Aufgabenblatt 8

zum 30.11.2015

Aufgabe 1.

Sei das Viereck $\Box ABCD$ gegeben mit $\angle CAD = 50^{\circ}$, $\angle DCA = 65^{\circ}$, $\angle ACB = 70^{\circ}$ und $|\overline{AD}| = |\overline{BC}|$. Wie groß ist der Innenwinkel $\angle CBA$ bei B?

Aufgabe 2.

Sei $\triangle ABC$ ein Dreieck. Die Winkelhalbierende des Innenwinkels bei C schneide die Winkelhalbierende von $\angle CBA$ in D. Die Parallele zu \overline{BC} durch D schneide \overline{AC} in L und \overline{AB} in M.

Zeige, dass
$$\left| \overline{BM} \right| = \left| \overline{LM} \right| - \left| \overline{CL} \right|$$
 gilt.

Aufgabe 3.

Zeichne ein (beliebiges) Dreieck $\triangle ABC$ und konstruiere¹ folgende Objekte (gegebenenfalls in unterschiedliche Dreiecke, damit es nicht zu unübersichtlich wird).

- a) den Inkreis (der Kreis, der die Seiten zwischen den Eckpunkten berührt)

 Hinweis: Die Winkelhalbierenden schneiden sich im Mittelpunkt des Inkreises.
- b) den Umkreis (der Kreis, auf dem die Ecken des Dreiecks liegen)

 Hinweis: Die Mittelsenkrechte schneiden sich im Mittelpunkt des Umkreises.

Aufgabe 4.

Dir ist die Formel für den Flächeninhalt eines Dreiecks (Grundseite mal Höhe durch zwei) und die Innenwinkelsumme von Dreiecken bekannt. Beweise damit:

- a) Der Flächeninhalt eines Rechtecks mit den Seitenlängen a und b ist $a \cdot b$.
- b) Die Innenwinkelsumme eines Vierecks ist 360° . Bei einem Fünfeck sind es immer 540° und bei einem Sechseck immer 720° . Was ist die Innenwinkelsumme eines n-Ecks? *Hinweis:* Zerlege die Figur in Dreiecke.

¹nur mit Zirkel und Lineal, d. h. ohne Winkel zu messen und Senkrechte müssen konstruiert werden!