mathbb{Q}$ satisfying

$$
\left[s^{-1}(0)\right]=a N(X) \in H_{2 n-2}(\tilde{A} ; \mathbb{Q})=H_{2 n-2}(X ; \mathbb{Q})
$$

minimal discrepancy $\operatorname{md}(A, 0)$ is a if $a \geq-1$, otherwise $-\infty$.

Model case: proof of easier statement

 want to show: $\mathrm{hmi}\left(L_{A}, \xi_{A}\right) \geq 2 \operatorname{md}(A, 0)$- goal: find a contact form α_{A} for ξ_{A} s.t. $\operatorname{md}\left(\alpha_{A}\right)=2 \operatorname{md}(A, 0)$
- $\mathcal{O}(-1)$ is a Hermitian line bundle, link L_{A} is the radius ϵ circle bundle on $\mathcal{O}(-1)$
- $\pi=\left.\tilde{\pi}\right|_{L_{A}}$ makes L_{A} a circle bundle over X
- consider the contact form $\alpha_{A}:=-\left.\frac{1}{4 \pi \epsilon^{2}} d^{c}\left(\sum_{j}\left|z_{j}\right|^{2}\right)\right|_{L_{A}}$
- all Reeb orbits are of the form

$$
\gamma: \mathbb{R} / k \mathbb{Z} \rightarrow L_{A}, \gamma(t)=B(t, p) \text { for } k \in \mathbb{Z}^{+}, p \in L_{A}
$$

Model case: proof of easier statement

want to show: $\mathrm{hmi}\left(L_{A}, \xi_{A}\right) \geq 2 \mathrm{md}(A, 0)$

- goal: find a contact form α_{A} for ξ_{A} s.t. $\operatorname{md}\left(\alpha_{A}\right)=2 \operatorname{md}(A, 0)$
- $\mathcal{O}(-1)$ is a Hermitian line bundle, link L_{A} is the radius ϵ circle bundle on $\mathcal{O}(-1)$
- $\pi=\left.\tilde{\pi}\right|_{L_{A}}$ makes L_{A} a circle bundle over X
- consider the contact form $\alpha_{A}:=-\left.\frac{1}{4 \pi \epsilon^{2}} d^{c}\left(\sum_{j}\left|z_{j}\right|^{2}\right)\right|_{L_{A}}$
- all Reeb orbits are of the form
$\gamma: \mathbb{R} / k \mathbb{Z} \rightarrow L_{A}, \gamma(t)=B(t, p)$ for $k \in \mathbb{Z}^{+}, p \in L_{A}$
- compute: $C Z(\gamma)=2(a+1) k$
- F be the fiber containing γ, s_{F} a non-zero section of $K_{A}^{\otimes N}$.
- define

$$
Q_{F}: \mathbb{R} / k \mathbb{Z} \rightarrow U(1), t \mapsto\left[z \mapsto P\left(B_{K}\left(t, s_{F}(\gamma(0))\right) / s_{F}(\gamma(t))\right)\right]
$$

- compute: $\left.\operatorname{deg} Q_{F}=-k N,\left.s^{-1}(0)\right|_{F}\right]=a N$

$$
\begin{aligned}
& \Rightarrow \operatorname{ISFT}(\gamma)=2(a+1) k-\frac{1}{2}(2 n-2)+(n-3)=2(a+1) k-2 \\
& \Rightarrow \operatorname{mi}\left(a_{\alpha}\right)=2 \operatorname{md}(A, 0)
\end{aligned}
$$

Model case: proof of harder statement

to show: any contact form β for ξ_{A} admits a Reeb orbit γ with $\operatorname{ISFT}(\gamma)<0$ or $\operatorname{ISFT}(\gamma) \leq 2 \operatorname{md}(A, 0)$

- Compactify $\tilde{\pi}: \tilde{A} \rightarrow x$ to a $\mathbb{C P}^{1}$-bundle $\check{S}:=P(\tilde{A} \oplus \mathbb{C})$.
- embed $\left(L_{A}, \xi_{A}\right)$ as a contact hypersurface inside \check{S}.
- neck-stretching: shows L_{A} admits a Reeb orbit in fact, limiting curve has negative ends asymptotic to Reeb orbits γ_{i},
- lives in a moduli space of virtual dimension $2 \operatorname{md}(A, 0)-\sum_{i} \operatorname{ISFT}\left(\gamma_{i}\right) \geq 0$
- Thus, $2 \operatorname{md}(A, 0)<0$ implies $\operatorname{ISFT}\left(\gamma_{i}\right)<0$ for some i; $\operatorname{md}(A, 0) \geq 0$ implies $\operatorname{ISFT}\left(\gamma_{i}\right) \leq 2 \operatorname{md}(A, 0)$ for some i.

Technical apparatus for the proof

- contact-type hypersurface L_{A} in symplectic manifold \check{S}
- symplectic dilation (similar procedure to neck-stretching) \rightarrow contact embedding of L_{A} into \check{S}
- Gromov-Witten theory: L_{A} admits a special holomorphic curve ($\operatorname{dim} M \leq 6 \rightarrow$ rigorous transversality results)
- neck-stretching: L_{A} admits a Reeb orbit
- dimension computation

Neck-stretching step

(M, ω) compact symplectic manifold which has a contact type hypersurface $C \subset M$ so that

1. $M \backslash C$ has two connected components M_{-}and M_{+}.
2. There are codimension 2 submanifolds $Q_{ \pm} \subset M_{ \pm}$, and $[A] \in H_{2}(M ; \mathbb{Z})$ s.t. $[A] \cdot\left[Q_{ \pm}\right] \neq 0$.
3. For every compatible acs J, there exists a compact genus 0 J-holomorphic curve $u: \Sigma \rightarrow M$ representing [A].
Then C has at least one Reeb orbit.
Proof sketch.

- Choose a collar neighbourhood of C and a curve u as in (3)
- Stretched curves u_{i} converge to some s. inj. limit u_{∞}
- since $[u]=A$, each u_{i} must intersect the manifolds $Q_{ \pm}$
- in particular, u_{i} intersects M_{-}and M_{+}, hence $\left.u_{i}\right|_{u^{-1}\left(M_{+}\right)}$is a proper map with non-compact domain for all i
\Rightarrow the domain of u_{∞} is not compact; C has a Reeb orbit.

Gromov-Witten invariants

Theorem

Let (M, ω) compact symplectic manifold, $[A] \in H_{2}(M ; \mathbb{Z})$ satisfying $c_{1}(M, \omega)([A])+n-3=0$. There is an invariant
$G W_{0}(M,[A], \omega) \in \mathbb{Q}$ satisfying the following properties,

1. If $G W_{0}(M,[A], \omega) \neq 0$, for any compactible acs J there exists a compact nodal J-holomorphic curve representing $[A]$.
2. Given a smooth family of symplectic forms $\left(\omega_{t}\right)_{t \in[0,1]}$ on M with $\omega_{0}=\omega$, then $G W_{0}\left(M,[A], \omega_{0}\right)=G W_{0}\left(M,[A], \omega_{1}\right)$.
3. Suppose (M, ω) admits a compatible acs J so that (M, J) is biholomorphic to a complex manifold and for all genus 0 J-holomorphic curves $u: \Sigma \rightarrow M$, the domain of u is biholomorphic to $\mathbb{C P}^{1}$ and $u^{*} T M$ is a direct sum of complex line bundles of degree ≥-1.
Then $G W_{0}(M,[A], \omega)$ counts unparametrized connected genus 0 J-holomorphic curves representing $[A]$.

Conclusions

1. Algebro-geometric properties of an isolated singularity relate to symplectic filling properties of its link.
2. The link of an isolated singularity in an affine variety carries a contact structure.
3. The minimal discrepancy is strongly related to computing Conley-Zehnder indices on the link. For instance, this computations determines if the singularity is canonical or terminal.
