Isolated singularities, minimal discrepancy and exact fillings

Michael B. Rothgang (he/him)

Symplectic geometry group Humboldt-Universität zu Berlin

Working geometry group seminar February 22, 2021

Outline

- ▶ Motivation: \mathbb{RP}^{2n-1} is not exactly fillable
- ▶ Background: varieties, isolated singularities and their links
- ▶ Main results: minimal discrepancy and highest minimal index
- Outline of proof

Exact fillability of projective space

hierarchy of symplectic fillings: in order of strictness,

tight < weak < strong < exact < Stein = Weinstein.

Theorem (Zhou 2020)

 $(\mathbb{RP}^{2n-1}, \xi_{std})$ is not exactly fillable for $n \neq 2^k$.

Consider the action of \mathbb{Z}_k on \mathbb{C}^n (multiply by $e^{2\pi i/k}$ in each component)

Theorem (Zhou 2020)

If k is prime and satisfies (a topological condition which implies n > k), the quotient $(\mathbb{S}^{2n-1}/\mathbb{Z}_k, \xi_{std})$ has no exact filling.

Exact fillability of projective space: about Zhou's proof

Theorem (Zhou 2020)

If k is prime and satisfies (an topological condition which implies n > k), the quotient $(\mathbb{S}^{2n-1}/\mathbb{Z}_k, \xi_{std})$ has no exact filling.

Proof outline.

- ▶ If W is an exact filling of $(\mathbb{S}^{2n-1}/\mathbb{Z}_k, \xi_{\text{std}})$ for n > k, $\bigoplus_i H^{2i}(W; \mathbb{R}) \leq k$ and $\bigoplus_i H^{2i+1}(W; \mathbb{R}) \leq k 2$. Uses neck-stretching + spectral sequence for a clever filtration of SH.
- ▶ Using the top. assumption, deduce a contradiction

Symplectic part uses only $n \ge k + 1!$

Putting Zhou's proof in context

- $ightharpoonup \mathbb{C}^n/\mathbb{Z}_k$ is an (affine) algebraic variety, with an isolated singularity at 0
- $ightharpoonup \mathbb{S}^{2n-1}/\mathbb{Z}_k$ is the *link* of the singularity at 0

Miracle

 $n \ge k + 1 \Leftrightarrow 0$ is a terminal singularity of $\mathbb{C}^n/\mathbb{Z}_k$.

Conjecture (Zhou 2020)

If $G \leq U(n)$ finite and \mathbb{C}^n/G has a terminal singularity at 0, its link has no (symp. aspherical or Calabi-Yau) filling.

Algebraic geometry concepts: algebraic varieties

- ▶ (complex) **affine space** is $A^n := \{(a_1, ..., a_n) : a_i \in \mathbb{C}\}$
- affine (algebraic) variety

$$X = V(f_1, \ldots, f_k) = \{a \in A^n : f_1(a) = \cdots = f_k(a) = 0\}$$

for
$$f_k \in \mathbb{C}[x_1, \dots, x_n]$$

- equivalently, consider $R := k[t_1, \ldots, t_n]/\langle f_1, \ldots, f_k \rangle$ is a finitely generated \mathbb{C} -algebra, coordinate-free definition
- ▶ X is **irreducible** iff there are no algebraic sets $Y, Z \subset X$ s.t. $X = Y \cup Z$.

Algebraic geometry concepts: singularities

Let $X = V(\langle g_1, \dots, g_r \rangle) \subset A^n$ be an algebraic variety.

- ▶ $a \in X$ is **regular** iff the Jacobian $(\frac{\partial g_i}{\partial x_j}(a))$ has maximal rank, otherwise a singular point or **singularity**
- ▶ tangent space of $a \in X$ is $T_aX = \{v \in \mathbb{C}^n : J(a)v = 0\}$, where $J(a) = (\frac{\partial g_i}{\partial x_j}(a))_{ij}$ is the Jacobian of the g_i
- ▶ X has **dimension** dim $X = n \text{rk}(J(a)) = n \text{dim } T_a X$, where $a \in X$ is any regular point.
- ▶ singular set $Sing(X) = \{a \in X : singular\} \subset X$ is (Zariski) closed proper subset, hence an algebraic subvariety
- $\Rightarrow X \setminus \mathsf{Sing}(X) \subset X$ is an open dense subset

Key concepts: link of a singularity

 $A \subset \mathbb{C}^N$ irreducible affine (algebraic) variety with $\dim_{\mathbb{C}} A = n$ $0 \in A$ isolated singularity (perhaps smooth, i.e. a regular point)

- ▶ link of A is $L_A := A \cap \{\sum_{i=1}^N |z_i|^2 = \epsilon^2\}$ for small $\epsilon > 0$.
- ▶ **Fact.** L_A depends only on the germ of A near 0; in particular, L_A is independent of the choice of ϵ .
- ▶ **Fact.** L_A is a differentiable manifold of (real) dimension 2n-1.
- **Observation.** Near 0, A is homeomorphic to a cone over L_A .
- ▶ **Trivial Example.** If A is smooth at 0, then L_A is diffeo to a sphere.
- ▶ **Fact.** $\xi_A := \xi_{\text{std}}|_{TL_A}$ is a contact structure on L_A .
- ▶ Observe that $\xi_A = TL_A \cap J_{\text{std}}(TL_A)$

A peek at different kinds of singularities

- (regular points)
- **normal** singularities \longrightarrow normalisation (then: codim Sing(X) ≥ 2)
- ▶ topologically smooth singularities: $L_A \cong_{\text{diff}} \mathbb{S}^{2n-1}$
- ▶ For an isolated singularity in $\dim_{\mathbb{C}}(A) \ge 2$,
 - num. \mathbb{Q} -Gorenstein $\supset \mathbb{Q}$ -Gorenstein \supset complete intersection sing.;
 - 0 is numerically \mathbb{Q} -Gorenstein $\Leftrightarrow c_1(\xi_A) = c_1(\mathit{TA}|_{L_A})$ is torsion.
- **canonical** singularity: numerically \mathbb{Q} -Gorenstein and $md(A,0) \geq 0$
- **terminal** singularity: numerically \mathbb{Q} -Gorenstein and md(A,0)>0

Capturing local behaviour: local rings

- ▶ type of singularity is "local behaviour" capture local behaviour near $x \in X$ using the **local ring at** x
- R non-zero unital communitative ring
 - ▶ $I \subset R$ is an **ideal** of R iff $I \leqslant (R, +)$ and $ri = ir \in I$ for all $i \in I, r \in R$
 - ▶ a proper ideal $I \subset R$ is **prime** iff $ab \in I$ implies $a \in I$ or $b \in I$
 - ▶ a proper ideal $I \subset R$ is **maximal** iff \nexists ideal J s.t. $I \subsetneq J \subsetneq R$
 - maximal ideals are prime
- ▶ Fact. For $a = (a_1, \ldots, a_n) \in A^n$, each $\mathfrak{m}_a := \langle x_1 a_1, \ldots, x_n a_n \rangle \subset \mathbb{C}[x_1, \ldots, x_n]$ is a maximal ideal of $\mathbb{C}[x_1, \ldots, x_n]$, and every maximal ideal is of this form.

Capturing local behaviour: local rings

- type of singularity is "local behaviour" capture local behaviour near $x \in X$ using the **local ring at** x
- R non-zero unital communitative ring
 - ▶ $I \subset R$ is an **ideal** of R iff $I \leq (R, +)$ and $ri = ir \in I$ for all $i \in I, r \in R$
 - ▶ a proper ideal $I \subset R$ is **prime** iff $ab \in I$ implies $a \in I$ or $b \in I$
 - ▶ a proper ideal $I \subset R$ is **maximal** iff \nexists ideal J s.t. $I \subsetneq J \subsetneq R$
 - maximal ideals are prime
- ▶ **Fact.** For $a = (a_1, ..., a_n) \in A^n$, each $\mathfrak{m}_a := \langle x_1 - a_1, \dots, x_n - a_n \rangle \subset \mathbb{C}[x_1, \dots, x_n]$ is a maximal ideal of $\mathbb{C}[x_1,\ldots,x_n]$, and every maximal ideal is of this form.
- \triangleright given a prime ideal $\mathfrak{p} \subset R$, **localisation** at \mathfrak{p} is $R_{\mathfrak{p}} := \{r/s : r \in R, s \in R \setminus \mathfrak{p}\}/\sim$, equivalence by cancellation.
- **Definition.** The **local ring** of a variety $X \subset A^n$ at $a \in X$ is the localisation $k[X]_{\mathfrak{m}_{3}}$ of the coordinate algebra k[X] of X at the maximal ideal \mathfrak{m}_a corresponding to a.
- ▶ local ring $\mathcal{O}_p(X)$ encodes local properties of X at p

Normal singularities

- ▶ **Definition**. Let $\phi: R \to S$ be a ring homomorphism ("S is an R-algebra"). $x \in S$ is **integral** over R iff f(x) = 0 for some monic polynomial $f \in R[t]$
- ► **Fact.** The set of integral elements of *S* is a subalgebra of *S*, called the **normalisation** of *S*.
- ▶ **Definition.** An integral domain *R* is **normal** iff it equals its normalisation in its quotient field.
- ▶ **Definition.** An affine variety X is **normal at** $x \in X$ if the local ring at this point is normal. X is **normal** iff it is normal at every point.

Normal singularities (cont.)

X irreducible affine variety

- **Definition.** X is **normal at** $x \in X$ if the local ring at this point is normal. X is **normal** iff it is normal at every point.
- **Theorem.** X is normal at every regular point.
- ► Theorem. The singular locus $Sing(X) = \{a \in X : X \text{ singular at } a\}$ is a proper algebraic subset of X
- **Proposition.** If X is normal, dim Sing $(X) \leq \dim X 2$.

Normal singularities: geometric intuition

Figure: Pictures reproduced from Eisenbud: Commutative algebra (1995), page 128.

- ► Consider $f = y^2 x^3$ resp. $f = y^2 x^2(x+1) \in \mathbb{C}[x,y]$
- ▶ compute: X = V(f) has one singular point, p = (0,0)
- ▶ consider $y/x \in \mathcal{O}_p(X)$: bounded along X near p
- ▶ algebraically: y/x is integral, e.g. $(y/x)^2 x = 0$ (left)

Motivation

Normal singularities: geometric intuition

Figure: Pictures reproduced from Eisenbud: Commutative algebra (1995), page 128.

- ► Consider $f = y^2 x^3$ resp. $f = y^2 x^2(x+1) \in \mathbb{C}[x,y]$
- ightharpoonup compute: X = V(f) has one singular point, p = (0,0)
- ▶ consider $y/x \in \mathcal{O}_p(X)$: bounded along X near p
- ▶ algebraically: y/x is integral, e.g. $(y/x)^2 x = 0$ (left)

Theorem. An element p(x)/q(x) of the quotient field is integral over $\mathbb{C}[X]$ iff each $x \in X$ has a neighbourhood U s.t. $|\frac{p(x)}{q(x)}|$ is bounded at all points of U where q is non-zero.

Normalisation and resolution of varieties

- lacktriangle normalise a variety X using its coordinate algebra $R:=\mathbb{C}[X]$
- ► Recall. anti-equivalence of categories

```
 \begin{aligned} \{ \text{affine algebraic varieties} \} &\longleftrightarrow \{ \text{finitely generated $\mathbb{C}$-algebras} \}, \\ \text{variety } X &\longmapsto \text{coordinate algebra $\mathbb{C}[X]$} \end{aligned}
```

- ▶ normalisation \widetilde{R} of R corresponds to the **normalisation** \widetilde{X} of X
- ▶ natural inclusion $R \hookrightarrow \widetilde{R}$ into normalisation \widetilde{R}
- ightharpoonup induces a birational map $\pi\colon\widetilde{X}\to X$
- A **resolution** of an algebraic variety X is a non-singular variety \widetilde{X} together with a proper birational map $\pi \colon \widetilde{X} \to X$.
- ▶ Theorem (Hironaka '64). Every variety has a resolution.

Normalisation: geometric intuition

consider
$$X = V(f)$$
 for $f = y^2 - x^3$ or $f = y^2 - x^2(x+1) \in \mathbb{C}[x,y]$

Figure: Normalisation of the curves from the previous example. Pictures reproduced from Eisenbud: Commutative algebra (1995), p. 141.

algebraically: normalisation of $R=\mathbb{C}[X]$ is $\mathbb{C}[t]$ geometrically: normalisation $\widetilde{X}\cong\mathbb{C}$

Known results about singularities and their links

- ► Theorem (Mumford '61). In complex dimension two, every normal topologically smooth singularity is smooth.
- Many counterexamples in dimension ≥ 3, such as $A := \{x^2 + y^2 + z^2 + w^2 = 0\} \subset \mathbb{C}^4$.
- ▶ Theorem (Ustilovski '99). For each m > 0, there are infinitely many singularities with links diffeomorphic to \mathbb{S}^{4m+1} , but not contactomorphic.
- **Theorem (Kwon-van Koert '16).** For weighted homogeneous hypersurface singularities $\{\sum z_j^{k_j} = 0\}$, (L_A, ξ_A) determines whether $\sum_i 1/k_j > 1 \Leftrightarrow 0$ is a canonical singularity.

The highest minimal index

- $(C^{2n-1}, \xi = \ker \alpha)$ co-oriented contact manifold \rightarrow symplectic vector bundle $(d\alpha|_{\xi}, \xi)$
- ▶ first Chern class $c_1(\xi) := c_1(\xi, J) \in H^2(C; \mathbb{Z})$ for J compatible acs on $d\alpha|_{\xi}$
- Suppose $Nc_1(\xi)=0$ and $H^1(C;\mathbb{Q})=0$ \longrightarrow Conley-Zehnder index $CZ(\gamma)\in \frac{1}{N}\mathbb{Z}$ of a Reeb orbit γ
- lower SFT index

$$\mathsf{ISFT}(\gamma) := \mathsf{CZ}(\gamma) + (\mathsf{n} - 3) - \frac{1}{2} \dim \ker(D_{\gamma(0)} \phi_L|_{\mathsf{x}i} - id)$$

- ▶ minimal SFT index $mi(\alpha) := \inf_{\gamma} ISFT(\gamma)$
- ▶ highest minimal SFT index $hmi(C, \xi) := sup_{\alpha} mi(\alpha)$.
- **Observation.** hmi(C, ξ) is a contact invariant.

Main Theorem (McLean '15)

- if $md(A, 0) \ge 0$ then $hmi(L_A, \xi_A) = 2 md(A, 0)$,
- if md(A, 0) < 0, then $hmi(L_A, \xi_A) < 0$.

Main Theorem (McLean '15)

- if $md(A, 0) \ge 0$ then $hmi(L_A, \xi_A) = 2 md(A, 0)$,
- ▶ if md(A, 0) < 0, then $hmi(L_A, \xi_A) < 0$.
- ▶ **Recall.** 0 is canonical if $md(A, 0) \ge 0$, terminal if md(A, 0) > 0

Main Theorem (McLean '15)

- if $md(A, 0) \ge 0$ then $hmi(L_A, \xi_A) = 2 md(A, 0)$,
- if md(A, 0) < 0, then $hmi(L_A, \xi_A) < 0$.
- ▶ **Recall.** 0 is canonical if $md(A, 0) \ge 0$, terminal if md(A, 0) > 0
- ightharpoonup Conley-Zehnder indices on L_A determine whether 0 is canonical or terminal

Main Theorem (McLean '15)

- if $md(A, 0) \ge 0$ then $hmi(L_A, \xi_A) = 2 md(A, 0)$,
- if md(A, 0) < 0, then $hmi(L_A, \xi_A) < 0$.
- ▶ **Recall.** 0 is canonical if $md(A, 0) \ge 0$, terminal if md(A, 0) > 0
- ightharpoonup Conley-Zehnder indices on L_A determine whether 0 is canonical or terminal

- **Definition.** If (M, ξ) is contactomorphic to some link (L_A, ξ_A) , it is **Milnor fillable**, and A is a **Milnor filling** of M.
- **Example.** $(\mathbb{S}^{2n-1}, \xi_{\text{std}})$ is Milnor fillable; its Milnor filling is \mathbb{C}^n .
- ▶ **Corollary.** If A is normal and (L_A, ξ) is contactomorphic to $(\mathbb{S}^5, \xi_{\mathsf{std}})$, then A is smooth at 0.
- \Rightarrow (S⁵, ξ_{std}) has a unique smooth Milnor filling up to normalization.
 - Extends Mumford's results to complex dimension three.
- Observation. Milnor fillable contact structures are strongly fillable.
- **Conjecture (Shukorov '02).** If A is normal and numerically \mathbb{Q} -Gorenstein with md(A,0)=n-1, then A is smooth at 0.
- ▶ **Corollary.** If the conjecture holds, A is normal and $(L_A, \xi_A) \cong (\mathbb{S}^{2n-1}, \xi_{\text{std}})$ (any n), then A is smooth at 0.

Canonical bundles and Q-Cartier divisors

- **Definition.** *X* non-singular algebraic variety with $\dim_C X = n$. The **canonical bundle** of *X* is $\Omega = \Lambda^n T^* X$.
- ▶ X normal variety. A **(Weil)** \mathbb{Q} -divisor is a finite formal linear combination $D = \sum_{j=1}^k a_j E_j$ with $a_j \in \mathbb{Q}$, $E_j \subset X$ irreducible codimension 1 subvariety.
- ▶ A \mathbb{Q} -divisor D is \mathbb{Q} -Cartier if we can choose the E_j to be locally defined by one equation.
- **Fact.** If X is non-singular, every \mathbb{Q} -divisor is \mathbb{Q} -Cartier.
- ► **Fact.** Every line bundle on a normal variety *X* is the class of some Cartier divisor.

Numerically Q-Gorenstein singularities

A (irreducible) algebraic variety with an isolated singularity at 0

- ▶ A **smooth normal crossings divisor** is a Cartier divisor whose components only intersect transversely. Near each point, the divisor looks like the intersection of coordinate hyperplanes.
- ► Take a resolution $\pi \colon \widetilde{A} \to A$ of A s.t. $\pi^{-1}(0) = \bigcup_i E_i$ for smooth normal crossing divisors E_i , and π is an isomorphism away from these divisors.
- ▶ **Definition.** A is numerically \mathbb{Q} -**Gorenstein** iff there exists a \mathbb{Q} -Cartier divisor $K_{\widetilde{A}/A}^{\text{num}} := \sum_j E_j$ s.t. $C \cdot (K_{\widetilde{A}/A}^{\text{num}} K_{\widetilde{A}}) = 0$ for any projective algebraic curve $C \subset \pi^{-1}(0)$.

Defining the minimal discrepancy

- ▶ **Definition.** A is numerically \mathbb{Q} -Gorenstein iff there exists a \mathbb{Q} -Cartier divisor $K_{\widetilde{A}/A}^{\text{num}} := \sum_j E_j$ s.t. $C \cdot (K_{\widetilde{A}/A}^{\text{num}} K_{\widetilde{A}}) = 0$ for any projective algebraic curve $C \subset \pi^{-1}(0)$.
- ▶ **Fact.** The $a_j \in \mathbb{Q}$ are unique; a_j is called the **discrepancy** of E_j .
- ▶ **Definition.** The **minimal discrepancy** md(A, 0) of A is the infimum of a_i over all resolutions π .
- **Proposition.** If π is a fixed resolution, not the identity, then

$$\mathsf{md}(A,0) = egin{cases} \mathsf{min}_j \ \mathsf{a}_j & \mathsf{if} \ \mathsf{a}_j \geq -1 \ \ \forall j \in \{1,\dots,I\} \\ -\infty & \mathsf{otherwise} \end{cases}$$

If A is smooth at 0, we have $md(A, 0) = dim_{\mathbb{C}} A - 1$.

Strategy of McLean's proof

- ▶ easier part: $hmi(L_A, \xi_A) \ge 2 md(A, 0)$
- ▶ harder parts: If $md(A, 0) \ge 0$ then $hmi(L_A, \xi_A) \le 2 md(A, 0)$; if md(A, 0) < 0 then $hmi(L_A, \xi_A) < 0$.
- ► model case: *A* is the cone over a projective variety *X*; we skip explaining the proof in the general case

Motivation

Model case: cone singularity

- ▶ Model case: $A \subset \mathbb{C}^N$ is the cone of a smooth connected projective variety $X \subset \mathbb{CP}^{N-1}$
- resolution \widetilde{A} by blowing up at the origin; $\mathcal{O}(-1) = (\widetilde{\pi} \colon \widetilde{A} \to X)$ is the tautological line bundle
- numerically \mathbb{Q} -Gorenstein $\Leftrightarrow c_1(K_{\widetilde{A}}|_{L_A};\mathbb{Q})=0$
- $L_A o \widetilde{A} \setminus X$ is a homotopy equivalence: $c_1(K_{\widetilde{A}}|_{\widetilde{A} \setminus X}; \mathbb{Q}) = 0$
- ▶ for some N > 0, $K_{\widetilde{A}}^{\otimes N}$ has a smooth section s which is transverse outside a compact set
- ▶ discrepancy of A is the $a \in \mathbb{Q}$ satisfying

$$[s^{-1}(0)] = aN(X) \in H_{2n-2}(\widetilde{A}; \mathbb{Q}) = H_{2n-2}(X; \mathbb{Q}),$$

minimal discrepancy md(A, 0) is a if $a \ge -1$, otherwise $-\infty$.

Model case: proof of easier statement

want to show: $hmi(L_A, \xi_A) \ge 2 md(A, 0)$

- ▶ goal: find a contact form α_A for ξ_A s.t. $md(\alpha_A) = 2 md(A, 0)$
- $\mathcal{O}(-1)$ is a Hermitian line bundle, link L_A is the radius ϵ circle bundle on $\mathcal{O}(-1)$
- \blacksquare $\pi = \tilde{\pi}|_{L_A}$ makes L_A a circle bundle over X
- lacktriangle consider the contact form $lpha_A:=-rac{1}{4\pi\epsilon^2}d^c(\sum_j|z_j|^2)|_{L_A}$
- ▶ all Reeb orbits are of the form $\gamma: \mathbb{R}/k\mathbb{Z} \to L_A, \gamma(t) = B(t, p)$ for $k \in \mathbb{Z}^+, p \in L_A$

Motivation

Model case: proof of easier statement

want to show: $hmi(L_A, \xi_A) \ge 2 md(A, 0)$

- ▶ goal: find a contact form α_A for ξ_A s.t. $md(\alpha_A) = 2 md(A, 0)$
- $\mathcal{O}(-1)$ is a Hermitian line bundle, link L_A is the radius ϵ circle bundle on $\mathcal{O}(-1)$
- $ightharpoonup \pi = \tilde{\pi}|_{L_A}$ makes L_A a circle bundle over X
- lacktriangle consider the contact form $lpha_A := -rac{1}{4\pi\epsilon^2} d^c (\sum_j |z_j|^2)|_{L_A}$
- ▶ all Reeb orbits are of the form $\gamma: \mathbb{R}/k\mathbb{Z} \to L_A, \gamma(t) = B(t,p)$ for $k \in \mathbb{Z}^+, p \in L_A$
- ightharpoonup compute: $CZ(\gamma) = 2(a+1)k$
 - ▶ F be the fiber containing γ , s_F a non-zero section of $K_{\widetilde{A}}^{\otimes N}$.

 $Q_F: \mathbb{R}/k\mathbb{Z} \to U(1), t \mapsto [z \mapsto P(B_K(t, s_F(\gamma(0)))/s_F(\gamma(t)))]$

- ightharpoonup compute: deg $Q_F = -kN$, $s^{-1}(0)|_F] = aN$
- \Rightarrow ISFT $(\gamma) = 2(a+1)k \frac{1}{2}(2n-2) + (n-3) = 2(a+1)k 2$
- $\Rightarrow \operatorname{mi}(a_{\alpha}) = 2\operatorname{md}(A,0)$

Model case: proof of harder statement

to show: any contact form β for ξ_A admits a Reeb orbit γ with $\mathsf{ISFT}(\gamma) < 0$ or $\mathsf{ISFT}(\gamma) \le 2 \, \mathsf{md}(A,0)$

- ▶ Compactify $\tilde{\pi} : \tilde{A} \to x$ to a \mathbb{CP}^1 -bundle $\check{S} := P(\tilde{A} \oplus \mathbb{C})$.
- embed (L_A, ξ_A) as a contact hypersurface inside \check{S} .
- ▶ neck-stretching: shows L_A admits a Reeb orbit in fact, limiting curve has negative ends asymptotic to Reeb orbits γ_i ,
- lives in a moduli space of virtual dimension $2 \operatorname{md}(A, 0) \sum_{i} \operatorname{ISFT}(\gamma_{i}) \geq 0$
- ▶ Thus, $2 \operatorname{md}(A, 0) < 0$ implies $\operatorname{ISFT}(\gamma_i) < 0$ for some i; $\operatorname{md}(A, 0) \ge 0$ implies $\operatorname{ISFT}(\gamma_i) \le 2 \operatorname{md}(A, 0)$ for some i.

Technical apparatus for the proof

- ightharpoonup contact-type hypersurface L_A in symplectic manifold \check{S}
- ▶ symplectic dilation (similar procedure to neck-stretching) \rightarrow contact embedding of L_A into \check{S}
- ▶ Gromov-Witten theory: L_A admits a special holomorphic curve (dim $M \le 6 \rightarrow$ rigorous transversality results)
- \triangleright neck-stretching: L_A admits a Reeb orbit
- dimension computation

Motivation

 (M,ω) compact symplectic manifold which has a contact type hypersurface $C\subset M$ so that

- 1. $M \setminus C$ has two connected components M_- and M_+ .
- 2. There are codimension 2 submanifolds $Q_{\pm} \subset M_{\pm}$, and $[A] \in H_2(M; \mathbb{Z})$ s.t. $[A] \cdot [Q_{\pm}] \neq 0$.
- 3. For every compatible acs J, there exists a compact genus 0 J-holomorphic curve $u \colon \Sigma \to M$ representing [A].

Then C has at least one Reeb orbit.

Proof sketch.

- ightharpoonup Choose a collar neighbourhood of C and a curve u as in (3)
- ▶ Stretched curves u_i converge to some s. inj. limit u_{∞}
- ▶ since [u] = A, each u_i must intersect the manifolds Q_{\pm}
- ▶ in particular, u_i intersects M_- and M_+ , hence $u_i|_{u^{-1}(M_+)}$ is a proper map with non-compact domain for all i
- \Rightarrow the domain of u_{∞} is not compact; C has a Reeb orbit.

Gromov-Witten invariants

Theorem

Motivation

Let (M, ω) compact symplectic manifold, $[A] \in H_2(M; \mathbb{Z})$ satisfying $c_1(M, \omega)([A]) + n - 3 = 0$. There is an invariant $GW_0(M, [A], \omega) \in \mathbb{Q}$ satisfying the following properties,

- 1. If $GW_0(M, [A], \omega) \neq 0$, for any compactible acs J there exists a compact nodal J-holomorphic curve representing [A].
- 2. Given a smooth family of symplectic forms $(\omega_t)_{t\in[0,1]}$ on M with $\omega_0 = \omega$, then $GW_0(M,[A],\omega_0) = GW_0(M,[A],\omega_1)$.
- 3. Suppose (M, ω) admits a compatible acs J so that (M, J) is biholomorphic to a complex manifold and for all genus 0 J-holomorphic curves $u \colon \Sigma \to M$, the domain of u is biholomorphic to \mathbb{CP}^1 and u^*TM is a direct sum of complex line bundles of degree ≥ -1 .

Then $GW_0(M, [A], \omega)$ counts unparametrized connected genus 0 *J*-holomorphic curves representing [A].

Conclusion

Conclusions

- 1. Algebro-geometric properties of an isolated singularity relate to symplectic filling properties of its link.
- 2. The link of an isolated singularity in an affine variety carries a contact structure.
- The minimal discrepancy is strongly related to computing Conley-Zehnder indices on the link. For instance, this computations determines if the singularity is canonical or terminal.