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Preface

Summary

This thesis is split up into two parts each revolving around Floer homology and quantum
cohomology of closed monotone symplectic manifolds. In the first part we consider sym-
plectic manifolds obtained by symplectic reduction. Our main result is that a quantum
version of an abelianization formula of Martin [50] holds, which relates the quantum
cohomologies of symplectic quotients by a group and by its maximal torus. Also we
show a quantum version of the Leray-Hirsch theorem for Floer homology of Lagrangian
intersections in the quotient.

The second part is devoted to Floer homology of a pair of monotone Lagrangian
submanifolds in clean intersection. Under these assumptions the symplectic action func-
tional is degenerated. Nevertheless Frauenfelder [33] defines a version of Floer homology,
which is in a certain sense an infinite dimensional analogon of Morse-Bott homology. Via
natural filtrations on the chain level we were able to define two spectral sequences which
serve as a tool to compute Floer homology. We show how these are used to obtain new
intersection results for simply connected Lagrangians in the product of two complex
projective spaces.

The link between both parts is that in the background the same technical methods
are applied; namely the theory of holomorphic strips with boundary on Lagrangians in
clean intersection. Since all our constructions rely heavily on these methods we also
give a detailed account of this theory although in principle many results are not new or
require only straight forward generalizations.

Zusammenfassung

Diese Dissertation ist in zwei Abschnitte gegliedert, die sich beide mit Floer Homolo-
gie und Quantenkohomologie von geschlossenen monotonen symplektischen Mannig-
faltigkeiten beschéftigen. Im ersten Abschnitt betrachten wir symplektische Mannig-
faltigkeiten die durch symplektische Reduktion hervorgehen. Unser Hauptresultat ist,
dass eine Abelisierungsformel die von Martin [50] fiir gewdhnliche Kohomologie besch-
rieben wurde unter bestimmten Vorraussetzungen auch fiir Quantenkohomologie gilt.
Genauer stellt diese Formel eine Beziehung zwischen der Quantenkohomolgie von sym-
plektischen Quotienten beziiglich einer Gruppe und der des maximalen Toruses her.
Des weiteren zeigen wir eine Verallgemeinerung des Leray-Hirsch Theorems fiir Floer
Homologie von Lagrangeschen Untermannigfaltigkeiten im Quotienten.



Im zweiten Abschnitt widmen wir uns der Floer Homologie eines Paars Lagrangescher
Untermannigfaltigkeiten mit sauberem Schnitt. In diesem Fall ist das symplektische
Wirkungsfunktional degeneriert. Frauenfelder [33] beschreibt dafiir eine Version von
Floer Homologie welche in einem gewissen Sinne ein unendliches Analogon von Morse-
Bott Homologie ist. Mithilfe von natiirlicher Filtrierungen des Kettenkomplexes sind
wir in der Lage Spektralsequenzen zu definieren, welche als Werkzeug zur Berrechnung
der Floer Homologie dienen. Wir zeigen anhand eines Beispiels wie diese verwendet
werden um neue Resultate iiber das Schnittverhalten von einfach zusammenhéngenden
Lagrangeschen Untermannigfaltikeiten in einem Produkt von zwei komplexen projek-
tiven Radumen zu erhalten.

Das Bindeglied zwischen beiden Abschnitten ist, dass wir im Hintergrund dieselben
technischen Methoden verwenden; ndmlich das Studium holomorpher Streifen mit Rand
auf sich sauber schneidenden Lagrangeschen Untermannigfaltigkeiten. Da all unsere
Konstruktionen stark auf diesen Methoden beruhen, geben wir auch eine detailierte
Darstellung dieser Theorie. Dieser Teil der Arbeit ist grosstenteils eine Zusammen-
fassung bereits bekannter Resultate.

vi
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1. Introduction

This thesis is devoted to the computation of symplectic invariants for monotone closed
symplectic manifolds, namely quantum cohomology and Floer homology. In contrast
to ordinary homology theories the mentioned invariants lack obvious functoriality prop-
erties which would facilitate computations. Surprisingly despite of this many formulas
which hold for ordinary homology theories have a corresponding formula for quantum
cohomology or Floer homology. In the first part of the thesis we demonstrate this phe-
nomenon in two examples.

We consider closed symplectic manifolds obtained by symplectic reduction. Let G
be a compact Lie group and T C G a maximal torus. Assume that G acts on the
symplectic manifold M via Hamiltonian diffeomorphisms. We denote the Hamiltonian
quotients by M//G and M /T respectively and assume in the following that they are
regular and monotone. Relations between the usual cohomology rings of M /G and
M /T were studied by Ellingsrud-Stgmme [23] and Martin [50] and the authors proved
a specific isomorphism. The main result of the first part of the thesis is that under some
topological assumtions there is a corresponding isomorphism for quantum cohomology
rings with rational coefficients; namely

QH*(M)G) = QH*(M/T)" /Qann (D).

On the right-hand side QH*(M /T)"V denotes the ring elements which are invariant
under the natural action of the Weyl group W = N(T')/T on QH (M /T) and Qann (D)
denotes the ideal of invariant elements such that the quantum cup product with the
canonical invariant class D vanishes. We conclude that under the above mentioned
topological assumptions the quantum cohomology ring of a symplectic quotient M /G
is completely determined by the quantum cohomology of the so called abelian quotient
M /T and the action of the finite group W. Furthermore if the quantum cohomology
of M/JT is known, we are able to compute the quantum cohomology of M /G by means
of standard algebraic operations. For instance this is the case if M = C” is a complex
vector space equipped with the standard symplectic form and G acts via linear maps.
Then the abelian quotient M /T is a toric manifold with quantum ring given by Batyrev’s
formula (cf. Corollary 2.1.3).

The quantum cohomology ring and more generally the Gromov-Witten invariants
of symplectic quotients were previously studied by many authors. On one side there
is an approach by Cieliebak-Gaio-Mundet-Salamon [18], Ziltener [81] and others via
the symplectic vortex equations. Roughly speaking their results relate the Gromov-
Witten invariants of the symplectic quotient M /G to invariants based on the symplectic
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vortex equations in M. In particular this yields under suitable topological assumptions
a surjective ring homomorphism from the equivariant cohomology of M to the quantum
cohomology of M /G (cf. [39]). On the other side there is an algebro-geometric approach
by Givental [40], Iritani [45], Bertram-Ciocan-Kim [9] and others. The authors express
the Gromov-Witten invariants of the quotient M /G in terms of equivariant Gromouv-
Witten invariants or twisted Gromov-Witten invariants in M. For example in [9, 20]
it is conjectured that the Gromov-Witten invariants of M /G are determined by the
twisted Gromov-Witten invariants of M //T. The conjecture is proven in the case where
M /|G is a flag manifold. Finally there is an approach by Gonzales-Woodward [41, 42],
Nguyen-Woodward-Ziltener [56] and Woodward [80, 79, 78] which relies on both of the
above mentioned approaches. The authors were able to construct a quantum Kirwan map
which intertwines the Gromov-Witten invariants of the quotient with the gauged Gromov-
Witten invariants in M. Moreover in [42] an identification between the gauged Gromov-
Witten invariants of M /G and M /T is deduced. The idea of comparing Gromov-Witten
invariants in the respective quotients was first mentioned by the physicists Hori-Vafa [44,
Appendix A].

Our approach is different. We do not express the Gromov-Witten invariants of the
quotient M /G in terms of some new invariants in M or M /T. Instead our statement
about the ring homomorphism is in fact a relation for usual Gromov-Witten invariants
in the respective quotients. The morphism is constructed via a count of J-holomorphic
disks in M /G x M /T with boundary on the abelian/non-abelian correspondence V :=
p~1(0)/T where ju : M — gV denotes the moment map. In a certain sense these disks are
degenerated symplectic vortices. The non-trivial step in the proof of the aforementioned
isomorphism is to show that the chain homomorphism defined by the particular count
of these disks descends to a ring homomorphism for the quantum cohomologies.

The advantage of our more geometric approach is that the techniques easily generalize
to other situations. Indeed we were able to show a generalization of the Leray-Hirsch
theorem to Floer homology of Lagrangian intersections. Let V C Y be a coisotropic
submanifold and assume that the projection 7 to the set of equivalence classes X = V/~
with respect to the isotropic leaf relation is a locally trivial fibre bundle. For example if
G acts on M as above, then Y = M /T, V = u~1(0)/T and X = M//G. The quotient
X is canonically a symplectic manifold and given a Lagrangian submanifold L C X the
space LV := 77!(L) is a Lagrangian submanifold of Y. At the same time LY is a fibre
bundle over L restricting 7. If the fibre bundle LY — L satisfies the assumption of the
Leray-Hirsch theorem and under some index assumption we show

HE,(LYV,IYV) =2 HF.(L,L) ® H.(F), F=n'(pt).

With the same index assumption and the additional assumption that F' is homeomor-
phic to a sphere, Perutz [60] obtained a Gysin sequence for Floer homology groups,
which implies our result. However his proof is different to ours and uses perturbations.
We use the isomorphism to obtain new rigidity results for Lagrangian embeddings into
symplectic quotients of linear group actions.



The second part of the thesis is devoted to the study of Floer homology of Lagrangian
intersection, which is a module HF,(Lg, L1) associated to two Lagrangians Lo, L1 C M
of a symplectic manifold (M, w). Let P (Lo, L1) be the space of paths x : [0,1] — M such
that x(0) € Lo and z(1) € L;. Consider the symplectic action one-form on P(Lg, L1)
given by

1
a(x)gz/o W@ 6)dt, & TyP(Lo,L1).

The form is always closed and exact under suitable topological assumptions on Ly and
L;. In that case Floer [25] constructed his homology as a sort of Morse homology
for a primitive of «, which is the symplectic action functional. Later it was noticed
that his constructions extend to the non-exact case in the sense of Novikov (cf. [43]
and [58]). If the Lagrangians Ly, L intersect cleanly the symplectic action functional
is degenerated. This situation was first studied by Pozniak in [62], where he carefully
choose perturbations by Hamiltonian diffeomorphisms to move Ly and L into transverse
position and then identified certain holomorphic strips which appear in the definition of
the boundary operator of the Floer homology complex with Morse trajectories on the
intersection manifold Ly N Lq.

Instead we leave the Lagrangians as they are and treat the action functional for the
degenerate situation as a Morse-Bott function using cascades in the sense of [33]. We
obtain a complex which we call the pearl chain complex for (Lo, L1) that also computes
Floer homology. The part is mostly of expository nature because this complex was
previously studied by Fukaya-Ohta-Ono-Oh [35, 36, 37] and Frauenfelder [33]. However
we include some details which have not been treated (eg. surjectivity of gluing) and
also give a slightly different approach to orientations which is more adapted to the
interpretation of the Floer complex as a Morse complex. Based on ideas of Oh [59],
Biran-Cornea [12] and Seidel [69] we construct two spectral sequences Exo”* and EZ,.
The spectral sequence E}Sf* has El-term given by

Elqc,l _ Hi-l—j—u(ci)(cia Z2) if1<i< ka
K 0 otherwise,

where C1, (o, ..., C) are the connected components of Ly N Ly ordered in a way deter-
mined by the symplectic action functional and u(C;) € Z is a Viterbo type index. The

sequence Eloor collapses and gives the E'-term of the second sequence as follows

o {@w:q ES“™ ifpe NZ,
Pa 0 otherwise .
We show that the sequence EF, collapses and converges to HF,(Lg, L1). As both se-
quences are homological spectral sequences their r-th boundary operator has degree
(—r,r +1). We use these spectral sequences to obtain a new result about the intersec-
tion of simply connected Lagrangians in CP™ x CP".



1. Introduction

The thesis is structured as follows. In Chapter 2 we give an overview over the main
results, which are announced here with precise statements. In Chapter 3 is devoted to
recall the necessary background material. The proofs of the main results are deferred to
the end in Chapters 11 and 10. In Chapter 10 we give additionally a construction of the
pearl homology complex associated to two Lagrangians in clean intersection. All proofs
require a treatment of the moduli space of holomorphic strips with boundary on cleanly
intersecting Lagrangians along the standard programm; viz. compactness, transversality,
gluing and orientations. These steps are well-known and treated in various sources for the
case of holomorphic strips with boundary on transversely intersecting Lagrangians. For
holomorphic strips with boundary on cleanly intersecting Lagrangians the steps are also
more or less done or require only small generalizations of existing theory. However since
the proofs are spread out over the literature we felt it worthwhile to give a self-contained
treatment. This is worked out in Chapters 4-9. Estimates which are used frequently
in these chapters are collected in Appendices A and B. In Appendix C we provide a
small generalization of the Viterbo index; in particular an index for holomorphic strips
with boundary on Lagrangians in clean intersection. In Appendix D we give a short
introduction to all required material about principle bundles and Lie group actions. In
Chapter 12 we give two examples how the main theorems are applied.



2. Overview of the main results

2.1. Abelianization

Let G be a compact connected Lie group which acts on the symplectic manifold (M, w)
via Hamiltonian diffeomorphisms with moment map pug : M — gV. The symplectic
reduction is defined as the quotient space

MG = ug'(0)/G.

We call M//G regular if 0 € g¥ is a regular value of e and pg'(0) is a closed man-
ifold on which G acts freely. If this happens, the space M /G is naturally a closed
symplectic manifold. Any subgroup T' C G acts on M by Hamiltonian diffeomorphisms
with moment map pr = i¥ o ug : M — tV, where t denotes the Lie algebra of T and
iV : g¥ — tV is the canonical projection induced by the inclusion i : t — g. From now
on, we assume that 7' C G is a maximal torus. If so, the Weyl group W = N(T')/T
acts naturally on M /T via symplectomorphisms and there exists a particular cohomol-
ogy class, the canonical anti-invariant class D € H*(M)JT) (cf. §11.1). We denote by
QH*(M//G; A) the quantum cohomology ring over A := Q[\, A\™!] (cf. [53, Ex. 11.1.4.(1)])
and by QH*(M)T; \)V ¢ QH*(M/T; A) the subring of invariant elements.

Theorem 2.1.1. Assume that M)/G is regular, simply connected and that M )|T is
regular, monotone and with minimal Chern number cyryr satisfying the bound

Then there exists a ring isomorphism
QH*(M)G;A) = QH*(M)T; A" /Qann (D) , (2.1.2)

where Qann (D) is the ideal of invariant elements such that the quantum cup product
with D vanishes.

In [50] Martin gave a similar isomorphism for rational cohomology rings. More pre-
cisely he proved that there exists a ring isomorphism

H*(M/G;Q) = H*(M/T; Q)" / ann(D) , (2.1.3)

where ann(D) is the ideal such that the ordinary cup product with D vanishes. We obtain
the desired isomorphism (2.1.2) on the level of modules already from (2.1.3). The non-
trivial content of the theorem is that there exists a ring isomorphism for the quantum
product. Of course this is generally not the A-extension of the isomorphism (2.1.3).
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Remark 2.1.2. The isomorphism (2.1.2) holds for more general situations. We did not
state the theorem in the utmost generality for the sake of a cleaner exposition.

1. All the arguments go through with Q replaced by a different (commutative and uni-
tal) ring A and A := A[\, \7!], provided that the pull-back i* : H*(M T, A)" —
H*(V, A)W is surjective. By Kirwan surjectivity this always holds if A = Q.

2. If M /G is not simply connected, then (2.1.2) holds as long as V' C M )G x M )T~
is monotone and the number 2¢, 7 in the bound (2.1.1) is replaced by the minimal
Maslov number of V.

We already obtain non-trivial results in the case when M is a complex vector space
equipped with the standard symplectic form on which which G acts via linear unitary
maps. In other words we are given an unitary representation of G on M. By definition
the reduction with respect to the subgroup 7' C G is a toric variety which is canonically
a symplectic manifold, if it is regular. Moreover it is well-known that there is an value
w € t¥ (unique up to scaling) such that the symplectic quotient M}/, T := py' (w)/T is
a monotone symplectic manifold, if it is regular. The quantum cohomology ring is given
by

A[:Cl, ey xk]/QSR,

where QSR C Alzy, ...,z is the quantum Stanley-Reisner ideal. The Weyl group W
acts naturally on A[x1,...,zx] and there exists a class which we also denote by D and
which divides every anti-invariant class. In [23, §4] it is deduced that the map

p: Az, ..,z = Az, .2 r D! Z sign(w)w.r , (2.1.4)
weW

is well-defined and induces an isomorphism when restricted to the anti-invariant sub-
space. We conclude the following corollary. For more details see Section 3.1.2.

Corollary 2.1.3. Let w € tV be such that Y := M//,T = p3'(w)/T is regular, mono-
tone and assume that X = M/,G = ug'(w)/G is regular. Suppose that 2cy >
dim G/T + 2 then the quantum cohomology ring of X is given by

Alzq, ... ,:ck]W/p(QSR) )

Remark 2.1.4. The previous example gives a formula to compute the quantum coho-
mology ring of many monotone symplectic manifolds; like Grassmannians, partial flag
manifolds and more generally quiver varieties, as they all arise as symplectic quotients
of linear group actions by compact groups. In Lemma 3.1.6 we show how to compute
the minimal Chern number cy in terms of the weight vectors of the induced represen-
tation of T on M. Unfortunately the condition 2¢y > dim G/T + 2 seems to be very
restrictive. We do not know of any example where the above formula fails whenever
2cy < dimG/T + 2.
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2.2. Quantum Leray-Hirsch theorem

Given a symplectic manfold (Y,wy) and V' C Y a regular coisotropic submanifold, i.e.
a coisotropic submanifold such that the quotient by the isotropic-leaf relation defines a
locally trivial fibration. Let X := V/~ be the quotient and 7 : V' — X the canonical
projection. The space X is canonically equipped with a symplectic form wyx uniquely
determined by the requirement that 7™*wyx = i*wy where ¢ : V' — Y denotes the inclusion.
We conclude that via i x 7 the space V' is a Lagrangian submanifold of Y x X~ where X~
denotes the space X equipped with the symplectic form —wx. It is an easy observation
that given a Lagrangian submanifold L C X we obtain a Lagrangian submanifold LY :=
7~ (L) embedded into Y via i. At the same time LV is also a fibration over L via 7.

Theorem 2.2.1. Given a regular coisotropic submanifold V C'Y with quotient X such
that it is embedded via i X 7 into Y X X~ as a monotone Lagrangian submanifold. Let
L C X be a monotone Lagrangian submanifold such that

e the space LV := n~1(L) is a monotone Lagrangian submanifold of Y,
e the pull-back H*(LV;Zs) — H*(F;Z3) of F :=n~1(pt) C LV is surjective,
e the minimal Maslov number N of the pair (L x LY, V) satisfies the bound

N >dimF +2. (2.2.1)

Then there exists an isomorphism
HF,(LV,LV;Zy) = HF,(L, L; Zy) ® H,(F;Zs) . (2.2.2)

For the definition of the minimal Maslov number of a pair of Lagrangian submani-
folds see Section 3.1. If L, F and X are simply connected then the number N in the
bound (2.2.1) is given by twice the minimal Chern number of Y (cf. [62, Remark 3.3.2]).
Similarly if V' is simply connected then N is given by minimal Maslov number of the
Lagrangian L. The proof of the following corollary is given in Section 12.2.

Corollary 2.2.2. With the same assumptions as Corollary 2.1.3. Suppose additionally
that there exists a closed Lagrangian submanifold L C X with H*(L,Z2) = H*(S™, Z2).
Then one of the following holds

e 2cy divides n+ 1,
o dimG/T <2 andn < 4.

Remark 2.2.3. The second condition is sharp in the sense that for G = U(2) acting
on C**2 from the right the symplectic quotient is the complex Grassmannian Gr(4,2)
which is a quadric and contains a Lagrangian sphere as the fixed point set of the anti-
symplectic involution. We do not know if there are examples of Hamiltonian quotients
containing Lagrangian spheres L and 2cy divides dim L 4+ 1 or 2cy < dim G /T + 2.
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2.3. Floer homology of Lagrangians in clean intersection

Let (M,w) be a symplectic manifold, Ly, L1 C M be two Lagrangian submanifolds and
A be a unital commutative ring. We now state a topological condition under which the
Floer homology of the pair (Lo, L1) is well-defined. All terms are explained with much
detail in Sections 3.1 and 9.2.

Assumption 2.3.1. We assume that
e the pair (Lo, L1) is monotone,
e the minimal Maslov number N is greater or equal to 3,
e the Lagrangians Ly and Ly intersect cleanly,
e if 2A # 0 then we fiz a relative spin structure for (Lo, L1).

Let P (Lo, L1) be the space of paths z : [0,1] — M such that z(0) € Lo and z(1) € L;.
We decompose LyN Ly into connected components Cq, ..., C). Fix an element x, € C1.
For every j = 1,...,k we choose a path u; : [-1,1] x [0,1] — M such that u;(s,-) €
P(Lo, L1), uj(—1) = z, and u;(1) € C;. Define

1. 1 .
A(C)) = — /U;% 1(Cj) == —pvie(uy) — 3 dim C; + 3 dim C1,

in which pvi¢(u;) denotes the Viterbo index of u;. Let 7 be the monotonicity constant
of (Lo, L1). Without loss of generality we assume that the maps u; are chosen such that
forall j =1,...,k we have

0< A(Cj) <TN.

Define the action values 0 < a1 < as < --- < ax, < 7N as the values attained by A(Cj)
forj=1,...,k. If2A # 0, let L = O x7, A be the local system associated to the relative
spin structure (cf. Definition 9.3.4 and Lemma 3.3.2). If 24 = 0 set £ = A.

Theorem 2.3.2. With Assumption 2.5.1. There exists two spectral sequences EY, and
E}:ic’* such that

. loc,1 ~ . . .
(i) E; = Doac)=aiy Hitj—n(c)(Ce; L) for all1 <i <k, j € Z and 0 otherwise,

(ii) E;q = ®i+j:q EZI?C’OO forallp e NZ, q € Z and 0 otherwise,
(iii) EBp+q:* Epe = HF.(Lo, L1).
For both spectral sequences the r-th boundary operator has degree (—r,r —1).

We immediately obtain some displacement results. We say that L is displaceable from
L, if there exists a Hamiltonian diffeomorphism such that ¢(Lg) N Ly = 0.

Corollary 2.3.3. With Assumption 2.5.1. Suppose that Lo is displaceable from L1 and
C := Lo N Ly consists of only one connected component, then we have
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e N<dimC +1,
e if moreover 2N > dim C + 1 then for all k € N

H].H_N_l(C;ZQ) if0<k<dimC-N+1
Hy(C;Z2) =<0 if dmC —N+2<k<N-2
Hyns1(C3Zs) if N—1<k<dimC.

Proof. Since there is only one connected component the sequence Eloor collapses at the
first page and thus
R {Hq(C) if pe NZ,
Pq =

0 otherwise.
Consider the spectral sequence E},. If of page r the boundary operator 9" is non-trivial
then necessarily r € NN. If r = N we have for all ¢,p € Z

H.(C.7y) = EN, 2% pN ~F C.Z 2.3.1
¢(C.Z2) = Epn g — Efy )N gin—1 = Heen-1(C, Zo) . (2.3.1)

Suppose by contradiction that N > dim C + 1. Then we conclude from (2.3.1) that o~
is trivial. Inductively we show that ™V is trivial for all # € N. Hence HF,(Lg, L1) =
H,.(C,Za)®A. But if Ly is displaceable from L; the module HF, (Lo, L) vanishes. This
shows the first claim.

Suppose now that 2N > dimC + 1. In a similary manner we show that the only
possibly non-trivial boundary operator is on page r = N. By assumption H Fy (Lo, L1) =
0 and thus Ep¢ = ker 0" /im " = 0. Using (2.3.1) we conclude the second statement.

0

The case Ly = L1 = L is a special case of a clean intersection and the previous corollary
implies the well-known result about closed monotone Lagrangians submanifolds.

Theorem 2.3.4 (Polterovich, Oh). If a monotone Lagrangian submanifold L is dis-
placeable, then the minimal Maslov number Ny, satisfies

Ny <dimL+1.

As an illustration, we apply the spectral sequences to obtain a new intersection result
of simply connected Lagrangians in CP" x CP", which generalize results of Fortune [32]
about fixed points of symplectomorphisms of CP™. Let wrg denote the Fubini-Study
symplectic form on CP"™.

Proposition 2.3.5. Let CP™ @ CP" be equipped with the symplectic form wps @ —wrs.
Give two simply connected Lagrangians Lo, L1y C CP™ x CP"™ intersecting cleanly with
Lo # Ly. Then LoN Ly has at least two connected components. Moreover assume that
the intersection Lo N Ly consists of two disjoint connected components one of which is a

point, then we have
H.(C,Zs) = H,(CP" 1 Zy),

where C denotes the other connected component.



2. Overview of the main results

Proof. Suppose A = Zs. The Lagrangians have to intersect by a result of Albers [6].
Assume that Ly N Ly = C has only one connected component. The minimal Chern
number of CP™ x CP" equals n + 1. Since Ly and L; are simply connected, the pair
(Lo, L1) is monotone with minimal Maslov number N = 2(n + 1). We conclude that
HF,. (Lo, L1) = H.(C;Z9) ® A with A = Zo[X\, A7!] and deg A = —2n — 2 (see the proof
of Corollary 2.3.3). By the quantum action Floer homology HF.(Lg, L) is a module
over the quantum cohomology ring of CP" x CP"™ which contains an invertible element
of degree two. Hence HFy (Lo, L1) = HF}12(Lo, L1) for all k € Z. But this leads to the
contradiction

Zo = HFy(Lo, L1) = HFy(Lo, L) = ... = HFy, (Lo, Ly) 0. (2.3.2)

Now assume that LoNL; = {pt}UC. Without loss of generality we assume that the base
point lies on the component C and let d = u(pt) € Z denote the index of the intersection
point which does not lie on C. Then the local spectral sequence collapses at the second
page and we have EY“™ 2 ker 9°¢! @ coker 0'°¢1, where 99! : H,(C;Zy) — Zs[d]
(here Zs[d] denotes the group Zs in degree d).

Assume that 9'°%! £ 0. Then coker 8"°%! = 0 and Eloo ig only supported in degrees
0,1,...,dimC < 2n. Similarly as above we conclude that HF, (Lo, L1) = ERS® @ A
which by degree reasons leads to a contradiction as in (2.3.2).

Assume that §°¢1 = 0. Then BV = H,(C;Zs) ® Zold]. If0 < d < 2n — 1,
we obtain as above a contradiction via (2.3.2). If d > 2n — 1 we can not conclude
by degree reasons that EJ, collapses at the first page, since there might possibly exist
r € Nand 0 < j < dimC such that j +rN —1 = d and 0" # 0. Yet, if this were the
case then the spectral sequence collapses at the r + 1-page and we have HF, (Lo, L1) =
H, ® A in which H, C H,(C;Zs) is a subspace of codimension one. Unless H, = 0
and n = 1 we again obtain a contradiction via (2.3.2). But if H, = 0 and n = 1
then H,(C;Zy) = Zy = H,(CP; Zy) as claimed. Finally if 9" = 0 for all 7 > 1, then
HF\ (Lo, L) = (H.(C;Zs) ® Zs[d]) @ A. The only possibility which does not lead to a
contradiction via (2.3.2) is if d = 2n mod 2n + 2 and

Zo ifk=0,2,...,2n —n,

0 otherwise .

Hk(C, Zg) = {

But then C has exactly the same homology as CP"~1. O
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3. Background

3.1. Symplectic geometry

3.1.1. Symplectic manifolds and Lagrangians

A symplectic manifold (M,w) is a 2n-dimensional manifold M equipped with a symplectic
form w, which is a 2-form that is closed (i.e. dw = 0) and non-degenerated (i.e. w\" # 0).
An almost complex structure on M is a complex structure on the tangent bundle T'M
given by an endomorphism .J : TM — TM such that J?> = —1. The almost complex
structure is called w-compatible, if

g; = w(~, J.)

defines a Riemannian metric on M. We denote by End(TM,w) the space of all almost
complex structures on M which are compatible to a fixed w. A complex structure on
TM induces a first Chern class (see [16, Section 20]). Since the space of compatible
almost complex structures is contractible the Chern class does not depent on the choice
J € End(TM,w) and is denoted c1(w) € H*(M,7Z).

Let H5 (M) be the image of the Hurewicz morphism 7o (M) — Hy(M,Z). Evaluation
of ¢1(w) and [w] on elements in Hy (M) defines two homomorphisms

I.: HY (M) — Z, I,: HY (M) - R.

We define the minimal Chern number of M as the smallest positive value of I, i.e.
ey i= min{I.(A) | A € H5 (M) with I.(A) > 0}. A symplectic manifold (M,w) is

e symplectically aspherical, if for all classes a € H5 (M) we have I, (a) = I.(a) = 0,

e monotone or more precisely T-monotone, if there exists a constant 7 > 0, such
that for all classes a € Hy (M) we have I,(a) = 271.(a).

These assumptions where introduced by Floer and lead to a simplification of the analysis.
Unless otherwise noted all symplectic manifolds in this work are either symplectically
aspherical or monotone.

Lagrangians A submanifold L C M is isotropic if w vanishes on all pairs of vectors
tangent to L. A Lagrangian submanifold is an isotropic submanifold . C M such that
dim L = n. By the non-degeneracy of w, any isotropic submanifold has a dimension of at
most n. From that viewpoint Lagrangian submanifolds are sometimes called mazimally

11



3. Background

isotropic. Correspondingly we have similar homological requirements, which where in-
troduced by [58] and again lead to simplification of the analysis. Let Hég (M, L) be the
image of the relative Hurewicz morphism 7o (M, L) — Hs(M, L). Evaluation of [w] and
the Maslov index (cf. [53, Section C.3]) defines two homomorphisms

I,: HS(M,L) - Z, I,: HY(M,L) - R.

Similarly as above we define the minimal Maslov number of L as the smallest positive
value of I, i.e. N := min{l,(4) | A € H5(M,L) with I,(A) > 0}. A Lagrangian
submanifold L C M is

e symplectically aspherical if for all classes a € Hj (M, L) we have I,,(a) = I,(a) = 0,

e T-monotone if there exists a constant 7 > 0 such that for all classes a € Hy (M, L)
we have I,(a) = 71,(a).

Remark 3.1.1. If L C M is symplectically aspherical then M is necessarily symplecti-
cally aspherical as well and if L is 7-monotone then M is 7-monotone or symplectically
aspherical. For that reason we purposely included the factor 2 in the definition of the
monotonicity constant of a monotone symplectic manifold. Another basic observation is
that the minimal Maslov number of a Lagrangian L C M always divides 2cjy.

Lemma 3.1.2. Let (M,w) be a monotone symplectic manifold and L C M be a La-
grangian submanifold such that the fundamental group w1 (L) is finite, then L is mono-
tone. Suppose that w1 (L) is trivial, then the minimal Maslov number of L equals 2cyy,
where cpr is the minimal Chern number of M.

Proof. Let u: (D,0D) — (M, L) be a disc with boundary on L. After a suitable cover
¢ : D — D of some degree k € N the boundary of the composition 4 = uo¢p is contractible
within L, i.e. there exists v : D — L such that v|gp = U|gp. Let w = u v/~ be the
map defined on S? = D LU D/~ with boundary points identified. Hence

I,([w]) = /w*w: /fc*w—i—/v*w:k/u*w:klw(u),
]

and by [53, Thm. C.3.10
21, ([w]) = 21 (TM), (1)) = ontas () + intas (v) = Kingas(u) = KT (u)

According to the assumption there exists a 7 > 0 such that kl,([u]) = L,([w]) =
271([w]) = 7kI,([u]). This shows that L is monotone. If (L) is trivial then k = 1 and
I,([u]) = 2I.([w]) € 2¢mZ for all u. This shows that 2cys divides the minimal Maslov
number of L, denoted Nz. But since Ny, always divides 2cp; we have Ni = 2c¢jy. ]

Lemma 3.1.3. The diagonal A = {(p,p) | p € M} is a Lagrangian submanifold of
(M x M,w®—w) with minimal Maslov number given by twice the minimal Chern number
of M. Moreover M is monotone if and only if A is monotone.

12
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Proof. 1dentify a disk u = (ug,u1) : (D,0D) — (M x M,A) uniquely with a sphere
v: Pl = M via v(2) := ug(z) for |z| <1 and v(z) := u1(1/2) for |z| > 1. Conversely
given a sphere v we obtain a disk u : (D,0D) — (M x M, A) by the same identification.
Choose trivializations ®¢ : uyTM — D x C" and ®; : ujTM — D x C". Denote
by ¥ : St — U(n), § — ®1(0)®0(0)~! the trivialization change along 9D = S'. For
every 6 € S' define the linear Lagrangian subspace F(0) := (99(0) & ®1(0))T (4o un) A =
graph ¥ () C C" x C". By definition of the Maslov index (see [53, Theorem C.3.6]) we
have
Lu([u]) = pvias(F) = deg det U2 = 2degdet W = 2(cy, [v]) = 2Lc([v]) -

This shows the claim by choosing u such that I,,([u]) equals the minimal Maslov number.

The supplement follows directly since I, ([u]) = I,([v]). O

Lagrangian pairs Given two Lagrangian submanifolds Lg,L; C M. We denote the
path space
P(Lo, L) :={z € C*([0,1], M) | (0) € Lo, z(1) € L1}. (3.1.1)

Fix an element x, € P(Lg, L1). Given a smooth map u : [—1,1] x [0,1] — M such that
U(—l,') :’LL(]_,) = Ly U(,O) C Lo, U(,l) C Ly,

the map s +— u(s,-) defines a loop in P(Lg, L1). Every loop in P(Lg, L) based in z, is
homotop to a loop of this type. Integrating the symplectic form over u or by evaluating
the Maslov index on u we obtain two ring homomorphisms

1, :7T1(77(L0,L1),:L‘*) —)R, IM :Wl(P(Lo,Ll),x*) — 7.

We define the minimal Maslov number of (Lo, L1) with respect to x, as smallest positive
value of I,,. We have corresponding homological requirements. The pair (Lo, L1) is called

e symplectically aspherical with respect to x, if for all a € 71 (P(Lg, L1); x«) we have
I,(a) = 1,(a) =0,

e T-monotone with respect to x, if there exists a constant 7 > 0 such that for all
a € m(P(Lo, L1), x) we have I,(a) = 71,(a).

For simplicity we will write that (Lo, L1) is monotone if the choice of base point x, is
self-understood. If (Lo, L1) is monotone with minimal Maslov number N, then again
M, Ly and L; is monotone or symplectically aspherical. Moreover N divides 2c¢ys and
the minimal Maslov number of each Ly and L; (cf. [62, Remark 3.3.2]).

Coisotropics A submanifold V' C M is coisotropic if at each point p € V we have
T,V :={{€TyM |w,(&)=0VE eT,V}CT,V.

Consequently the bundle TVY = Upev T,V® C TV has constant rank and defines a
foliation of V' by isotropic leaves (see [52, Lemma 5.33]). The foliation induces an

13
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equivalence relation on V where two points are equivalent if they lie on the same leaf.
The space V is fibered coisotropic submanifold if the projection 7 : V' — X onto the
quotient X := V/ ~ is a local trivial fibration. When this happens, X has an induced
smooth structure, 7 becomes a smooth submersion and the leaves through two different
points are diffeomorphic. Via symplectic reduction the quotient X also carries an induced
symplectic form uniquely determined by

mrwyx = Fwar

where ¢ : V' — M denotes the embedding. Equivalently wx is uniquely determined by
requiring that V' embeds via i X 7 into (M x X, wy @ —wx) as a Lagrangian submanifold.
By abuse of language we write that V' is 7-monotone (resp. symplectically aspherical)
if it defines a 7-monotone (resp. symplectically aspherical) Lagrangian submanifold in
that way.

Proposition 3.1.4. Suppose that (M,wys) is a T-monotone symplectic manifold and
V € M a fibred coisotropic submanifold with simply connected leaves, then the quotient
(X,wx) is T-monotone. Moreover the minimal Chern number of M divides the minimal
Chern number of X.

Proof. As in the proof of [50, Proposition 1.2] we construct compatible almost complex
structures Jy; and Jx on M and X respectively such that there exists a splitting of
complex vector bundles

TM =2 7*TX @ (kerdﬂ' ® (C) ,

where kerdm ® C denotes the complexification of the real vector bundle kerdm C TV.
It is a classical fact that 2¢;(F' ® C) = 0 for any real vector bundle F' (cf. [54, p.174]).
We conclude with the above splitting over R

(M) =7"c1(X) .

Fix a point p € X and let D = {(s,t) € R? | s + 2 < 1} denote the unit disc with
boundary 0D. Every spherical homology class a € Hig (X) is represented by a map
u: (D,0D) — (X,p). There exists a lift @ : (D,0D) — (V,F) such that mou = u
where F' = 7~ !(p). Since F is simply connected there exists a map v : D — F such
that v|spp = @|gp. The connected sum w := Gi#v : S? — V defines a spherical class
a € H5(V) such that by construction 7.a = a. Since F C M is isotropic we have
J v*wpr = 0. We conclude

/u*wx = /ﬁ*ﬂ*wx = /ﬂ*i*wM = /ﬂ*i*wM+/v*i*wM = /w*i*wM

=7(i"c1(M),a) = 7(r*c1(X),a) = 7{c1(X), ma) = 7{c1(X),a),

where (-, -) denotes the duality pairing. By the same token we see that if a € H5 (X) is
such that cx = (c1(X), a), there exists @ € Hy (V) with cx = (¢1(X), a) = (c1(M),i,a) €
CMZ. ]
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A fibered coisotropic submanifold V' is an example of a Lagrangian correspondence
and is used to transfer Lagrangians in X to Lagrangians in M. More precisely given
a Lagrangian submanifold L C X it is easy to see that LY := 77!(L) is a Lagrangian
submanifold of M embedded via i|;v and that 7| v : LY — L is a fibre bundle. The
next proposition gives a sufficient condition when this transfer preserves monotonicity.

Proposition 3.1.5. Assume that V' is 7-monotone and that X is simply connected.
Given a T-monotone Lagrangian submanifold L C X , then LV := 7=Y(L) C M is 7-
monotone Lagrangian submanifold. Moreover if N1, Ny denotes the minimal Maslov
number of L and V respectively then gcd(Np, Ny) divides the minimal Maslov number
of LV .

Proof. Lets first show that LY C M is indeed Lagrangian. The submanifold LY is
isotropic because given any point p € LY and two vectors &, & € TpLV, we have

(war)p(§, &) = (Wx)(p) (dpm&, dpme’) = 0.

It remains to show that L' has the correct dimension. Let F' C V denote a leaf of V. We
have the identities 2dim V' = dim X +dim M (V is Lagrangian), dim V' = dim X 4+dim F’
(V is a fibre bundle), dim LY = dim L+dim F (LY is a fibre bundle) and 2 dim L = dim X
(L is Lagrangian). Combined we have

2dim LY = 2dim L + 2dim F = 2dim V — dim X = dim X + dim M — dim X =
=dim M .

We show that LY is 7-monotone. Given a map u : (D,0D) — (M,L"Y). The loop
T o ulgp is contractible in X and there exists a map v : (D,0D) — (X, L) such that
vlpp = mo ul|pp. The pair w := (u,v) satisfies w : (D,0D) — (M x X,V). By
monotonicity of V' and L we have

pintas(w) = 77 /U*WM —r! /U*WX =71 /u*wM — fiMas (V) .
Hence [u*wp = Tpnas(w) + Thvas(v). The bundle pair splits
(w*(TM & TX),w|jp(TLY @ TL)) = («*TM & v*TX,uljpTLY ®v|;pTL) .

That implies pinas(w) = pmas(u) — pnias(v) and with the above [w*wyr = Tnas(w).
From pivas(w) = pimas(u) — pnas(v) we also conclude that ged(Np, Ny) divides the
minimal Maslov number of LY. ]

3.1.2. Hamiltonian group actions

We give a short introduction of Hamiltonian group actions. For a reference see for
example the book [8]. Let G be a compact Lie group and M be a manifold. A (left)
action of G on M is a smooth map ¢ : G x M — M, ¢4 = ¢(g,-) with the properties
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that for all gg, g1 € G and * € M we have g, (¢g () = Pgog: () and pe(z) =
where e € G is the neutral element. If (M,w) is a symplectic manifold, then the group
action is symplectic if for all g € G we have pyw = w. Let g be the Lie algebra of
G and g its dual. Consider the exponential map exp : g — G. For every £ € g we
have a one-parameter family of diffeomorphisms ¢ — @exp, ¢ generated by the vector field
§ = OtPexp(te)lt=0 € Vect(M). The vector field { is called fundamental vector field to &.
The action is Hamiltonian if there exists a map p : M — g such that

o w(&,-) =dH with He = (u,§) for all £ € g,
o w(&,n) = (u,[& n]) for all {,n € g in which [-,-] denotes the Lie bracket on g.

Note that if there is a map which only satisfies the first property, the second is accheived
by adding a constant (cf. [8, Rmk. III.1.2]). The map u is called moment map. Every
Hamiltonian action is symplectic. Conversely every symplectic action is locally a Hamil-
tonian action and if the group is semi-simple, i.e. [g, g] = g, every symplectic action is
also Hamiltonian (cf. [8, p. 75]). A prominent example is action of the rotation group
SO(3) on R3®R3 via g(q, p) = (gq, gp). The action is Hamiltonian if R3@R3 is equipped
with the standard symplectic structure. In that case the dual of the Lie algebra of SO(3)
is canonically isomorphic to R? and the moment map is the cross product.

Linear group actions

Let G act on a complex vector space M via linear maps. In other words we are given
a complex representation of G on M. Since G is compact we assume without loss of
generality that the representation is unitary and in particular symplectic for the standard
symplectic form on M. In the following we also assume that the representation is faithful.
After choosing a basis we have M = C™ and we identify G with a subgroup G C U(n)
of the uniary group. The linear action of the unitary group U(n) on C™ is Hamiltonian
with moment map

MU (n) - Cc" — b(n), (Zl, ... ,Zn) — (Ejzi)lgnjgn,

where we have identified the dual u(n)" with the space of Hermitian matrices h(n) using
the standard inner product on u(n) given by (£,n) = — Tr(£n) and multiplication with
the imaginary unit v/—1. Because G is subgroup of a group with Hamiltonian action
the action of G is Hamiltonian as well.

Let T' C G be a maximal torus. The embedding 7' C G C U(n) induces an embedding
of Lie algebras t C g C h(n). Let

tz = {£ € t|exp(2myV/—1€) =€} C t,

be the unit lattice of t. With the identification every £ € tz is an Hermitian matrix
thus has real eigenvalues. Moreover if A € R is an eigenvalue to the eigenvector v € C"
we have exp(2my/—1€)v = exp(2mv/—1A)v = v. We conclude that A € Z. It is easy to
check that t7 C tis a free Z-module of rank dimt. Let &,...,&; be an integer basis
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of t7. With the identification above &1, ...,&; are Hermitian matrices which pair-wise
commute. Thus there exists a basis of mutual eigenvectors vq,...,v, € C" such that
(vi,vj) = 0;; where (-, -) denotes the standard Hermitian product on C". The weights are
the tuples of eigenvalues wi, ..., w, € ZF, i.e. w; = (&g, ..., &vy) forall j =1,... n.
In the basis v1,...,v, of C" and &1,...,&, of t the moment map of the T-action is

n
C" — R*, (zl,...,zn)Hij|zj|2.
j=1

Denote the subgroup T™ C U(n) which consists of diagonal matrices. Without loss of
generality T' C T™. The quotient Y,, := u;l(w) /T at any w € R¥ inherits an action of
the torus T"/T. We conclude that Y, is a toric manifold, if the reduction is regular.
In [53, §11.3.1]) it is deduced that the quotient Y, is monotone if

w:w1+w2+~-+wn€Zk.

In the following we always assume that w is of that form and the reduction is regular.
In [19, §1] it is shown that the minimal Chern number ¢y of Y, is the greatest common
divisor of the k-tuple w of integers. We wish to warn the reader that this only holds if
the action of the torus T' on M is faithfull as we have assumed in the section. Together
with Proposition 3.1.4 we conclude the following

Lemma 3.1.6. If the symplectic quotients X = ug'(w)/G and Y = ;' (w)/T at
w=wi + -+ w, €ZF are reqular, then X is a monotone symplectic manifold and we
have cy = gedw.

We describe the cohomology and the quantum cohomology rings. All material is
taken from [53, §11.3.1]. To see that the statements remain true over the integers see
for example [38, §5.2]. Abbreviate the index set Iy = {1,...,n}. For any subset I C I
we consider its cone given by

cone(I) = {) _aw; € R [ a; > 0} .
el

A subset I C Iy is primitive if w ¢ cone(Iy \ I) but w € cone(ly \ J) for any J C I. We
identify R™ with the Lie algebra of T" and Z"™ C R™ with its unit lattice. The inclusion
T C T"™ induces and an injection of Z-modules t7 C Z™. In the basis &1,..., &, of tz and
the standard basis of Z™ the matrix of the inclusion has row vectors wy, ..., w,. Using
the dual of the standard basis of Z™ and dual of the basis of £1,...,&; of t; we obtain
identifications of symmetric algebras Z[yi,...,yn] = Sym(Z")" and Zz1,...,zx] =
Symty respectively. Via the injection t; C Z" together with the identifications we
obtain a canonical ring morphism

Zlyr, - yn] = Zlz1, ... 28], (3.1.2)

which is equally obtained by quotienting the relations of the form ) . a;y; = 0 for all
a = (a1,...,an) € Z" such that >, a;w; = 0. Let SR’ C Z[y1,...,yn] be the ideal
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generated by [[,c;v; for all primitive index sets I C Iy and SR C Z[xy,...,xy] the
image of SR’ under the map (3.1.2). The singular cohomology ring of Y is given by

H*(Y,Z) = Zx, ..., x| /SR.

For the quantum cohomology ring with coefficient ring A = Q[\, A™!] where deg A = 2cy
we tensor (3.1.2) with A and obtain

Ay, ..o yn] = Alzr, .. 2] (3.1.3)
Let QSR’ C Aly, ..., yn] be the ideal generated by

[T~ [
icl i¢l

over all primitive index sets I where |d| =d; +do+---+d, and d = (dy,...,d,) € Z" is

the unique vector in the image of the injection t; C Z™ such that d; = 1 for all ¢ € I and

d; <0 for all i ¢ I. By definition the product over the empty set is just 1. The ideal

QSR C Alx1,...,z] given by the image of QSR’ under (3.1.3) is called the quantum

Stanley-Reisner ideal. The quantum cohomology of Y is the quotient ring

Because Alzy, ..., x| is identified with the symmetric algebra over t) tensored with A,
we obtain a canonical action of the Weyl group on Afzq,...,x]. By the same reasoning
any root is a linear element in Afzy,...,x;] and the canonical anti-invariant class D is
given by the product of all positive roots. Now Theorem 2.1.1 adapted to our setting
states that the quantum cohomology of X := u'(w)/G is given by

QH*(Xa A) = A[xla <o 7xk]W/(QSR :DnN A[$17 R wk]w) )
where QSR : D denotes the ideal quotient of QSR by D. To show Corollary 2.1.3 it
remains to prove the following lemma.
Lemma 3.1.7. We have QSR : D = p(QSR) with p given in (2.1.4).
Proof. Abbreviate S := A[z1,...,z;] and by S" the ring of invariants. Given f €
(QSR : D) N SW. In other words f € SV and fD € QSR. Set g := |[W|™* fD € QSR
then we have
plg) = W|T'D™' > " signw fw.D = [W|"' D' fD[W| = f.
weW

This shows that f € p(QSR). Conversely given f € p(QSR). Hence there must exist
g € QSR such that p(g) = f. By definition of p and since QSR is invariant as a set
under the action of W

fD= Z signww.g € QSR..

weWw
We conclude that f € SV and f € QSR : D. O
Remark 3.1.8. The subring of invariants Alx1, ..., 2] C A[z1,..., 2] is generated by
k homogeneous polynomials of degrees 2m; + 2,...,2my + 2 (with degx; = 2) where

(2my +1,...,2my + 1) is the rational type of G (cf. Section D.1).
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3.2. Hamiltonian action functional

3.2. Hamiltonian action functional

Fix a symplectic manifold (M,w) and two Lagrangians submanifolds Ly, L; C M. We
replace the path space P = P(Lg, L1) with its Sobolev extension

P = {z e HY*([0,1], M) | (x(0),z(1)) € Lo x L1} .

Fix an element z, € P and a Hamiltonian function H € C*°([0,1] x M). Central to our
study is the Hamiltonian action functional Agy,

Apr(ug, ) = —/u;w - /01 H(t,z)dt (3.2.1)

where x € P lies in the same connected component of z, and u, : [—1,1] x [0,1] — M
satisfies

ug(1,-) = x, ug(—1,) = xy, (ug(+,0),uz (-, 1)) C Lo x Ly . (3.2.2)

In other words s +— wu,(s,-) is a path in P from x, to z. We call u, a cap of x.
Unfortunately Ap is not well-defined on the path-space P since it depends on the choice
of the cap u;. To take that into account we define a certain cover of P on which Ag
becomes well-defined.

Domain of Ay Two caps u, and u, are equivalent if x = y and [um#u;j] € kerI, N
ker I,,, in which u,#u, : [~1,1] x [0,1] = M denotes the connected sum of u, with the
reversed map u\y/ , that is

ug(2s+1,t) if —1<s<0

' (3.2.3)
uy(l—2s,t) if0<s<1.

(ux#u\y/)(s,t) = {
Let P denote the set of equivalence classes.

Remark 3.2.1. We have incorporated a finer equivalence relation than actually necessary
at this point. Instead of kerI, N ker I,,, we could have just used kerI,. The finer
equivalence relation will become useful when we define the index later on (cf. Section 3.4).
Note that in the case of a monotone pair these two subgroups are the same.

Since P is locally path-connected P carries an induced topology and is in fact a
covering space over the connected component of P containing z., denoted by P,,;. The
covering map is given by B

P = Pl [ug, ] — x .

The group of Deck transformations of this cover is I' := 7 (P; x,) / (ker I, Nker I,,) which
is acting transitively and effectively via

L'xP—P, ([u], [ug, x]) = [uuy, 2] .
We obtain a well-defined map with domain a covering space of Py,

AP — R, [ug, x] = Ag(ug, x) . (3.2.4)

19



3. Background

Critical points of Ay Critical points of Ag correspond to solutions of the Hamiltonian

equation. We choose the following convention in order to define the Hamiltonian vector
field Xy,
w(Xg, ) =dH . (3.2.5)

Define the perturbed intersection points
IH(Lo,Ll) = {l’ : [0, 1] — M ’ T = XH([E>, (.I‘(O),[E(l)) € Ly x Ll} . (326)

Note that the set Zy (Lo, L1) is in bijection with ¢g(Lo) N L1, where ¢ denotes the
Hamiltonian diffeomorphism associated to H, i.e. the time-one map of the flow associated
to the Hamiltonian vector field X.

Lemma 3.2.2. Critical points of Ay are exactly the points [uy,z] € P with © €
Ty (Lo, Ly).

Proof. To compute the directional derivative of Ay we fix ¢ > 0 and let u : (—¢,¢) X
[—1,1] x [0,1] = M be a smooth map such that the maps u, = u(7,-) satisfy uT‘t:O e
Loy and ur(—1,-) = a, forall 7 € (—¢,¢e). We write z, = u,(1,-) and £ = 0|, _,u-(1,).

d

dT AH <u7'7$7'>:

=0

= — / Orw (Ostur, Oyur) dsdt
[—1,1]x]0,1]

7=0

- / 1 O, H(t, z,(t))dt
=0 0

T

1 1
:_/ w (Orur, Oyuy) dt —/ dH (¢, )€ dt
0 0

7=0,5s=1

— /Olw(g,j;) dt/olw(XH,S)dt

1
:/ w(t— Xpg,&) dt.
0
For the second line we use
0 = dw (0ru, Osu, Oyu) = Orw (Osu, Opu) — Osw (Oru, Opu) + dyw (Oru, Osu)

and that integration over the O0;-part vanishes by the Lagrangian boundary conditions.
By non-degeneracy of the symplectic form w we conclude that [u,,z] is a critical point
of Ay if and only if £ = Xp(z). O

Gradient of Ay A key observation of Floer was that the gradient of Ax with respect
to a certain L2-metric on P establishes ties between Morse theory and .J-holomorphic

curve theory. More precisely fix a path J : [0,1] — End(TM,w), we define an L2-metric
on the path space P via

1 1
<£,71)J=/0 <£(t),77(t)>Jtdt=/0 wa(r) (£(8), Je(z(t))n(t))dt (3.2.7)

20



3.2. Hamiltonian action functional

for all sections &,n € I'(z*T'M) and = € P. The metric canonically lifts to P. As one
sees at the formula (3.2.8) of the next lemma, the gradient of Ay is independent of the
choice of the base point and descends to a vector field on the path space P.

Lemma 3.2.3. The gradient of the functional Ag with respect to the metric (3.2.7) is
given by
grad; Ap(ug, ) = J (Or — X (x)) . (3.2.8)

Proof. Given £ € C*°(z*T' M), continuing the computation in the proof of Lemma 3.2.2
we see that

1

A g1 (g, 2)[E] = /0 waey (E(t) — Xar(t, 2(1)), (1)) dt
1
— /0 waey (), J2() (i) — Xpa (£ 2(1))) dt
1
- /0 (), ol () ((8) — Xpr(t, () i
— (6.7 (B — X ()1
This shows the claim. |

Another crucial idea of Floer was that despite the fact that the negative gradient flow
of Ay is not well-defined, finite energy negative-gradient flow-lines between any two
critical points are. A gradient flow line between the critical points [u_,z_] and [uy,z 4]
is given by a map u : R x [0,1] — M such that

Osu + J(u) (Opu — Xp(u)) =0,

u‘tzo CLQ, u‘t:l CLl,
/ |8su\3dsdt <00, (3.2.9)
Rx[0,1]
lim wu(s, ) =z_, lim wu(s, ) = x4,
S——00 §—00

where the limits in the last line are in uniform topology. We call u a finite-energy (J, H)-
holomorphic strip with boundary in (Lo, L1) connecting x_ to x4. These “generalized”
flow-lines satisfy the same properties of negative gradient flow lines in Morse theory. For
example if [uy,y] = [u_#u,y] with u_#u defined via (3.2.3) we have the action-energy
relation

E(u) = / |88u|3dsdt =Ag(u_,z_) — Ag(uy,zy) . (3.2.10)
Rx[0,1]

There is a standard trick to transform a solution of (3.2.9) into a solution with H = 0
but changing L; and J. We will use it at several places in the paper.
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Lemma 3.2.4. Given a Hamiltonian function H € C*([0,1] x M) and an almost
complex structure J € C*°([0,1], End(T'M,w)). Let u:R x [0,1] — M be solution of

dsu+ J(u)(dpu — Xp(uw)) =0,
which satisfies the boundary condition

u(-,0) C Lo, u(-,1) C Ly .
Then the map v : R x [0,1] = M defined by v(s,t) = ¢4 (u(s,t)) is a solution of

dsv + J'(v)Ow = 0, J) = (dpl) o Jyodly
which satisfies the boundary condition
v(~0) C Lo, (1) C g (L),

Moreover we have E(u) = E(v).

Proof. Obviously the curve v satisfies the boundary condition by construction. We check
the differential equation. We have 0s;u = dpg0sv and dyu = Xg(u) + dppgdiv and thus

dow (8sv + J' (v)0v) = Osu+ J(u) (Opu — X (uw)) =0.
This shows that v is J’-holomorphic. Then
\Bsu]2 = w(0su, JOsu) = w(dpysv, Jdppdsv) = w(dsv, J'Osv) = \651)\2 .

This shows E(u) = E(v). O

Hessian of Ay Let V! denote the Levi-Civita connection with respect to the metric
w(-, J¢-) for each t € [0, 1]. Given z € P, we define the Hessian of the Hamiltonian action
functional as the operator

Ay TyP(Lo, L1) — L*(2*TM), & J(2) (Vi€ = VeXp) , (3.2.11)
with domain T, P(Lo, L1) C L*(x*TM) given by
T, P(Lo, L1) = {£ € HY*(a*TM) | £(0) € Tyoy Lo, &(1) € TyyLa}

Remark 3.2.5. One can show that the operator (3.2.11) is the Hessian of the Hamiltonian
action functional with respect to the Levi-Civita connection of P induced from the
metric (3.2.7) and whenever « € Ty (Lo, L1) the operator is independent of the choice of
the connection.

The eigenvalues and eigenfunctions of A, play an important role for the study of
the asymptotic behavior of solutions of (3.2.9). We have the following result due to
Frauenfelder.
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3.2. Hamiltonian action functional

Proposition 3.2.6 ([33, Theorem 4.1]). For any x € P(Lg, L1) the operator A, is self-
adjoint with respect to the inner product (3.2.7) and has a closed range. The spectrum
0(Az) C R is discrete and consists purely of eigenvalues.

We prove in Chapter 4 that the gap in the spectrum around zero of the Hessian A,
controls the decay rate of finite energy (.J, H)-holomorphic strips. Given x € Zg (Lo, L1)
we define

to(J,H) :=inf{la| |0# a€o(Az)} , (3.2.12)

and moreover for any subset C' C Zy (Lo, L1) we define
J, H):= inf «(J, H), C;J,H) = inf 1,(J,H). 3.2.13
u(J, H) ez (J,H) o )= inf (], H) ( )

If H =0, then we abbreviate ¢(z; J,0), ¢(C; J,0) and ¢(J,0) by ¢(x;J), «(C;J) and ¢(J)
respectively.

Remark 3.2.7. Whenever H = 0, J; = Jp for all ¢t € [0,1] and dim M = 2 there is
a geometric interpretation of the spectrum of A, as angle at the intersection point
x =p€ LoyN Ly. For example if M = C, w = wgtq, Jt = Jsq for all t € [0,1], Lo = R
and L = €'“R, then the spectrum is given by

0(0; Jstq,0) = a + 772,

and ¢ := 1(0; Jyq) is the unique constant such that ¢ € (0,7/2] and ¢ = |a + 7k| with
k € 7Z. Geometrically it corresponds to the acute angle of the intersection Lo with L;.

Lemma 3.2.8. For all x € Zy(Lo,L1) we have 1,(J, H) = (0} J) with p = x(0) €
Lo N @t (L1) and (@i J)e = dgly o J o (dply) "
Proof. Abbreviate J{ = (¢} J), and L} = ¢ Ly. Consider the operator
A, TyP(Lo, LY) — L*([0,1], T,M), & J'OE.
It suffices to show that the operators A, and A, are conjugated by isomorphisms
T,P(Lo, L)) — TuP(Lo, L1),  L*([0,1),T,M) — L*(z*TM),

both given by & — (¢t — dp'&(t)). For that it suffices to show that for all smooth
€:[0,1] — T, M we have

J (Vidon€ — Vape Xa) = dog J' Ok .

Suppose that 0;¢§ = 0 for a moment, then since V is torsion free and 0;x = Xy the
equation holds after Vidpp& = Vx,dpr§ = Va,, ¢ Xp. In general any other £ is given
as § =) f;€; with §; constant and f; € HY2([0,1],R). We compute

T (Vedpnt = VagueXu) = > J(Vifjdpnut — fjVapye, Xn)
J
= Z Jdeu(0if)5 + fi (Vidoné; — Vague; Xn)

J
=Y denJ'0(f;&) = dpnJ 9.
J
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3. Background

Thus the last equation holds for all {&. We conclude that A, and A, are conjugated. [

Clean intersections Two submanifolds Lg, L1 C M intersect cleanly along a submani-
fold C C M, if C C LoN Ly and for all p in C we have

TpC = TpLo N TpL1 .

Moreover Lo, L1 are in clean intersection if they intersect cleanly along Lo N Ly. Every
transverse intersection is also clean but certainly the converse is not true. Pozniak [62]
gave a normal form for Lagrangian submanifolds in clean intersection. Let C C L be a
submanifold of a manifold L. The conormal bundle TC® C T*L of C' is defined by

TCY ={(q,p) €T*L | q€ C, plv) =0 YveT,C}.

Note that TC* C (T*L,wean) is an exact Lagrangian submanifold, which intersects the
zero section cleanly along C.

Proposition 3.2.9 ([62, Proposition 3.4.1]). Let (M,w) be a symplectic manifold and
Lo, L1 C M be two Lagrangian submanifolds intersecting cleanly along a compact sub-
manifold C C M, then there exists a vector bundle E — C, open sets V C T*E, U C M
and a diffeomorphism ¢ : U =V such that such that C C U, p*wgq = w and

¢ (LoNUpoy) = ENV,  o(L1NUpy,) =TCNV,

in which B and C are identified with their image under the zero section in the bundles
T*E — E and E — C respectively.

Lemma 3.2.10. With the same assumption as Proposition 3.2.9. For all p € C there
exists open sets U C M, V C R*™ and a diffeomorphism ¢ : U — V such that p € U,

o(p) =0, *wstqa = w and
(p(LoﬂU):AoﬂV, cp(LlﬂU):AlﬂV,

in which Ay, A1 C R?*™ are linear subspaces which are Lagrangian with respect to the
standard symplectic form weq-

Proof. According to Proposition 3.2.9 we assume without loss of generality that M =
T*Lg, w = Wean and Ly = T'C¥ for some submanifold C' C Ly of dimension k. There

exists local coordinates ¢ : V S W with W C Ly and V' C R" is an open ball such that
Y(VNRF) =W NC. We define U := T*W and p = ¢* : U — T*V. O

Lemma 3.2.11. With the same assumption as Proposition 3.2.9. Let J : [0,1] —
End(TM,w) be a path of compatible almost complex structures. For allp € LoN Ly there
exists an open neighborhood U C M and a local trivialization

®:[0,1] x UxR*™ > TM,, (tqv)— ®(q)veTM,

such that we have
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3.2. Hamiltonian action functional

o Ji(q)®:(q) = P1(q)Jstq for all t € [0,1] and q € U,

o wq(Pe(q)€, Pe(q)E') = wsta(§, &) for allt €[0,1], g € U and &, € TyM
o T,Lip =®,(q) R" @ {0}) forallge LiyNU and k =0,1.

where Jsq : R — R?™ s the standard complex structure with matriz representation
given by

0 -1
Jstd = <11 0 ) : (3.2.14)

Proof. Choose local coordinates (cf. Lemma 3.2.10) and assume U is an open subset of
R?", w = wga, Lo, L1 = Ag, A1 are linear Lagrangian subspaces and the almost complex
structure is given by a matrix valued function J : [0,1] x U — R?"*2"_ Choose a
smooth path of linear Lagrangian subspaces F': [0,1] — £(n) such that F'(0) = Ay and
F(1) = Ay. Choose functions ey, ..., e, : [0,1] xU — R?" such that (e1(t,q), ..., en(t,q))
is a frame of F; and after Gram-Schmidt satisfies w(e;(t,q), Ji(¢)e;j(t,q)) = 0i; for all
i,j=1,...,n,t € [0,1] and ¢ € U. Then the linear map ®;(q) given as matrix with
column vectors (e1, ..., e,, Je1,. .., Je,) satisfies all required properties. O

Clean and transverse Hamiltonians Given a Hamiltonian function H : [0,1] x M — R
we denote by @i : M — M the corresponding Hamiltonian diffeomorphism, i.e. the
time-one map of the Hamiltonian flow.

Definition 3.2.12. Given two Lagrangian submanifolds Lo, L1 C M. An Hamiltonian
H is

(i) clean for (Lo, L1), if Lo and gpﬁl(Ll) are in clean intersection,

(ii) transverse for (Lo, L1), if Lo and ¢y (L1) are in transverse intersection.
If there is no risk of confusion we just write H is clean or transverse.

Usually only transverse Hamiltonians are considered for the definition of Floer homol-
ogy of Lagrangian intersections and in that case the action function is Morse, i.e. critical
points are non-degenerated. The next lemma shows that, if the Hamiltonian H is clean,
then the action functional Ay is Morse-Bott.

Lemma 3.2.13. Suppose that the Hamiltonian H is clean, then every connected com-
ponent of Ly (Lo, L1) is a manifold and for all x € Zy(Lo,L1) we have ker A, =
T.Zr(Lo, L1) as subspaces of T, P.

Proof. Via x ~ x(0) the space Zy (Lo, L1) is isomorphic to Lo N ¢y (L1) which is
component-wise a manifold and provides the chart maps. Set p = x(0). Given & € T, Ly,
consider the vector field £(¢) := dp, &, which is a vector field along z. Since V is torsion
free and O = Xy we have Vi{ = Vx,& = VeXy. We conclude that every element
in the kernel of A, is of the form ¢ + £(t) = dply&o with & € T,Lo N Tppy (L1). If
the Hamiltonian is clean then T,Lo N Tpey' (L1) = Tp(Lo N ¢y (L1)), which under the
identification of Zy (Lo, L) with Lo N @ﬁl(Ll) is the tangent space of Zy (Lo, L1) at
x. O

25



3. Background

Proposition 3.2.14. Suppose that the Hamiltonian H is clean, then for any compact
subset C C Iy (Lo, L1) we have infpec 1p(J, H) > 0.

Proof. With loss of generality we assume that H = 0 and Lg, L; are in clean intersection
(cf. Lemmas 3.2.8 and 3.2.10). Suppose by contradiction that there exists a sequence
of points (p,) C C such that lim, o ¢, (J) = 0. Since C' is compact, we assume that
(py) converges to p € C. Using the trivialization ® from Lemma 3.2.11 we define matrix
valued functions 0,04 : [0, 1] — R?"*2" by the requirement

J(p)at(b(p)g = (I)(p) (Jstdat§ + Joog) ) J(Pu)atq)(pu)f = (I)(pu) (Jstdat€ + UV{) )

for all smooth ¢ : [0,1] — R?". Because J and ® are smooth there exists a uniform
constant ¢; such that for all t € [0,1] and v > 1

|00 (t) — o, (t)] < crdist (pu,p) -

We define the unbounded operators in the Hilbert space L%([0, 1], R?") via

(Acf) (1) = JstaBi&(1) + 0u (DE(L),  (Af) () = Jsai€(t) + 000 (H)E(?)

with dense domain {¢ € HY2([0,1],R?") | £(0),£(1) € R x {0}}. Being conjugated
to the Hessians A,, A,, the operators A, A, are self-adjoint and have a closed range
(cf. Proposition 3.2.6). The difference Ao, — A, extends to a bounded operator which
converges to zero as v tends to infinity. By Lemma 3.2.13 the kernels of A, A, have
the same dimension. Then, by Lemma B.1.3 there exists vy such that for all v > vy we
have ¢y, (J) = 1(Ay) > 1/24(A) > 0 in contradiction to ¢,,(J) — 0. O

3.3. Morse homology

Let C be a closed manifold. A Morse function f : C — R is a smooth function such
that the Hessian at any critical point p € crit f is non-degenerate. Necessarily the set
of critical points is isolated. We choose a Riemannian metric g on C' and assume that
the negative gradient flow ¢ : R x C — C, 9° = (s, -) exists for all times. Define the
unstable (resp. stable) manifold of a critical point p € crit f by

W p; f) :={ueC|¢*(u) = pfor s » —o0}
(resp. Wo(p; f) :={ue C|¢*(u) — pfor s — oo}).
Without risk of confusion we write W*(p) and W*(q) to denote W*(p; f) and W*(g; f)
respectively. We call the pair (f, g) Morse-Smale, if for any two critical points p, ¢ € crit f
the unstable manifold W*(p; f) intersects the stable manifold W*(q; f) transversely.

If (f,g) is Morse-Smale, then Morse homology is well-defined. We define the space of
parametrized Morse trajectories

Mo(p,q) = W"(p) N W*(q) .

The negative gradient flow preserves /Wo(p, q) and induces an action of R. Whenever
p # q the action is free and we denote the quotient by My(p, q).
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Orientation We choose an orientation of the unstable manifolds W*(p) for each critical
point p € crit f, which is always possible because W*(p) is contractible. Once a choice
is made, the stable manifolds W*(gq) are automatically cooriented for all ¢ € crit f
and we obtain an orientation of ./T/l/()(p, q) for all pairs of critical points p,q € crit f
via a canonical construction (cf. equation (9.1.6)). With standard orientation of R,
we also obtain orientations of the quotient My(p, ¢), which at elements [u] in the zero

dimensional component is just a number in {£1}, denoted sign u.

Morse complex Let A be any commutative ring with unit. We define the Morse chain
complex Cy(f, A) as the free A-module generated by the critical points crit f, graded by
Ip| = pnor(p) = dim W*(p) and equipped with the boundary operator

0:Cu(f;A) = Cua(f;A),  p—> > > signu-q.

w(@)=p(p)—1 [u]eMo(p,q)

Note that if [p| —|g[ = 1 then the sum }  jc vq(p,q) S0 ¢ equals the intersection number
of W"(p) with W#(q). The next theorem is a classical result. A modern proof is found
in [1] or [67]

Theorem 3.3.1. We have 0 0 9 = 0. The associated homology group H.(f;A) =
ker /im0 is independent of the function f, the metric and the choices of orientations
up to isomorphism and we have the natural isomorphism

H.(f; A) = H.(C; A) . (3.3.1)

Functoriality Let ¢ : C — C’ be a smooth map between the manifolds C' and C” which
are equipped with Morse-Smale pairs (f, g) and (f’,¢’) respectively. Given two critical
points p € crit f and p’ € crit f’ define the space

M?(p,p') == W (p) N L (WH(p)) . (3.3.2)

Generically the intersection is transverse and hence M%(p, p’) is a manifold of dimension
wu(p') — p(p). If W¥(p) is oriented and W#(p') is cooriented, then M?(p,p’) carries an
induced orientation. We define the morphism

. . /. . ’
090* . C*(f7 A) — C*(f 7A)> p— ZH(P'):H(P) ZuEM“"(p,p’) signu-p .

The homomorphism Cy, is a chain map. We denote the induced map on homology
by ¢« : Ho(f; A) — H.(f'; A). In [3, §2.2] it is proven that ¢, is the push-forward in
homology under the identification (3.3.1).

Cohomology By definition the cohomology complex C*(f; A) is given by the module
Hom(C,(f; A), A) equipped with the boundary operator d : C*(f; A) — C*1(f; A),
@+ (p+— ©(9p)). One shows that dod = 0 and the associated cohomology is isomorphic
to H*(C; A). For any critical point p € crit f let 6, € C*(f; A) be the homomorphism
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that is 1 on p and O otherwise. Since any element in C*(f; A) is a linear combination
of these, we see that Morse cohomology is alternatively defined by the free module
generated by critical points p € crit f, graded by the Morse index and equipped with
differential

d:C*(f; A) — C*T(f; A), P Z Z signu - q. (3.3.3)
1(q)=p(p)+1 [u]eMo(g,p)

For more details see [67].

Local coefficients Let C be the the category of points in C' with morphisms given
by homotopy classes of paths and composition law by concatenation of paths. A local
system L is a functor from C into the category of A-modules. An isomorphism class of a
local system is given by a representation of 7w1(C) on an A-module. Every local system
arises from the following general construction:

Lemma 3.3.2. Let T' be the group of Deck transformations of a covering C — C.
Assume that T' acts on an A-module M by A-module morphisms. We obtain a cor-
responding local system, which associates to a point p € C' the fibre in the associated
covering C xp M — C and to a homotopy class of paths the parallel transport. If L
arises in that way we denote the local system by £ = C xp M.

Morse homology with coefficients in L is the A-module

C.(f;iL)= P L),

pecrit f

graded by the Morse index and equipped with the boundary operator

0:Cu(f;£) = Cucr(f5£),  L)dar Y > signu- L(u)a.
w(@)=p(p)—1 [u]eMo(p,q9)

Alternatively we choose an isomorphism £(p) = M for any p € crit f. Then Ci(f; L) =
C.(f) ® M and the boundary operator is given by the same formula where now £(u) is
an automorphism of the module M. In [57, §7.2] it is shown (with the minor difference
that the argument there is for cohomology) that 9 o @ = 0 and the associated homology
is isomorphic to H,(A; L), which is the homology of C' with values in the local system
L. For more details see also [4, Appendix A].

3.4. Floer homology
Fix a symplectic manifold (M,w), Lagrangians Lo, L; C M and a coefficient ring A

which satisfy Assumption 2.3.1. We give a short introduction to Floer homology of the
pair (Lo, L1) with coefficients in the Novikov ring A = A[X\, A71].
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Floer trajectories Choose a Hamiltonian H € C*°([0,1] x M) and a path of almost
complex structures J : [0,1] — End(TM,w), J; = J(t,-). For two Hamiltonian arcs
x_,x4 € (Lo, L1) we define the space of parametrized finite energy Floer trajectories

M(z_,aq;J, H) = {uc C®(R x [0,1], M) | (3.2.9)}.

The Hamiltonian function H is transverse if @ (Lo) intersects Ly transversely, where ¢
denotes the Hamiltonian diffeomorphism associated to H. In [31] it is shown that being
transverse is a generic condition, i.e. can always be fulfilled after an arbitrary small
perturbation of H. Moreover for an transverse Hamiltonian function H it is shown
in [31], that for a generic almost complex structure J each connected component of the
space Mv(x_,x+; J, H) is a manifold and the dimension of a component containing
is given by the Viterbo index u(u). Let us fix generic data J and H. We abbreviate

M(z,y) = M(z,y; J, H) for any two arcs x,y € Zg (Lo, L1). There exists an R-action

on the space M(z,y) by translation on the domain, i.e. (a.u)(s,t) = u(s—a,t). ff x #y
the action is free and we denote the quotient by M(x,y).

Grading Let N € N denote the minimal Maslov number of the pair (L, L1) and let
P denote the space of paths v : [0,1] — M with v(0) € Ly and (1) € L;. For
every x € Ty (Lo, L1) which is in the same connected component of P as x, we choose
uz @ [—1,1] x [0,1] — M such that u(s) € P for all s € [—1,1], uy(—1) = x, and
uz(1) = . Then define the grading as the Viterbo index of uy, i.e.

2] == —p(us).

Orientation If the characteristic of A is not two, we need to orient the spaces M(z,y).
This is done as follows. Let D,, be the linearized Cauchy-Riemann-Floer operator
of the cap u, extended constantly which by Theorem 6.1.10 is a Fredholm operator.
There is a natural notion of an orientation of a Fredholm operator and we denote by
|D,, | the space of orientations of D,,,. Fix an orientation o, € |D,,| for all perturbed
intersection points x € Zy (Lo, L;) which are connected to =, within P. Given u €
M (x,y) there exists an orientation gluing operation which lifts the linear gluing map
| Dy, | ® |Dy| 2 | Dy, 44| (cf. Lemma 9.3.3). Provided that the pair (Lo, L1) is equipped
with a relative spin structure [Dy, 4| and | Dy, | are naturally isomorphic. Hence by the
orientation gluing map and our choices, we obtain an orientation of D,, which induces
an orientation o, of M(z,y) (cf. Theorem 9.3.6). By associativity of the orientation
gluing operation (cf. Lemma 9.4.2), the constructed orientations satisfy ou#0y, = Oy#
for all (u,v) € M(w,z) X Mv(z,y). i.e. are coherent. With standard orientation on R
we also obtain an orientation of the quotient space M(x,y) for all z,y € Zy (Lo, Ll)[m*]
(cf. equation (9.1.8)). Let M(z,y)g be the union of all zero-dimensional components.
An orientation of an element [u] € M(z,y)(o) is a number in {£1}, which we denote by
sign u.
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3. Background

Floer complex Let N € N be the minimal Maslov number of the pair (Lo, L1). Denote
by A := A[X\,A71] the ring of Laurent polynomials in the variable A of degree given
by —N. Let Zy (Lo, L1)jz,] C Zu(Lo,L1) denoted the subset of elements which are
connected to z, within P. The Floer complex is given by the free A-module generated
by Zy(Lo, L1)(z,), graded by ‘x ® )\k‘ = —u(uy) — kN and equipped with the A-linear
operator

0 : CF,(Lg,L1) — CF,_1(Lo, Ly),

YELH (Lo,L1) [, [WEM(2,y)(0]

That O is a boundary operator is a highly non-trivial fact and the central result of
Floer’s papers [25, 27, 29] with details of the monotone case worked out by Oh [58].
The supplement with orientations is in the books of Fukaya et al. [35, 36] and their
paper [37].

Theorem 3.4.1 (Floer). We have 0 0 9 = 0. The associated homology group

HF,(Lo,L;) = kerd/im (3.4.1)

is independent of choices of J, H and orientations up to isomorphism.
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4. Asymptotic analysis

We study the asymptotic behavior holomorphic strips with boundary and finite energy
on Lagrangian submanifolds. More precisely we show that if the Lagrangians intersect
cleanly such strips decay exponentially and approach an eigenfunction of the asymp-
totic operator up to an error of higher exponential decay. If the Lagrangians intersect
transversely this was proven by Robbin and Salamon in [65]. The generalization to holo-
morphic strips with boundary on cleanly intersecting Lagrangians was mainly done by
Frauenfelder in [33]. The only part which we have not found in the literature is the fact
that the decay parameter has an upper bound by the spectral gap of the asymptotic op-
erator and the above mentioned convergence to the eigenfunction. These improvements
however are necessary to embed the space of holomorphic curves in a suitable Banach
manifold.

4.1. Main statement

Given a compact symplectic manifold (M,w), two Lagrangian submanifolds Ly, L1 C M.
Fix an almost complex structure J € C*°([0, 1], End(TM,w)). In this chapter we study
the asymptotic behavior of smooth maps u : [0,00) x [0,1] — M satisfying the Cauchy-
Riemann equation

Osu(s,t) + Ji(u)ou(s,t) =0, (CR)
and the boundary condition
u]t:(] C Lo, u\tzl C L1 . (BC)

For each point p € Lo N L; we consider the linear differential operator (cf. equa-
tion (3.2.11))

A, : TyP(Lo, L1) — L*([0,1], T,M), £ Ji(p)os€ .

In [33, Theorem 4.1] it is shown that A, is an operator with discrete spectrum consisting
only of eigenvalues. We define the spectral gap at p

tp :=min{l|a| | o € o(4,) \ {0}}. (4.1.1)

Up to the quantitative estimate on the decay parameter the next theorem is proven
in [33, Thm. 3.16].

Theorem 4.1.1 (exponential decay). Assume that Ly and Ly intersect cleanly. Given
a map u : [0,00) X [0,1] = M which satisfies (CR) and (BC). Then the following three
statements are equivalent.
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4. Asymptotic analysis

(i) We have that
o0 1
E(u) = / / |05u)?dtds < oo . (E)
o Jo

(ii) There exists a point p € Lo N Ly such that

lim u(s,t) = p, 1i>m |0su(s,t)] =0, (4.1.2)
§—00

5—00
where the limits exist uniformly for all t € [0, 1].

(iii) For any positive constant pn < v, with i, given in (4.1.1) and integer k € Ny, there
exists a constant ¢ = ci(p) such that

”83u||ck([57oo)><[[)71]) S Ck‘e_'us7 (413)
for all s > 0.

Let u be a finite energy J-holomorphic strip which approaches the intersection point
p = lims_,o0 u(s,t) € LoNL;. The next theorem states that in a chart which is centered at
p we have the approximation u(s, t) &~ e~ **((t) up to an error of higher exponential decay
for some eigenfunction ¢ of the asymptotic operator A, and a > 0 the corresponding
eigenvalue.

Theorem 4.1.2 (Convergence to eigenfunction). Assume Ly and Ly intersect cleanly.
Given a non-constant map u : [0,00) x [0,1] — M satisfying (CR), (BC) and (4.1.2).
Then there exists an non-zero eigenvalue o of A, with corresponding eigenfunction ¢ €
ker(A, — ) and a constant so such that the function w : [sp,00) x [0,1] — T,M,
(s,t) — w(s,t) defined by

u(s, ) = exp, (€7*C(8) + w(s, ) |

satisfies the following: For any p < v, and number k € N there exists a constant c, such
that for all s > sy we have

HwHCk([s,oo)X[O,l]) < Cl‘?e—(u—’—a)s :

Corollary 4.1.3. Assume that u is non-constant and satisfies (CR), (BC) and (E).
There exists a point p € Ly N L1, a non-zero eigenvalue o € o(Ay) and constants c, sg
such that we have

¢ tem < |Dsu(s, t)] < ce™*

forall s > sg and t € [0,1]. In particular Osu(s,t) is not zero for all s > sy and t € [0, 1].

Proof. Using a uniform bound on the derivative of the exponential map (cf. equa-
tion (A.1.5)) and Theorem 4.1.2 we have constants ¢; and ¢z such that

0su(s, 1) < c1 |e”*C(t) + Osw(s, t)| < coe™ + coe (OIS < 9epe705
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4.2. Mean-value inequality

To show the second inequality observe that since ( solves a linear first order ordinary
differential equation we have c3 := inf;c(o1][¢(#)| > 0. Hence with uniform bounds on
the derivative of the exponential map (cf. equation (A.1.6)) and Theorem 4.1.2, there
exists a constant ¢4 such that

c3e™ < [e7¢(1)] < [0s(—aem¢(E) + ws, 1))] + [Osw(s, 1))

< ey |Osu(s, t)] + cge™He™®

Since p > 0 we have for sy sufficiently large that c4e™#* < ¢3/2 for all s > sp. This shows
the second estimate by subtracting cze~*°/2 and dividing by ¢4 in the last inequality. O

We prepare the necessary material for the proofs. The proofs themselves are deferred
to the end of the chapter. The proof of the Theorem 4.1.2 will closely follow [65, Thm.
B| once provided with the adaptation of certain lemmas; in particular [65, Lmm. 3.6].
For the proof of Theorem 4.1.1 we differ from the proof given in [65] and make use
of the isoperimetric inequality for arcs between cleanly intersecting Lagrangians (see
Proposition 4.3.1). The idea stems from [33] and uses the special nature of the symplectic
action functional. It is a short-cut of the argument. We just want to state that it is not
necessary and one can prove Theorem 4.1.1 without the isoperimetric inequality, sticking
with the methods of [65].

4.2. Mean-value inequality

The mean-value inequality states that for J-holomorphic curves with sufficiently small
energy the norm of the gradient is controlled by the energy. The fact is well-known for
almost complex structures which do not explicitly depend on the domain (cf. [53, Sec.
4]). The generalization for almost complex structures which do depend on the domain
was done in [33] with the minor restriction that the argument was for Lagrangians which
are the fixed point set of anti-symplectic involutions. However if we slightly change the
assumptions the proof is easily adapted for the general case. In the following we identify
the half-strip [0,00) x [0,1] with ¥4 :={z=s+it € C|s>0,t € [0,1]}.

Proposition 4.2.1 (Mean value inequality). There exists constants h and ¢ such that for
any r < 1/2, 2y 1= (so,t0) € Xy and map u : ¥4 — M which satisfies (CR) and (BC)
we have

/ |0su(s, t)?dsdt < h = |du(sg, to)|* < 02/ 05u(s, t)|*dsdt
By (20) r By(z0)

in which By(z0) :== {2z € ¥4 | |z — 20| < r} denotes the open ball of radius r centered at
20-

Proof. See [33, Lemma 3.13]. The present situation is slightly different. We bound the
radius r by 1/2 since we need to assure that B, (sg,ty) touches at most one of the faces
of [0,00) x [0, 1]. This is necessary because unlike in [33] we do not assume symmetries
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4. Asymptotic analysis

for the almost complex structure which was necessary to extend the solutions. The rest
goes through directly. We give the whole argument for completeness. Except for some
minor changes the computation is the same as in the proof of [53, Lemma 4.3.1].

Since M is compact any two metrics are equivalent. We assume without loss of
generality that the metric is given as in [53, Lemma 4.3.3] with respect to Jy and L if
so < 1/2 (resp. Jy and Ly if s9 > 1/2). Let V denote the Levi-Civita connection of that
metric. Abbreviate £ = 0;u and 1 = Jyu and define the function

w: By(so,to) >R, (s,8) > %}5(3,1&)‘2 |

Let A = 9% + 9? denote the Laplace operator. We want to show that w satisfies the
inequality
Aw > —cp (w4 w?), (4.2.1)

for some positive constant ¢; > 0. We compute
Aw = |Vo£* + [Vig]* + (Vs Vi€ + ViViE,€)

We abbreviate by d;J the derivative of the path of endomorphisms ¢+ J; and V,J the
covariant derivative of J; for a fixed ¢ with respect to the vector field n along the curve
u. We compute

vsvsé + VtVt§ = vs(vsé + vtn) + vifvsn - vsvtn
= Vs (Vs(=Jn) + Vi(JE)) — R(&,n)n
= Vs ()€ + (VyJ)§ = (Ved)n) — R(§,m)n

in which we denote by R(&,n)n := (VsV, — VVs)n and R the curvature tensor. The
last two equalities combined give

Aw = |V&? +[Ve€]* — (R(&,mn, &) + (Vs(0T)€ + Vs(Vy )€ = Vi(Ved ), €).

Let k denote the last term on the right-hand side. There exists a constant co > 1
depending only on the norm of the derivatives of J up to order two such that

k= = (I€1° + €1 IVa€] + [ (I + 2/Veg] + 2/Vg])
1 1 1
> = 6" = T 1€l = BIE° = 7 V&l = ealg* =8B [¢[" — S (IVeel + V£l

1
> —5(IV&P + |Vi€l?) — 1063(¢] + [¢[1) .
in which for the second estimate we have used the inequality —ab > —a? — %b2 for all

a,b € R. Since M is assumed to be compact there exists c¢g > 0 depending only on the
curvature of the metric and the norm of J such that

<R(€777)777€> > —cC3 ’6‘4 :
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4.3. Isoperimetric inequality

Combining the last three estimates we obtain the constant ¢; > 0 such that inequal-
ity (4.2.1) holds. Then after [33, Lemma D.1] this proves the assertion in the case when
B, (s0,to) does not intersect the boundary of [0,00) x [0, 1]. If it does we extend w via
w(s, —t) = w(s,t) for t > 0 if sp < 1/2 (resp. via w(s,1 +t) = w(s,1 —t) for t > 1 if
s9 > 1/2) and conclude by the same argument as on [53, Page 84]. O

A corollary of the mean-value inequality and bounded gradient compactness (cf.
Lemma 5.2.1) is that Osu(s,t) converges uniformly to zero with all derivatives as s
tends to co.

Corollary 4.2.2. Assume that u satisfies (CR), (BC) and (E). Then for any k € N we
have

Jim {95l o (5 00) (0,17 = O -

Proof. Suppose by contradiction that we find constants € > 0, £k € N and a sequence
s, — oo such that for all v € N

10stl| o 15, —1,5, +1]x[0,1]) > € - (4.2.2)
We define u, : [—2,2] x [0,1] — M via u,(s,t) := u(s + s,,t). By the mean-value
inequality we have that
SUPyeN,(s,t)e[-1,1]x[0,1] |duy (s, )] < oo .

By bounded gradient compactness (cf. Lemma 5.2.1) we conclude that after possibly
passing to a subsequence there exists a map v : [—1,1] x [0,1] — M such that (u,)
converges to v uniformly with all derivatives. In particular F(u,;[—1,1] x [0,1]) —
E(v;[-1,1] x [0,1]) = 0, hence v is constant. We conclude that

||a$uHCk([sy—l,su+1]><[0,1}) = "85“1/“0’9([—1,1]x[0,1]) -0,

which contradicts (4.2.2). O

Remark 4.2.3. In the previous corollary we have not used that Ly and L; intersect
cleanly.
4.3. Isoperimetric inequality

For paths v : [0,1] — M with endpoints (k) € Ly, for k = 0, 1 and with image sufficiently
close to the intersection Ly N Ly we define the local action

Aloc(7) = /'Y*A,

in which A is any primitive of the symplectic form restricted to a neighborhood of LyN Ly
such that Az, = 0 (see Proposition 3.2.9 to show that such A exist). That the inequality
which we are about to show is true for some constant u is well-known and previously
proven in [33, Lmm. 3.17] or [62, Lmm. 3.4.5].
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4. Asymptotic analysis

Proposition 4.3.1 (Isoperimetric inequality). Assume that Lo and Ly are in clean
intersection. For every point p € Lo N Ly and constant p < i, with v, defined in (4.1.1)
there exists a constant p > 0 with the following significance: For any smooth curve
v :[0,1] = M satisfying v(0) € Lo, v(1) € Ly and dist (y(t),p) < p for all t € [0,1] we
have

1
201 [ Ao (7)] < /0 03t .

If moreover p < inf{v, | p € LoN L1} then there exists £y > 0 such that for all~ : [0,1] —
M with ~v(0) € Lo, v(1) € Ly and {(y) := fol |Opy| dt < £y the same conclusion holds.
Proof. By Lemma 3.2.10 we assume that v : [0,1] — R?" with R?*" equipped with
standard symplectic form and the Lagrangians Lg, Ly are linear subspaces Ag, A1 re-
spectively. Let @ be the trivialization constructed in Lemma 3.2.10, which we think of
as an matrix valued function and abbreviate ®.(t) := ®;(y(t)) and J,(t) := Jy(y(t)) for
all ¢ € [0,1]. The matrix ®, is symplectic and satisfies ®,Jsq = J,P-. Consider the
Hilbert space H = L?([0,1],R?") equipped with standard inner product (-,-) and norm
II]l. We conclude

1
/ w(0py, JyOry)dt = (Jssa0ry, J40ry) = (JstaOr, (I)v@;lj'yat’ﬁ =
0
_ 2
=@  omy|” . (4.3.2)

We extend v : [0,1] — R?" to a map u : [0,1]2 — R?"? via u(s,t) = sy(t) and compute

1 /L 1
Asoely) = / - / o=t / (@, )t = = (Jadirs )
[0,1] [0,1]2 2.Jo 2

in which for the second equality we have used Stokes and the fact that by construction
uli—r, C Ay for k= 0,1. Abbreviate ®oo(t) := @4(0) and Joo(t) := J¢(0) for all ¢ € [0, 1].
Define the unbounded operator A, via (4.4.4). The function ¢ : [0,1] — R?", ¢+ £(t) =
oo (t)~1y(t) lies in the domain of A,,. Continue the computation

2Aloc(’7) = <Jstd6t7a7> = <Jstdat'77 <I>oo£> = <q>gol=]ooat'735> = <AOO£>£> .

By construction the operator A, is conjugated to A,. In particular these two operators
have the same spectral gap. By Corollary B.1.2 we have

1 1 _ 2
2 |-Aloc(7)‘ - ’<AOO£7€>‘ S 7 HA005H2 = 7 H@ooljooat’yu : (432)
P P

The matrix Gy(q) := ®;(q)~'J;(q) is invertible for all (¢, q) € [0,1]xU, & € R?". Moreover
we have

1G(0)¢]l < IGe(a)éll + IGe(0) = Gela)|l [|Ge(a) ] IGe(@)€]l -
Thus there exists a constant ¢ > 0 such that for all p < 1 and curves v with distance to
p bounded by p we have

[0 Tty || = IGO0 < (1 + cp) |G = (1 + cp) || @7 107])" . (4.3.3)
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4.3. Isoperimetric inequality

Together with (4.3.1) and (4.3.2) we conclude

1
2up | Aloc(7)] < (1 + c,o)/ w(0yy, J,0py)dt.
0

Then the first claim follows if we choose p < (v, — p)/(cp).

We show the second statement. Repeat the argument above with each point p € LoNLy
and let ¢, denote the corresponding constant from (4.3.3). Since p — ¢, is upper semi-
continuous and ¢, — y bounded away from zero the constant p := inf{% |p€ LoNLy}
is positive. Abbreviate by P the space of paths v : [0,1] — M with v(0) € Ly and
(1) € L1. We denote by B,(p) C M the open ball about p with radius p. We claim
that there exists £y such that for any v € P we have

1
() = /O GOldt <ty = A0)eVi= | Byal).  (434)
p€LoNLy

If not, there exists sequences (7,) C P such that for all v € N we have ¢(y,) < 1/v
and 7,(0) lies in the complement of V. By compactness of Ly, there exists a sub-
sequence, still denoted (7, ), such that 7, (0) converges to a point p € Ly. Moreover since
£(v,) — 0 and L is closed we have that 7, (1) € L; converges to p and thus p € LoN Ly,
contradicting the fact that 7, (0) ¢ V for all v € N since V' is an open neighborhood of
p. To show the lemma we assume without loss of generality that ¢y < p/2. Indeed given
any v € P with £(y) < fo, by (4.3.4) there exists p € Lo N Ly such that v(0) € B,/5(p)
and hence v C B,(p). O

The next lemma is a direct consequence of the isoperimetric inequality. It is the gen-
eralization of a version for J-holomorphic cylinders as given in [53, Lemma 4.7.3]. The
assertion is that the energy of a J-holomorphic half-strip with boundary in (Lg, L1) de-
cays exponentially and the energy of a J-holomorphic strip of finite length with boundary
in (Lo, L1) can not spread out uniformly but must be concentrated at the ends, provided
that the energy is sufficiently small.

Lemma 4.3.2 (Energy decay). Assume that Lo and Ly are in clean intersection. For
any constant p < inf{c, | p € Lo N L1} there exists constants eg and ¢ with the following
significance:

(i) For any map u : [0,00) x [0,1] — M satisfying (CR), (BC) and E(u) < €q, then
for all s > 1 we have

E(u; [s5,00) x [0,1]) < E(u)e 2. (4.3.5)

Moreover there ezists a point p € Lo N Ly such that for all s > 1 and t € [0, 1] we
have

dist (u(s,t),p) + |du(s,t)| < ce™#°. (4.3.6)
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4. Asymptotic analysis

(ii) For all so < s1 and any map u : [sg,s1] X [0,1] = M satisfying (CR), (BC) and
E(u) < g9 we have

E(u;[a+ s,b—s] x [0,1]) < E(u)e 25, (4.3.7)

for all1 < s < (s1—50)/2. Moreover for all 0,0’ € [sg+ s,81 — 8| and t,t' € [0,1]
we have

|du(o, t)| + dist (u(o, t), u(o’,t')) < ce ™. (4.3.8)

If instead p € Lo N Ly is a point and 1 < iy, then there exists constants €, ¢ and p
satisfying the statements above after replacing the manifold M with the open ball B,(p).

Proof. We show the first statement. Assume that g is smaller than the constant A from
the mean-value inequality (cf. Prop. 4.2.1). Let u : [0,00) %[0, 1] — M satisfy (CR), (BC)
and E(u) < gg. That assured the mean-value inequality provides a constant ¢; indepen-
dent of u, such that for any s > 1/2 we have

[du(s, t)]* < e B(us; [s —1/2,5 +1/2] x [0,1]) < e160 . (4.3.9)

Abbreviate v;(t) = u(s,t). Let ¢y denote the constant from the isoperimetric inequality
(cf. Prop. 4.3.1). By possibly decreasing ey we assume that for all s > 1/2 we have

1
(vs) =/ |0pys(t)| dt < \/e1gg < o . (4.3.10)
0

By the choice of ¢y the point u(s,t) lies inside the Pozniak neighborhood where the
symplectic form is exact for all s > 1 and ¢ € [0, 1]. Hence w = d\ for some one form A
and by the isoperimetric inequality we get

1 1
1(s) i= B(us[s,00) x [0,1]) = / YA~ Jim / A

S/I% dt+hm/l% )| dt

fis) 1
2u + g, dim Bluslb—1,b-+1]x [0,1)

s f(s)
2u

Hence 2uf(s) + 0sf(s) < 0 which gives (4.3.5).

We show (4.3.6). Since Ly is compact there exists a sequence s, — 0o and a point
p € Lo such that p, := u(s,,0) — p. Given any s we find vy such that s, > s for all
v > 1y and by the exponential decay of the energy and the mean-value inequality we
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4.3. Isoperimetric inequality

have
dist (u(s,t),p) < dist (u(s,t), u(sy,0)) + dist (py, p)

Sy t
< / |05u(o,t)| do + / |0ru(sy, T)|dr + dist (py, p)
s 0

[o¢]
< ,/0150/ e Hdo + \/erepe” H + dist (py, p)
S
< Verepe M+ dist (py, p) — V/crepe HE.

To see that p € Lo N Ly, we consider p!, :== u(s,, 1) € L; for all v € N. By the previous
estimate we have p/, — p. Since L is closed we conclude p € LgN L. The last estimate
together with (4.3.9) and (4.3.5) shows (4.3.6).

We show (4.3.7). Let u : [sq, s1] x [0,1] — M be a map that satisfies (CR), (BC) and
E(u) < 9. The equations (4.3.9) and (4.3.10) still hold. In particular u(s,?) lies inside
the Pozniak neighborhood for all (s,t) € [so +1/2,s1 — 1/2] x [0, 1] and we have

1 1
f(s) :== E(u;[so + s,s1 — s] x [0,1]) = / 'y:OJrS)\ —/ Ve s
0 0

< 1/11' *dt + 1/1|' dt = 18f()
=9 ) Yso+s 2% ) Vs1—s = 2% sJ(S),

for all 1/2 < s < (s1 —sp)/2. Hence 0sf(s) + 2uf(s) < 0 which implies (4.3.7).

To show (4.3.8) we assume without loss of generality that sp = —si, after possibly
replacing v with the shifted map @ given by @(s,t) = u(s — (s1 + s9)/2,t). By the mean
value inequality and the energy decay we have for 0 <o <s; —1

|du(o,t)|* < c1E(us[o —1/2,0 +1/2] x [0,1])
<aE(u[-0—-1/2,04+1/2] x[0,1])

< 0162‘“806_2“(51_0) ,

where in the last estimate we used (4.3.7) with s = s; — o — 1/2. Note that because
o < s1 — 1 we have s > 1/2 as required. Fix some s € [1,s1], 09 € [0,s1 — s| and
to € [0,1]. We compute with co = \/c1ege!

to

o0
dist (u(c0, to), u(0, 0)) < / 1050, 0)| dor + / Oyu(o0, £)| dt
0 0

a0 to
< 02/ e M%) 4o + 02/ e~Hls1=00) 4y
0 0
< eo(pt 4 1)eME1790) < oo (uTt  1)e M
We conclude the same estimate for every o1 € [—sg + s,0] and ¢; € [0, 1]. Hence
dist (u(og, to), u(o1,t1)) < 2co(1/pu+ 1)e 5.

This shows (4.3.8). O
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4. Asymptotic analysis

4.4. Linear theory

This section is mainly an exposition of the results from [65]. We have included it to
introduce the necessary notations. Following the ideas of [65] we reformulate the lin-
earization of (CR) and (BC) as an operator of the form 0s+ A(s)+ B(s) where s — A(s)
is a path of unbounded operators converging to a self-adjoined operator as s tends to
oo and s — B(s) is a path of anti-symmetric bounded operators converging to zero as s
tends to oo.

Fix a point p € Ly N L; and neighborhood U C M from Lemma 3.2.10. Given a map
u : [0,00) x [0,1] — M which satisfies (CR) and (BC). Assume that the image of u is
completely contained in U. We consider the linearized Cauchy-Riemann operator

Dy :T(w*TM) = T(w*TM), € Vil + J(u)Vi€ + Ve (u)Osu. (4.4.1)

Let ® be the trivialization from Lemma 3.2.11 and abbreviate ®,,(s,t) := ®¢(u(s,t)) for
all (s,t) € [0,00)x]0,1]. We define the matrix valued function S : [0, 00) x [0, 1] — R2nx2"
by

@, (asg + Jsta O + Sf) = D, ®.¢, (4'4'2)

for all smooth ¢ : [0,00) x [0,1] — R?". Abbreviate ®(t) := ®;(0) and Joo(t) := J;(0)
for all ¢ € [0,1]. Similarly we define Se : [0, 1] — R*"*2" via

D (Jstdatg + Soog) = Jooat(I)oogv (443)

for all smooth ¢ : [0,1] — R?". The next lemma relates the asymptotic behavior of S
to the asymptotic behavior of u. Since the proof does not use the fact that Ly and L4
intersect transversely, we quote directly from [65].

Lemma 4.4.1. The matriz Soo(t) symmetric for allt € [0,1]. There exists constants s
and ¢ > 0 such that

‘S(s,t) — Soo(t)‘ < c(‘@su(s,t)‘ + dist (u(s,t),p)) ,

for all s > so and t € [0,1]. Moreover if u satisfies an uniform C*-bound for some k > 0,
then there exist a constant cp > 0 such that

15 = Sooll ot ([s,00) x[0,1])) < Ck( 105/l o (15,00) x[0,17) T s<asgg<1diSt (u(o, 75%?)) :

Proof. See [65, Lemma 2.2]. O

Consider the Hilbert space H = L?(]0, 1], R?") equipped with standard inner product
(+,+) and norm ||-||. Consider the dense subspace V' C H given by

V= {€e H'([0,1. B> | £0),6(1) € B" x {0}} .
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4.4. Linear theory

Given s € [0,00) we define the linear operators A(s) : V — H, £ — A(s)¢ where

1
(A(5)€) (1) = Jsade (8) + 5 (S(s,1) + S(s,)7) (1),
and the operator Ay : V — H, £ = A& where

(Asc€) (1) = Jsta0e&(t) + Soo(t)E(1) - (4.4.4)
Moreover define the linear operator B(s) : H — H, n — B(s)n given by

1

(B(s)n) (1) = 5 (S(s,) = S(s,)") n(#) .

We quote the next lemma directly from [65]. It states that the paths s — A(s) and
s +— B(s) are continuously differentiable. We denote the derivatives by A(s) and B(s)
respectively.

Lemma 4.4.2. The operators A(s) — Aso, A(s), B(s) and B(s) have extensions to
bounded linear operators on H. Moreover there exists a constant ¢ > 0 such that for
ever s > 0,

IA(s) = Aso[l + | B(s)]| < esupyepo 1y (|Osuls, 8)] + dist (u(s, t),p)) ,

HA(S)H + HB(S)H < esupyepo (|V585u(s,t)‘ + |85u(s,t)} + dist (u(s,t),p)) .
In which || - || denotes the operator norm on bounded linear operators.
Proof. [65, Lemma 2.3] O
Define the function &, : [0,00) x [0,1] — R??, (s,t) = &u(s, 1)
Eu(s,t) = By(s, 1) LOsu(s, t). (4.4.5)

Since u solves the Cauchy-Riemann equation (CR) and J is s-independent, the vector
field Osu lies in the kernel of D, and with the above definition we have

0s&u(8,t) + Jsta0r&u(s, t) + S(s,t)&u(s,t) = 0. (4.4.6)

By construction we have &,(0,-),&,(1,-) C R" x 0 for k = 0, 1, in particular &,(s,-) € V
for all s > 0. Abusing notation we denote the path [0,00) — V, s+ &,(s,-) also by &,.
According to (4.4.6) we have for all s >0

0s8u(s) + A(s)&u(s) + B(s)&uls) = 0. (4.4.7)

In contrast to the setting of [65], the asymptotic operator A is no longer injective in
our situation. To be able to conclude we need that the component of &, is the kernel is
controlled by &, as provided in the next lemma. Let ker Ao C H denote the kernel of
A considered as a closed subspace of H and P : H — ker A, the orthogonal projection
to the kernel of A,.
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4. Asymptotic analysis

Lemma 4.4.3. There exists a uniform constant ¢ such that for all s > 0 we have
[1P&u(s)l| < ¢ supyepo 1y dist (u(s, t), ) |§u(s)]] -

Proof. Via Lemma 3.2.10 we assume without loss of generality that U C R?" equipped
with the standard symplectic structure and Lg, L1 are fixed linear Lagrangian subspaces.
Moreover we think of the almost complex structure J and ® as matrix valued functions.
Fix s > 0 and abbreviate ys(t) := u(s,t) for all t € [0,1]. The path t — & (t)ys(t) is
an element of the domain of A. Let e € ker Ay be an element with ||e|| = 1. Since Ay
is symmetric we compute using the definition of Ao, (cf. equations (4.4.4) and (4.4.3))

(BT 0pys, €) = (Pt T 0P @l ys, €) = (Ao ® s, €) = 0.

Abbreviate Goo (t) := @0 (t) Lo (t) and Gy (t) := @, (t) "1y (u(s, t)) for all t € [0,1]. By
definition of &, (cf. equation (4.4.5)) and since u solves (CR) we have ¢, = ®,10,u =
—®, 1 J(u)0u = —G,0yys. Thus

(€u(s),€) = —(Guivs, e) = ((Goo — Gu)Orvs, €) <
< Goo = Gulleo |G | co 1€ -

The matrix Gy(q) := ®:(q) " Ji(q) is invertible for all (¢,q) € [0,1] x U and satisfies an
uniform C'-bound. In particular there exists a uniform constant ¢ such that for all s > 0

we have
(€u(s),e) < ¢ sup dist (u(s, t),p) [Eu(s)] -
t€(0,1]
The claim follows after taking the supremum over all e € ker Ay, with ||e]| = 1 of the
last estimate. O

4.5. Proofs

Proof of Theorem 4.1.1. Given u which satisfies (CR) and (BC). Assume additionally
that u satisfies (4.1.3) then (E) clearly follows. Also if u satisfies (E), then (4.1.2)
follows by the estimate (4.3.6). In order to prove the theorem it suffices to show that if
u satisfies (4.1.2) then (4.1.3) follows. Provided with the exponential decay of the energy
this follows from elliptic bootstrapping as explained on [65, Page 594]. We quickly repeat
the argument.

Given u such that (CR), (BC) and (4.1.2) holds. Let p = p(u,p) denote the constant
from the isoperimetric inequality (cf. Prop. 4.3.1). By (4.1.2) we assume without loss
of generality that u(s,t) € B,(p) for all s > 0 and ¢ € [0,1]. Moreover we assume that
the image of u lies in a suitable symplectic chart as considered in Section 4.4. The map
& = ¢, defined in (4.4.5) solves (4.4.6), i.e. for all (s,t) € [0,00) X [0,1] we have

0s&(8,t) + Jsta0:&(s,t) + S(s,t)E(s,t) = 0. (4.5.1)
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4.5. Proofs

Fix k£ € Ng and s > k. For all v € Ny we define the shifted maps
&(oyt) :=&(0+s+v,t), Sy(o,t) :==S(c+s+uv,t).

For any a < b with possibly b = oo we abbreviate X! = [a,b] x [0,1] and ¥° =
la,00) x [0,1] if b = oco. For any £ € Ng let [|-[[,55¢ denote the standard Sobolev
norm of H%2(X2 R?"). Using elliptic bootstrapping (cf. [65, Lemma C.1]) and since ¢
solves (4.5.1) we have a constant ¢; = ¢1(¢) which depends on ¢ but is independent of ¢,
S and v such that

1€

o0 oo

2 2 2 2

£,2;50 = Z Hfu”e,z;z(l) <a Z (”Suquz—Lz;z%l + HquE—LQ;E%l) :
v=0 v=0

According to Lemmas 4.4.1 and Corollary 4.2.2 the smooth maps S, satisfy an uniform
C*-bound, hence there exists a uniform constant ca = co(¢) such that

[e.9]
2 2 2
||f”z,2;2go < Z ”fv”e—1,2;231 = 3c2 Hf”efl,z;zgzl :
v=0

Repeating the previous k times we conclude that for each k& € Ny we have constant
cs = c3(k) depending on k such that

2 2
€115 2,00 < €3 1600 25200 = 3B (u; 5% -

The C*-norm of ® is bounded and after Corollary 4.2.2 so is the C*-norm of the map
(s,t) = Py(s,t) = Dy(u(s,t)), hence there exists a constant ¢4 such that

”asunck(zgo) < ||f||ck(zg°) :

By Sobolev embedding, the last two estimates and Lemma 4.3.2 we have constants cs
and cg such that

HasuHck(zgo) <¢ H‘f||k+2,2;zgo < €365 H§||L2(z§gk72) < cge Ms—k=2)

This shows (4.1.3) and hence the theorem. O

Proof of Theorem 4.1.2. We follow closely the line of arguments from the proof of [65,
theorem B]. By Theorem 4.1.1 we assume without loss of generality that the image
of u lies in a suitable symplectic chart. With notations from Section 4.4 we see that
€ :=2¢&,:[0,00) = V satisfies (4.4.7), i.e. for all s > 0 we have

95€(s) + A(s)&(s) + B(s)&(s) = 0.

In [33, theorem 4.1] it is proven that A is Fredholm and self-adjoined considered as an
unbounded operator in H. Using Lemmas 4.4.2 and 4.4.3 together with the exponential
decay of u given in equation (4.1.3) all the requirements for Lemma B.2.5 are fulfilled.
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4. Asymptotic analysis

Hence there exists an eigenvalue a of A, an eigenvector ¢ € ker(As —a) and a constant
¢ such that for all s > 0 we have

/1 |eo‘S§(5,t) - C(t)’th < ce s
0

Abbreviate X4 := [s,00) x [0, 1]. We prove by induction that for each k € Ny there exists
a constant ¢ such that for all s >0

1€°€ = Cll gra(s,) < cre™. (4.5.2)

For k = 0 this follows by the last estimate. Now assume that (4.5.2) has been established
for some k > 0. Abbreviate 6(s,t) := e**¢(s,t) — ((t) for all (s,t) € [0,00) % [0,1]. The
map 6 : [0,00) x [0,1] — R?" satisfies

0s0(s,t) + Jstq0i0(s,t) = n(s, 1), 0(s,0), 6(s,1) C R" x {0},
for all (s,t) € [0,00) x [0, 1], in which
N(s,t) = (@ — Soo(t)) O(s,t) + (Sec(t) — S(s,t)) (0(s,t) — ((t)) -

By the C*-bounds of S (cf. Lemma 4.4.1) and the exponential decay for dsu (cf. equa-
tion (4.1.3)) we have a constant ¢ = ¢(k) such that for all s >0

IS = Soollgr s,y < ce™°.

By this estimate and the induction hypotheses there exists another constant ¢ = c(k)
such that for all s >0
Hase + Jstd8t9||Hk,2(Es) < ce M.

Then after elliptic bootstrapping (cf. [65, Lemma C.1]) we conclude that (4.5.2) holds
with k replaced with k + 1. This shows (4.5.2) for all k£ € N. By the Sobolev embedding
we also conclude for all £ € N we have a possibly larger constant c; such that

e — CHCk(gS) < cpe M. (4.5.3)

By construction the Hessian A, and the operator A, are conjugated via ®.. In
particular the path [0,1] — T, M, t — ®o(t)((t) is an eigenvector of A, with eigenvalue
a. Define the map w : [sg, 00) x [0,1] — T, M by

u(s,t) = expp(—aflefasq)m(t)gh(t) + w(s,t)).
We derive the equation by ds and obtain
Osu = E(u)e” 0o + E(u)dsw,
in which F(u) denotes the derivative of the exponential map at

U= —a e 0 (+w.

44



4.5. Proofs

Rewriting the last equation gives

dsw = E(0) 10su — e D¢
= B(@) '@, (6 — e ) + e *(B(a) 1P, — Poo)C .

By the exponential decay of u, since the C*-norms of E and ® are uniformly bounded
and E(0) is the identity we conclude that there exists a possibly larger constant ¢j such
that

HE(ﬂ)_lq)u - q)ooHck(Es) < H(E(a)_l - ﬂ)q)u”ck(gs) + ||(I>u - (I>OO||C’€(ES) )

is bounded by cye #5. Hence with together with estimate (4.5.3) we obtain a possibly
larger constant ¢ such that for all s > 0

||asw||ck(zs) S Cke_(’”'a)s .

By construction we see that lims_ o w(s,t) = 0 for each fixed ¢ € [0, 1] and thus

w(s,t) = — /:O (o, t)do

Using the previous estimate on Jds;w we conclude that w also satisfies an exponential
decay. This proves the theorem. O
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5. Compactness

We study sequences of (perturbed) holomorphic strips with boundary on two Lagr-
angians. We show that if the energy of the sequence is uniformly bounded, then a
subsequence converges in a certain sense to a broken strip. The convergence is a very
crude version of Gromov compactness, which forgets the so called “bubbles” and just
remembers their energies. If the Lagrangians are monotone, this will prove to be suffi-
cient for our purposes. Convergence of holomorphic strips has originally been studied
by Floer in [25] in which he a priory excluded the bubbles and later by Oh in [58] for
the monotone case. Both of the results are formulated under the assumption that the
Lagrangians intersect transversely. Here we give a refinement which allows cleanly in-
tersecting Lagrangians. In the special case where both Lagrangians are the same and
the almost complex structure does not depend on the domain a sequence of holomorphic
strips is nothing but a sequence of holomorphic disks and Gromov compactness of these
is fully described in [34]. Most proofs are straight forward generalizations of this special
case. An alternative approach is developed Ivashkovich-Shevchishin in [46].

5.1. Cauchy-Riemann-Floer equation

Let (M,w) be a symplectic manifold and Ly, L1 C M be two Lagrangian submanifolds
not necessarily in clean intersection. We abbreviate the strip ¥ := R x [0, 1]. Further
denote by X € C*(X, Vect(X)) and J € C*(3,End(T'M,w)) a vector field and an
almost complex structure respectively. A non-trivial finite-energy (J, X)-holomorphic
strip w with boundary in (Lo, L1) is a map u : R x [0,1] — M which satisfies

Osu + J(u) (Opu — X (u)) =0,

ul—g C Lo, uf_y C L1, (5.1.1)

0< /\8su3d5dt <00

By convenience we often just write that u is a (J, X)-holomorphic strip. For an open
subset 2 C R x [0, 1], we define the energy of u on Q by

E(u) ::/|85u|3dsdt E(u; Q) ::/ |95l dsdt .
)

For technical reasons we need to assume that J is asymptotically constant and X is
asymptotically constant to a Hamiltonian vector field of a clean Hamiltonian (cf. Defi-
nition 3.2.12).
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5. Compactness

Definition 5.1.1. Given J € C*°(3,End(TM,w)) and X € C*(X, Vect(X)),

e we call J admissible if there exists so and paths J_ and J such that J(—s,:) = J_
and J(s,-) = J for all s > s¢ and

e we call X admissible if there exists syp and clean Hamiltonians H_ and H such
that X(—s,-) = Xp_ and X(s,-) = Xp, for all s > s.

We call J (resp. X ) R-invariant if the same holds for sy = 0. Necessarily for R-invariant
structures we have J_ = Jy (resp. H_ = Hy).

Lemma 5.1.2. Given admissible J and X . For any (J, X)-holomorphic strip u the limits
u(—00) := limg_y o u(s, ) and u(oo) := lims_oo u(s, -) exists and with the notation above
we have for all s large enough we have u(—oo) € Zy_ (Lo, L1) and u(co) € Iy, (Lo, L1)

Proof. Use Theorem 4.1.1 and Lemma 3.2.4 O

Definition 5.1.3. Given a sequence of admissible almost complex structures (J,),en
and a sequence of admissible vector fields (X, ),en converging to J and X respectively.
A sequence (uy)yen of (J,, X, )-holomorphic strips Floer-Gromov converges modulo bub-
bling to a tuple v = (v1,...,vy) if there exists sequences (ay),...,(a}) C R and empty
or finite sets Z1,...,Z; C X such that for all j = 1,...,k we have

(i) the sequence u, o Tav converges to vj in Cx(X\ Zj)

(ii) for all z € Z; the limit m; . := lim._olim, o E(u, o Ta;(,BE(Z)) exists and is
strictly positive,

(iii) if v; is constant then Z; is not empty,

(iv) limy—se0 Uy (—00) = v1(—00), limy 00 uy(00) = vi(00) and if j # k then v;(c0) =
Vj41(—00).

Moreover we have

k k
V]i_}Holo E(uy) = ZE(vj) +m, Z Z mj .
j=1 j=1z2€%;
If the sets Z1,. .., Zy are all empty we say that (u,) Floer-Gromov converges.

Theorem 5.1.4. Given a sequence of admissible almost complex structures (J,),en
and a sequence of admissible vector fields (X, ) en converging to J and X respectively.
Any sequence (uy)yen of (Ju, Xy)-holomorphic with uniformly bounded energies has a
subsequence which Floer-Gromov converges modulo bubbling.

Proof. Iteratively apply Lemma 5.2.2 and Lemma 5.3.2 given below. O
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5.2. Local convergence

5.2. Local convergence

In this section we provide local convergence results. We use a well-known trick and
transform the statement of perturbed holomorphic curves into a statement for holomor-
phic curves at the cost of turning the target space into a non-compact space. Then the
results follows from standard theory on holomorphic curves. Given an open subspace
) C X, we say that u : Q@ — M is a (J, X)-holomorphic map if u satisfies (5.1.1) wherever
it is defined.

Lemma 5.2.1 (bounded gradient compactness). Given
e a sequence §21,, -+ C X of open subsets which exhaust  C X,

e a sequence Ji,Jo, ... such that J, : Q, — End(TM,w) are almost complex struc-
tures converging to J : Q@ — End(T'M,w) in C3%,,

e a sequence X1, Xa,... such that X, : Q, — Vect(X) are vector fields converging
to X : Q — Vect(M) in C2°

loc?

then for any sequence uy,ug, ... such that u, : Q, — M is a (J,, X, )-holomorphic map
and assume that

sup [|0suy || o < 00,
veN

there exists subsequence which converges to a map u : Q — M in Cy.. Moreover the
map u s (J, X)-holomorphic.

Proof. Define the manifold M := Q x M with submanifolds
E():(RX{O}QQ)XL(), Elz(RX{l}ﬂQ)XLl.
Define almost complex structures J,, J € End(T]Téf ) via

N 0 -1 0
Ju(s,t,p) = 1 0 0 )
Xu(s,t,p) —Ju(s,t,p) Xy (s, t,p) Ju(s,t,p)

and similarly J. One checks directly that the manifolds EO and L, are totally real with
respect to J and that the curves u,(s,t) = (s,t,u,(s,t)) solve

95 Uy = Osthy + J, (1) 4ty = 0,
with boundary conditions
(-, 0) C Lo, (1) C Ly (5.2.1)

We equip M with the product symplectic structure, then J, is compatible and for the
associated metric we have

10510, |2 = |0, |* = 1 + w(Dsuy, Opu,) = 1+ |0y |* 4+ w(Osuy, X)) -
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5. Compactness

We see that the gradient of u, is uniformly bounded. By the Theorem of Arzela-Ascoli
there exists w : Q — M such that u, converges to u in CI%C. It is easy to see that u
satisfies the boundary condition (5.2.1) and u(s,t) = (s,t,u(s,t)) for all (s,t) € Q with

some map u : 0 — M. To improve the convergence and show that u is J-holomorphic
(thus u is (J, X')-holomorphic) we proceed as in proof of [53, Theorem B.4.2]. O

Lemma 5.2.2 (Convergence modulo bubbling). Assume that Q, J, X,Q,, J,, X, satisfy
the hypotheses of Lemma 5.2.1. Let uy,ug,... be a sequence of maps such that u, :
Q, = M is a (J,, X,)-holomorphic map and assume that

sup E(u,;Q,) < oo,
velN

then there exists a subsequence, still denoted by (u,), a (J, X )-holomorphic map u :  —
M and an empty or finite set of points Z = {z1,...,z¢} C Q such that the following
holds

(i) u, converges to u in Cpo(2\ Z)
(ii) for everyi=1,...,4 and every € > 0 such that Bs(z;) N Z = {z}, the limit
me(z;) == lIm E(uy,; Be(z) NQ)
V—00
exists. Moreover
m; = m(z;) = il—% me(zi),
is the energy of a non-constant holomorphic sphere of disk.

(i1i) For every compact subset K C Q with Z C int(K),

vV—00

L
lim E(u,; K) = E(u; K) + Y _mj.
j=1
Proof. See [53, Theorem 4.6.1] provided with Lemma 5.2.1. O

5.3. Convergence on the ends

In this section we consider convergence of (J, X)-holomorphic curves restricted to the
half-strip X7 := [0, 00) x [0, 1]. We assume without loss of generality that X (s,-) = Xp
for all s > 0 and some clean Hamiltonian function H.

Lemma 5.3.1 (C-convergence on ends). Fiz a clean Hamiltonian H and an almost
complex structure J € C*°([0,1], End(TM,w). Given a sequence uy, us,us, - : 3T — M
of (J, H)-holomorphic half-strips and assume that (u,) converges to a half-strip w in
Cee (X, M). If we have

lim E(u,) = E(u) < oo,

vV—00

then (u,) converges to u in the topology of C°(XT, M). Moreover u,(c0) converges to
u(o0) as v tends to oo.
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5.3. Convergence on the ends

Proof. See [68, proposition 4.3.10] and [68, proposition 4.3.11] for the proof for case of
(J, H)-holomorphic cylinders asymptotic to non-degenerate Hamiltonian orbits. The
proof here is a little different and uses the isoperimetric inequality. According to
Lemma 3.2.4 we assume without loss of generality that H = 0 and Lg, Lp intersect
cleanly. Let Up,, denote the neighborhood of Ly N L1 given by Proposition 3.2.9. We
decompose

LonLi=CiUCoU---UCy,,
into connected components and by possibly making Up,, smaller we obtain a respective
decomposition

Upo, =U1 U0 U---UU,, ,

such that C; C U; for all ¢ = 1,...,m and U; N U; = () whenever i # j. In view of
Theorem 4.1.1 we assume without loss of generality that u(s,t) € U for all s > 0 and
t€[0,1].
Step 1. There exists an sp and vy such that wu,(s,t) € Uy for all s > sg, t € [0,1] and
v > 1.

By contradiction assume that there exists a sequence (s,,t,) with s, — oo such that
uy(sp,ty) € M\ Uy , (5.3.1)
for all v > 0. For 0 < a < b we abbreviate
Eula,b) = Buila,b] x 0,1]),  Ela,b) = B(u[a,8] x [0,1]),
and similarly F,(a,o00) and E(a,0). Since E(u,) — E(u) we have

0< lim E,(sy, —a,00) < ILm E,(b,00) = E(b,0) ,

vV—r00

for any 0 < a < b. This shows that

lim E,(s, —a,00) =0,

for all @ > 0. In particular E,(s, —a, s, +a) — 0 and thus u,(s,,t,) = x2 € LoN Ly in
Cre.. Because of (5.3.1) we must have xo ¢ U;. Lets assume without loss of generality
that xo € Us. But since u, — u in C}. and the image of u lies completely in Uy we find
another sequence (s2,t2) such that

u,,(SQ t2) e M\ (Uy UUQ) ,

vy v

for all v > 1. Repeating the same argument we see that wu,(s2,t2) — x3 € Lo N Ly.
With x3 ¢ U; U Us. Lets say x3 € Us. Yet again we find a sequence (s3,t3) with
u(s3,t3) ¢ Uy UUy U U3 for all v > 1 and eventually a sequence (s™, ") with s™ — oo
as v tends to oo such that

uy(ST,tT) §é UuUyU---UU,, =Upgyy, , (5.3.2)

for all v > 1. On the other hand, as before, we also have wu, (s]',t]") — 41 € Lo N L.
This contradicts (5.3.2) and consequently shows the claim.
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5. Compactness

Step 2. The map u, convergences to u in C°([0,c0) x [0, 1]).

Assume by contradiction that there exists a sequence (s,,t,) € X3° and a constant € > 0
such that
dist (up(sy,ty), u(sy,t,)) > €, (5.3.3)

for all » > 1. Since w, — v in C}.. we must necessarily have s, — oco. By the last step,
Lemma 4.3.2 and Proposition 4.2.1 there exists constants c¢1,co,d > 0 such that

lﬁsuy(s,t)|2 < By (s—1,00) <c1E,(so, oo)e_z‘s(s_so_l) < cge 208 (5.3.4)

for all s > sy and v > vy. Thus

Su
dist (uy(a,t),uy(sy,t)) < / |0suy | ds < %2 (e*‘sa — e*‘ss”) < %2675‘1 , (5.3.5)
a
for any a > sg. By the same reasoning for v and possibly making co larger we also have
Dqu(s, t)| < cpe™®,  dist (u(s, ), u(s,,t)) < %26*58 : (5.3.6)

for all s > sg and t € [0,1]. Choose a large enough such that cy/de™%* < £/4 and v,
large enough such that the distance from w,(a,t,) to u(a,t,) is smaller than ¢/4 for all
v > v1 then we finally have

dist (uy (sy, ty), u(sy,t,)) < dist (uy(sy, t,), up(a,ty,))
- dist (uy(a, ), u(a, £,)) + dist (u(a, ), u(sn, b)) < Ze .

This is a contradiction to (5.3.3) hence proves the claim. The last inequality also shows
that u,(00) — u(oo) as v tends to oo. O

Given a clean Hamiltonian H € C*°([0,1] x M). We say that a map u : XT — M is
an (J, H)-holomorphic half-strip, if it satisfies (5.1.1) with X = Xp.

Lemma 5.3.2 (soft rescaling on ends). Given a clean Hamiltonian H : [0,1] x M — R
and a path of almost complex structure J : [0,1] — End(TM,w). Suppose that a sequence
(uy) of (J, H)-holomorphic half-strips converges to w : ¥ — M in C2. such that the
limit

m = lim lim E(u,;[s,00) x [0,1]) >0,

§—00 V—00
exists and is positive. Then there erists a subsequence of (u,), still denoted (uy,), a
sequence (b,) C R with b, — oo, a (J, H)-holomorphic strip v : ¥ — M with boundary
in (Lo, L1) and a finite set Z = {z1,...,z¢} C X such that

(¢) The rescaled sequence v, := u, o Ty, converges to v in C.(X\ Z),
(ii) the limit
mj :=m(z;) := ilg(l) klgrolo E(vg; Be(25) N Y) ,

exists and is the energy of a non-constant holomorphic sphere or disk,
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5.3. Convergence on the ends

(i73) if v is constant then Z # (),
(iv) the limits

mo = m(—co) := lim lim E(vy; (~by, —s) x [0,1])

Myt1 = m(o0) := gﬁloylbnéoE(v”; (s,00) x [0,1]),

exists and we have

0+1 0+1
lim E(u,) :E(v)+2mj , m:E(v)+ij .
§=0 j=1

V—r00

(v) u(oc0) =v(—00) .

Proof. This is the adaption of [34, Theorem 3.5] and [34, Lemma 3.6] to the setting of
strips. Essentially all arguments work analogous provided with the energy decay (cf.
Lemma 4.3.2).

Step 1. We claim that m > h, where h is smaller than the constant from Proposition 5.4.1
and the constant from Proposition 5.4.2 for J = {Js+ | (s,t) € [—s0, so0] % [0, 1]}.

After transforming wu, we assume that H = 0 (see Lemma 3.2.4) and Lo, L; are in clean
and compact intersection. Let Upy, C M denote the neighborhood of Ly N L1 given by
Proposition 3.2.9. We claim there there exists a sequence (s,,t,) € ¥ such that

lim s, = oo, Vv>1: uy(sy,t,) € M\ Upoy - (5.3.7)

V—00

Otherwise we find s; > 0 such that wu,(s,t) € Upo, for all s > s1, t € [0,1] and v > 1.
Then by Lemma 4.3.2 there exists a constant § > 0 such that

E(uy; (s,00)) < E(uy; (81,00))6_25(5—51) ’
for all s > s1 and v > 1, which implies

m = lim lim E(uy;(s,00)) < sup E(u,) lim e 2651 — ¢ .
S—00 V—+00 v S—00

This contradicts the fact that m > 0 and shows the existence of the sequence s, satis-
fying (5.3.7). Now we claim that

liminf sup |du,(s,,t)] >0. (5.3.8)
V=00 el0,1]

If not, then we find a subsequence vy such that w,, (s,,,-) converges to a constant arc
in Lo N Ly and hence uy, (Sy,,tw,) € Upoy for k large enough, contradicting (5.3.7). This
shows (5.3.8). Define the sequences ¢, € R and t], € [0, 1] by

¢y = |duy(sy,t,,)| = sup; [duy(sy, t)] .
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5. Compactness

We distinguish two cases. If ¢, is unbounded, then after passing to a subsequence (still
denoted v) we assume that ¢, — oo and t,, — t._ € [0,1]. By [53, Lemma 4.6.5] we have
that for every e > 0 sufficiently small

h < liminf E(u,; B:(s,,t5,) NY) < lim E(uy; (s,00))

V—r00 V—r00

for all s > 0 and taking the limit

h < lim lim E(uy;(s,00)) =m.

§—00 V—00

This shows the claim in the case when ¢, is unbounded. Now assume that ¢, is bounded.
By Lemma 5.2.2 the rescaled sequence u, o 75, converges to a J-holomorphic strip v’ :
Y — M in CX.(X\ Z') for some finite set Z' C ¥ and we have

E@W';(=s,00)) < lim E(uy; (s, — 8,00)) < lim E(uy;(s,0)), (5.3.9)

V—00 V—00

for all s > 0. Since ¢, is bounded we must have Z’ N {0} x [0,1] = () and thus C°°-
convergence of u, o 75, — v’ on {0} x [0,1]. We assume without loss of generality that
t;, =t . By (5.3.8)
|dv(0,tL)| = lim |duy(sy,t,)| > 0.
V—r00

Hence v’ is non-constant. Proposition 5.4.1 and equation (5.3.9) imply

h< lim E(V;(—s,00)) < lim lim E(uy;(s,00)) =m .

S—00 S§—00 V— 00
This shows the claim.

Step 2. There exists a sequence a,, — oo such that

ILm E(um (au - S,OO) X [07 1]) =m,

for all s > 0.

Given a < b we abbreviate
E,(a) = E(uy; (a,00) x [0,1]), E,(a,b) = E(uy; (a,b) x [0,1]) .

For ¢ € N we find ay > ¢ and v, such that |E,(ay) — m| < 1/¢ for all v > v,. Without
loss of generality we assume that vy < vy and define a, = ay if vy < v < vgyq. This
shows that

Vlingo E(uy; (ay,00) x [0,1]) = m, Ulgn;o a, = eliglo ag = 00 . (5.3.10)

Let € > 0 there exists sg, vy such that E,(sg) < m+ ¢ for all v > vy, by definition of m.
Secondly given any s > 0, we find v1 > 1 such that a, —s > sg for all v > v and hence

E,(a,) < E,(a, —s) < Ey(sp) <m+e.
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5.3. Convergence on the ends

for any v > v;. Taking the limit of that inequality as v tends to co and then as € — 0
we have with (5.3.10)

m= lim E,(a,) < lim E,(a, —s) <m.

V—r00 V—r00

This shows the claim.

Step 3. There exists 1y and a sequence b, — oo such that
E(uy; (by,0) x [0,1]) =m — h/2, (5.3.11)
for all v > vy and we have

lim lim E(uy; (b, —s,00) x [0,1]) =m . (5.3.12)

§—00 V— 00

By definition of m and since sup, E(u,;X3°) is finite there exists vy such that

E,(0) > m, lim E,(s) =0,

§—00

for all v > vg. Due to the first step m > h. By the intermediate value theorem there
exists b, > 0 such that
E,(by)=m—h/2,

for all v > vy. Since for every bounded sequence sup,, s, < c it holds

lim E,(s,) > ILm E,(c) > lim lim E,(s) =m,

V—00 S—00 V—00

we necessarily have b, — co. This shows (5.3.11). A similar argument as in step 2 shows
that for all s > 0 we have

m—h/2 = lim E,(b,) < lim E,(b, —s) <m.
v—00

vV—00

By contradiction, assume that (5.3.12) is false. Then we find 0 < p < h/2 such that

lim E,(by —s) <m—p, (5.3.13)

V—r00

for every s > 0. We claim that this implies

lim b, —a, = 0. (5.3.14)

V—r00
Arguing indirectly, we assume that there exists sg > 0 such that b, — a, < sq for all

v > 1. This leads to the following contradiction

m= lim E,(a,) < lim E,(by —sg) <m—p<m.

V—r00 V—00

So (5.3.14) is true and thus for any s > 0 we have

lim E,(ay — s,a, +s) < lim E,(a, — s,by)
V—00

V—00

= lim E,(a, —s)— lim E, (b)) =m—m+h/2="h/2.

V—00 V—00
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5. Compactness

By Lemma 5.2.2 the rescaled strip w, = u, o7,, converges modulo bubbling to a (J, H)-
holomorphic strip w and we have

h/2 > lim E(wy;(—s,s) x [0,1]) = E(w; (—s,s) x [0,1]) +m .

vV—r00

But if w were non-constant or m’ > 0 then right-hand side is larger than h. This shows
that w must be constant and w, — w in C.(¥). In particular

lim E,(ay — s,a, +s) =0, (5.3.15)

V—00

for all s > 0. We also have

lim E),(a,,b,) = lim E,(a,) — li_)m E, (b)) =h/2.

V—r00 V—r00

By possibly making i/2 smaller, we assume that E,(a,,b,) < g¢ for v large enough,
where g is given by Lemma 4.3.2. Hence there exists constants vy, d > 0 such that

E,(ay + s,b, — s) < Ey(ay, bl,)e_‘SS < h/26_68 ,
for all s > 1 and v > vy. This shows

lim lim E,(a, + s,b, —s) < h/2 lim e =0. (5.3.16)

§—00 V—00 §—00

Now for s > 0 we have
E,(by —s)=E,(a, —s) — E,(a, —s,a, + s) — E,(a, + s,b, — s) .
Combining (5.3.10), (5.3.16) and (5.3.15) this shows that

lim lim E,(b, —s)=m,
S5—00 V—r 00

contradicting (5.3.13) and proving (5.3.12).
Step 4. We show points (i), (i) and (7i7) of the theorem.

With b, given in (5.3.11) from last step we define v, := u, o 7,,. The existence of the
strip v, the set Z and the limits m; is provided by Lemma 5.2.2. This shows (i) and (ii).
We show (7i7). With the following argument we even locate the bubbling point. By the
definition of b, there exists a constant v such that

E,(by — s1,b, —s0) < E,(by —s1) — Eu(by) <m—(m—h/2)=h/2,

for all v > 1y and 0 < sp < s1. The same argument leading to (5.3.15) shows that no
bubbling can occur on (b, — s1,b, — so) % [0,1] and provided that v is constant we get

lim E(vy; (—s1,—50) % [0,1]) = E(v; (—s1,—50) x [0,1]) =0.

vV—00
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5.3. Convergence on the ends

This shows that

lim E(vy;(—s1,00) x [0,1]) = lim E(v,; (—so,00) x [0,1])

V—00 V—r00

+ lim E(vy;(—s1,—s0) x [0,1])

V—00

is independent of s;. With (5.3.12) we have

lim E(vy,;(—s1,00) x [0,1]) = lim lim E,(b, —s) =m,

vV—00 §—00 V—00

for all s; > 0. But on the other hand

lim E(vy,;(0,00) x [0,1]) = lim E,(b,) =m —h/2.

V—00 V—00

This implies that there must be a bubbling point on {0} x [0, 1] for v,,.

Step 5. We show (iv).

Let sg be so large that Z C Z‘?so. By possible passing to a further subsequence still
denoted by (v,), we assume that

p(so) := lim E(vy; (so,00) x [0,1]),

v—00

is well-defined. Then for any s > sg, we have C*°-convergence of v, to v on ¥3  and
thus

p(s) := p(so) — lim E(vy; (s, ) x [0,1]) = p(s0) — E(v; (s0, ) x [0,1]) .

V—r00

This shows that p(s) is well-defined and monotone decreasing. Hence the limit

mep1 = lim lim E(uv,; (s,00) x [0,1]) = lim p(s) ,

exists and moreover
p(s0) = mei1 + E(v; (s0,00) x [0,1]) . (5.3.17)

Secondly by definition of v, and after assumption the limit

mo = lim lim E(vy;(=by,—s) x [0,1]) = lim lim E(u,;(0,b, —s) x [0, 1])

§—00 V—0O0 §—00 V—00

= lim B(u; (0,5) x [0,1]) = E(u)
exists. Now by (5.3.12) and Lemma 5.2.2 we have

m = slggo Vli)rgo E(uy; (b, — s,00) x [0,1])

= lim lim E(vy;(—s,00) x [0,1])

§—00 V—00

= lim lim E(v,;(—s,—sg) x [0,1]) + li_>m E(vy; (—s0,s0) x [0,1]) 4+ p(s0)

§—00 V—00
/41

=E(@)+>_my,
j=1
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5. Compactness

where in the last step we used (5.3.17). Finally using the last two equations

lim E(u,) = lim lim E(u,;[0,s) x [0,1]) + lim lim E(u,;(s,00) x [0, 1])

v—00 5—00 V—00 5—00 V—00
/41

= FE(u) +m = E(v) +ij .
=0

Step 6. We show (v).
Let s > 0 be large enough. We have by assumption

lim E(uy;(s,00) x [0,1]) = m + E(u; (s,00) x [0,1]),

V—00

and after (iv)

lim E(uy; (b, — s,00) x [0,1]) = lim E(v,;(—s,00) x [0,1])

V—00 V—00
l+1

= E(v; (—s,00) x [0,1]) + ij =m — E(v;(—o0,—s) x [0,1]) .
j=1

Subtracting these two identities gives

lim E(uy;(s,b, —s) x [0,1]) = E(u; (s,00) x [0,1]) + E(v; (—o0, —s) x [0,1]) .

v—00

If s tends to co the right-hand side approaches zero. Hence there exists constants sy and
v such that
E(ulla (S7bV - S) X [07 1}) S £o ,

for all s > sy and v > vy, where ¢ is the constant from Lemma 4.3.2. Using this
proposition with a = sg, b = b, — sg9, 0 = b, — s and ¢/ = s we see that there exists a
constant ¢ such that

dist (uy(s,0),u,(by, — 5,0)) < cre0(57%0)
for all s > sg 4+ 1. Now estimate using the triangle inequality

dist (u(00), v(—00)) < dist (u(00),u(s,0)) + dist (u(s,0),v(—s,0))
+ dist (v(—s,0),v(—00)) ,

and

dist (u(s,0),v(—s,0)) < dist (u(s,0), u,(s,0)) + dist (u,(s,0), uy, (b, — s,0))
+ dist (v, (—s,0),v(—s,0)) .

Using theorem 4.1.1 there exists a constant ca such that

dist (u(00), u(s,0)) + dist (v(—s,0), v(—00)) < coe™
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5.4. Minimal energy

for all s > sg. Given any € > 0 choose s > sg + 1 such that
coe % 4 e 0(s—s0) < e/2,
then choose v such that
dist (u(s,0),uy(s,0)) + dist (v, (—s,0),v(—s,0)) < e/2.

That is possible because for s sufficiently large and fixed, u,(s,0) converges to u(s,0)
and v,(—s,0) converges to v(—s,0) as v tends to co. Combining the last six estimates
shows that the distance from u(o0) to v(—o0) is lesser than € and hence the claim. [

5.4. Minimal energy

We establish lower bounds on the energy. We denote by J,qm the space of admissible
almost complex structures and X4, the space of admissible vector fields.

Proposition 5.4.1. Given path of almost complex structures J : [0,1] — End(T'M,w)
and a Hamiltonian H € C*([0,1] x M) such that ¢g(Lo) and Ly are in clean in-
tersection. There exists a positive constant h > 0 such that for every non-constant
(J, H)-holomorphic strip u : ¥ — M with boundary in (Lo, L1) we have E(u) > h.

Proof. See [53, Prop. 4.1.4.] for the analogous proposition for holomorphic spheres
or disks. Note that we can not apply the proof technique from there directly because
there is no mean-value inequality of large radius. We have to argue indirectly. After
a transformation we assume without loss of generality that H = 0 (see Lemma 3.2.4).
Assume by contradiction that there exists a sequence u, of non-constant J-holomorphic
strips such that

0 < E(uy), lim E(u,)=0. (5.4.1)

v—00

Let Up,, denote the Pozniak neighborhood of Ly N Ly given by Proposition 3.2.9. We
claim that there exists 1 such that u,(s,t) € Up,, for all (s,t) € ¥ and v > 1. To show
that we assume by contradiction that there exists a sequence (s,,t,) € ¥ such that

uy(Sy,ty) € M\ Upoy , (5.4.2)

for all v > 1. But since E(u,) — 0 there exists a subsequence such that u,, (s,,,t,,) = «
converges to a point € Lo N Ly as k tends to co. This contradicts (5.4.2) and we have
proven that u,(s,t) € Up,, for all (s,t) € ¥ and v > vy. Now inside Up,, the symplectic
form w = dA is exact with A, =0 for k =0,1. We have

E(u,,):/ |duy|2:/u;w:/ uA=0.
by > ox

This shows that E(u,) = 0 for all v > 1, which contradicts (5.4.1). O
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Proposition 5.4.2. Let J C End(T'M,w) be a compact subset of almost complex struc-
tures. There exists a positive constant h > 0 such that [u*w > h for any non-constant
J-holomorphic sphere u : S — M or non-constant J-holomorphic disk u : (D? 0D?) —
(M, Ly) with k=0,1 and J € J.

Proof. For every J € J let A(J) be the minimal energy of a non-constant .J-holomorphic
sphere. For k = 0,1 let hi(J) be the minimal energy of a non-constant J-holomorphic
disk u : (D,0D?*) — (M, Ly). In [53, Prop 4.1.4] we see that the maps J ~ A(J) and
J — h(J) are lower semi-continuous and everywhere positive. Let i be smaller than
their minimum which is positive since J is compact. ]

5.5. Action, energy and index estimates
We denote by J.am and X,qm the space of admissible almost complex structures and
admissible vector fields respectively (cf. Definition 5.1.1).

Lemma 5.5.1 (action-energy estimate). Given J € Jagm and X € Xaam, there exists a
constant ¢ > 0 such that for any finite energy (J, X)-holomorphic strip u with boundary
in (Lo, L1) we have

1 3
§E(u) —c< /u*w < EE(U)—FC.

Proof. Fix a (J, X )-holomorphic strip v with finite energy. We denote the asymptotic
points u(—oo0) = z_ and u(co) = x4 and estimate

1 1
(s, X)| = (B, TX)g| < 510} + 5 X5

By definition of an admissible vector field we have X (+£s,-) = Xp, for all s > sg. This
shows

/ w(X, Osu)dsdt =
by

:/ GSH_(u)dsdt+/ w(X, Osu)dsdt + OsH (u)dsdt
»_0 5%, zge

_ / B (u(so.t)) — Ho(r()dt + / WX, 0,u)dsdt+
0 27050

1
4 [ Hn0) ~ Hau(so, )i
0

With the last estimate we see

1
2/ |85u|3 +supH_ —inf H_ +supHy —inf H_ + 59 ||X||io > / w(X, Osu)
) by
1
> —3 /E |5’Su\3 —sup H_ +inf H_ —sup H, +inf Hy — s || X%, .

This shows the claim using [Osu|? = w(dsu, du) + w(X, su). O
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5.5. Action, energy and index estimates

Given an admissible vector field X € Xpgp, such that X (£s,-) = Xy, forall s > sp and
an almost complex structure J € Jaqm. For every (J, X)-holomorphic strip v asymptotic
to x 1= limsy oo u(s, ) and y := lims_, oo u(s, -) we define the action-energy defect

A(u) = B(u) — / W — /O Hoy (8, () dt + /O H(t, 2(t))dt (5.5.1)

The quantity is called action-energy defect, because if X is R-invariant then A(u) van-
ishes and the equation above is the action-energy relation (cf. equation (3.2.10)). The
next lemma states that the defect is continuous under Gromov converge.

Lemma 5.5.2. Given sequences (J¥) C Jadm and (X") C Xaam converging in C*°-
topology to J and X respectively. Let (u”) be a sequence of (JV, XV)-holomorphic strips
with boundary in (Lo, L1). Fiz a finite subset Z C 3 and assume that (u”) converges in
Ce(X\ Z) to the (J, X)-holomorphic map u, then we have lim, oo A(u”) = A(u).

Proof. Let B.(z) C ¥ denote the open ball with radius ¢ > 0. Fix some ¢ > 0 and
denote the thickened set

Z.= | B(2).

z2€Z

Then after convergence of u” — w and (J¥, X") — (J, X) in C°(X%, \ Z.) there exists
a g such that for all v > 1y

/S (Osu”, J¥ (u”) X" (u”)) — (Osu, J(u) X (u))dsdt| < e,
2%, \Z

and

/ ()~ -] de+ [ Ly () = Ho ()] dE < =
{=s0}x[0,1\Z¢ {s0}x[0,1]\ Ze

Moreover using the Cauchy-Schwarz inequality we obtain for any z € Z

/ (O, J¥ (u”) X (u”))dsdlt
B:(2)

1
2
g(/ X”|2dsdt/ |8Su”|2dsdt> < Ve | XY | oo sup E@) .
BE(Z) BE(Z) v

We have similar estimates for v, X* and J" replaced by u, X and J respectively. A
plain CY-estimate gives for every z € Z

|Ho (u) — Ho(u) dt + / H_(u) — H_(u)|dt
{—s0}x[0,1]NB:(2)

<de([H-llco + [Hllco) -

/{so} x[0,1]NB:(2)
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5. Compactness

Putting all together we obtain a constant ¢ independent of ¢ such that

|A(u”) — A(u)| < ce,
for all v € N larger than 1. This shows the claim. O

Lemma 5.5.3 (action-index relation). Assume that the pair (Lo, L1) is T-monotone.
Given Hamiltonians H_, Hy. Fix connected components C— C Iy _(Lg,L1) and Cy C
Tu, (Lo, L1). Given two maps u,v : [—1,1] x [0,1] — M such that u(-, k),v(-,k) C Ly
for k=0,1, x := u(-1,-),2" :=v(-1,-) € C_ and y := u(l,-),y :=v(1,-) € Cy then
we have

) = o) = [t [ Howde- [ H-@)ar

—/v*w—/H+(y’)dt+/H(:1:') dt.

Proof. Let u_ : [-1,1] x [0,1] = M and uy : [-1,1] x [0,1] — M be such that uy(s,-) €
Cy for all s € [-1,1] and u_(-1,) = 2/, u_(1,-) = x as well as uy(—1,-) = ¢/,
u4(1,+) = y. The connected sum u_#u#uY#v" defines a map w : [—1,1] x [0,1] —
with w(-,k) C Ly, for k = 0,1 and w(—1,-) = w(1,-). By monotonicity we have [w*w
TpMas(w). The additivity of the Viterbo index shows

=S

Jutw [wro= [utw— [vw=r(utu) +utw) - ptus) - ue)

By the zero axiom the index p(u_) = p(uy) = 0. We compute

/uiwz /w(@su,(‘?tu) - /w(asu,XH_(u)) - —/85H(u)dsdt:

—/H_(m’)dt—/H_(a:)dt.

Similarly for [uwiw = [ Hi(y')— [ Hy(y). We conclude by plugging these two equations
into the last one. O

Lemma 5.5.4. With the same assumptions as Theorem 5.1.4. Assume additionally that
the pair (Lo, L1) is monotone. Suppose that (u,)yen Floer-Gromov converges modulo

bubbling to (v1,...,vx) then either all Z1,...,Zy are empty or we have for all v € N
large enough

k
pluy) > () + N, (5.5.2)
j=1

where N is the minimum of the minimal Maslov numbers of Lo and L.
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5.5. Action, energy and index estimates

Proof. Assume that for some j = 1,...,k the set Z; is non-empty. After rescaling and
removal of singularities we see that m,; . is the energy of a non-constant holomorphic
sphere or disk with boundary on Ly or Li. Hence by monotonicity m;./7 is a positive
multiple of the minimal Malsov number of Ly or L and thus m/7 > N. Abbreviate z :=
v1(—00), y := vg(00), Ty := uy(—00) and y, := u,(c0). Further abbreviate the connected
sum v = viF#vaF# ... #vp. We have p(v) = Z§:1 p(vj) and E(v) := Z§:1 E(v;). Let
Jo=1,...,k be the unique index such that a¥ = 0 for all v € N and hence (uy) converges
to vj, in C’OO (X\ Zj,). By the action-index relation (cf. Lemma 5.5.3) we have

loc

() —

/uw+/H+yl,dt—/H xl,dt—/vw—/H+ dt+/H_

= E(uy) — A(u,) — E(v) + A(vj) = m.

where we have used Lemma 5.5.2. O]
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6. Fredholm Theory

We define Banach manifolds and Banach bundles such that the moduli problem of the
perturbed Cauchy-Riemann equation becomes the zero set of a Fredholm section. This
step is part of the standard program in order to put a smooth structure on the moduli
spaces and was pioneered by Floer in [25] under the assumption that the Lagrangians
intersect transversely. Frauenfelder constructed the Banach manifolds for the degener-
ate case of clean intersecting Lagrangians in [33]. Besides recalling these well-known
constructions we also give a formula for the index in the degenerate case, which was not
done before.

6.1. Banach manifold

Given a compact symplectic manifold (M,w), two Lagrangian submanifolds Lo, L1 C
M and two clean Hamiltonians H_, H, with perturbed intersection points Z_, 7.
respectively (cf. 3.2.12 and (3.2.6)). To construct the Banach manifold we need some
auxillary choices. Choose a Riemannian metric on M and denote by € > 0 its injectivity
radius. For two points p, ¢ € M which are close enough, we denote by IT}, : T,M — T,M
the parallel transport along the unique shortest geodesic joining p to g. More generally
if p,q € M are arbitrary, we define the linear map

¢ T,M — T,M, T = (e dist (p, q))II, (6.1.1)
in which g is a smooth cut-off function supported in [0,1] and § = 1 on [0,1/2]. For
maps u,v : ¥ — M we denote 11 : w*TM — v*TM, (II?)(z) = ﬁzz))
Definition 6.1.1. Fix numbers p > 2 and § > 0 we define
BYP® « CO(R x [0,1], M),
to be the space of maps u such that
(i) w is of local regularity H'P,

(ii) w satisfies the boundary condition (u(s,0),u(s,1)) € Lo x Ly for all s € R,

(iii) there exists z_ := u(—o0) € Z_ and x4 := u(oc0) € Z; such that
/ (dist (u, 24 )” + |Osul? + [Opu — ﬁgatxi\”) ePlsldsdt < oo, (6.1.2)
pIEE

with ¥_ = (—00,0] x [0,1] and ¥4 = [0,00) x [0, 1].

65



6. Fredholm Theory

For two subspaces C_ C Z_ and Cy C I, we denote by B"P°(C_,C,) C B the
subspace of all u such that u(—o0) € C_ and u(c0) € Cy.

Remark 6.1.2. Since any two metrics on the compact manifold M are equivalent, the
space B1P% does not depend on the specific choice of the metric. For the construction
of the charts we employ a domain dependent metric, which is explained below but for
the mere definition of the space it suffices to consider a simple metric on M.

6.1.1. Tangent space

Let V denote the Levi-Civita connection associated to the axillary metric. We show in
Lemma 3.2.13 that the tangent spaces of Z_ and Z; are computed.

Definition 6.1.3. For any u € B"P we define T}, BP9 to be the space of sections ¢ of
u*T'M such that

(i) ¢ is of local regularity H'P,
(ii) ¢ satisfies the linearized boundary condition

5(3, 0) € Tu(s,O)LOa {(37 1) € Tu(s,l)Ll )

(ili) there exists vector fields & € T,,_Z_ and & € T, T, such that the following norm
is finite

€l ps = (e Nhme + N4 1 +

+/ (\5 —Iy & [P+ |V(¢- ﬁ;ﬁ&)}p) sl dsdt
pI

I U s 1/p
* /E+ (‘5 - H$+£+’p + ‘V(f - Hu@r)‘p) e |dsdt) )

Furthermore, we define EP° t0 be the space of all sections n € T'(u*T'M) of local regularity
LP which are bounded in the norm

1/p
H77Hp~5 = (/ In(s,t)? 6§p|5|dsdt> X
' b

If u is smooth we define the spaces T, BP9 and 55;6 for any constants p > 1 and § € R.

Remark 6.1.4. Since M is compact the norms |-, , 5 and [|- ||, 5 with respect to two

different connections and metrics are equivalent. Hence T,,B17 is well-defined indepen-
dently of the choice of the connection. Similarly 55;6 is well-defined independent of the
metric and connection.
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6.1. Banach manifold

Lemma 6.1.5. If the Hamiltonians H_ and Hy are clean (cf. Definition 3.2.12) each
path-connected component of BYP is a Banach manifold and the vector bundles

TR .— |_| TuBl’p;‘S, gpid . |_| 55;57

u€BLPid wEBLP:S
carry the structure of Banach bundles. Moreover TBYPY is the tangent bundle of BP9,

Proof. We give a sketch since the proof is basically already given in [33, Section 4.2].
We also refer the reader to [68, Theorem 2.1.7] and [68, Theorem 2.2.1].

In order to construct local charts we choose a metric which depends on the domain,
denoted (gs,¢)(s1)ex- For every (s,t) € ¥ we obtain a Levi-Civita connection, norm,
distance function, exponential map and parallel transport associated to gs ¢, denoted by
Vo || distsy, exp® and *'IT respectively. Fix metrics g— (resp. g1) such that Lo
and Ly := ¢ (L1) (vesp. Lo and L] := 90;11 (L1)) are totally geodesic (cf. Lemma 6.1.6
to see that such metrics exists). We assume that the family (g, ) satisfies

(a) Ly is totally geodesic with respect to gsx for K =0,1 and all s € R,

(b) gst = (cp'}br)*ng and g_s¢ = (¢ )sg— forall s > 1 and ¢ € [0,1].

Because the family only varies over a compact domain the minimal injectivity radius of
gs,¢ is uniformly bounded from below by a constant € > 0. Given a map u € CO(x, M)
and a continuous vector field § € I'(u*T'M) such that sup, ; [§(s, )|, , < € we define the
map ug € CO(R x [0,1], M) via

ug (s, t) == eXpZ’(tS’t) (s, t) (6.1.3)

and the parallel transport map

LS T(W'TM) —» T TM), & (¢ (s, 1) = " TS (s,1) . (6.1.4)

u(s,t)

Let u € B be a strip which is smooth and asymptotically constant, i.e. there exists sg > 0
such that u(+s, ) = u(doo) for all s > so. Define the subset

Vu = {f € TuB | Sups,t |€(57t)|s,t < 5} - TuB

Since p > 2 and ¢ > 0, it follows by the Sobolev embedding that V,, is an open subset.
We define the chart map by exp,, : Vi — B, § — ug.

We explain why u¢ € B. By the property (a), the map u¢ satisfies the boundary
condition. By Corollary A.1.2 we have |du¢| < ¢(|du|+|VE]) for some uniform constant c,
which readily shows that u is of regularity H, ﬁ)’f . To show that the integral (6.1.2) is finite
we need a sharper estimate. By symmetry it suffices to consider only the positive end.
Abbreviate v(s,t) := (cpﬁh)*l(u(s,t)) and ((s,t) := (dgpﬁh)*l({(s,t)). Let exp denotes
the exponential map of the fixed metric g* and abbreviate v¢ (s, t) 1= expy sy ((s,t). By
property (b) we have

exp™’odgly, = ¢y, oexp,
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6. Fredholm Theory

and thus ug(s,t) = SD%H (ve(s,t)) for all s > 1 and t € [0,1]. Let so be a constant such

that u(s,-) = x4 for all s > s9. We have V3'&(s,t) = 8:&(s,t) = dcp?uf)sg“. Denote by
|- |, the norm induced by g . Estimate for all s > sg and ¢ € [0, 1] using Corollary A.1.2
|asu§(57t)‘t = ‘dSOYJSLLrasUC‘t = |8SUC|+ < ClasCM = c|0s§]; = c|0s(€ — &4+)I; -

Moreover we have Oyue = Xp, (ug) + dy? Oyv¢ and Vf’tﬁ = Vz’ltXHJr + dp'd¢. Thus

‘atué — Xu, (uﬁ)‘t = ‘atUC’+
< ||y = ¢|Vik = VeXnl|, = ¢|Vil = Vie_e ) X — Vil |
< e+ IXaDIVIE = &)l + 16 = &xly) -

Now use these two stronger estimates to show that the integral is bounded for u¢. Now
one shows that the collection of all (V,, exp,,) indexed over all smooth and asymptotically
constant curves u gives an atlas of B. This completes the proof of the first statement.

We construct local trivializations of the bundles over the images of our chart maps
given by U, := {u' € B | sup; sex dists 1 (u(s,t),u/(s,t)) < e} where again u is smooth an
asymptotically constant. The trivializations are defined using (6.1.4)

Uy, x T,B — T8l , (ug, &) = ILE € T, B,

Uy, x EP° — &P, (ug,n) = Ty € L7,
where for the second map we actually use the unique continuous extension of the densely
defined operator II,¢ : grd 55;5. It is again straight-forward to check that the
trivialization change is smooth using the estimates from Section A.1. 0

Lemma 6.1.6. Let M be a manifold and Lo, L1 C M be two submanifolds in clean
intersection. There exists a metric on M such that Ly and Ly are totally geodesic.
Moreover given a submanifold W C Lo Ly, then there exists a metric such that W, Lg
and L1 are totally geodesic.

Proof. We construct the metric in suitable charts and patch it together at the end.
For any point p € Lo N L1 we find a chart identifying a neighborhood of p with a
ball in R?" such that p is identified with zero, Lo is identified with the vector space
Vo € R?™ and L; is a graph over the vector space Vi C R?" of a function with vanishing
differential at 0. Since Ly and Lq intersect cleanly the intersection Ly N L is a graph
over K := Vo NV;. Decompose R*™ = K @ V§ @ V] @ R such that K ® Vj = V; and
K @ V/ =Vj. In the decomposition a point in L; has coordinates (z, ¢(x,v),y, ¥ (z,y))
for functions ¢ : Vi — Vj and ¢ : Vi — R with vanishing differentials at 0 and the
property that ¢(z,0) = 0 for all z € K. Consider the map

P KoVjoVieR—-KaoVjoV/aoR
(z,2",9,9) = (z,2" — o(2,9), 9,y — ¥(z,y)).
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6.1. Banach manifold

The differential of ® at 0 is the identity, hence by possibly making the ball smaller
we assume that ® is a diffeomorphism. By construction ®(Ly) = ®(Vp) = Vj and
®(L;) = V1. Hence composing the chart map with ® we have found a chart such that
Ly and Lq are identified with the vector spaces Vy and Vi respectively. Now take any
metric on Vo NV such that W is totally geodesic and extend it over the chart such that
Vo and V; are totally geodesic. O

6.1.2. Cauchy-Riemann-Floer operator

We fix a vector field X € C°°(X, Vect(M)) and an almost complex structure J €
C>(X,End(TM,w)) which are admissible in the sense of Definition 5.1.1. We define
the non-linear Cauchy-Riemann-Floer operator

Jjx :C®(X, M) — C®(Z,TM), u s Osu + J(u) (Ou — X (u)) .

Let T°M denote the disk-bundle of vectors { with norm bounded by e. For € > 0
small enough we define the local representative of 0;x at a given u : ¥ — M by
Fu: C®(E,T°M) — C>*(X,TM) with

Fu(€) = 1Ly, (Bsug + J(ug) (Orug — X (ug))) - (6.1.5)

Here u¢ = exp, § and II}! . are given by (6.1.3) and (6.1.4) respectively. The linearized
Cauchy-Riemann-Floer operator as the differential of the map (6.1.5) at zero, which is
given by (cf. [53, Prop. 3.1.1])

Dyé = V€ + J(u) (Vi€ = VeX (u) + (Ved (u)) (Bru — X (u)) (6.1.6)

Remark 6.1.7. If u is satisfies 0 Jxu = 0, the operator D, is defined independently of
the choice of V and is the vertical differential of 07 x at u.

Definition 6.1.8. Given a constant g > 0. A smooth map u : ¥ — M has u-decay if
there exists constants ¢, sp and a smooth paths x_,z, : [0,1] — M such that for all
s> sp and t € [0,1] we have

dist (U(S, t), l‘+(t)) + ||a$u||Cl(E§°) + H@tu - H;+atx+Hcl(2§°) < ce M , (617)
with ¥° := [s,00) X [0,1] and a similar estimate for the negative end. We write
C%H (X, M) for the space of all maps with u-decay.

The next proposition states that the space BP¥ contains all finite energy (J, X)-
holomorphic strips (cf. equation (5.1.1)), provided that ¢ is sufficiently small. The con-
stants «(J_, H_) and «(Jy, Hy) are defined in equation (3.2.13).

Proposition 6.1.9. Set ¢ := min{e(J_, H_),«(J4+, Hy)} with Jy := J(*s,-) and Hy
given by Xg, = X(+£s,-) for some s large enough. For any 1 < ¢ we have that all
(J, X)-holomorphic strips have u-decay. In particular u € B'P® for any § < .
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6. Fredholm Theory

Proof. Define the map v : ¥3° — M, (s,t) — (nptfh)_l(u(s,t)). The map has boundary
in (Lo, L) with L = 901_{1 (Ly). Since by Lemma 3.2.4 the map v is J'-holomorphic with
Ji = ((pl}{+)*(J+)t for t € [0,1], and Lo and L} are in clean intersection by assumption,
we conclude that v(s,-) converges to an intersection point p € Lo N L} as s — oo (cf.
Theorem 4.1.1). By Lemma 3.2.8 we have ¢(J4, Hy) = «(J'). Hence p < 1p(J’) and
we conclude that [|dv|ci(sey < O(e™#*). Moreover the path [s,00) — M, o — v(0,t)
extends to a continuous path from v(s,t) to p, hence

dist (v(s,t),p) < /OO |0,v(0,t)|do < O(1) /OO e "do < O(e ).

s

By construction dsu = dp’; dsv. Set x : [0,1] = M, t — % (p). Since Oz = Xp(x) we
also have
Opu — M0y = Al 0w + X (u) — T4 Xy ().

Using these identities and the estimates for v we conclude that u has p-decay for the
positive end (cf. estimate (6.1.7)). We proceed similarly for the negative end. Now since
u has p-decay on both ends we conclude that the integral (6.1.2) in the definition of
BP9 is finite. O

Theorem 6.1.10. With « > 0 as in Proposition 6.1.9. Choose constants  and p
such that 6 < pu < t. For any smooth map u € BYWO with p-decay the linearized
Cauchy-Riemann operator D, defined in (6.1.6) extends to a bounded Fredholm operator
D, : T,B'r? — Ei’p;é of index

1
ind Dy, = pyie(u) + 5 (dimC_ +dimCy) , (6.1.8)

in which C— C Z_ and Cy C Iy are connected components such that u(—oo) € C_ and
u(o0) € Cy.

Proof. We describe how to conjugate the operator D,, to an operator D = 9+ Jsq0 + S
as considered in section 6.2. The statements then follow from the fact that D is Fredholm
proven in Lemma 6.2.4 and the index formula.

In a first step we construct trivializations of u*T'M. Let sg be such that X (s,t) =
Xp, (t) for all s > sg. The map v : [sp,00) x [0,1] = M, v(s,t) = ((p’}hr)*l(u(s,t)) is a
J'-holomorphic half-strip where J' = (¢p, )*J and with boundary condition v(s,0) € Lo
and v(s,1) € L} == (pu, )1 (L1) for all s > s¢ (cf. Lemma 3.2.4). By asymptotic analysis
the point v(s, t) lies inside a suitable neighborhood of p1 = v(00) € LoNL for allt € [0, 1]
and s sufficiently large (cf. Theorem 4.1.1). Let ® be the trivialization constructed in
Lemma 3.2.11 with respect to J', Lo and L;. Then define ®,,(s,t) = dg0§q+o<1>+(t, v(s,t)) :
R?" — TysyyM. We end up with a trivialization ®,, of u*T M |5, )x[0,1] Which is

e symplectic, i.e. wy (s (Pu(s, )€, Pu(s, 1)) = wsa(§,¢’) for all s > s, t € [0,1] and
§,¢ eR™,
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6.1. Banach manifold

e complex linear, i.e. Jy(u(s,t))®y(s,t)E = Py(s,t)Jwaé for all s > sg, t € [0, 1] and
£ ER™,

e and trivializes the Lagrangians, i.e. Ty ) Lr = Pu(s,k)R™ for all k = 0,1 and
s > 8.

Similarly we construct ®,, over (—oo, —so]|x[0, 1]. Then we extend ®,, over [—so, so| x[0, 1]
such that it is symplectic and complex linear (satisfies the first two properties) but not
necessarily trivializes the Lagrangians. In fact a trivialization which satisfies all three
properties might not exist. We define the matrix valued function S : R x [0, 1] — R2n*2n
by
®, (asg + Jstd8t€ + Sé) = Duq)ué )

for all smooth ¢ : R x [0,1] — R?". Set 2_ = u(—o0,-) and 2 = u(oo,-). We also
define &, (t) = dgp'}ﬁq)Jr(t,x(t)) : R*™ — T,, ;M and similarly ®,_. The matrix is
asymptotic to the paths o_, o : [0,1] — R2"*2" given by

Py (Jsta0e§ + 0+8) = J(24)(Ve = VX, (24)) P2, €,

for all smooth ¢ : [0,1] — R?". By assumption u has u-decay. We conclude that S(—s, -
converges to o_ and S(s,-) to ot as s tends to oo and moreover that S has p-decay (c
Lemma 4.4.1). We define the paths of linear Lagrangians F' = (Fy, F1) : R — L(n)xL(n
via

)
)

FO(S) = q)u(sv 0)_1Tu(s,0)L07 Fl(s) - (I)u<3a 1>_1Tu(s,1)L1 .

By construction the path of Lagrangians F' = (Fp, F}) is asymptotically constant. In
particular the pair (F,S) is admissible in the sense of Definition 6.2.1 and has the
asymptotic operators A_ = A,_ and Ay = A,,. With notation from Section 6.2 (in
particular Definition (6.2.2)) we have isomorphisms of Banach spaces

HEZR (5, R =5 TBWA(C,Cy),  LPO(S,R™) =5 et

both given by & — ((s,t) — ®y(s,t)&(s,t)) where W = (ker A_,ker A} ). Via these
isomorphism the operator D, is conjugated to the operator

D HEZ2 (5, R — LPO(S,R™), € 06 + Juadi + SE .

The asymptotic operators A_ and A, are conjugated to the Hessians A, and A,
respectively, in particular have the same spectrum. The claim that D and hence also
D, is well-defined and Fredholm now follows by Lemma 6.2.5 using the fact that S has
p-decay. It remains to check the index formula. By Lemma 6.2.6 the index of D is given
by
1 1
p(PLR™ R™) + u(Fy, F1) — p(V_R™",R") + B dimker A_ + B dimker A4

where W4 : [0,1] — Sp(2n) are the fundamental solutions for o4 (cf. equation (6.2.10)).
We claim that for all ¢ € [0, 1]

Vi(t) = Do () ey, 4(0), (6.1.9)
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6. Fredholm Theory

in which t — ¢l . denotes the Hamiltonian flow. Denote by e1,...,es, the standard
basis of R?" and for each i = 1,...,2n and ¢ € [0, 1] we define the vector

&i(t) == @4 (t) 'dep, P4 (0)e; € R*™.
By definition of o4 we have using the fact that V is torsion-free and 0;x+ = Xg,
Py (Js4a0i&i + 0+&) = J(21) (Vedpn, @+ (0)e; + VdgoHiCPi(O)eiXHi) =0.

We see that the function ;(¢) satisfies the same ordinary differential equation as W (¢)e;.
This implies (6.1.9) and so

Ui (H)R" = &1 (t)dply, Ty, (0)Lo -
By definition of the Viterbo index we conclude
p(W4R™ R™) + pu(Fo, F1) — p(V_R", R") = prvig (u) -

Since the asymptotic operators A4 are conjugated to the Hessian at x4 whose kernel is
given by T, C+ by Lemma 3.2.13, we obtain

dimker AL = dim C4.
Obviously ind D = ind D,, and the last two equations plugged into the index formula for
D gives the result. O
6.2. Linear Theory

Denote by £(n) the space of linear Lagrangian subspaces in (RQ”, wstd) and abbreviate
¥ = R x [0,1]. Fix smooth maps F : R — £(n) x £(n) and S : ¥ — R?*2"_ In this
section we study a differential operator

D¢ = 05§ + JstaO§ + 5 - €,
defined on some Banach space of maps ¢ : ¥ — R?" satisfying the boundary conditions
(£(s,0),&(s,1)) € F(s), VseR. (6.2.1)

The precise definition of the Banach space is given below. We proof that D is a Fredholm
operator and compute its index. We now give more details.

Definition 6.2.1. Let (F,S) be a pair of smooth maps F' : R — L(n) x £L(n) and
S ¥ — R0 (FS). We call (F,S) admissible if

(i) F is asymptotically constant, i.e. there exists so > 0 and A_, Ay € L(n) x L(n)
such that F(—s) = A_ and F(s) = A4 for all s > sp and
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6.2. Linear Theory
(ii) there exists paths of symmetric matrices o_, o : [0,1] — Sym(2n) C R?"*2" such
that lims_, 400 S(s,:) = o4 uniformly.

Fix constants § € R, p > 1 and a pair of finite dimensional subspaces W_, W, C
LP([0,1],R*"). We define the Banach space

HpRY(D,R?™) € HEP(S,R™) (6.2.2)

loc
as the space of all functions ¢ : ¥ — R?" such that
(i) ¢ is of regularity Hllo’f ,

(ii) ¢ satisfies the boundary condition (6.2.1),

(iii) there exists &- € W_ and £ € W4 such that the following norm is bounded

€111 s = €=M o + €41 Le + 1€ = E)Rsl grmm_y + 10§ = & )msll (s, »

with weight-function s(s) = el*l.

Secondly we define LP(X,R?") as the Banach space of all n € L (X,R?*") which are
bounded with respect to the norm

15 2= Inmsll o

If W_ =0 and W, = 0 are trivial spaces, we abbreviate (6.2.2) by H};’p;é(E,RQ"). If
moreover the weight § = 0 vanishes we abbreviate the space by H}T’p (2, R?"). We are
ready to give a precise definition of the operator under consideration

D: H;v};;s(z,RQ") — LPO(%, R™), € 05& + JpqOiE + S - €. (6.2.3)

Secondly we define the asymptotic operators. To a pair of Lagrangians A € L£(n) x L(n)
and a path o : [0,1] — R?"X2" of symmetric matrices, we associate the Banach space

Hy?(10,1], R?") := {¢ € H2([0,1],R™) | (£(0),£(1)) € A},
and the operator
Az HP([0,1],R?) — L2([0,1],R®™), € Juadl +0 - €. (6.2.4)

Let (F,S) be an admissible pair such that Ay = F(f+o00) and o+ = S(£o0). We define
the asymptotic operators for (F,S) as the operators A_ and A, given by

A = Jgads + oz HyZ([0,1], R*) — L*([0,1], R*"). (6.2.5)

The following lemma is crucial for the study of the operator D.
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6. Fredholm Theory

Lemma 6.2.2. The operator A given in (6.2.4) is Fredholm of index zero. Considered
as an unbounded operator with dense domain acting in the Hilbert space L*(]0,1], R?")
the operator A is self-adjoint with spectrum consisting only of eigenvalues.

Proof. We have the estimate

1€

1,2 < c(l[Ag]ly + [I€]l2) -
for some constant ¢, which shows that A is a semi-Fredholm operator. That A is self-

adjoint is proved in [33, Lmm. 4.3]. Consequently coker A = ker A* = ker A is finite
dimensional, which implies that A is Fredholm of index zero. O

Formal adjoint Given an admissible pair (F,.S) and some g > 1. We define the operator
Dy g« Hp?(S,R?™) — LI(X,R?") by

(D;‘,Sg)(s’ t) = _855(55 t) + Jstdatf(s’ t) + ST(S) t)f(S, t) . (626)
The next lemma states that the operators Dr g and D}, g are formally adjoint.

Lemma 6.2.3. Given an admissible pair (F,S). Assume that1 = 1/p+1/q and consider
the operators D = D,s and D* = D}, g. For all € € Hg"(S,R?") and n € Hp'(S,R?")

we have

/(Df,n>dsdt:/(§,D*n>dsdt. (6.2.7)
b by

Proof. By partial integration we have with s € R fixed

1 1
/ (€, Tuadm)dt = / (Juadh,m)dt
0 0

because (Jstaé,n) = wsa(&,n) vanishes for ¢ = 0,1 after the Lagrangian boundary con-
dition. Again by partial integration for dy and the fact that [|£(s,-)|| ;2 and |[n(s,-)| 2
vanish as s tends to £oo,

/(&,f,n)dsdtz/(5,8577>d8dt.
b b
We compute

(&, D n)p2 = —(&,0sn) 2 + (€, JswaOim) 2 + (€, ST ) 2
= <68£>7]>L2 + <Jstdat£7n>L2 + <S€a77>L2 = <D€’77>L2 5

where (-, )2 denotes the inner product on L?(X, R?"). O
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6.2. Linear Theory

6.2.1. Fredholm property

To show that the operator given in (6.2.3) is Fredholm, we follow [66, Section 2] and [68,
Section 3]. In these two sources the authors considers the perturbed Cauchy-Riemann
operator defined on the cylinder instead of the strip with boundary values. However the
proofs go through with almost no change.

Lemma 6.2.4. Let (F,S) be an admissible pair with asymptotic operators A_ and A .
If =6 and ¢ is not a spectral value of A_ and A respectively then the operator

D = 0, + Jaads + S : HRP (3, R*") — [P (3, R*")
is Fredholm.
Proof. Assume first that 6 = 0, i.e. the operators A_ and A, are invertible. Then proof
is completely analogous to the proof of [66, Thm. 2.2]. Note that in order to prove the
precursors [66, Lmm. 2.4] all is necessary that the operators A_ and A, are invertible
self-adjoint operators. This fact is established in Lemma 6.2.2. To prove the statement

for § # 0, pick a smooth function ks : R — R such that s(s) = els! for all |s| > 1. We
have isomorphisms

HpP (3, R¥™) =5 HRP(S,R¥™),  LPO(3,R*™) = LP(Z,R™),

both given by sending £ to the function ks(s)&(s,t). Conjugating the operator D with
these isomorphisms gives the operator D® = D — (9,k5)/ks, which has asymptotic oper-
ators A_ + ¢ and Ay — ¢ respectively. By assumption these are invertible and thus by
our first remark D? is Fredholm, hence D is Fredholm too. ]

Lemma 6.2.5. With the same assumptions as Lemma 6.2.4 suppose additionally that
S has p-decay for some pu > 6. Set W = (ker A_, ker A), then the operator

D =8, + Jgads + S : HE2(3,R*) — LPO(3, R*™) | (6.2.8)
1s bounded and Fredholm.
Proof. Given £ € H}’%(E,R%) with limits {4 = £(+o0) € ker Ay. By assumption
Jsta0é+ + 04+€+ = 0 and 9§+ = 0. Hence with the decay property of S we conclude
that for all s large enough
(85 + Jstar + S)E] < (05 + Jseads + S) (€ — £+ (S — o4 )&+ ]
< [d(€ = &)+ OM)[E — &4l + O(e™)[€4 ]
We have a similar estimate for the negative end. If we multiply with e’/*l and integrate
over Y we obtain

(6.2.9)

I1Dg ] < O) 1€

P60 —

1,p;é -

Ly +O(1) / 095 gs) [¢]
0

We conclude that the operator D is bounded. Restricted to the finite co-dimensional

subspace
HpP (3, R*™) € HpH) (3, R
the operator D is Fredholm by Lemma 6.2.4. This shows the claim. O

75



6. Fredholm Theory

6.2.2. Index

In this section we compute the index of the Fredholm operator D in terms of the Robbin-
Salamon index for paths. This index is defined in [63] and corresponds to the spectral
flow of the family of self-adjoint operators A(s) as given in (6.2.4). We give here a quick
introduction and review the basic properties.

Let F' = (Fy, F1) : [a,b] — L(n) x L(n) be a path of pairs of linear Lagrangian spaces.
Assume that F(s) = A is constant, we define the crossing form I'(Fy, A; s) as a quadratic
form on Fy(s) N A given by

T(Fo Ass)oi= | wa(v,w(0)),
do

O=S8

where v € Fy(s) N A and w : (s —e,5 + &) — JsaL'(s) is any differentiable map such
that w(o)+v € F(o) for all 0 € (s —¢,s+¢). The proof that I'(Fp, A; s) is well-defined
is given in [63, Theorem 1.1 (1)]. In the case when Fj is not constant we define the
quadratic form on Fy(s) N Fi(s) via

F(FQ,Fl; S) = F(Fo,Fl(S); 8) - F(Fl,Fo(S);S) .

A crossing s € [a,b] is a time where Fy(s) N Fi(s) is non-trivial. A crossing is called
reqular if T'(Fy, Fi; s) is non-degenerate. If F' = (Fp, F1) has only regular crossings the
Robbin-Salamon index of F is defined by

1 1
M(FO;FI) = 5SignF(FO’Fl;a)—l— Z SignF(Fg,Fl;S)—i—isignF(Fo,Fl;b) R
a<s<b

where sign denotes the signature, that is the number of positive eigenvalues minus the
number of negative eigenvalues. The sum is finite because regular crossings are isolated.
The Robbin-Salamon index for an arbitrary path F' = (Fp, F}) is defined by the index of
a perturbation that fixes the endpoints and has only regular crossings. As proven in [63,
Theorem 2.3] the index enjoys the following properties.

Naturality For any path VU : [a,b] — Sp(2n) we have
WU Fy, OFy) = p(Fo, Fy) -

Homotopy The Robbin-Salamon index is invariant under homotopies which fix the end-
points.

Zero If Fy(s) N Fi(s) is of constant dimension for all s € [a, b], then p(Foy, F1) = 0.
Direct sum If ' = F' & F”, then

p(Fy @ Fo, F{ © FY') = p(Fy, F{) + p(Fg', FY) -
Concatenation If F' = F'# ", then

w(Fo, Fi) = p(Fy, FY) + p(Fy, FY)
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6.2. Linear Theory

Localization If Fj(s) = R™ x {0} and Fi(s) = Gr(B(s)) for a path B : [a,b] — R"*" of
symmetric matrices, then the Robbin-Salamon index is given by

1 1
p(Fo, Fi) = §signB(b) ~ 3 sign B(a) .

Given a path o : [0,1] — R?"%2" of symmetric matrices, the fundamental solution for o
is a path of symplectic matrices ¥ : [0, 1] — Sp(2n) given as the unique solution of

JgaO¥U 4+ 00 =0,  U0)=1. (6.2.10)

Recall that ¢(A) > 0 denotes the spectral gap around zero of a self-adjoint operator A
(cf. equation (B.1.1)).

Lemma 6.2.6. Let (F,S) be an admissible pair with asymptotic operators A_ and A.
For all § with 0 < § < min{c(A_),c(A+)} the index of the operator

D = 0 + Juads + S : HEPO(S,R?) — L2(3,R?")
s 1S given by
1 1
p(UTAS AT + pw(Fo, Fr) — (P~ Ay, A7) — 5 dimC — o dimCy (6.2.11)

where A* = F(+00), Oy = ker Ay and ¥F are the fundamental solutions of S(£00).

Proof. Assume for the moment that the asymptotic operators A_ and A, are injective.
We claim that the formula (6.2.11) holds for 6 = 0 and any p > 1. For p = 2 this is
proven in [64, Theorem 7.42] (note that [64] use different sign convention). It remains to
show that the index does not depend on p > 1. For the case of the perturbed Cauchy-
Riemann operator defined on the cylinder, the claim is proven in [68, Prp. 3.1.26]. The
arguments easily adapt to our situation. Denote by D, the operator

Os + Jsa0s + S - HRP (3, R?™) — LP(T,R*™).

The claim follows, if we show ker D, = ker Dy and coker D, = coker Do. Since the
index is invariant under homotopies of Fredholm operators, we assume without loss of
generality that S is asymptotically constant, i.e. there exists a constant sg such that
S(xs,t) = ox(t) for all s > sp and ¢ € [0, 1]. By elliptic regularity (cf. [53, Prp. B.4.6])
we know every element in the kernel of D), is smooth. In order to show ker D), = ker Do
it suffices to show that [[]]; , is finite for all £ € ker D). To show that we deduce the
following exponential decay condition: there exists constants ¢ and ¢ such that for all
|s| > sp and ¢ € [0, 1]

(s, )] + [dE(s, )] < ce sl (6.2.12)

By analogy we only deduce this inequality for the positive end. Denote the Hilbert space

H = L*([0,1],R?*"),
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6. Fredholm Theory

equipped with the standard norm |-|| and scalar product (-,-). Consider the positive
asymptotic operator Ay = Jyq0; 40y defined on V = {¢€ € HY2([0,1],R?") | £(0),£(1) €
R™}. By abuse of notation think of £ : R — H, s — £(s)(t) = &(s,t) as a path in H.
Since ¢ € ker D, the path solves the differential equation for all s > s,

835(8) + A+§(S) =0.

Define the function g : [sg,00) = R, g(s) == 3 |€(s)||>. By assumption the asymptotic
operator A, is injective. We have shown in Lemma 6.2.2 that A, is unbounded self-
adjoint and has a closed range. With Lemma B.1.1 we have ||A+&(s)|| > ¢||&(s)] for all
s > so where 1 = 1(Ay). We compute

05059(s) = —0s(ALE,€) = —2(AL€,0,6) = 2| AL €|]> > 2.2 ||€])* = 4g(s), (6.2.13)

For any s > 0 set & := &(s + -). The Sobolev embedding H'? < C? for functions with
one-dimensional domain [—1,+1] implies that we have for all s > sg + 2,

+1 1/2
1€(s)[| < O(1) (/1 1€5(a)]I* + (05 !!fs(v)!!)2d0>

We conclude via the Rellich embedding H'? « LP for functions on X!, := [~1,+1] x
[0,1] and elliptic regularity for D (cf. [53, Prop. B.4.6])

1€ < OMW) [l g1, < O) €l | < OM) (€5l e

-
The norm [[]]; , on R x [0,1] is finite and we conclude that

. . 2
lim g(s) < O(l)sllg)lo ”5“1,;7;2:3 =0. (6.2.14)

S—00

Define the functions gg, % : [sp,00) — R by

go(s) = g(so)e 70 (s) := g(s) — go(s) -

From (6.2.13) we have ) > 4:2. By (6.2.14) we have ¢(sg) = 0 and ¢(s) — 0. Hence
the maximum of 1 on [sp,00) can not be strictly positive, which implies for all s > s
that 1(s) < 0 or equivalently that

9(s) < go(s).

Last inequality, elliptic regularity for D and Sobolev embeddings show

[€Cs, )+ 1dE(s, t)] < O(1) [I€s

szxz, <O [&llywz, < O™

Therefore (6.2.12) and ¢ € HY2(X). On the other hand given any & € ker Dy we conclude
analogously that £ € H}Jp , thus

ker D), = ker Dy .
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6.2. Linear Theory

With Lemma 6.2.3 any element n € coker D), is identified with n € H}’q(z, R?") satisfying
D*n =0 where 1/p+1/q¢=1and D* = —0, + Jsq0; + ST. As before n € H};’z(E) and
SO

coker D), = coker D> .

This shows formula (6.2.11) for the case 6 = 0 and A4 injective.

To show the formula for § # 0 we reduce to the previous case. Choose a smooth func-
tion k4 such that ks(s) = el*l for all |s| > 1. As explained in the proof of Lemma 6.2.4
we consider the conjugated operator D' = D + Osks/ks, with asymptotic operators
Ay = Js4q0r + o+ F 6. Since the operators A’ are invertible and by the last step, the
operator D' has the index

p(U5ASAT) + p(Fo, Fi) — (W54, A7)
where W, U™, :[0,1] — Sp(2n) are given as the unique solution of
JsaO VS5 + (00 F6) U =0,  T50)=1.
Then the index formula for D follows by the last equality and Lemma 6.2.8. O

Corollary 6.2.7. With assumptions of Lemma 6.2.6. Assume additionally that S has
w-decay for some pu > 0 and set W = (ker A_,ker AL). For any constant 6 such that
0 < <min{t(A_),t(Ay), u} the index of the operator

D = 0y + Jaads + S : HRES(Z,R?) — LP(3,R*")
s given by
1 1
p(UTAS AT) + pu(Fo, Fr) — (P~ Ay, A7) + 3 dimker A_ + 3 dimker A, .

Proof. This follows immediately from Lemma 6.2.6 since the codimension of the space
H PP (3, R as a subspace of Hp20(%, R?") is dimker A_ + dimker A, . O

Lemma 6.2.8. Given a path of symmetric matrices o : [0,1] — R2"*?" and a pair of

Lagrangians A = (Ao, A1) € L(n) x L(n). Consider the operator A = Jsq0¢ + 0 : Hy —
L3([0,2],R*™). For all § with 0 < & < t(A) we have

1
/L(\Il(;Ao,Al) = ,u(\Ilvo, Al) — 5 dim ker A,
1
(¥ _sA0, A1) = p(WoAo, Ar) + 5 dimker 4,

where U, is the fundamental solution of o — pl for each p = —06,0,0.

Proof. For every p € [—6,0] consider ¥, as the fundamental solution of o — pl. The
function (p,t) — ¥(p,t) = ¥,(t) is smooth in both variables. Hence F'(p,t) := ¥(p,t)Ag
defines a homotopy with fixed endpoints of ¥(d,-)A¢ to the concatenation of the paths
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6. Fredholm Theory

p— V(b — p,0)Ag, t = ¥(0,t)Ag and p — ¥(p,t)Ag. By the axioms of the Robbin-
Salamon index we have

(¥ (0, ) Ao, A1) = —p(P(,0)A0, A1) + p(¥(0, ) Ao, A1) + (W (-, 1)Ag, A1)

Since ¥(-,0) = 1 we have u(¥(-,0)Ap, A1) = u(Ag, A1) = 0. We claim that the crossings
of p = (¥(p,1)Ag, A1) agree with eigenvalues of A. Indeed, let p € [0,d] be a crossing,
then there exists a non-trivial w = ¥(p, 1)v € W(p,1)Ag N Ay. Define £(t) := U(p,t)v.
By construction we have £(0) € Ag, (1) € Ay and Jsq0:& + 0& = p&. This shows that
£ is an eigenvector of A with eigenvalue p. By assumption there are no eigenvalues in
(0, 6] and hence the only crossing occurs for p = 0.

We compute the crossing form I'(W(-, 1)Ag, A1;0). Differentiate the identity Jiq0; ¥ +
(0 — p)¥ =0 by 9, to obtain

U(p,t) = J5a0,0:¥ (p, t) + (o (t) — p) 0¥ (p, 1) .
Using the last equation for p = 0 we compute

(€,€) = (Yv,Yv) = (Y, J3440,0,¥v + 00,¥v)
= (Vv, J5ta0,0;Yv) + (o Vv, d,Yv)
= —(Jsta¥v, 0,0:Yv) — (Jsta OV, 0, Y0)
= —0i(Jsta¥v, 0,¥v) = —Owsta (Y, 0, V) .

Integrating the last equation shows (note that d,¥(p,0) = 0)
1
/ <£a §>dt = 7wstd(\1,(0? 1),07 ap’p:()\I’(O7 1)/0) = 71-‘(\1'(’ 1)AUa Ala O)U) .
0
The last identity is established in [63, Theorem 1.1 (2)]. We see that the crossing form

is negative definite and defined on the space ker A. By the definition of the Robbin-
Salamon index we conclude

(T (-, 1) A, Ay) = %dimkerA .

This shows the claim. O
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In terms of last chapter we show that the Fredholm section is transverse to the zero sec-
tion for a generic choice of the almost complex structures. Consequently every connected
component of the moduli space of perturbed holomorphic strips with Lagrangian bound-
ary conditions is a manifold. In the non-degenerated case of transversely intersecting
Lagrangians this was solved originally by Floer and Hofer in [31]. The generalization
for the degenerate case of cleanly intersecting Lagrangians was treated by Frauenfelder
in [33]. Besides recapitulating these ideas we prove some additional transversality results
for the evaluation map based on ideas of Seidel from [70]. Transversality is achieved by
allowing the almost complex structure to explicitly depend on the domain and is based
on the existence of regular points.

7.1. Setup

Let (M,w) be a symplectic manifold and Lo, L1 C M be two Lagrangian submanifolds.
For any admissible vector field X and almost complex structure J we denote by M;
the space of all (J, X )-holomorphic strips (cf. Section 5.1 for definitions). For any such
strip u € M the arc u(s,-) is asymptotic to perturbed intersection points Z_ and
Z, for s - —oo0 or s — 400 respectively. Given smooth maps p_ : W_ — Z_ and
w4 Wi — 7, we define

MW_ Wi J, X) = {(w,u,w+) (7.1.1)

@—@L):ld—@ﬂ}

P+ (wy) = u(+00)

as a subspace of W_ x M; x W,. Let D, ; denote the vertical differential of the
Cauchy-Riemann-Floer operator (cf. equation (6.1.6)).

Definition 7.1.1. We way that J is regular for X if D, ; is surjective for all u € M.
Moreover J is reqular for X and ¢ if additionally (7.1.1) is cut-out transversely, i.e.

{(6(=00),£(00)) | € € ker Dy} + imdup = Ty ayT- @ Ty Le,  (T1.2)

for all (w_, w4, u) € M(W_, W,; J, X).

If J is regular then each connected component of the space (7.1.1) is a manifold by
the implicit function theorem (cf. [53, Thm. A.3.3]). We now show that regular almost
complex structures exist in abundance. We split up the argument depending whether J
is chosen to be R-invariant or not.
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7.2. R-dependent structures

Let so be a constant such that such that X(—s,-) = Xg_ and X(s,:) = Xp, for all
s > sp. Fix a constant s; > sg and two paths of almost complex structures J_, J; :
[0,1] — End(T'M,w). We look for regular structures in the space

J :={J € C°R x [0,1],End(TM,w)) | J(£s,:) =Jr Vs> s1}.

A subset of a topological space is comeager if it is a countable intersection of open and
dense sets.

Theorem 7.2.1. The subset of almost complex structures which are regular for X and
@ is comeager in J .

Proof. For the proof we follow the original approach of Floer using the e-norms combined
with the argument of Taubes as described in [53, Section 3]. Except for the part of
transversality with respect to the evaluation the theorem is proven in [33, Theorem
4.10).

Set W = W_ x W, and let W = |J,cn Wi be an exhaustion by compact subsets
Wy, C W with Wy, C Wiy for all £ € N and denote by ¢ the restriction of ¢ to Wy.
Fix constants p > 2 and p > 0 small enough. For k € N we define Jyegx C J to be the
space J with the property that for any (J, X)-holomorphic strip u such that

0su(s, )| < ke Ml (7.2.1)
for all s € R and t € [0,1] it holds that
(i) the operator D, j is surjective
(ii) for all w € Wy with (u(—00),u(o0)) = ¢(w) we have (7.1.2).

It suffices to show that Jiegr C J is dense and open for all k¥ € N because if that is
true we write Jreg =) ke Jreg,k C J as a countable intersection of open and dense sets.

Step 1. The subset Jyeg r C J is open for all k € N.

Fix £ € N. We show that the complement of Jiee is closed. Take a sequence
Jy € J \ Jreg,ic such that J, converges to J with respect to the C'*°-topology. Because
Jy & Jreg,k there exists a sequence (u, ) en of (J,, X)-holomorphic strips such that for
each v € N we have (7.2.1) and at least one of the following holds

(i) Du,,s, is not surjective,
(ii) there exists w, € Wy with (u,(—00), u,(00)) = ¢(w,) and
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Since the gradient of (u,) is uniformly bounded, a subsequence, still denoted by (u,),
converges to a (J, X)-holomorphic map v in Cf2 (cf. Lemma 5.2.1). We also have
with (7.2.1)

lim lim E(uy;[s,00) x [0,1]) < lim k:2/ e 25ds = 0.
S§—00 V—00 S§—00 s

Similarly for the negative end. This shows that F(u,) — E(u). Provided with the con-
vergence of the energy we conclude that u, converges to u uniformly (cf. Lemma 5.3.1).
By the mean-value inequality and exponential decay of the energy (cf. Lemma 4.3.2) we
have an uniform constant ¢ such that for all s large enough

Bsu(s, t)|* < cB(u;[s,00) x [0,1])) < k2e™20s .

Similar for the negative end. This shows that u satisfies (7.2.1) since on compact subsets
we have C''-convergence.

We distinguish two cases. In the first case we assume that after passing to a subse-
quence we have that D,,, j, is not surjective all v € N. Let II};” be the parallel transport
operator defined in equation (6.1.4). Lemma A.3.10 shows that D, := II}} D, j IL>
converges to D := D, y in the operator norm. Since by assumption D, is not surjective
for all ¥ € N and surjectivity is an open condition this shows that D is not surjective.
Hence J & Jreg,i and we are finished in that case.

Assume in the second case by passing to a subsequence that for all v € N it holds that
the operator Dy, j, is surjective and there exists ¢, = (¢, , ) € Ty (—o0)Z- @ Ty, (00 I+
such that || + [¢f] = 1, ¢ L imdy,@ and (¢, ,&(—00)) + (¢, &(00)) = 0 for all
§ € ker Dy, 5,. Since W}, is compact we assume by passing to another subsequence that
w, — w € W and ¢, converges to a non-vanishing ¢ = (¢, (") such that ¢ L imd,.
It remains to show that for all £ € ker D,, ; we have

(¢, &(=00)) +(¢T,€(00)) = 0. (7.2.2)

Let @ be a right-inverse of D. For v large enough the kernel of D, is transverse to the
image of () and since the operators D, and D are both surjective with same index their
kernels have the same dimension. In particular for every £ € ker D there exists a unique
&, € ker D, such that £ — &, € im@. With Qn, = £ — &, and norm || - || either || Hl,p;é
or || -||,,.s respectively we have

1€ =&l = lQull < OQ) [In[| < |1D@n.|| = [[D(§ = &)l =
= [[(D = Du)& |l < o(1) [|En ]| < o(1) +0(1) || = &l -

This shows that [|€ — &,|| — 0. Since &,(+00) L ¢F

[{6(~00),¢7) + (£(00), ¢T))]
<€ =&l + [{€(=00), ¢ = () + (& (—00), ¢ = )
§ Hg —5z/|| + H&/H (‘C_ - Cy_} + ‘C+ - Cj‘) — 0.

This shows (7.2.2) and hence the claim in the second case.
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Step 2. Fix connected components C_ C Z_ and C'y C Z,. There exists a dense subspace
J' C J such that the universal moduli space

M(C_,C; T, X) = {(u,]) | u € M(C_,Cy;J,X), Je T}

is a Banach manifold and the evaluation map (u, J) — (u(—00),u(c0)) is a submersion.

By Lemma 7.5.5 there exists a dense Subggace J' C J which is a separable Banach
space. It suffices to see that for all (u,J) € M(C_,C4;J’, X) the operator is surjective

DY T,BYPO(C_,Cy) @ Ty J' — EPO(C-,C4), (§,Y) = Dy &+ Y (Qu—X).

Because D, j is Fredholm the operator DE?}V has a closed range. Take 1 in the cokernel,

which is identified with an element in the Banach space E47° where 1 /p+1/q =1 such
that for all ¢ € T,BYP° and Y € T;J' we have

/ (0, Duf)dsdt = 0, / (.Y (B — X))dsdt = 0. (7.2.3)
> >

The first equation implies that 7 is smooth after elliptic regularity. We claim that by the
second equation 1 vanishes. Given a point (s,t) € [so, s1] x [0, 1] such that dsu(s,t) # 0
and assume by contradiction that 7n(s,t) # 0. Using an explicit formula (given in [53,
Lemma 3.2.2]) and a cut-off function we find Y supported in a small neighborhood of
(s,t,u(s,t)) such that

/(n, Y (Ou — X))dsdt > 0.
by

This is in contradiction to the second equation of (7.2.3) and shows that n(s,t) = 0
for all points (s,t) with dsu(s,t) # 0. Since these points are dense (cf. Lemma 7.4.2)
we conclude that n vanishes restricted to [sg, s1] x [0, 1] and by unique continuation we
conclude that 7 vanishes altogether. This shows that universal moduli space is a Banach
submanifold.

We claim that the operator D;j?}" + dyev is surjective for all (u,J) in the universal
moduli space. We use an idea from [70, Lemma 2.5]. As above DE?}V —+dyev has a closed
range. Take (1,(~,¢") in the cokernel. We have (7.2.3) and

<f(—OO), <_> + <£(OO)7 C+> =0,

for all ¢ € T,,B7°. With (7.2.3) we conclude again that 7 vanishes and by the last iden-
tity we show that ¢~ and ¢ vanishes because we find ¢ € T,,B1P such that &(+00) = ¢*.
This shows that Dg?}" + dyev is surjective . Hence given any (7 € T, (_o)C- and

(te Tu(00)C'+ there exists § € T,B"P9 and Y € T;J" such that
Dy +Y(Qu—X)=0, §(-00)=¢,  &oo)=¢".

We see that (£,Y) is an element in the tangent space of /W(CL, C4;J', X) and by the
second equation that d,ev(§) = (£(—00),&(c0)) = ¢. This shows the claim.
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Step 3. We show that the subset Jyee x C J is dense for all k € N.

By the last step M(W; 7", X) = {(u, J,w) | u € M(C_,Cy;J,X), J € T, ev(u) =
©(w)} is a Banach manifold with tangent space at a point (u, J,w) given by the set of
triples (§,Y,v) such that

Dy g€+ Y(Ou—X)=0,  (§(=00),£(o0)) = duip(v).

Abbreviate C' 1= Tyy(_oo)C— @ Tyy(0)Cy and let m: €' — C/imdy, ¢ the canonical projec-
tion. We conclude that (£,Y) lies in the kernel of the operator

(&,Y) = (Dy s+ Y (0w — X),m(§(—00),&(00))) € & @ C/imdy,gp .

By [53, Lemma A.3.6] we have that J € J' is a regular value of the projection pry :
MW, T, X) — J'if and only if the map & — (D, s§, m({(—00),&(00))) is surjective.
Hence let J be a regular value of pry and [¢(] € C/imd,,¢ we find £ € T,,B such that

Du,JS =0, W(&(—OO),&(OO)) = [C] .

We conclude that regv(pry) C Jregk- Since after Sards theorem the space of regular
values is comeager and by Baires theorem every complete metric space has the property
that a comeager subset is dense, the inclusion regv(pry) C J' is dense. Since J' C J
is dense by construction we conclude that regv(pry) C J is dense. Thus Jregr C J is
dense. O

7.2.1. Glued structures

Given two admissible vector fields Xy and X; such that Xo(s,-) = Xi(—s,-) for all
s > sg. For every R > Ry we define the glued vector field Xp := Xo#rX; via

X 2R.\) ifs<0
XR(S»‘)::{ ols + 1) s <

' (7.2.4)
Xi(s—2R,:) ifs>0.

Similarly given two admissible almost complex structures Jy and J; such that Jy(s, ) =
J1(—s,-) for all s large enough, we define for all R > Ry the glued almost complex
structure Jg = Jo#rJ1 via

Tnls.) i { T 2R s <0 725)
BT Iis— 2R, ) ifs>0. -

In this section M ; denotes the space of pairs (u, R) where u is a (Jr, Xg)-holomorphic
strip and R > Ry. As above the arcs u(s,-) converge to perturbed intersection points
Z_ and Z, for s - —oo and s — 400 respectively. Given smooth maps p_ : W_ — T_
and ¢4 : W — I, we denote the space

MW_ Wy, J,X) = {(w_,u, R,wy) (7.2.6)

u(—00) = sﬂ(w)}

u(+00) = o (wy)
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7. Transversality

as subspace of W_ x M ; x Wy. For all (u, R) € M ; we consider the operator
Dur:TB"" @R — P (£,0) — Dy gt +0nr,

with ng = (OrJ) (Oyu — Xg) — Jr(OrXR) and D, g is the vertical differential of the
Cauchy-Riemann-Floer operator (i.e. the operator (6.1.6) with J = Jr and X = Xp).

Definition 7.2.2. The homotopy J = (Jr)r>r, is called regular for X = (Xgr)r>r, if
D, R is surjective for all (u, R) € M. Moreover J is called regular for X and (o—,p4)
if additionally (7.2.6) is cut-out transversely, i.e.

{(5(_00)7 6(00)) | (67 77) € ker ﬁu,R} +im dw‘p = Tu(foo)I— X Tu(oo)I-i- :

for all (w_,wy,u, R) € M(W_, Wy; J, X).

Remark 7.2.3. This is of course not equivalent to demand that for all R > Ry the
structure Jg is regular for Xz and (¢_, ¢4 ).

Fix paths of almost complex structures J3_, Joo and J and some s; > sg. We denote
by Jaam the space of admissible almost complex structures (cf. Definition 5.1.1). We
search for regular structures in the space

J(:o = JO(_‘S) ) )
J = (‘]0) Jl) € Jadm X Jadm [V8 2> 511 Joo = J()(S, .
Joo = Jl(S, .

Theorem 7.2.4. The subspace of almost complex structures which are reqular for X
and o is comeager in J .

Proof. Since we apply the same principle ideas from the proof of Theorem 7.2.1 we give
just sketch. Let Jreg C J be the subset of regular pairs. Fix constants p > 2 and > 0
small enough. For any k& € N we define Jiegr C J consisting of all pairs (Jo,J1) € J
with the property that for all R > Ry with R < k the operator lA)u R is surjective for
all (Jg, Xg)-holomorphic curves u which satisfy additionally |dsu(s,t)| < ke #Is! for all
(s,t) € ¥ and for all w € Wy, with ¢p(w) = (u(—00),u(c0)) we have {({(—o00),{(c0)) |
(£,0) € ker ﬁ%R} +imdyp = Ty—oc)Z- @ Ty(oe)Z+- By the same arguments as in the
first step of the proof of Theorem 7.2.1 we show that Jyeg i is open for all k € N.

We show that the corresponding universal moduli space is a Banach manifold and the
evaluation map is a submersion. As above we construct a separable Banach space [J’
such that J’ C J is dense. Define the universal moduli space

M(C-,C: T, X) = {(u, ], R) | u € M(C—,C: Tr, Xp), J € T'}.
The vertical differential of the perturbed Cauchy-Riemann operator is

DU TBYWS o Tp 7' @R — EF° (€,Y0,Y1,0) v Dy r(E,0) + Yr(du — Xr),
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7.2. R-dependent structures
where Yr : 3 x M — End(TM) is defined by

Ya(s. ) Yo(s+2R,) ifs<0
s,) 1=
i Yi(s—2R,) ifs>0.

Let Dg?&v denote the restriction of 135“}1{" to the subspace T,BYP® & T;7’. We claim that

Dgf}i%v is surjective. Take any element n € €2 in the annihilator of the image. Then for
all £ € T,B and (Yp, Y1) € T;J' we have

/<Du,R§a77> =0, /(YR(@U — Xg),n) =0.
s >

The first equation shows that 7 is smooth as in the proof of Theorem 7.2.1. Choose a
point (s,t) € [2R+s50, 2R+51]%]0, 1] such that dsu(s, t) # 0 and suppose by contradiction
that n(s,t) # 0. We find an infinitesimal almost complex structure Y = (0,Y;) € 777’
supported in a small neighborhood about (s —2R, t,u(s,t)) such that [o(YrJgrsu,n)) >
0 in contradiction the the second equation. Hence 7(s,t) vanishes on points (s,t) €
2R + s0,2R + s1] x [0,1] with dsu(s,t) # 0. Because such points are dense in [2R +
50, 2R+ 5s1] %[0, 1] we conclude by continuity that 7 restricted to [2R+ Ry, 2R+ R1] x [0, 1]
vanishes and by unique continuation we see that n vanishes everywhere. The rest of the
proof follows word by word from the proof of Theorem 7.2.1. O

7.2.2. Homotopies

Given homotopies X = (Xg)pge[q,p] and J = (JR)gefa,p Of admissible vector fields and

almost complex structures respectively we denote by M (W_, W_,; J, X) the space of all
(Jr, XR)-holomorphic maps, similarily to (7.2.6). For technical reasons we require that
Xpg(—s,") = Xpg_ and Xg(s,-) = Xp, forall s > s and two fixed Hamiltonians H_ and
H which do not depend on R. We say that J = (Jr) re[q,y) 18 regular for X = (Xgr)rea]
and o similarly to Definition 7.2.2. Given two admissible almost complex structures J,
Jp such that J_ = Jo(—s,:) = Jp(—s,) and J; := Ju(s,-) = Jp(s,-) for all s > s1. We
search for regular almost complex structures in the space J(J,, Jp) which is the space of
smooth homotopies (Jr)re[q,p from J, to J, such that Jr(—s,-) = J- and Jg(s,-) = J+
for all s > s; and R € [a, b].

Theorem 7.2.5. If s > sg the subspace structures which are reqular for X and (o—, ¢4)
in J(Ja,Jp) is comeager.

Proof. The proof is completely analogous to the proof of Theorem 7.2.1 and Theo-
rem 7.2.4. Note that the space of infinitesimal almost complex structures is given by
section supported in the compact cube [a,b] X [—s1, s1] X [0, 1] and hence the resulting
Banach spaces are separable. ]
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7. Transversality

7.3. R-invariant structures

Let X = X be the Hamiltonian vector field for some clean Hamiltonian H € C*°([0, 1] x
M). In this section we construct regular structures in a set of almost complex structures

J = C>=([0,1], End(T M, w)).

For any J € J we denote by M the space of (J, X)-holomorphic strips and by Z the
space of perturbed intersection points of H. We also give a transversality result of the
evaluation of tuples of (J, X)-holomorphic maps given by

ev: M7 — T2,

(U1, .y Um) = (w1 (—00), w1 (00), ug(—00), .. .\ U (—00), Up (c0)) .

(7.3.1)

The difficulty here lies in the fact that we need to perturbed J simultaneously for the
curves u; and u;, which is obviously not possible if u; and u; have the exact same image.
For that reason we define the notion of a distinct tuple.

Definition 7.3.1. A tuple (uq,...,uy) of maps ¥ — M is called distinct, if for all i # j
and a € R we have u; # uj(a+-,-).

Remark 7.3.2. Distinct tuples should not be confused with the stronger notion of abso-
lutely distinct tuples as defined in [11]. The transversality theory in [11] is more difficult
since the authors achieve transversality for domain-independent almost complex struc-
tures.

Definition 7.3.3. Given a smooth map ¢ : W — Zy (Lo, L1)*™. The almost complex
structure J € J is regular for X and o if J is regular for X and ¢ transverse to the
evaluation map (7.3.1) restricted to the space of distinct tuples.

Theorem 7.3.4. The subspace of J which are regular for X and ¢ is comeager in J .

Proof. For > 0 we define J#* C J as the open subspace of all J with p < «(J, H).
Choose an exhaustion W = |J;,, W), by compact subsets W}, such that Wj, C W, for all
k € N. For ;4 > 0 and k € N we denote by jr’é&k C J* the space of all J € J* such that
the operator D,, ; is surjective for all (J, X)-holomorphic strips u which satisfy (7.2.1)
and for all distinct tuples (ug, ..., un) of (J, X)-holomorphic strips which satisfy (7.2.1)
and w € W such that ¢(w) = ev(u) we have that the image of d,,¢ is a complement of

{(61(—00),61(00),52(—00), ... ,fm(OO)) | fj € kel“DujJ, ] = 1, .. .,m} . (7.3.2)

First we that jr’ég  C J" is open as in the proof of Theorem 7.2.1. To show that that

jr‘ég’k C J* is dense we proceed as follows. Let J' C J be the dense subspace which is
a separable Banach manifold. Then J* := J' N J* is also separable Banach manifold
which is dense in J#. Let C' = (C1,Cy,...,Cay) be a tuple of connected components
in Zrr (Lo, L1). Abbreviate B := B"P%(Cy, Cy) x BYP9(C3,C4) x ... BYPO(Cop_1, Cam).
Define the universal moduli space

M(C; T™, X) C Bx T,
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7.4. Regular points

to be the space of (u1,...,Un,J) where J € J" and (uy,...,up) is a distinct tuple of
(J, X)-holomorphic strips. We want to show that M(C; 7", X) is a Banach manifold
and that the evaluation map is a submersion

ev:M(C;j’“,X) —C1 xCyx - xCh, (Upy ey Uy J) = e0(UL, -y Upy) -

For (u,J) = (1, ..., Um,J) € M(C;J", X) with (21,2, ..., 22m) = ev(u) consider the
operator

TBOT)T = O E © ... EP° Ty C1 @ Ty Co ® -+ - @ Ty, Comy
(61’627 s agm’Y) = ( 5111’1}](51’}/), 3233(5271/)7 s ?ngjfj(gm’y)aduev(f))

We claim that the operator is surjective. It suffices to show that the cokernel is triv-
ial. Given an element (1,() = (M1,...,Mm,C1,--.,Com) in the cokernel. For any { =
(&1,...,&m) €TyB and Y € T;J" the following terms vanish

/(Duj,ij,nj>d5dt, Z/(Y(@tw — X),n;)dsdt,
j=1

as well as (§;(—00),C2j—1) + (§(00),(2;) for all j = 1,...,m. By the first term we
see that n; is smooth for all j = 1,...,m. By the last term we see that { vanishes
since there exists £ with ( = dyev(§). To prove that also n vanishes choose a regular
point (s,t) € R(uy,...,un) (cf. Definition 7.4.1). Then for any j =1,...,m we find Y
supported in a small neighborhood of (¢, u;(s,t)) such that

(Y (Qpuj — X),m5) = [ (Y (Oeuj — X),m5) >0,
>/ w=| ”

in contradiction to the second equation. By Proposition 7.4.3 regular points are dense.

Hence n vanishes. We conclude that jr‘ég p CTH s dense. The union

Fresk = |J Tegn © T

u>0

is open. It is also dense because for any J € J, there exists p > 0 such that J € J#
and we find J, € ‘7rlég,k C Jreg,k converging to J. This shows that J.egr C J is dense
and open. Hence Jreg = [ Jreg,k 1S comeager. ]

7.4. Regular points

Fix X = Xy be a Hamiltonian vector field for a clean Hamiltonian H € C*°([0, 1] x M)
and J : [0,1] — End(T'M,w) be a path of almost complex structures. We abbreviate the
strip ¥ = R x [0,1]. Recall that a tuple of maps (u1,...,um) is distinct if u; = uj o,
for some a € R implies that j = .
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7. Transversality

Definition 7.4.1. Let (uy,...,u,) be a tuple of finite energy (J, X )-holomorphic strips
with boundary in (Lg, L1). A point (s,t) € ¥ is a reqular point for (uq, ..., uy) if

(i) Osuj(s,t) #Oforall j=1,...,m
(ii) wi(s,t) #limy_y1ouj(s’,t) foralli,j=1,...,m
(iii) for all s’ € R we have: u;(s,t) = u;(s',t) <= ' =sand j=1i.
We denote this set of points by R(u1, ..., uy,) C 2.

Lemma 7.4.2. Let u be a (J, X)-holomorphic strip such that Osu # 0, then the set
C(u) :=={(s,t) € R x [0,1] | Osu(s,t) = 0} is finite.

Proof. By a change of variables we assume H = 0 and that Lo and L intersect cleanly
(see Lemma 3.2.4). By the asymptotic analysis we know that there exists sy € R such
that Jsu(s,t) # 0 for all |s| > s and ¢ € [0, 1] (cf. Corollary 4.1.3). By [31, Lemma 2.3]
the set of critical points is discrete. This shows the claim. ]

Proposition 7.4.3. Given a distinct tuple (u1,...,uy) of (J, X)-holomorphic strips,
then R(ui, ..., uy) C X is open and dense.

Proof. The proof goes along the lines of [31, Theorem 4.3] or [33, Theorem 4.9]. Without
loss of generality we assume that H = 0 and L, L; intersect cleanly (cf. Lemma 3.2.4).
We abbreviate the points u;(£00) := lims 40 u(s,-) € LoN Ly for j = 1,...,m and
R:=R(uty...,Un).
Step 1. We show that R C X is open.

By contradiction let (s,,t,) C X\ R be a sequence such that lim,_,o(s,,t,) = (s,t) €
R. Hence for all v € N at least one of the following statements holds

(i) Osuj(sy,t,) =0 for some j=1,...,m
(ii) wuj(sy,ty) = ui(—00) or u;(s,,t,) = u;(co) for some i, =1,...,m,
(iii) w;i(sy,tw) = uj(s),t,) for some s, € R and ¢ # j

(iv) u;(sy,t,) = uj(s,,t,) for some s, # s, and j=1,...,m

In the first case we argue by continuity that dsu;(s,t) = 0 in contradiction to (s,t) € R.
Similarly we exclude the second case. Suppose that the third statement holds after
passing to a subsequence for all v € N. If (s)) is unbounded then without loss of
generality we have s, — oo hence u;(00) < w;(s),t,) = ui(sy,t,) — u;(s,t), which
contradicts the fact that (s,t) is a regular point. If (s!,) is bounded, then after possibly
passing to a subsequence we have s, — s" and w;(s',t) < wu;(s),t,) = ui(sy,t,) —
u;i(s,t), hence u;j(s’,t) = u;(s,t), which again contradicts the fact that (s,t) is a regular
point. Suppose finally that the last case holds after passing to a subsequence for all v € N.
If (s},) is unbounded, then without loss of generality s}, — oo and we obtain w;(s,t) <

v

w;(sy,ty) = uj(s),t,) — wu;j(00). This shows that u;(s,t) = u;(c0) in contradiction to
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(s,t) € R. If on the other hand (s],) is bounded then s, — s’ without loss of generality.
If s’ # s we conclude that w;(s,t) = u;(s',t) in contradiction to the fact that (s,t) is
regular and if s = s we conclude that dsu;(s,t) = 0 which again contradicts the fact
that (s,t) is regular. We conclude that R is open.

Step 2. We show that R C ¥ is dense under the additional assumption that m = 1.

Write u = u;. Given any point (s1,t;) € ¥ and € > 0. We have to show that
there exists a regular point in the ball B.(s1,t1). Let regv(u) C M be the space of
regular values of u. Since by Lemma 7.4.2 the set of critical points is finite we assume
after possibly replacing (s1,¢1) by a point which is e-close and decreasing ¢, that for all
(s,t) € Be(s1,t1) we have

u(s,t) € regv(u), u(s,t) # u(£o0). (7.4.1)

We claim that this implies that for all (s,t) € B.(s1,t1) the set u=!(u(s,t)) is finite.
Indeed, assume by contradiction that we find a sequence (s,,t,) C 3 consisting of
distinct points and u(sy,,t,) = u(s,t) for some (s,t) € Be(s1,t1) and all v € N. If
(sy) is unbounded then after possibly passing to a subsequence we have s, — 00 and
u(s,t) = u(sy,ty) = u(+oo) in contradiction to (7.4.1) and if (s,) is bounded then
after possibly passing to a subsequence we have s, — s’ and ¢, — t/, which shows that
u(sy,ty) = u(s',t') = u(s,t) for all v € N and hence du(s’,t') = 0 in contradiction to
u(s,t) € regv(u). Now define

wHu(s, 1)) MR x {t1} = {(s1,t1), (52, t1)s ..., (se:t1)} . (7.4.2)
For 6 > 0 we define
Fs:={(s,t) € |3 (s,t) € Bs(s1,t1), u(s,t) =u(s',t)}.
We claim that for all 7 > 0 there exist 6 > 0 such that
Fs C By(s1,t1) U Bp(s2,t1) U+ U By (8¢, 1) . (7.4.3)

If not then we find » > 0 and sequences (s),),(s,) C R, (¢t,) C [0,1] with u(s],t,) =
w(Sy,ty), (Su,ty) — (s1,t1) and (s),,t,) & By(sj,t1) for any j = 1,...,¢. If (s)) is
unbounded we find a diverging subsequence s, — 400 and we conclude u(s1,t1) +
u(sy,ty) = u(s),t,) — u(+oo) in contradiction to u(sy,t1) # u(£oo). On the other
hand if (s}) is bounded by possibly passing to a subsequence we assume without loss
of generality that s/, — ', and u(s',t1) < wu(s,,t,) = u(sy,,t,) — u(s1,t1). Hence
u(s’,t1) = u(s1,t1) and by (7.4.2) we have s’ € {s1,...,s¢}. But this is in contradiction
to s’ & B, a(sj,t1) for all j =1,...,¢. We conclude (7.4.3).

By possibly decreasing ¢ again we assume that u restricted to B:(s;,t1) is an embed-
ding for all j =1,...,f and for all 3,5 = 1,...,¢ with i # j we have

(sj—e,85+e)N(si—¢e,si+¢e)=0. (7.4.4)
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Note that by (7.4.1) the map u is already an immersion restricted to B:(s;,t1). Choose
0 < e such that (7.4.3) holds for r = . We assume that ¢ > 2 because otherwise
(s1,t1) € R(u) and we are finished. Let cl(A) denote the closure of any subset A C X.
For j =2,...,¢ we define

2= {(s,t) € cl(Bysa(s1,t1)) | 3 (s, 1) € Be(sj, 1), uls,t) = u(s', 1)} .

By (7.4.3) we obtain the same set when replacing B.(s;,¢1) with cl(Bz(sj,t1)) in the
definition, which implies that X; is closed for all j = 2,...,¢. Again by (7.4.3) we have

Cl(Bg/z(Sl,tl)) = cl(R(u) N B5/2(81,t1)) UXaUX3U---UXp.

Suppose by contradiction that R(u) N Bs/a(s1,t1) = 0. Since for all j = 2,...,¢ the set
Y, is closed, there must exists jo = 2,...,# such that 3; contains an open subset. We
assume without loss of generality that there exists p > 0 and (81,%1) € Bs/a(s1,t1) such
that Bp(él,fl) C Y9. By possibly making p even smaller we assume that B.(s2,t1) N
Bp(§1,f1) = (). Define

Q= u_l(u(Bp(él,tAl)) N Bg(SQ,tl) c X,

which is an open subset because u restricted to B,(51, t1) is an embedding. We have the
diffeomorphism
RS u;l ou,: By(81,81) — Q,

where us and u, denotes the map u restricted to B.(s2,t1) and B,(31, t1) respectively. In
particular for all (s,t) € B,(31,%) there exists uniquely (s”,#") = ¢(s,t) € Q such that
u(s”,t") = u(s,t). On the other hand by construction there exists (s',t) € B:(s2,t1)
such that u(s,t) = u(s’,t). This implies that (s',t) € © and by uniqueness (s',t) =
(s”,t"). We see that ¢(s,t) = (k(s,t),t) for some map & : B,(31,%1) — R or equivalently
u(k(s,t),t) = u(s,t). Since u is J-holomorphic we compute

0 = 0su + JOyu = Osudsk + J(Osudik + Opu) = Osu (Osk — 1) + O Opk . (7.4.5)

Since u restricted to B,(81,%1) is an immersion, we see that dyx = 0 and dsx = 1. This
implies that there exists a € R such that x(s,t) = k(s) = s + a. We claim that a # 0.
Assume by contradiction that a = 0, then we have k(81) = §; € (s2 — &,82 + €) and
51 € (s1 —¢,s1+¢). But after (7.4.4) the sets (s2 —¢,s2+¢) and (s1 — &, s1 +¢) have an
empty intersection. We have deduced that u(s + a,t) = u(s,t) for all (s,t) € B,(31,%1)
and by unique continuation we have u = u o 7, with @ # 0. This contradicts the fact
that the energy of w is finite.

Step 3. We proof that R is dense with any m.

Given a point (s1,t1) € ¥ and £ > 0. By possibly replacing (s1, 1) with a point which
is e-close and decreasing € we assume that for all (s,t) € Bs(s1,t1) and 4,5 =1,...,¢ we
have

ui(s,t) € regv(u;), ui(s,t) # u;(£o0) . (7.4.6)
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We claim that the set uj_l(ui(s,t)) is finite for all (s,t) € B:(s1,t1) and 4,5 = 1,...,m.
Suppose by contradiction that there exists 7, j and a sequence (s,,t,) of distinct points
such that u;(s,,t,) = wi(s,t). If (s,) is unbounded, then without loss of generality
s, — £00, t, — t and hence u;(£00) = u;(s,,t,) = ui(s,t) contradicting (7.4.6). If (s,)
is bounded, then without loss of generality s, — ¢, t, = ¢, u;(s',t) = u;(sy,t,) = ui(s, t)
and hence Jyu;(s’,t) = 0. This contradicts the fact that u;(s,t) € regv(u;).

By the last step and yet again moving (s1,t1) and decreasing €, we assume without
loss of generality that B.(s1,t1) C R(u;) for all j =1,...,m. Define

U w'(uils,00)) R x {1} = {(s1,12), (s2,11), - -, (50, 12)} -

1<i,j<m
For ¢ > 0 define
Fs:={(s,t) € X |3 (s',t) € Bs(s1,t1) with u;(s',t) = u;(s,t) for some i,j} .

By the same argument as in last step we conclude that for all » > 0 there exists § > 0
such that

Fs C Br(slatl) U BT(SQ,tl) y---u BT(Sg,tl) . (747)

Fix § < € such that (7.4.7) holds for r =e. For k =1,...,¢ and i # j we define
Yiik={(s,t) € CI(B5/2(51,t1)) | 3 (s',t) € B(sg,t1) with u;(s',t) = uj(s,t)} .

By (7.4.7) and the assumption that B.(s1,t1) C R(u;) for all j =1,...,m we have
CI(B(g/Q(Sl, tl)) = Cl(R(’LLl, c ,um) N 35/2(51, tl)) U Ui,j,k Zi,j,k .

Arguing indirectly assume that R(u, ..., umn) N Bs/a(s1,t1) = . Without loss of gener-
ality there exists p > 0 and (81,%1) € Bys)a(s1,t1) such that B,(31,t1) C $a1 for some
k=1,...,£ Define the open subset

Q == ui (ua(B,(31,1))) N Be(sg, t1) C X

Hence for all (s,t) € B,(31,%1) there exists uniquely (s”,t”) € Q such that u(s”,t") =
uz(s,t). On the other hand since Bp(§1,f1) C Y91 there exists (s',t) € B.(sy,t1) such
that uy(s’,t) = ua(s,t). This implies that (¢',t) € Q and by uniqueness (s”,t") = (¢, t).
We conclude that there exists a map r : B,(81,%1) — R such that uy(k(s,t),t) = ua(s,t)
for all (s,t) € B,(31,%1). Since both uj and us are J-holomorphic we conclude by a
computation similar to (7.4.5) that k(s,t) = k(s) = s + a for some a € R. Hence
ui(s + a,t) = us(s,t) for all (s,t) € B,(%1,%1) and by unique continuation u; = ug o 7,
in contradiction to the fact that the tuple (uy,...,u;,) is distinct. ]
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7. Transversality

7.5. Floer’s c-norm

Fix some p > 1, @ C R? a subset with Lipschitz type boundary and a sequence (ek)keN
of positive numbers e > 0. Given a smooth function with compact support f € C§°(£2)
we define the norm

171 o= 3 ek ko

k>0

and the subspace C§(2) C C5°(2) by
Co() ={F € G5 () | [Ifll; < oo} -

Floer originally used C*-norms instead of Sobolev norms, but after the Sobolev embed-
ding theorem the norm defined here is equivalent. We have chosen this approach because
it suits better when considering domains with boundary.

Lemma 7.5.1. If Q is bounded then the space C§(S2) with the topology induced by the
norm |||, is a complete and separable space. In particular (C5(S2),||]|.) is a separable
Banach space.

Proof. See [68, Lemma 4.2.7] and [68, Lemma 4.2.9]. O

Clearly Cj5(Q2) C C§°(92) is continuous. The next lemma states that for certain sequences
this inclusion is dense. It is a slight generalization of [68, Lemma 4.2.8] allowing boundary
values.

Lemma 7.5.2. Given ¢ € N there exists a sequence (e,) such that the inclusion C§(2) C
C3° () is dense for all subsets Q2 C R with Lipschitz type boundary.

Proof. Fix some p > 1 and denote by B, C R the ball of radius r > 0 centered at the
origin. Choose a smooth function p : R — [0, 1] with supp p C By and Jgep =1. Then
set ps(z) = p(x/8) for 6 > 0. Note that we have supp ps C Bs(0) and 9%ps = §*9%p
with k = |a|. Define

e = (apk®) ™, ap = |lpllgrp -

Now let € > 0 and f € C§°(2) be any given smooth function with compact support.
Fix m € N such that 2~™ < e. Using cut-off functions we find g € Hy"?(R’) such that
g = fllgme) < €/4 (see [53, Exercise B.1.3]). Secondly we find § > 0 such that the
smooth and compactly supported function h = ps * g satisfies ||g — hHHm,p(Re) < g/4.
Then we have

||f - h’”k,p;Q
L+ f = hlly o

< Hf - gHm,p;Q + ”g - hHm,p;Q + 27(m+1) <e.

dist (£, h)em(e) = 2 27D <1 f = Bl g + 270D

k>0
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7.5. Floer’s e-norm

This shows that h lies in the e-ball about the function f in the C'*°-topology. It remains
to show that h € C¢(Q2). Indeed, by Young’s inequality we have

e 1Pl s = ex llg * psll prin < e lgllpr lpsllgen < erard™ gl < 27" llglls

for every k > 267!. This shows that the e-norm of h is finite or equivalently that
h € C(Q). O

Let F — M be any vector bundle over a compact Riemannian manifold with boundary
and corners. Choose a connection V and a Riemannian metric on E. This induces
connections and a metric on £ ® F', where F' is any tensor bundle over M. Let volys be
a volume form. Define the norm

1/p
lell, = ( / \s|pvolM) ,

and recursively for all £ € N define the norms

1€llop =€, €l = IVEllR—1y -

Definition 7.5.3. Let p > 1 and (g)ren be a sequence. We define the space I'*(E) C
I'*°(E) to be the space of all smooth sections £ which are bounded in the norm

I€le = exll€]

k>0

kp *

Proposition 7.5.4. Suppose that M is compact with boundary and corners. The space
I'*(E) with norm ||-||. is a separable Banach space and there exists a sequence (€j)ken
such that the inclusion I'°(E) C T'°(FE) is dense for the C*-topology.

Proof. Choose a local trivialization of E over charts of M which are adapted to the
boundary OM and an associated partition of unity. Then the norm ||£]|, of any section
¢ € T'(E) is equivalent to the finite sum of the e-norm of its local representatives. Then
the claim follows from Lemma 7.5.1 and 7.5.2. O

Lemma 7.5.5. Fiz paths J_, Jy : [0,1] — End(TM,w). For any sy > 0 consider the
space J = {J € C®°[R x [0,1], End(TM,w) | J(£s,) = J+V s > s1}. There exists
a dense subspace J' C J which is a separable Banach manifold. The same holds for
J = C*([0,1], End(TM,w).

Proof. For any J € J we define the linear bundle S; — ¥ x M where the fibre of S;
over a point (s,t,p) € ¥ x M is given by linear maps Y € End(7, M) such that

Y‘](Sa tap) + J(Sv typ)Y = Oa wp(Yga 5/) + wl)(§7 Y‘Sl) =0 5

for all vectors &, &’ € T, M. The tangent space 177 is given by smooth sections Y € I'(.S)
with support contained in [—s1,s1] x [0,1] x M. Fix any Jy € J, we identify the
space J with the C%-unit ball in the space smooth sections Y € T'(S Jo) with support
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7. 'Transversality

in [—s1,81] x [0,1] x M, by J + Y; = (J + Jo)"5(J — Jo). The inverse is Y
Jo(1=Y)"Y(1 +Y). For further details see [68, Section 4.2]. By Proposition 7.5.4 there
exists a sequence ¢ := (g¢)ser such that the subspace is dense

J={JeT||¥;l|.<oc}CT.

By the same lemma we see that the space J’ is identified with an open subset in a
separable Banach space. O
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8. Gluing

All algebraic statements for Floer homology in this work are based on a gluing result
of holomorphic strips, which is in a sense the converse for the Floer-Gromov breaking
phenomenon. Originally the problem has been addressed and solved by Floer in the
series of papers [25], [27] and [28] under the assumption that the holomorphic strips
have boundary in two transversely intersecting Lagrangians. The generalization for the
degenerate case in which both Lagrangians are equal was worked out by Fukaya, Oh,
Ohta and Ono [36, Chapter 7]. In this chapter we give a further generalization of
the gluing theorem for holomorphic strips with boundary on two cleanly intersecting
Lagrangians. Our approach is not new and was previously sketched out by Frauenfelder
in [33, Chapter 4.7]. Since we need precise statements for the construction of coherent
orientations we give a complete proof here. We follow closely the lines of [36] as well as
the gluing results of [5] and [11]. Very recently another approach by Siméevié¢ has been
developed in [71] using completely different methods of interpolation theory. At the end
of the chapter we also give a small generalization of a gluing result in [1] which is for
classical Morse theory.

8.1. Setup and main statement

Let (M,w) be a symplectic manifold and Ly, L; C M closed Lagrangian submanifolds.
Fix admissible vector fields Xy, X7 and admissible almost complex structure Jy, Ji (cf.
Definition 5.1.1) such that Xo(s,-) = Xi(—s,-) and Jo(s,:) = Ji(—s,-) for all s large
enough. Abbreviate by M}, the moduli space of all (Ji, Xi)-holomorphic strips modulo
reparametrization. We denote by

up(—o0) € W_
MEW_, W) = < (ug,u1) € Mo x M1 | ug(oo) = uy(—o0) p (8.1.1)
ul(oo) S W+

for some fixed submanifolds W_ and W, in the space of perturbed intersection points
(cf. Section 7.1). We distinguish three cases and define (J, X)

(A) both (Jo, Xo) and (J1, X1) are R-invariant, (J, X) := (Jy, Xo) = (J1, X1)
(B) either (J,X) := (Jo, Xo) or (J,X) := (J1,X1) is R-dependent,

(C) both (Jy, Xo) and (J1,X;) are R-dependent, then (J,X) = (Jr, Xr)r>g, with
Jr = Jo#rJ1 and Xr = Xo#rX1 (Cf. Section 7.2.1)

97



8. Gluing

Mostly the arguments are the same for these three cases and we only distinguish them
at parts where it is necessary. We glue a pair (ug,u1) € MY(W_,W,) at the point
up(00) = u1(—00) to obtain a family of strips in the space (cf. equation (7.1.1) or (7.2.6))

MW Wo) = M(W_, Wi J, X)) ~ . (8.1.2)
We say that Jy and Jp are regular if (cf. Definitions 7.1.1 and 7.2.2)
e Jy is regular for X for k=0, 1,
e in case (C), the glued structure (Jg) is regular for (Xg) and
e the spaces M (W_, W, ) and M(W_, W, ) are cut-out transversely.

Consequently each connected component of the above spaces is a manifold and as usual
we denote with the subscrip [d] the union of all d-dimensional components.

Theorem 8.1.1. Assume that the almost complex structures Jy and Jy are regular.
Given a pair u = (ug,u1) € M*(W_, W,). There exists Ry and a continuous map

Gu : [Ro,OO)%M(W_,W_;_)m, R — wg,
such that
(i) (wgr) Floer-Gromov converges to u as R — oo,

(i4) given a sequence (w”) C M(W_, Wy ) which Floer-Gromov converges to u, then
w” lies in the image of the map G, for all but finitely many v.

Moreover with orientations given in Lemma 8.7.1, the space
MW, W)y i= MW_, W) UM (W, W),

is an oriented manifold with oriented boundary (—1) - MY (W_, W) if (X1, J1) is R-
invariant and MY(W_, Wi )0 otherwise.

Proof. The proof covers the rest of the chapter. Here we give an overview of the principal
arguments. Basically we follow the standard gluing procedure, which we quickly recall
now. Fix a rigid pair (ug,u1) € MY(W_, W, )(g and a large enough gluing parameter
R > Ry. We denote the glued structures Jr := Jo#grJ1 and Xg := Xo#rX;y (cf.
equations (7.2.5) and (7.2.4)). We define the preglued map ug using cut-off functions
and then roughly speaking solve the equation dsw + Jr(w)(dyw — Xg(w)) = 0 for w in
a neighborhood of ur using the Newton-Picard theorem. More precisely given a small
vector field £ along up and write the map w as w(s,t) = expy(s4) §(s,t) with respect
to some exponential function associated to an axillary Levi-Civita connection. Then
w is (Jgr, Xgr)-holomorphic if and only if £ is a zero of a non-linear map Fr defined
on an open ball in a Banach space of sections of u},TM (cf. equation (8.4.1)). Since
we work with degenerated asymptotics which require exponential weights, the Sobolev
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8.2. Pregluing

norms which we work with have adapted weights that depend on the gluing parameter
(cf. Section 8.2). In the assumptions of the Newton-Picard theorem we need a bound on
the right-inverse of the differential of Fr at zero, denoted Dg, which does not depend on
R. The right inverse Qg is constructed in (8.3.15) and the uniform bound is established
in Corollary 8.3.5. Moreover we need a quadratic estimate (cf. Lemma 8.4.1). Then
all (Jgr, Xg)-holomorphic strips in a neighborhood of ur are modeled on the kernel
of Dg, i.e. for each element £ € ker Dr small enough there exists an unique element
§" == op(§) € iImQp such that (s,t) = exp,,n(E'(s,t) + &"(s,1)) is a (Jr, XR)-
holomorphic strip and any w close enough to ug is of that form (cf. Lemma 8.4.2). In
particular the map vg := exp,, or(0) is (Jr, Xg)-holomorphic. We define the gluing
map Gy (R) = wr where

e in case (A) wgr = [vg] the equivalence class modulo reparametrizations,

e in case (B) for all (s,t) € R x [0,1] we define

(5.8) vr(s — 2R, t) if (J1,X;) is R-invariant
wr(s,t) =
f vr(s+ 2R, t) if (Jo, Xo) is R-invariant .

e in case (C) wr = vg.

That the gluing map is continuous is proven in Lemma 8.5.1, that it is asymptotically
surjective is proven in Lemma 8.6.2 and the statement about the orientations is proven
in Proposition 8.7.4. O

8.2. Pregluing

In this section we introduce the Sobolev framework. The main ideas in this chapter
are straight-forward generalizations of the methods of [36, Chapter 7.1]. We assume for
simplicity that Xg = 0, X; = 0 and W_, W, lie on different connected components.
Choose an auxiliary metric on M such that W_, W, Lo and L; are totally geodesic
(cf. Lemma 6.1.6). All norms, parallel transport and exponential maps in the following
sections are induced by this metric. For the general case where Xy, X7 #Z 0 or W_ and
W, lie on the same connected component, we need to work with metrics that depend
on the domain as explained in the proof of Lemma 6.1.5.

Preglued strip From now that the pair u = (ug,u1) € MY(W_, W) is fixed. In
case (A) or (B), the maps uy and uj are unparametrized. We choose parametrizations
and still denote the maps with the same symbol by abuse of notation. Due to exponential
decay (see Theorem 4.1.1) there exists an intersection point p = ug(00) = ui(—o00) € C, a
constant sop > 0 and two maps (o : [sg,00) x [0,1] = T, M , (1 : (—o0, —so] x [0, 1] — T, M
such that for all s > sg and ¢ € [0, 1] we have

uo(s,t) = exp, Co(s, 1), u1(—s,t) = exp, (1(—s,1) .
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8. Gluing

We fix once and for all smooth cut-off functions

57, BT R X [0,1] - 0,1], 6‘(—s,t)=ﬁ+(s,t)={(1) NOSRNCERY

For any R > sg large enough we define the preglued strip ur : R x [0,1] — M via

ui(s —2R,t) ifs>1
ur(s,t) = < see below if —1<s<1 (8.2.2)
uo(s + 2R, t) if s < -1,

and if —1 < s <1 we use the interpolation
ur(s,t) == exp, (87 (s, t)¢o(s + 2R, t) + 7 (s,1)¢1(s — 2R, 1)) .

We frequently use the following decay property of the preglued map up in the neck
region.

Lemma 8.2.1. There exists constants ¢, Ry and ¢ such that for all R > Rg and p < ¢
we have
|dug(s,t)| + dist (ug(s, t), ug(0,0)) < ce HEE-IsD

for all (s,t) € [-2R,2R] x [0, 1].
Proof. Set p := ug(0,0). By Proposition 6.1.9 the maps uy and u; have p-decay. If
s < —1 we have by definition ug = ug o 7_or and the claim follows since ug has u-decay.

Similar for s > 1. If |s| < 1 and R is large enough ug(s,t) is close to p for all t € [0, 1].
By Corollary A.1.2 we have as R — oo

|dur| + dist (ugr(s,t),p)

<O01) (|[V(B ¢ oT—2r+ B¢ omar)| + [Co o 7—2r| + |¢1 © T2r])

O(1) (IVCo o T—2r| + [V (1 0 Tar| + [Co © T—2r| + [C1 © T2R])

O(1) (|dug o T—2r| + |duy o Tag| + dist (ug o T_2r, p) + dist (u1 © T2, p))
O(1)e™ n(2R—|s|)

| A

This proves the lemma. ]

Linear pregluing and breaking Choose p > 2, § > 0 and abbreviate
e Hy:=T,B""° and H; := T,,B"P?°,
o Lo:=EL° and Ly := &P,
e Hy C Hy® H; consisting of pairs (£, &1) such that {y(oo) = &1(—o0),

e Hp:=T,,B"9 and Lp := EPY for any R > so.
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8.2. Pregluing

Define the linear pregluing operator ©r : Hyy — Hp, (£0,&1) — {r with

&(s—2R,t) ifs>R,
Er(s,t) =  see below if s € [-R, R], (8.2.3)
&(s+2R,t) ifs<—-R.

and if —R < s < R we use define (omitting the arguments for convenience)
Er=1I0RE+ BT, (Hﬁfwm& © ToR — HZ“RE) + Br (HZ(’?OT,QR&J OT 2R — H?E) ;

with notations £ := &y(00) = &1(—0), TR : & = %, (s,1) = (s — R, 1), Bj‘R = Bt o1_pg,
Br = B~ o7g and the parallel transport maps II, I as given in (6.1.1). Finally define
the breaking operator Zr : Lr — Lo & L1, n— (no,r,M1,R) Via
n(s+2R,t) if s> —2R,
n,r(s,t) = < see below if —2R—1<s< —2R
0 ifs<-2R-1,
(8.2.4)
0 if s> 2R,
no,r(s,t) = { see below if 2R—1<s<2R,
n(s—2R,t) if s<2R-1.
For the interpolation we just use parallel transport. We do not need to use cut-off

functions because the maps are only supposed to be of regularity L{’O .- More precisely
for 2R — 1< s < 2R and t € [0,1] we define
it
770,R(57 t) = HZ(I)%((SS,)QR’{/)H(S - 2R7 t) )
and for —2R —1 < s < —2R and t € [0, 1] we define
t
ma(s 1) =T L n(s+ 2R, 1).

We now show that these constructions are uniformly continuous with respect to an
adapted norm.

Adapted norms For R > 0 we define a weight function 75z : R — R

e 02R+s) if s <« —9R
vs,r(8) = edR=Is)  if |s| < 2R
O6—2R)  if g > 2R,

Given a curve u € B"P9(C_,C ), we define weighted norms for all vector fields 7 € end

PP Lp
s = ([ Il 5 pdsatt) ™
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8. Gluing

and for all vector fields ¢ € T,B"P¥(C_, C) we define the norm €11 5.1 Via
(1€, 007 + lIg(=00) P + l&(~o0)II” +

2R (‘g - ﬁZ(foo)f(_oo)‘p + ‘V(f - ﬁZ(foo)f(—OO)) }p) ’YngSdt

—o0

i = (8.2.5)
* /Z (1€ = T 0)€(0, 0" + |V (€ = T 0,0)£(0, 0)) ") st

R
)
by
It is straight-forward to check that that for a fixed R these define equivalent norms (see
[5, Lemma 5.8])

I = /
(6 = ity S(00) P + |V (¢ = T2 600)) ) 12 pelstt)

o)
2R

8.3. A uniform bounded right inverse

For the remaining statements to hold true the decay parameter § > 0 must be sufficiently
small. The bound on ¢ depends on the spectral gap of the asymptotic operators given
in (3.2.13). More precisely, we assume for the rest of the section:

20 < t, v:=min{u(J3), t(Jso), t(JE)} (8.3.1)

in which J, J and JI are paths of almost complex structures such that Jy(—s,-) =
Iy Jo(s,+) = Ji(=s,) = Joo and Ji(s,-) = JE for s large enough.

Lemma 8.3.1. There ezists constants ¢ and Ry such that for all (£0,&1) € Ho1 and
R > Ry

1080, ) s < & (00l 15 + 111 15)

Proof. We follow the proof of [11, Prp. 4.7.5]. Fix (£,&1) € Ho1 and denote &g :=
O©r(&),&1) and p := ur(0,0). By definition we have

||§RH]1),p;6,R = H §0|zgoo H?,p;d + H 51’280 H?,p;é + ’é.R(O’ 0)|p
_— p Tu P\ p
+ [ (en=Tren0)]" + |9 (60~ Tia0.0)) ) f gasa .
—2R
(8.3.2)
Lets concentrate on the last summand. We deduce a pointwise estimate of
& — TER(0,0) = (€r — Tpng) + Tin (€ - €a(0,0)) (8.3.3)

and its covariant derivative. Abbreviate ug g := ugoT_2r, u1,r = U1°T2R, {0,R = §0OT—2R
and & p := & o mp. By definition of g, the first summand of the right hand side
of (8.3.3) equals

By (100, o — TRE) + 57 (T0r 61, — TI3RE) (8:3.4)
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8.3. A uniform bounded right inverse

Focusing now on the first summand of (8.3.4) and taking into account the support of the
cut-off function we have to estimate the integral over the smaller strip [-2R, R] x [0, 1]
of the norm of

L% o p — IURE, (8.3.5)

U0, R
and its covariant derivative, since 85 vanishes on [R, 2R]x [0, 1]. Now on [-2R, —1]x[0, 1]
we have that ug = ug o 7_ar by Definition (8.2.2). Hence by substitution s — s + 2R
we have

/2 (‘fOR T, €[ + |V (¢0,p — TL7E) [ )ep5 2R=IsD qsat

—2R

- /Zml (6o — Ti0€[? + [ (&0 — TgoE) ") e*dsdt < [l 5 - (8:3.6)
0

We estimate the same term on [—1,R] x [0,1]. If R is large enough the distance of
up(s,t) to p is less then one third the injectivity radius for every (s,t) € [-1, R] x [0, 1].
Hence without loss of generality we replace II by II in the formula (8.3.5) and continue

T, o, — TARE =TT (€. — T 7€) + (O T0E — TSR (8.3.7)

For the first summand on the right-hand side we estimate using Corollary A.2.4 and
Lemma 8.2.1

U055 (G0 = T78) | = |80, — 11"
IV (TLE, (0.8 — TL,TE) )| < |V (60,8 — L,"TE)| + O(1) [o.r — T, €] -

For the second summand on the right-hand side of (8.3.7) we estimate using Corol-
lary A.2.3 and Corollary A.2.4

‘HZSRHUO Re_ H;Ré) < O(dist (ug, p) + dist (uo,r,p) ) |¢]
) Il -

In particular we see that both quantities are bounded by O(w ‘5‘ with w(s) = e #EE=IsD),
Use the last two estimates and the identity (8.3.7) to show

’HuoRﬁo,R—Hng |€0R I, | + O(w) |€] |
[V, fop — TRE)| < O(1) [o,0 — O8] + |V (0.0 — TH"E)| + O(w) [4]

Integrating these pointwise estimates gives

V(Imn TG — 11Rg) | <

Uo,R

/ (\HUOR&]R Mg | + [V (I8 o, — TTr€) ) PR Dasat
=R

<o [ (6~ Tmee + V(g - meg) ) ¥ asa

2R—1

+ O(e~2Ru=0)) g /R ePO=mlslgs .
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To show that the factor with ‘5 ‘p in the last summand is uniformly bounded we compute
directly assuming without loss of generality that R > 1

R R 2
/ P=dlsl g5 < 9 / P05 g — (epR(u—5) N 1) < O(ePR=0)y
-1 — Jo p(p—9) B

The last estimate and estimate (8.3.6) shows that the integral

J

is bounded by O(1) ||} s+ Similarly we proceed with the second term of the sum-
mand (8.3.4) and find that the integral

(102 0. = TR + |V (ILE €00 — TIRE)[) 2% st

2R
—2R

/ZQR (\53 —UrE|P + |V (eg — TTURE) ,P) 72 pdsdt

—2R

is bounded by O(1)([|€oll1 .5 + [I€1]l1,.5)7- For the last term of (8.3.3) we use the fact
that ur(0,t) = p, £ = & (00) = &1(—00), Lemma A.3.5 to show

€r(0,0) — €] < [61(=2R, 0) ~ TE 2RO (o) + |60 (2R, 0) — T ROy (c0)
and with Corollary A.2.4
|VITLR (€ — €5(0,0)) | < O(|dug]) |€ - €r(0,0)] .

We conclude that both quantities are bounded by 0(67251%)(”&”171);6 + ||£1Hl7p;5) and
after intergation we have

/EQR (1T537E = €R(0,0)|" + |V (T3¢ — £(0,0))[") 3 sl

2R P p
< 001) (Il s+ 1601 ) [ 77905 < O1) (160115554 1611

Now the claim follows from the last four estimates plugged into (8.3.2). O

Lemma 8.3.2. For all R and for alln € Lr we have

Im0.8lly:s + .2l 5s = Il 5

where (no,r,M,r) = ZR(N)-

Proof. Given any n € Lg, by definition of the norm and (8.2.4) we have

» p P b p
7ll.6.7 = Hno\gg H +Hmlzm + [P AP pdsdt .
™ o lIp;6 0 lip;6 n28 ’
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8.3. A uniform bounded right inverse

Again using the definition of the norm we compute

0 1 2R 1
/ In|P 'ngdsdt :/ / n|P eP?lH9) qtds —I—/ / In|P PP =) dtds
2R —2R JO 0 0

2R 1 0 1
:/ / 1m0, R|" ePs5dtds +/ / Im.rl” e P dtds
0 0 —2R JO
00 1 0 1
= / / ’17073‘19 ep(ssdtds + / / ’77173‘ e_pésdtds .
0 0 —o0 J0

Since 7o, vanishes for s > 2R and n g for s < —2R. Inserting the identity back into
the first equation gives the results. O

Denote the linearized Cauchy-Riemann operators Dy = D,, : Hy — Lo and Dy =
D,, : Hi — L; (cf. equation (6.1.6)). We define the restricted operators D1 = Dy @
Di|uy, and Djy; = Dy EBD1|H61, in which Hy; C Ho is the subspace of pairs (£p,&1) such
that {o(—o0) € T,_W_ and & (00) € T, W, where p_ = ug(—o00) and p = uy(00).

Lemma 8.3.3. The operator Djy, : Hy, — Lo® Ly is surjective and has a bounded linear
right inverse.

Proof. See [36, 7.1.20], [33, corollary 4.14] or [5, Lemma 4.9]. Define the subspaces
Hy= (€€ Ho|€(~00) €Ty W}, H = {£ € Hy | €(o0) € Ty, W}

Further define the restrictions Dy, := Dy| my, and D} = Dil|pg;. By assumption the almost
complex structures Jy and J; are regular, which implies that the operator is surjective

ker D6 @ ker Dll — TpC, (50, fl) — fg(oo) - fl(—oo) . (838)

Given (no,m1) € Lo @ L1 we choose lifts (§),&]) € H{ & Hy such that Doy = ng and
D& = m. Since (8.3.8) is surjective we find (¢[],&)) € ker D & ker D} such that
0 (00) = & (—00) = &((00) — &j(—00). Then the pair (§o,&1) == (&§ — &5, &) — &) lies in
H|,, and is a preimage of (19, 71) under the map Dy;.

We have the inclusion ker Dj; C ker Dy & ker D;. Since Dy and D; are Fredholm
ker Dy, is finite dimensional and by the Hahn-Banach theorem we find a closed linear
complement Hg; in H{,. Restricted to Hy; the operator Dj; is invertible and hence
there exists a bounded inverse Qf); : Loy — Hg; C H);. O

Approximate right inverse Let Q{; : Lo® L1 — H{; be a bounded right inverse of D,
which exists by Lemma 8.3.3. Let Dr : Hgr — Lg be the linearized Cauchy-Riemann-
Floer operator at ur. Moreover define the restricted operator D% := Dg| o, where
H}, C Hp is the space of { € Hp such that {(—o0) € T,_W_ and &(c0) € T,,, W4. By
construction the linear pregluing operator © g sends the subspace H)); to H,. We define
the operator B
QR:@ROQ&OER:LR—)H;% .

The next lemma shows that @ g is an uniformly bounded approximate right inverse of
Dp, for every R sufficiently large.
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8. Gluing

Lemma 8.3.4. There exist constants ¢ and Ry such that for all R > Ry andn € Lr we
have

H@RUHLP;&R <c ”n”p;é,R’ HDR@RH - an;d,R < ce OB H77Hp;6,R :

Proof. The first estimate follows directly by Lemma 8.3.1 and 8.3.2. We show the second
estimate we follow [36, Lemma 7.1.32]. Fix any n € Lr and abbreviate

£R = QRT]) (50751) — (QIOI o ER) n,
and moreover
Ug,R = U0 © T—2R, U1,R = U1 ©T2R
§o,r = §0 © T_2R, §1,rR =§10T2R .

By construction we have (recall that X% _ = (—o0,a] x [0,1] and X° = [a,00) x [0, 1]
for any a € R)

0 on Xg° 7 on Xg°
HZ(?RDUO,Ré.OvR = 0 ) HZ?RDULR&.LR - 0 5 (839)
' n on X- ’ 0 on X2
and
UR|w—R = U , UR |00 = U o
R‘z_g O,R‘z_g R‘ER 1,R‘2R
é.R‘E:i = SO,R‘E:27 gR‘E%o = él,R‘E%o .
Since the operators are local we have
DR&R’E:Q = Duo,R&O,R’E:ﬁ) = 77’2:507 DR&R‘E%O = Dul,R&LR‘E%o = 77‘2%0 .

This shows that Drér — n is supported in [—R, R] x [0,1]. According to (8.3.9) and
taking into account the the support of the cut-off functions we have

n= B;}HZ?’RDUO,Réo,R + /B—l—RHZﬁRDuLR{l,R .
and by a zero addition

Dr€r —1
= (1= 67— 5%) Dallyé+
+ (0,87) (102 €.k — TURE) + By (DRI €1 — T, Dug o)

+(9s81R) (HZﬁRfl,R — H;RS) + 815 (DRHZ§R§1,R — HZﬁRDuLR&,R) -

(8.3.10)

Focusing on the third summand of the right hand side without the factor 35. After a
zero addition we obtain

DRHZ(I;:R&)?R N HZ(?;RD%,R&,R = DRHZgR (fO,R - HZO’RE) -
Rt Do (o ) + DT, T T8, Doy TEE. (5310

UQ,R U0, R U0, R
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8.3. A uniform bounded right inverse

By Lemma A.3.1 and Lemma 8.2.1 we find p > 26 such that

‘DRHZ?,R (o, — II,"7E) — I o Dug 5 (o,r — H;O,Rg)‘
< O(1)e HEEED (g0 g — " E] + |V (g0.p — T E) )

and B
’DRH“R TLORE — TR D

Uo,R Uo,R

H;O,Rg

o < cre RS |g] |

for all |s| < R and ¢ € [0,1]. Hence by (8.3.11) we have

87 (DAILLE 0.0 — 1025, Dug p6o.1)|
< e PO (o p — ] 4 |V (o~ TG0+ [€]) -

For p € B"P%(C,C) considered as a constant function we have Dpf_ = 0 and by lem-
mas A.3.1 and 8.2.1 again we have a constant ¢y such that

(1= 85 = B25) DRI"E| < [DRIGRE] < cpe D |g]

for all |s| < R and t € [0, 1]. Integrating the point-wise estimate gives
- P
L 15 (DRI o= T8 D 0.0) [ s
“R

<yde it [ (JGon = O+ [V (6o~ TOM|) P asar

—R

R
+ 3PP P—0)2R ‘f‘p/ eP(h=0)lsl 44
-R

- SLARe S
< (e e ZG e el

where in the last line we used

R —p(u—08)R
e—p(u—(S)R/ eP(r=9)lslqg — 2e =0
-R

s () <

~ p(p=9)
Since 0 < p/2 the last estimate shows

/ZR 1B (DRHZ‘g”fRfo,R - HngRDuo,Réo,R) P4} pdsdt < O(1)eF I€oll} s - (8:3.12)
-R
Along the same lines we show that
/E;R ‘Bi_R (DRHZiRgLR - HzﬁRDulngl,R) ‘pfngdet < O(l)e_éR H&H?,p;é
-R

/E (1 B — B ) DATInE[+} st < O(1)e R g .
-R

(8.3.13)
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Focusing now on the second term on the right hand side of (8.3.10) without the factor
0sBp we have

08 o T35E = T2, (G0 — T57€) + (T2 T — 13
By Lemma A.3.5 and Corollary A.2.3

I p€o.r — HR£‘ 0.5 — HUOR§\+‘H“R H“ORgfn;Rg‘

U, R
< O(W)e |l g + O)e RN ] < O(1)e ||l 5 -

for all |s| < R. Since the support of 0,4y is in [R — 1, R] x [0,1] and ‘85615} < 2 for all
R we have

[ 1085 (122,60 = TE7€) P2 st < O ol 5
ZR
By a completely symmetric argument
[ 1087 (T2,60.0 = TH€) P28 st < O R 1]
"R
Denote (n0,r, m,r) = ZEr7. Since Qo1 is bounded and by Lemma 8.3.2

€015+ 11 35 < O) (10,15 + 17 l5) = O1) 5.1

By the identity (8.3.10) as well as (8.3.12), (8.3.13) and the last three estimates we have

1DRER = 1ll 5.0 < OWe ™R (0l 5 + It s ) < O [l 5 -
This shows the claim. O

Corollary 8.3.5. There exists uniform constants ¢ and Ry and for all R > Ry there
exists an operator Qg : Lr — Hp, which is a right inverse for D, and we have for all
nelr

1QrN1 s, < clIlls 5 - (8.3.14)

Proof. Let Ry and c denote the constants from Lemma 8.3.4. By possibly increasing Ry
we assume that ce 070 < 1 /2. With Lemma 8.3.4 the composition Dg o Q R is invertible
for all R > Ry and we define

Qr = Qr (DR©R>_1 =Qr> (1 - DrQr)*. (8.3.15)
k=0

Given for some 1 € Lg we have ||Qrnll; .5z < cln]

iR 20 277 = 2¢ 1|5, 5- o
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8.4. Quadratic estimate

8.4. Quadratic estimate

We build up the quadratic estimate which is needed to run the Newton-Picard theorem.
Fix some ¢ > 0 and denote by Hj(e) C Hj the ball of all £ with L>-norm strictly
smaller than . Define the non-linear map

Fr: Hp(e) — Lg, &= Hg? (83u5 + Jr(ue) (0p — XR(Ug))) , (8.4.1)

with ug := exp,,, §. By the special choice of the metric and definition of the space H "
we have u¢(fo0) € Wi. In particular if £ is a zero of Fg, then ug¢ is an element of

MW_, W,).

Lemma 8.4.1 (Quadratic estimate). There exists constants Ry, € and ¢ such that we
have the following uniform bounds. For all R > Ry it holds

|1FR(O0) 5.5 < ce™ 2. (8.4.2)
If §,¢ € T, B'79(C, Cy) such that ||€]| oo < € then
|dFR(€)E" — DrE'|| 5 1 < €l psr €11y - (8.4.3)

Proof. We show estimate (8.4.2). Since wug is (Jp, Xo)-holomorphic, u; is (J1, X1) holo-
morphic and by definition of ur and the glued structures (Jr, Xg) we have that Fr(0) =
0p.xnur is supported in [—1,1] x [0,1] and moreover for all s € [~1,1] and ¢ € [0,1]
we have

(EJRJ(R'U,R)(S,t) = Osur(s,t) + Joo(t,ur(s,t))(Orur(s,t) — Xg(t,ur(s,t))) .

Since Jo, and Xp is uniformly bounded and by the decay of the preglued map in the
neck region (cf. Lemma 8.2.1) we have

/ ‘EJR7XRUR‘;D ePICR=Isl) qsdt < O(e_QRp(“_‘S)(I - ep(“_‘;))) = O(e_sz‘s) .
El

—1

We show (8.4.3). We have dFr(0) = Dpg. Integrate the pointwise estimate from
Lemma A.3.2 to obtain

[dFR(€)E" = Dr'|| 5
<O([|€']| o Ngloo NAurllyes m + 1VE s 1 18] o + 1Elle [VE N ,55) - (8:44)

The norm || Jg|| -2 appearing in A.3.2 is independent of R. By definition and Lemma 8.2.1
we have

HduRug;(s,R = H du0|zgoo Hg;(; + H dul‘zgo HZ;(; + /22R ’duR‘p’YngSdt
2R

We obtain (8.4.3) by plugging the last estimate and the estimates stated in Lemma A.3.4
into (8.4.4). This finishes the proof. O
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We come to the key result of this section. For some small number € > 0, we denote
by ker. Dr C ker D all elements in the kernel with norm smaller than €.

Lemma 8.4.2. There exists constants € and Ry such that for all R > Ry there exists
a map

JR:kerEDR —>imQR,

which satisfies the following properties
(i) for all § € ker. D the map exp,,,(§ + or(€)) is (Jr, Xr)-holomorphic,

(ii) for each R > Ry the map o is differentiable and we have a constant ¢ > 0 such

that for all R > Ry

lorller < ce™%,

(i) for every & € Tu,B such that exp,, & is (Jr, Xgr)-holomorphic and satisfies
||§/H17p;57R < € there exist £ € ker. Dg such that & = &+ og(&).

Proof. This is a direct consequence of the Newton-Picard theorem provided the quadratic
estimate of the non-linear map given in Lemma 8.4.1 and the uniform bound on the
right inverse established in Corollary 8.3.5. Set Ng(&) := Fr(§) — Fr(0) — Dg€ for all
§ € TypB. Let € and Ry be the constants from Lemma 8.4.1. Given §p,&; € T,,,B. By
the mean-value theorem there exists 6 € [0, 1] such that

Fr(&) — Fr(&) = dFr(0& + (1 = 0)&1) (&0 — &) -

If [|€olly .5 + I€1]l1 s < € we conclude using (8.4.3) that there are constants ci, ¢z such
that (where for convenience we have dropped the subindex of the norms since they are
clear from the context)

1QrNR(&) — QrRNR(ED) < e1 [NRr(So) — Nr(&)]
= c1 || Fr(§o) — Fr(&1) — Dr(§ — &)l
= c1 ||dFRr(0& + (1 — 0)&1) (&0 — &1) — Dr(&o — &)
<ciez||0€ + (1= )& €0 — &l
<ceca( &l + &) 16 — &l

< e ll§o — &l
and using (8.4.2) we find another constant c3 such that
1QrFr(O)| 5.1 < €1 [ FR(O) |55 < creze™
By [30, Proposition 24] and after possibly making Ry bigger and e smaller we conclude

that for all R > Ry there exists a map op satisfying all three properties. More precisely
we must have € so small that cjcoe < 1/4 and Ry so large that crege 2000 < g/2. ]
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8.5. Continuity of the gluing map

The only non-trivial issue is continuity of the solution maps with respect to the gluing
parameter, which essentially reduces to a question of continuity of the family of right-
inverses. We denote by ker D the vector-bundle over the base [Ry, c0) with fibre ker Dg
and ker. D C ker D the disk bundle with fibre ker. Dp.

Lemma 8.5.1. There exists constants Ry and € such that the map
o : ker, D|[R0,oo) — TBLP;&? (R7 g) = O-R(g) )
s continuous.

Proof. We follow the proof of [5, Prp. 5.5]. Let Ry and e denote the constants from
Lemma 8.4.2, which we possible have to increase (resp. decrease) as explained later in
the proof. Given sequences (£,) and (R,) such that R, > Ry and &, € ker. Dg, for all
v. Suppose that R, — R and 11§, — £ € ker. Dg, where we write II, := Hzgu for the
parallel transport map. We also abbreviate o, := op,, v := upr, and u, = ur,. We
have to show that lim,_, I1,0,(&,) = or(§). Arguing indirectly we assume that there
exists a subsequence () C (v) such that

limy o0 ||Huk0uk (fuk) - GR(&)HLP;& >0. (8.5.1)

Without loss of generality we assume that v, = k for all £ € N. We now build up a
contradiction to (8.5.1) in the following three steps.

Step 1. Define w, := exp, (& + 0,(&,)). A subsequence of w, Gromov converges to a
Jr-holomorphic strip w : ¥ — M.

By the first property of the solution map we know that w, is Jg, -holomorphic. By
the second property and general bounds for the derivative of the exponential map (cf.
Corollary A.1.2)

[dw,| < O (Jdw| +[V&| +[Vau (&) < O (Iduo| + |dus| + V] + 7).

In particular we conclude that the gradient of w, is uniformy bounded. By local com-
pactness we conclude the existence of w such that w, — w in C2 (cf. Lemma 5.2.1). In
remains to control the convergence on the ends. Denote p := u,(00) = u(0co). Choose
large constants sg, vy and estimate for all s > sg and v > vy using exponential decay for
u (cf. Theorem 4.1.1), omitting (s,t) whenever convenient

dist (wy (s, t), ps+) < dist (wy, u,) + dist (uy, w) + dist (u, p+)
<&l + llov (&)l + o(1) + O(e™)
<e+0(e M) +0(1) + O(e ™).

After possibly decreasing € and increasing Ry, sg and 1 the right-hand side is smaller
than the diameter of a ball about p4 which lies completely in the Pozniak neighborhood
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8. Gluing

Upo, for all s > sp and v > 1. Hence the image of w, restricted to X35 lies in Upyy,
where the symplectic form is exact w = d\ and A vanishes on Lo N Upy, and Ly N Upgg.
By exactness and C}-convergence we conclude

1 1
wiw = w,,‘*f A= w}*f A= wrw .
v S=S0 S=S0
b 0 0 b

%
By convergence of the energy we have C?-convergence on the end, i.e. w, converges to
w in C°(X) (cf. Lemma 5.3.1). We proceed similarly for the negative end to show that
w, converges to w in C°(X72%) and hence w, — w in C? and E(w,) — E(w).

o
S0

Step 2. There exists a vector field £” € T'(u*T'M) such that exp, & = w and moreover
we have

i Mo, (&) +€6 =", ,.5s=0.

D3
By the last step the vector field ¢, := exp,'w, is well-defined for all v sufficiently
large. We estimate for any (s,t) € ¥ omitting the arguments s and ¢ for convenience

dist (u, w) < dist (u, u,) + dist (uy, w,) + dist (w,, w)
< dist (u, uy) + & + 00 (§)] + HCV”oo Se+ O(eﬂmo) +o(1),

since by the last step |||, — 0. Hence dist (u,w) < & + O (e °0) and after possibly
decreasing ¢ and increasing Ry again we assume that the distance from u(s,t) to w(s,t)
is smaller than the injectivity radius for any (s,¢) € 3. In particular the vector field
¢" .= exp; " w is well-defined. Because the strips v and w are elements of BLP9(C_, C)
Lemma A.3.8 shows that the norm [|£”||, 5 is finite. By construction it holds that

ou(&y) = eXp;U1 wy — &, and we estimate

Mo (&) + € = €"]);

;6 = HHV eXp;VI Wy — HV&V + f - eXle le,p;5

= HHV eXp;yl Wy — expf wH1,p;6 + [ML& — & Lp;6

To show the claim it remains to see that the first summand on the right-hand converges
to zero as v tends to co. Define the points ¢, := w,(c0) and ¢ := w(oo) as well as the
vector field

& =11 exp;V1 w, — exp, ' w — I, (exp;,;1 Qv — exp;+1 q) e(u'TM).
We use corollaries A.1.2 and A.1.3 to estimate the norm of & by

‘HZV exp;j w, — exp;1 w,,’ + } exp;1 wy, — expg1 w‘ + ’ exp;+1 qv — exp5+1 q
and conclude that

‘ﬁlﬂ < O(dist (uy, u) + dist (w,, w) + dist (gv, q)) -
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8.5. Continuity of the gluing map

With Corollary A.2.4 using the notation ¢, := exp, ! u, € I'(u*T' M) we bound the norm
of V& with
|(VILy — 11 V) exp,! wy| + |1V exp,f w, — Vexp, ' wy |+
+ ‘Vexp;l w, — Vexp, ! w‘ + |VH;+(eXp;+1 Gy — exp;: q) ‘

Hence we conclude that
V¢t < 0(1)(dist (u, wy) (|du| + |duy|) + |VC | + (¢ (|dul 4 |dw|)+

VG, | + |dul dist (q.q) )

The last two estimates and using Cp. converges of w, to w we conclude that for a fixed
s we have

: + _

Jim €] o155y = 0- (8.5.2)

Choose p such that 20 < p < ¢ with ¢ as defined in (8.3.1) and let g = eo(p) be
the associated constant from Lemma 4.3.2. Now choose sy large enough such that
E(w, %) < €0/2. By convergence of the energy as established in the last step there
exists 19 € N such that E(w,,%5) < eo for all v > vg. Thus the assumptions of
Lemma 4.3.2 are met and there exists constant ¢; independent of v such that

dist (wy, wy,(00)) + |[dw, | < cre™4, Vs> sg.

Without loss of generality we assume that the same holds with w, replaced by u, w and
uy. Then the previous estimates show that there exists a constant co such that for all
s > sg and v large enough

V&S| < e (8.5.3)

Fix ¢t € [0,1] and v for the moment and define the function f : [sg,00) — R by f(s) :=
&4 (s,t)]. We claim that lims_, f(s) = 0. For s large enough we replace II with IT in
the formula for £ and estimate f(s) with

| expy, wy, — 7 expytgu| + | (MY — TLPIL ) expy ! gu| + [ expyt w —TI; exp, ! g -

The first and the last summand converge to zero as s tends to co by Lemma A.3.8 and
so does the second summand after Corollary A.2.3. Hence

f(s)—/ —&,f(a)dag/ \vg;\dag@/ S

Using the last estimate and (8.5.3) we see that there exists an universal constant c3 such
that for all s > sg

[ e+ |ver]) masat <
550

<5 ongspy [ s+ (e Geafmp) [ e <

< cge” Hglj—HCl =3) + c3e —(n=0)ps
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According to (8.5.2) the right-hand side converges to cge” (=05 a5 1 5 50 and since
s was chosen freely, we see that left-hand side converges to zero as v — oo. Similar we
proceed with the negative end to show that

HH,,exp;Vle—exp;lel — 0,

;0
This shows the claim.
Step 3. We show that ||I1,0,(§,) — or(§)lly s — 0 as v — oo in contradiction to (8.5.1).
By the last step, we see that IT,0,(&,) converges to ' := &” — £. Define 1/ := Dg¢’
and 7, := Dpr,0,(§,), then using Corollary A.3.6 and A.3.7
H77/ - Hu’?szp;(; = HDRgl - HVDRUO-U(&'V)HP;(;
< HDR€/ - DRH Oy §V H ) + HHVDRVO-I/<€V) - DRHVO-V(SV)HP;(;
<O Hg — 1,0, gu H1p6+0(1):0(1).
Since Qp, is a right inverse to D, and 0,(§,) € imQp, we have Qg, 7, = 0,(£,) and

using the fact that R — Qg7 is continuous for a fixed 1’ (see Lemma 8.5.2) we have
(omitting the subscripts of the norms for convenience)

HQRUI - Huau(gu)H = HQR"]/ - HVQR;/U’VH
< |TLQg, I,y — VQRV%//H +|Qrn — 1L, QgL ||
< 0O(1 HT] — ,,nl,H +o(1) =0(1) .

Hence ¢’ = Qrn’ and from Fr(€+¢') = 0 it follows that there exists £ € ker D such
that

E+¢& =&+ or() -

We have the splitting T,,,,B = ker D @im Q. Sine £, 0r(§o) € im Qg we conclude that
& =¢ and & =og(&) = or(€§). In particular

||HVJV(§V) - O—R(é.)Hl,p;(; — 07

contradicting (8.5.1) and proving the lemma. O

Lemma 8.5.2. Fizn € Lr and given a sequence R, — R then

lim HQRVHUR n— H QRnHlp(S 0.

vV—00

Proof. Abbreviate the norm |[[-[| := |[|-[|; 4, the operators D := Dg, D, := Dg,,
Q = Qr, Qv = Qr,, Q = Qr, Qv = Qr,, II, := Iy and the vector ; := (1-DQ)n
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for all j =0,...,k. We estimate using dominated convergence

Jim [[(IL,Q = QuIL)nl| < Tim 3 [MLQ(1 — DY)y~ Qu(1 ~ DG, Ly
k>0

=" Jim [ILQ(1 - D)y — Qu(1 ~ DG Ty
k>0

k

< i 0-Q ;

<O Y lim [(LQ — QuIL)nyl|,
k>0 j=0

where the last inequality follows from Corollary A.3.6. According to the preceding

consideration we see that it suffices to show the lemma for the corresponding approximate

right-inverses.

We have by definition with £ := Qo127

10,0 - Qo s < |00 — O8], s+ [(Er— Zn )l 0y, (850

We show that both terms on the right-hand side converge to zero separately. In order to
control the second term we define the paths of vector fields 79 : R — I'(ugT M), p — 1jo,
and 71 : R = I'(uiTM), p — 11, where

S UR+pOT2(R+p)

0. = I 0m M © T2R — HZ(I)HpOTz(Rﬂ)) “Roﬁz(zip;rp 1 T2(R+p)

~ UR+pOT—

Myp = por ppnoror—Ilg o0 unoh e 1 0 T_(Rp)
We assume for the moment that 7 is smooth and compactly supported. We have with
a standard result on the derivative of parallel transport maps (cf. Corollary A.2.4) that
norm of 9,7, is bounded by

O1) ((|8pur+p © Tarrp)| + |Bptr © Torep)|) [0 Ta(ren) | + [Vont © Tagrig|) -

We conclude in particular that the 9,7 , is uniformly bounded. Obviously 7jp0 = 0. By
the mean-value theorem and the last estimate we have |7y ,| < O(|p|). Similarly we have
171,0| < O(|p|). Therefore with p, = R, — R

I~ Z Tl s, < OW) [ [+ i dsdt < O ).

Thus the second term in (8.5.4) converges to zero as v tends to oo if 1 is smooth and
compactly supported. If 7 is not smooth or not compactly supported we find arbitrarily
close ' € Li which is smooth and compactly supported such that

|(Er = Er,IL) (=) < ||I2r(n — )|+ |Er,u(n —7)|| < OQ) ||n—7| -

In particular we assume that 7’ is choosen such that the right-hand side is smaller than
some arbitrary € > 0. Using the above we conclude

lim [[(Eg - Zp,M)nl < lim |[(Er — Er, )0 || + [[(Er — Er, L) (0 — )| <e.
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8. Gluing

This shows that the second term in (8.5.4) converges to zero for any 7.

We now show that the first term in (8.5.4) converges to zero for any fixed £ = (§p,&1) €
Hyi. By the same argument we assume without loss of generality that & and & are
smooth and compactly supported derivative. We define vector fields £ := Ogr&, and
&R, = Op,&. By the definition of the interpolation (8.2.3) we have the point-wise
estimate of the norm of difference II,{r — &R, by

(1= B — %) (M Tign — T )|+
+ |(B7 — B, )™ &| + [ (875 — 875, ) I &+
+ ‘HURV H’U,R 50 R— Huo v 60 R, + ‘HURV ]___[uR 61 R — Hgﬁ%u fl,RV ‘"i_

Uo,R U1,R

+‘ 53_531,)1_[553501%“*" ﬂ—'—R BRL, ulelR‘

Using again the mean value theorem we show that
‘HugR - gR}/‘ < 0(1) |R - RI/| :

We deduce the same estimate for the norm of V(II,r — {r,) and conclude as above
that the first term of (8.5.4) converges to zero. This shows the claim. O

Remark 8.5.3. An estimate similar to Corollary A.3.6 does not hold for the right-inverse.
In particular R — Qg is not a continuous path of operators! The failure of uniform
continuity is due to the fact that the definition of Qi involves a shift-operator. For our
purposes pointwise continuity suffices. It does not however, if we were to prove higher
regularity of the gluing map. Then one would need a more sophisticated analytical setup,
as for example the theory of polyfolds.

8.6. Surjectivity of the gluing map

In this section we show that the gluing map is asymptotically surjective. First we need
an auxiliary lemma.

Lemma 8.6.1. Given a sequence [(wy,)] C M(W_, W, )y which Floer-Gromov con-
verges to [(ug,u1)] € MYW_, W, ). There exists a vector field &, along ug, and a
constant a, € R such that w, = XDy &y o1y, for all but finitely many v € N and

hmy—)oo ‘|§VH1,p;5,R" =0.

Proof. We follow the proof of [5, Lemma 10.12]. By Gromov convergence there are two
sequences (b, ), (¢,) C R such that w, o7, — ug and w, o 7., = u1 in C2. We define
a, :=1/2(b, + ¢,) and 2R, :=1/2(¢, — by). Set

Vy 1= Wy O T_gq, -

Then v, is (Jg,, Xg, )-holomorphic with respect to the glued structures Jr, = Jo#r, J1
and Xpg, = Xo#g, X1 and satisfies v, o or, — up and v, 0o T_9g, — u1 in Cp,
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8.6. Surjectivity of the gluing map

Step 1. We have lim, _, SUP(s )ex dist (v, (s,t),ur,(s,t)) = 0.
By Floer-Gromov convergence we have convergence the energy E(v,) — E(ug) +
E(u1) =: E. For any ¢ there exists so = so(go) large enough such that

E(UO;ESO )—i—E(ul;ESO ) > E—50/2.

—S0 —S0

S0

%, this implies that there exists v such that

By CF-convergence on the compact set X
for all v > 1y we have

B0, B2 70) 4 B(un D255, 14,) + B(0n D8R, 440) < €0 (8.6.1)
Now assume that g9 = o(u) is the constant given in Lemma 4.3.2 for some p > 0 with
20 < p < ¢ where ¢ as given in (8.3.1). Hence there exists an uniform constant ¢; which

is independent of v such that for all s > so+ 1, v > vy and t € [0, 1] we have the decay
estimates

YV |lo| <2R, —s: dist (wy, (—2Ry, + s,t),w,(0,t)) < cre”#?
Vo< -2R,—s: dist (w, (2R, — s,t),w,(0,t)) < cre”#*
Vo>2R,+s: dist (w, (2R, + s,t), w,(0,1)) < cre”#°.

These are all proven using Lemma 4.3.2. For the first inequality we have used (4.3.8) of
Lemma 4.3.2 with b = —a = 2R, — s, 0’ = —2R,, + s, 0 = 0 and we have replaced the
s in that estimate by s — sg.

We now use these estimates to prove the claim. Abbreviate p := ug(00) = ui(—00)
and u, := up,. We estimate for all |o| < 2R, — s

dist (vy(0,t), u,(0,t)) <
< dist (v, (0,t),v,(=2R, + s,t)) + dist (v, (=2R, + s,t),uo(s,t)) +
+ dist (uo(s, 1), p) + dist (p,uv(0,t)) < O(e™) +o(1),

in which we have used the decay for v, = ug, as given in Lemma 8.2.1 and the fact
that e #(2Rv—lol) < ¢=#s - Abbreviate py = uy(o0) and estimate for all o > 2R, + s the
distance of vy, (o,t) to u,(o,t) by

dist (v, (0,t), v, (2R, + s,t)) + dist (v, (2R, + s,t),ui(s,t)) +
+ dist (ui (s, t), p4) + dist (p4, uy (0, 1))

We conclude that all terms are bounded by O(e™#*) + o(1). Now abbreviate p_ :=
up(—o0) and estimate for all o < —2R,, — s the distance from v, (0o, t) to u,(o,t) by

dist (v, (0,t), v, (2R, — s,t)) + dist (v, (=2R, — s,t),uo(—s,t)) +
+ dist (uo(—s,t),p—) + dist (p—, uy (o, 1)) .
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8. Gluing

We see again that all terms are bounded by O(e™#*) 4 0(1). Combining the above with
CR° convergence we have for any o € R

supy, dist (v, u,) < supgs dist (v, 0 TR, ug) +

+ supgs _dist (vy 0 T_ap,,u1) + O(e™"?) + o(1) < O(e™"*) + o(1).

Now the right-hand side converges to O(e™#¢) and since s was chosen freely we conclude
that the left-hand side converges to zero. This shows the claim.

Step 2. We have v, = exp,, £, for some vector field §, along u, and the norm 1€
converges to zero as v — Q.

1,p;6

Because of the last step the vector field &, is well-defined and the norm ||&,|| ;- con-
verges to zero. We claim that there exists an uniform constant ce such that for all
s>s9+1,te€[0,1] and v > 1y the following estimate holds omitting the arguments o
and ¢ whenever convenient

‘O’|§2RV—S: |£ _ﬁuV£V ‘+‘V(5V—Hu”5y )‘ < coe” (2R, — |a|)

oc>2R,+s: ‘g HUV ‘ + ‘V(f,/ Huyfy )‘ < coe —u(c—2Ry)

oS —2R, =5 |6 —IE (- \+ V(& — 03 €(—00)) | < epeHlIo1=2R0)
(8.6.2)

By analogy we will only deduce the first estimate. First of all we assume without loss of
generality after possibly increasing s that the distance from u, (o, t) to p is small enough
to replace II with IT in the formula. Since the exponential function is uniformly Lipschitz
(see Corollary A.1.3) and the distance of parallel geodesics is uniformly bounded by the
distance of their starting points (see Corollary A.1.4) we estimate for all |o| < 2R, — s

& — I, (0)| < O(dist (vy,,v,,(0)) + dist (exp,, &(0), exp,,, I127&,(0)))
e

< O(dist (v,,, v, (0)) 4 dist (uy, p)) < e HCR=loD

For the last inequality we have used the decay of u, = up, (cf. Lemma 8.2.1) and
of v, as given by Lemma 4.3.2 which is applicable because the energy of v, restricted

EQ%’R % is small (cf. equation (8.6.1)). We deduce the estimate for the covariant
derivative using Corollary A.2.4 to commute V with II and Corollary A.1.2 to control

the covariant derivative of &, by the differential of u, and v,.

V(& —TI2€,(0)] < V& + |VITEE,(0)| < O(|duy| + [dvy|) < O(e#Rvlol)y
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8.6. Surjectivity of the gluing map

Using the point-wise estimate (8.6.2) we estimate the norm on the neck

/ (l& = e, () + [V (g, - T, (0)) ) ¥R 17D dodt <
EQR”

—2Ry

2R, —s
<o0) / e P—0) 2R =0) gy
0

2R,
+O(l1&ullg-2p s + 160152, + |§V(0)‘P)/Z PI2R—0)

- 2R
2 oR 2R R,—s

v—s

< O(e™") +o(1),

on the positive end

/Eoo (}51/ - ﬁ;iﬁy(oo)‘p + ’v(gy _ ﬁ;”fl,(oo))‘p) epE(U—ZR,,)do_dt <

2R,

+ O(l)/ e P10 gy 4 0(1)/ eP%ds < O(e ") + o(1),
s 0

and similarly for the negative end. The last estimates amount to

160111 s, < O(e7H%) +0(1),
and in particular show that lim, .. H.fl,Hme n S O(e#%). Now since s was chosen
freely we see that the limit must vanish. ’ O

Lemma 8.6.2. With the same assumptions as Lemma 8.6.1, then w, lies in the image
of the gluing map for all but finitely many v.

Proof. The case (C) directly follows from Lemma 8.6.1 because in that case ker Dpr
is zero dimensional and by the uniqueness property the solution map we have w, =
expy, or,(0) = G(R,) for all but finitely many v. For case (B) set € := +1 if (Jo, Xo)
is flow-dependent and e := —1 if (J1, X;) is flow-dependent. We define for some € > 0
small and Ry large enough,

Me Ry = {w = (expy, &) o Tacr | R > Ro, €]l 58 <} NMW_,Wy).

In Lemma 8.6.1 we show that w, € M, g, for all but finitely many » € N. We claim
that M. g, is path-connected. Indeed given two elements w,w’ € M, g,, by the third
property of the solution map (cf. Lemma 8.4.2) there exists constants R, R' > Ry and
¢ € ker Dg, (' € ker Dy such that

w = exp,, (¢ +or(() oTeer, W =expy,, (' +or ()0 TR

We connect w to wg = G(R) via [0,1] > 6 = exp,,(0C + dr(0¢)) o Tocr. Similar
we connect w’ to wg. Assuming without loss of generality that R < R’, we connect
wpr to wg via [R,R'] 2 r — G(r). We identify the connected one-dimensional space
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8. Gluing

M¢ R, with an half-infinite interval [0, c0) such that under the identification the strips
w,, converges to oo. After the identification the gluing map is an unbounded continuous
map [Rp,00) — [0,00) and its image by the intermediate value theorem contains all but
finitely many elements of w,,. .

In case (A) we define similarly M. g, = {w = exp,, § | Ro < R, [|{[l;,.s < €} N

MW_,W,) and by M. g, C M(W_,W,) the image under the quotient map. Again
the space is a connected one-dimensional manifold containing by Lemma 8.6.1 all but
finally many strips w,. We argue as in case (B). O

8.7. Degree of the gluing map

Fix a relative spin structure for (Lg, L1) and denote by O the associated double cover
(cf. Definitions 9.3.1 and 9.3.4). Let C_, Cy C LoNL; denote the connected components
of W_, W, respectively.

Lemma 8.7.1. If W_ C C_ is equipped with an OV-orientation and W, C C, is
equipped with an O-orientation then the spaces M(W_, W) and MY(W_, W) have an
induced orientation.

Proof. Abbreviate /\7(0_, Cy) = M (C_,C4+; J, X) equipped with obvious evaluations
into C_ and C4. By Theorem 9.3.6 and Lemma 9.1.3 the fibre product

Ww_ Xo_ MV(C_,C_A,_) XCy W+,

carries a canonical orientation and its quotient space M(W_, W, ) carries the induced
orientation by (9.1.8). Abbreviate the spaces

M(C_,C) == M(C_,C; Jo,Xo) and M(C,W,) = M(C,Cy;J1, X1),
equipped with obvious evaluations into C_, C' and C,. As above the fibre product
W_ xo M(C_,C) x¢ M(C,Cy) x¢, Wy,
carries an induced orientation and hence its quotient M!(W_, W) too. O

Lemma 8.7.2. Linear gluing PrORg : ker Dy — ker Dy is orientation preserving.

Proof. Consider the intersection points p— = ug(—00), p = ug(oc0) = uy(—o0) and
p+ = up(00) with caps D_, D and Dy respectively. By associativity of linear gluing we
have a commutative diagram.

[D-|® |C] ®|Dor| —|D-| @ |Do| © | Da| — |C-| @ |D| @ | Dy|
|uasiraend |
D-|®|C| @ |Dxl C-l®|Cl® D4

By definition of gluing the orientation on Dy; is induced by following the diagram from
the down-right to the top-left corner and the orientation of Dp is by definition given by
going from the down-right to the down-left corner. O
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8.7. Degree of the gluing map

Corollary 8.7.3. The restriction PR@R‘kerDél : ker Dy, — ker DY, is orientation pre-
serving.

Proof. By definition the orientation of D{; and D', are given by (9.1.1) on the exact
sequences

0 ——ker Dj; —=kerDpy & W_ W, —C_dCL —0

lPReleer DY, lPRGR@id lid
O—>kerD}% DR@Wf@WJr 07@0+4>0
The claim follows by naturality of (9.1.1). O

Proposition 8.7.4. The space M(W_, W+)[1} has the structure of a one dimensional
manifold with boundary. With orientations from Lemma 8.7.1 the oriented boundary is

. MI(W,,W+)[O} if (Jo, Xo) is R-invariant and
o (=1)- MYW_, Wy if (J1,X1) is R-invariant.

Proof. The space M(W_, W+)[1] is a manifold with boundary using the gluing map as
chart map for a boundary point. It remains to show the statement about the degree.
We treat each case separately.

Step 1. We prove the proposition in case (C).

__The tangent space at some (R, u) € M(W_, W, ) is given as the kernel of the operator
D, :ReT,HB, (6,£) — D, + Onr with

nr = (OrJr(u))(Oru — Xp(u)) — Jr(w)(OrXRr(u)) -

Here B’ ¢ B(C_,C4) is the subspace of all u with u(—o0) € W_ and u(cc) € Wy. We
assume without loss of generality that D, is surjective and hence an isomorphism when
restricted to T,,/. We conclude that there exists a unique (g € T,,B8’ such that D, &g =
nr. The vector (1, —&R) € ker f)u is pointing outward has has the same orientation as
the sign of the isomorphism D,, which by parallel transport is the same as the sign of
the isomorphism D', as considered above in Corollary 8.7.3. We conclude that the sign
of D, is the same as the sign of D, which by definition is the sign of (ug,u;). This
shows the claim.

Step 2. We prove the proposition in case (B).

The orientation on M(W_, W, )jy; induces a total order on each connected component.
We have to distinguish the two sub case when (Jy, Xo) is R-invariant or (Ji, X;) is R-
invariant. By analogy we only treat the case where (Jy, Xo) is R-invariant. Fix a
point ([ug],u1) € M (W_, W5 )(o- By surjectivity of gluing there exists one connected
component of M(W_, W, )} containing a sequence which converges to ([ug],u1). Let
(wy)yen be such a sequence which is monotone with respect to the total order. By
surjectivity of gluing we have for all v large enough

wy © TR, = €xp,, &, & =0,(0) €imQp, .
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Choosing the sequence fine enough we assume without loss of generality there exists
(v € ker D, such that

Wy41 0 T2R, = €xXPy, (¢ + 170) Ny =0,(() €mQpR, . (8.7.1)

Let o0p the orientation of ([ug],u1) as a boundary point of M(W_, W, );; and o be the
orientation as an element of the oriented space M (W_, W+)[O]. We claim that using
the orientations of D), given by Lemma 8.7.1 we have

09 =41 <= wy, <wyy1 < (, ispos. < o= +1. (8.7.2)

This clearly shows the assertion and we are left to deduce all equivalences. The first
equivalence is a definition. The second equivalence is also a definition, since we have by
the properties of the solution map (cf. Lemma 8.4.2) an orientation preserving path from
wy to wy4q via [0,1] 3 6 — exp, (0¢, +0(0¢,)) o T_2p,. We show the third equivalence.
For R > 0 we define up := ugro7 2R, & :== & 07 _2R,, N, =N, 07_2gr, and for 6 € [0, 1]

T T T . T T . -1 T
uuﬂ T uRy+0(Ry+17RV)7 guﬁ e Hl/<9)€l/+17 Xz/,@ T expug eXpu;e gu,@ )

in which II,(0) denotes the parallel transport from w]_ ; to u] , along the path [f,1] >
7+ uj, . By construction and (8.7.1) we have

T T T T T T __ T T _ T
uu,l = Uyt uzx,O = Uy, sz + n, = Xu,17 Xz/,O - HV(O)fqul .

The path 6 — Xy 18 differentiable and by the mean value theorem we conclude that
there exists 6, € [0,1] such that

G+, =x01 =051 +pv - Oaxi0)lo=0,,  pv:=Ruy1 — Ry.
We apply 7_2.r, and subtract x, := 89u5’9|9:0 o T_gR, on both sides
G — ky = (0)& — nw + pu - (Ooxy, glo=6, — Opu;, glo=0) © T—-2R, -

By the property of the solution map the correction terms &, and 7, converge to zero
uniformly (cf. Lemma 8.4.2). Moreover by Corollary A.1.2 the last term is uniformly
bounded by O(p?). Thus we have the pointwise estimate

|G — k| < 0(1) +O(p}).

Since ug is holomorphic and non-constant the preglued strip ur has an end which is non-
constant and holomorphic. By the asymptotic behavior (cf. Theorem 4.1.2) we conclude
that

pv < O(1)dist (uy, upy1) < O(1)dist (uy, wy41) +0(1) < O1)[G| + o(1).

Fix constants sy < s1 and define the strips ¥, := [sg — 2R,,, s1 — 2R,] x [0,1]. We have
with uniform constants

1QuDuriullcogs,) < O 1QuDurls s < O a5 < 0(1).
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Combining the last estimates we have for all (s,t) € ¥,
|G — Puku| < |G — k| +|QuDyrky| < O(1)[¢] +o(1).

Let € > 0 be some sufficiently small number and assume that the constants sg < s; are
chosen such that |Osug(s,t)| > € for all (s,t) € [so, s1] X [0, 1]. Hence by construction we
have for all (s,t) € ¥, and all v sufficiently large

|P,ky| = |ku] +0(1) > ¢/2.

Now define o, € R via oy, Pk, = (, uniquely since ker Dp, is one dimensional. We have
with the above estimates

1 —ay| =1 —aw)Prul|/|Poku| <2/ [|C — Puky| < O(1)|G] +o(1).

If v is large enough and |(, | small enough (by choosing the sequence fine enough), we have
|1 —a,| < 1/2 in particular «,, is positive. We conclude that ¢, has the same orientation
as Pyk,. A direct computation shows that x, = 4R,0,05up for all (s,t) € ¥, which
togeher with Lemma 8.7.2 shows that (, has the same orientation as dsug as claimed.

Step 3. We prove the proposition in case (A).

Similarly to the last step let ([w,]) C M(W_, W, )(g be a strictly monotone sequence
converging to ([ug], [u1]). We assume after a possible reparametrization and by surjec-
tivity of gluing that w, = exp, &, for v, = ug, and §, € im@Q,. Choosing the sequence
fine enough we have for all v € N large enough

Wy41 = exp, (& +m0), (, €EkerD,, 1, €imQ@Q, .

Define the path from w, to w,4; via [0,1] 3 0 — w, g = exp, (0¢, + 0,(0¢,)). Let
0y € {£1} denote the orientation of ([ug], [u1]) as a boundary point of M(W_, W, ) and
o € {#£1} as a point of the oriented space M (W_,W,). We claim that we have the
following equivalences with orientations on D;, ,, D%, and Dp; given by Lemma 8.7.1,
0p = +1 <= ([wy]) is incr.

> Oswy, 9 N Opwy g € det D;UV is pos.

,0
<~ P,0su, N\ P,k, € det D}zy is pos. Ky := (ORUR)|Rr=R, (8.7.3)
<= Osu1 A Osug € det Dy, is pos.

<— o=-—1.

This clearly implies the assertion of the proposition. We show (8.7.3). The first and the
last equivalence is a definition. The second equivalence also clear by definition of the
quotient orientation (cf. equation (9.1.8)). We claim that the third equivalence of (8.7.3)
follows if we find a norm || -||, on det Dg, such that there exists an uniform constant
0 > 0 with

| P,0suy A Pyky ||, > 6 (8.7.4)
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and if I, 9 denotes the parallel transport from w, g to u, we have
1Py 05ty A Pyt — PIL, 005wy0 A P, 000wy pll, < O([|¢u]|o1) + o(1). (8.7.5)
Indeed, suppose that (8.7.4) and (8.7.5) is true. Then define a,, € R by
a,P,0su, \ Pk, = P11, 90sw, 9 N\ P11, g0gw, g .

Using (8.7.4) and (8.7.5) we find an uniform constant ¢ > 0 such that for all v sufficiently
large
[(1 = ) P0suy A Pytin],, <€ [l +6/3

| P,0suy, A Pykyl|, - ) '
Choosing the sequence ([wy]) fine enough we assume without loss of generality that
ICuller < 0/3c. We conclude that |1 — | < 2/3 and hence «, is positive. Thus the
third equivalence of (8.7.3) follows (using the fact that the operator P,II, ¢ is orientation
preserving).

It remains to find a norm ||-||, such that (8.7.4) and (8.7.5) holds. Fix constants
so < s1 and consider the Hilbert space H, := L?(%,) on the domain ¥, = Y,-UXS, 4
with ¥_ = [sp—2R,,s1 —2R,| x[0,1] and £, = [so+2R,, s1+2R,] %[0, 1]. Abbreviate
-1, =11lr2s,) and (-, -)v = (-, -)12(s,) the standard norm and the scalar product on

1—a,| =

H,. We consider the norm on A%2H, given by

2
leAg'll, = el €], — (& €022
Using the Cauchy-Schwarz inequality we have || A&'|| < 2||€] [|€']| for all £,& € H,.
With Corollary A.1.2 we obtain

1ML 90swy, — PyOsuy ||, < o(1) + O([[¢y[lcn)-
In the last step we show that
1L, 90gwy6 — Purivll, < o(1) + O([|C | co) -

This shows (8.7.5).

We show (8.7.4). Choose a small constant ¢ > 0 and assume that sy < s; are such
that [Osug(s,t)] > e and |Osui(s,t)| > e for all (s,t) € [so,s1] X [0,1]. Abbreviate the
norm || | == Il p2(uo.snpxfou)- BY construction [0, ]12 = |15 = [sto|> + 1, |

2 — || 8su1||*. We compute

and (Osuy, k) = ||Osug
1Pyt A Psuy ||% = || Pk | P0sun||* — (Pyky, POsu,)?
= ([ lI* [ Ostan||* = (50, Ds))® + o(1)
= (I9suoll® + 105w [I*)* = (| 0suol® = [[Dsur|*)* + o(1)
= 4| 0u||® |0sur||® + o(1) > 2(sy — so)*e? =: 6% > 0.

This shows (8.7.4) and hence the third equivalence of (8.7.3).
Finally the fourth equivalence follows because by construction

H—Pue)u(asu()a 85161) - PuasuVHz/ - 07 HPV@V(asuov —85U1) - 1/2PVﬁV“V —0.
We conclude with Corollary 8.7.3 that dsug A dsu; € A2 ker Dj; has the same orientation
as P,k, A\ P,Osu, € A?ker D, O
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8.8. Morse gluing

In the section we describe a gluing result for Morse trajectories, which is a little more
general than the gluing result in [1]. We have included a complete proof, since we have
not found it in the literature. The methods remain the same and rely on known results
about hyperbolic dynamics, in particular the graph transform theorem.

Let f : C — R be a Morse function and denote by ¢ : R x C — C, ¢¥® = 9(a,-)
the negative gradient flow of f with respect the some fixed Riemannian metric. Given
sub-manifolds W_, W, C C we define the space

W_ xy Wy o= {(R,w_,wy) | pF(w_) =wy} CRx Wo x Wy, (8.8.1)

which is the space of finite length flow-lines from W_ to W,. Standard compactness
shows that as a finite length flow-line gets longer and longer it approaches a broken
flow-line, which generically is a pair

w™® = (W, wF) € (W_ N W*(p)) x (W (p) N Wy), (8.8.2)

for some critical point p € crit f. The next lemma shows that this process is reversible,
i.e. any a broken flow-line can be glued together to obtain a family of finite length
flow-lines.

For the orientation statement we assume that W_ is oriented and W, is cooriented.
The space (8.8.1) is cut-out transversely, if for all points we have the exact sequence

0— Tip oy W Xy Wy — = RO Ty W~ T, CT,, Wy — 0. (8.8.3)
From the sequence we obtain via (9.1.1) an orientation on the space W_ x, W, pro-
vided with the fixed orientations. If dim W_ + dim W, = dim C' and (8.8.2) is cut-out
transversely, the space (8.8.2) is zero-dimensional. Moreover if W*(p) is oriented then
W#(u) is cooriented and by (9.1.6) we have signs e_ := sign(w>) and 4 := sign(w?).
The product € := ¢_ 4 does not depend on the choice of the orientation of W"(p). If
W_ is everywhere transverse to the gradient of f we write grad f M W_ and define the
manifold W_ := R x W_ embedded into C' via the flow i) and oriented by

—grad,, fR® T,W_ = T,W_. (8.8.4)

Similarly if W, is everywhere transverse to the gradient of f we write grad f m W and
define the manifold W, := R x W, embedded into C' via the flow and cooriented by

—grad,, fR & T,Cy /TuyW, 2 T,yCoy /Ty Wi . (8.8.5)
We obtain orientations of W_ N W, and W_ N W, via (9.1.6).

Lemma 8.8.1 (Morse gluing). Assume that (8.8.1) and (8.8.2) are cut-out transversely
and dim W_ + dim W, = dim C. For any element (w>,ws°) of the space (8.8.2) there
exists an injective 1mmersion

[Ro,00) = W_ xy Wy, R~ (Rw? wh), (8.8.6)
such that
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(i) limp_y0 wi = 0,

(ii) there exists 6 > 0 such that for any (R, w_,wy) € W_ Xy, W with dist (w—, w™) +
dist (wi, wP) < & we have (w_,wy) = (wh, wh),

(iii) suppose that W_ is oriented and W is cooriented, then
a) the orientation of the vector (1,0rw’, 8wa) € W_ xy Wy ise,
b) if grad f h W_ the orientation of the vector dpwlt € w_n Wy ise,
¢) if grad f h W the orientation of the vector Ogw®™ € W_ N W+ is —€.

where € = sign(w) sign(w®) and the spaces are oriented as described above.

Proof. Let B,(w) C C denote an open ball with radius p > 0 centered at w € C. Without
loss of generality we replace W_ with W_ N B,(w>) and W, with W, N B,(w?) for
some sufficiently small p > 0. How small p needs to be is explained throughout the
course of the proof.

By assumption w® € W_NW?*(p) and w3 € W*(p)NW,.. We identify a neighborhood
of the critical point p in C with a neighborhood of 0 in a vector space H identifying p with
0. The splitting of the spectrum of the Hessian of f at p into negative and positive part
induces a splitting of H denoted H"* @ H*®. By H"(r) (resp. H*(r)) we denote the closed
r-ball centered at 0 of the linear space H" (resp. H®). We set Q(r) := H"(r) x H*(r),
which after an identification of H* x H® with H" & H?® is a subset of H and also a
neighborhood of p in C.

Step 1. We claim that for sufficiently small p, there exists positive constants Ry, 7¢
and continuous paths o : [Ro,00) — C°(HY(ro), H*(ro)), R + og and 7 : [Rg,00) —
CO(H*(rg), H*(10)), R + Tr such that for all R > Ry the functions ox and Tp are
Lipschitz with constant § < 1 and moreover

(i) WE .= R(W_)NQ(ry) is the graph of o for all R > Ry,
(ii) og uniformly converges to 0o as R — oo and graphos, = W*(p) N Q(ro),
(iii) W = B(W,) N Q(rg) is the graph of 7 for all R > Ry,

(iv) 7g uniformly converges to 7o as R — oo and graph 7. = W?*(p) N Q(ro).

A proof is given in [1, Lmm. 11.2] up to a small issue that W_ (resp. W) is assumed
to be an open subset of the unstable (resp. stable) manifold of some critical point of
index u(p) + 1 (resp. p(p) — 1) intersected with a level set. Nevertheless the proof goes
through without any change for general W_ and W provided that we have the splitting

Tw"f W_ & Twio w# (p) = ngoC and ngro Wu(p) D Twio Wy = Twioc ,

which holds by transversality and the assumption dim W_ 4+ dim W, = dim C.
Step 2. We define (8.8.6)
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For all Ry, Ry > Ry the spaces W and W;RQ have an unique intersection point
inside Q(rg). Indeed, given any (x,y) € whn W;RQ € H* ® H® we conclude with
step 1 that (z,y) = (z,0r,(x)) = (Tr,(vy),y). Hence z is the unique fixed point of the
contraction 7p,oo g, and y is the unique fixed point of the contraction og, o7r,. By abuse
of notation we denote the intersection point (x,y) by whn W;RQ. For all R > 2Ry
we define the map (8.8.6) via R — (R, w®, wf) with w® := 1/J*R/2(Wf/2 N W;R/Q) and
wf = wR/2(W§/2 N W;Rm). It remains to check the properties.

Step 3. We show (i).

By construction the orthogonal projection onto H* of the point yFow® = Wk n
WfO_R € H" @ H® is the fixed point of the contraction Tr_g, 0 og,. Since Tr_g,
converges t0 To, uniformly as R — oo the fixed point converges to the fixed point of
Too ©OR,- Similarly we show that the orthogonal projection onto H* of ¢f0w® converges
to the fixed point of or, 0Ts. In other words 10w converges to the unique intersection
point W nWs(p) as R — oo because W#(p) NQ(rg) is the graph of 7o.. After possibly
making p > 0 smaller again we assume that w® is the only point in W_NW?*(p). Hence
PpFowh — hpRow> and thus w? — w>. Completely analogous we argue that wf — wee.
Step 4. We show (ii).

A standard Morse compactness argument shows that there exists § > 0 such that for
any w € Bs(w™) with ¥*w € Bs(w®) for some R we must have /2w € Q(rg). In
particular if (R,w_,wy) € W_ xy, W4 such that w_ € Bs(w™) and wy = pfw_ €
Bs(w?®), then PT/2w_ € Q(rp). By uniqueness of the intersection point we conclude
that ¢/ 2w_ = w2 W_:R/2, hence w_ = w and w, = wf.

Step 5. We equip [0, 00] := [0,00) U {oo} with the topology of [0,7/2] induced by the
bijection [0,7/2] = [0,00], s — tan(s) and 7/2 — oco. Let Gr(H) denote the space of
linear subspaces in H. There exists continuous maps

Q_:[0,00> = Gr(H), (8.8.7)
such that for all R € [0, co] we have
(a) Q(R,0) =T, rW_,
(b) (R, 00) = Ty-r(uee) W"(p),
(c) Q- (0,R) @ T,z Wy = H,
(d) (00, R) ® Tyyr(yee)W?*(p) = H.

Gradient flow lines R — 9f(w®) and R — ¢~ f(w3®) extend to continuous functions
on [0,00]. By Step 3 the paths R + w® and R wf also extend to continuous
functions. Write Q_(R;, Ry) C H as the graph of a linear map S(R;, Ra) : H* — H? of
norm < 1. On two sides of the quadrilateral [0, cc0]? the map (Ry, R2) — S(R1, Ro) is
already determined by the conditions (a) and (b). For these sides the condition on the
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norm is satisfied since by Step 1 the spaces W_NQ(r9) and W"(p) N Q(ro) are graphs of
maps with Lipschitz-constant < 1. As the space of linear maps with norm < 1 is convex
we extend the map S to [0, 00]? uniquely up to homotopy. Because the norm of S(0, R)
is <1 and Wy NQ(ro) and W9(p) N Q(rg) are graphs of a map with Lipschitz-constant
< 1 the conditions (c¢) and (d) are automatically satisfied.

Step 6. We show (iii) case a).

Without loss of generality assume Ry = 0 (if not replace W_ by YH0/2W_ and Wy
by /2, ). Abbreviate W := W_ x, Wy. Set w = v = w9l € W_ nW,. By
sequence (8.8.3) the tangent space of W at (0, w,w) is identified with the kernel of the
map

¢ RBT,W_ — T,C/TuWy, (0,6) ¢ —Ograd, f.

By definition the orientation oy of W is given by
ow Noy =or No_,

in which og is the standard orientation of R, o_ is the fixed orientation of T,,W_ and
o4 is the orientation of a linear complement of the kernel of ¢ such that ¢.(oy) is the
fixed orientation of T,,C/T,,W,. The kernel of ¢ is one-dimensional. The sign § € {£1}
of the vector & := (1, dpw’, dgwt) is given by

§=0ow,

where by abuse of notation we denote by ¢ also the orientation on W induced by €. We
see directly that T,,W_ is a linear complement of ¢ in R & T,,W_ and moreover

ENo_=orpANo_.

Since ¢ maps the subspace T,,/W_ C R @ T,,/W_ isomorphically onto T,,C/T,, W there
exists a € {£1} such that
0+ =Qo_.

Collecting the last four equations we have
dow Aoy =ENo0r =alNo— =aorNo— =aow Ao .

It suffices to show that o = & = sign(w>) sign(w$®). We view )_ which is constructed
in Step 5 as a vector bundle over [0, 00]?. Because the base is contractible the vector
bundle is orientable and an orientation is determined by an orientation of a fibre. By
condition (a) the bundle Q_ is oriented by W_, also denoted o_. Let o, be an orientation
of W*(p). By condition (b) the bundle is oriented by o, also denoted by o,. Finally
by condition (c¢) the bundle Q_ is oriented by o, also denoted o4. Abbreviate e_ :=
sign(w>) and e := sign(w$®) defined above. By definition cvo_ = 04, e_0o_ = 0, and

€4 0p = o4. Putting these three equations together shows (iii) case a).
Step 7. For all R > Ry we have
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8.8. Morse gluing

(a) Opw’ is the projection of grad, r f onto T, rRW_ along ngw_RWJr,

(b) drwl is the projection of — gradwf f onto Tw§W+ along waquW_.

0

Without loss of generality R = 0. We identify a neighborhood of w := w” = w?r with
an open ball in H identifying w with zero and such that the gradient vector field of f
is constant under the identification. Write —grad f = v for some vector v € H. We
have a splitting H = H_ & Hy where Hy = T,,W_,. The space W_ is given as a graph
¢ : H_ — H with dg(0) = 0 and W, is given as a graph ¢ : Hy — H_ with d¢(0) = 0.
Write v = (v_,vy) € H_ @ H,. An intersection point (z,y) € v*W_ N W, satisfies

(z + Ro_, () + Ruy) = (¢(y),v) -

In particular y is a fixed point of the map 0z (y) := ¢(¢(y) — Rv—)+ Rv. Up to possibly
considering a smaller neighborhood 6p is a contraction for all R small enough and hence
the unique fixed point yo(R) depends smoothly on R. The corresponding intersection
point is wf = (¢(yo(R)),y0(R)). By deriving the equation g (yo(R)) = yo(R) by R
shows that dpwf = (0,v,). Similarly we show dgw® = (—v_,0).

Step 8. We show (iii) case c).

Let Q_ : [0,00] — Gr(H) be the map (8.8.7). For each R € [0, oo] consider the vector
¢(R) € 2_(0, R) which is defined to be the projection of — grad f at wf onto Q_(0, R)
along W,. The vector £(R) is well-defined by property (c) of Q_ and we have that
ERR =Q_(0,R) N Twﬁw+. Let x(R) C 92-(0,R) be a linear complement of {(R)
which depends continuously on R. The space £(R) is oriented via the coorientation of
WJF and the canonical identification

X(R) = waCJr/wa/WJr .

We view x as a vector bundle over [0,00] and denote the orientation by o, which
by (8.8.5) is uniquely determined by — grad fAo; = o4. As above we have orientations o,
and o_ of Q_ induced by W*(p) and W_ respectively. By Step 8.8 we have dgpw|p—o =

—£(0). By definition of the orientation of W_NW, the sign § € {£1} of dgw? is defined
by —d& Aoy = o_. We still have e_o_ = 0, and €10, = 04 = { Aos. We conclude that
—0=¢ec_ey =e¢.

Step 9. We show (iii) case b).

Similar to step 5 we show that there exists a continuous map
Qy 1 [0,00)* = Gr(H),
such that for all R € [0, oc] we have
(a) Q+(R,0)® T, rW_ = H,

(b) Q21 (R,00) @ Ty-r(yee)W"(p) = H,
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(©) 240, R) =T, r Wy,
(d) Q4 (00, R) = Tyr(yoeyW?(p).

For all R € [0, 00] let £(R) € Q4 (R,0) be the projection of the negative gradient — grad f
at wf onto Q. (R,0) along W_. Let 6_ be the orientation of W_, which by (8.8.4) is
determined as o = —grad f Ao— = £ Ao_. By Step 8.8 the degree 6 € {£1} of
8wa ewW_n W is defined by the requirement 6 { A oy = o—. We still have e_o_ = o,
and €40, = o4 with coorientations o, and o, of Q4 induced by an orientation of W*"(p)
and a coorientation of W. We conclude that § = e_e; as claimed. U
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We construct orientations for the moduli space of holomorphic strips with boundary on
cleanly intersecting Lagrangians using relative spin structures. In principle this has been
established by Fukaya et al. in [36, §8]. Because our setup is a bit different we repeat
these ideas here using a slightly different language. In particular we use a different but
equivalent notion of relative spin structures due to Wehrheim&Woodward [74].

9.1. Preliminaries and notation

Determinant To any real finite dimensional vector space X of dimension n > 0, we
associate the determinant denoted by

det X :=A"X.

The choice of a basis of X gives an isomorphism det X = R. By definition the determi-
nant of the zero dimensional space is a fixed copy of R. It is well-known that given an
exact sequence of finite dimensional real vector spaces

0=-X1 - Xo—=>X3—= - = X =0,

we obtain an natural isomorphism

det X; = det X . (9.1.1)
J j

j odd J even

The word “natural” means that an isomorphism between exact sequences gives rise to a
commuting square (cf. [2, §5]).

Orientation Torsor To a finite dimensional vector space X of dimension n > 0, we
associate the set

| X = (A"X \ {0})/R".

Here RT is the group of positive real numbers acting freely on A"X \ {0} by scalar
multiplication. The set | X| has two elements and choosing a basis picks one of the two
elements. We call | X| the orientation torsor of X and the elements of |X| are called
orientations. We say that X is oriented, if an element of |X| is chosen. If X is zero
dimensional then we have a canonical identification |X| = {£1}.

131



9. Orientations

Let Zo denote the group with two elements. The group Zs acts freely and transitively
on | X| with action of the non-trivial element induced by multiplication of —1 on A" X.
Given two vector spaces X and X’ we define

X[ @ X' = (1X] x | X])/Z2,

with quotient taken with respect to the diagonal action (—1) - (0,0") = (—0,—0'). The
space | X| ® |X'| has again two elements and a free and transitive Zs-action induced by
(=1) - [0,0'] := [—0,0'] = [0, —0], where [0, 0] denotes the equivalence class of (0,0') in
| X| ® |X']. Tt is easy to check that we have a natural isomorphism | X|® (| X'| ® | X"|) =
(|IX| ® | X’'|) @ | X"| for any three vector space X, X’ and X”. Thus we do not specify
parenthesis for iterated products. We also define the dual torsor

| X|" = Homyg, (| X, Z2),

consisting of all Zs-equivariant maps to Zs. We have a natural isomorphism | X|®|X |V =
Zs. For two finite dimensional vector spaces X, Y we have natural isomorphism

IXaoY|=2|X|®|Y]. (9.1.2)
Commuting the factors is natural with respect action with

(_1)dideimY‘ (913)

Fibre products For finite dimensional vector spaces X, Y and Z and linear maps
p: X > Z Y:Y — Z, we define the fibre product

X Xy YV i=XxzY :={(z,y) | p(z) =9y} CXDY.

We say that a fibre product is transverse if the sequence is exact

0—=XxzY —=XxaYyZ%z 0. (9.1.4)
We obtain via (9.1.1) and (9.1.2) the canonical isomorphism
X xz Y2 |X|®|Z]Ye]|Y]. (9.1.5)

The order of the factors leads to the following associativity property of the orientation
of fibre products.

Lemma 9.1.1. Given oriented vector spaces Xo, Xo1, X1, Zo and Z1 as well as maps
o : Xo = Zo, ¥ = (Yo, 1) : Xor = Zo @ Z1 and @1 : X1 — Z1. Provided that the fibre
products are transverse we have

Xo Xz, (Xo1 Xz, X1) = (Xo Xz, Xo1) Xz, X1

where the equality holds as oriented subspaces of Xo @ Xo1 P X;.
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Proof. This is a slight generalization of [36, Lmm. 8.2.3] since we do not require that
the maps are surjective (we do however require that their respective differences are
surjective). Obviously both fibre products define the subspace

Y = {(xo0, o1, 21) | wo(r0) = vo(xo1), Y1(zo1) = p1(x1)} C Xo ® Xo1 ® X1 .

It remains to check that the induced orientations on Y agree. We denote the oriented
spaces Y := XX z,(Xo1 Xz, X1) and Y/ := (X% z,X01) X 2z, X1. Define the fibre products
Yy := Xo Xz, Xo1 and Y] := Xo1 xz, X;. We identify Zy and Z; with subspaces of
Xo® Xp1 and X1 @ X1 using right-inverses to ¢g = wg—1g and ¢; = 1 — 1 respectively.
Moreover we identify Zy and Z; with subspaces Z) C Xo @ Y; and Z] C Yy & X; using
right-inverses of the restriction of ¢y and ¢ respectively. We use small letters xq, yo, etc.
to denote the dimensions of the spaces Xg, Y, etc. By definition we have the oriented
isomorphisms

Y @ Z) = (—-1)*%" X, @ Y, Y1 ® 7 2 (-1 Xy @ X, .
Hence as subspaces of X = Xg® Xo1 ® X3
Y®Zy®Zy = (1) Xgd Y, @ Zy & (—1)ontany,
On the other hand we have similarly
Y' @ Zo @ 7, 2 (—1)00F Y @ Xy @ Zp & (—1)F%1taizton

By transversality we have y; = xg1 + 1 — 21. By direct verification we see that in the
last two isomorphisms the coefficient on the right-hand side is the same. Since the space
of linear complements is contractible there exists a homotopy from Zy & Z] to Zy & Z;.
We conclude that the orientation of Y and Y’ is the same. O

A special case of a fibre product is obtained if X,Y C Z are subspaces and the maps
@ and ) are inclusions. Then the fibre product is isomorphic to the intersection X NY.
If X +Y = Z we have the exact sequence

0—XNY —X—7/Y —0, (9.1.6)

which is usually used to orient the intersection of two vector spaces provided with an
orientation of X and a coorientation of Y (i.e. an orientation of Z/Y"). The next lemma
shows that the orientation on the intersection seen as a fibre product agrees with this
orientation.

Lemma 9.1.2. Given oriented vector spaces X,Y C Z such that X+Y =Z. If X xzY
and X NY are oriented via (9.1.5) and (9.1.6) respectively then the projection to the first
factor X xzY — X NY is orientation preserving.
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Proof. The space Z/Y is oriented by the canonical sequence 0 =Y — Z — Z/Y — 0.
Abbreviate W := X NY equipped with orientation given by the sequence (9.1.6). Let
p:Z — XY be aright inverse to X @Y — Z, (x,y) — = —y. We need to check
that the determinant of the isomorphism W & Z — X @Y, (w,z) — w + p(z) has sign
(—1)dimYdimZ pjck a linear complement X of W inside X. We choose an orientation
on X such that W @& X = X is orientation preserving. If W is oriented via (9.1.6)
then Y @ X = Z is orientation preserving. Define the right-inverse p: Z =Y © X

XaY, (y,x) = x —y. Then thesignof W Z - X @Y, (w,y,z) —» w+z—yis
(_1)dimYdimZ_ ]

Vector bundles and manifolds All previous observations extend directly to the cate-
gory of manifolds and finite rank vector bundles. In particular if 7 : F — X is a finite
rank vector bundle over a locally path-connected space X we define the orientation
cover |E| — X as the double cover with fibre over x given by |E,| with vector space
E, = n71(x). The vector bundle E is orientable if there exists a section of |E|, which
happens if and only if the first Stiefel- Whitney class wi(E) € H'(X,Zs) vanishes (cf.
[49, Thm. I1.1.2]). If w;(F) = 0, then |E| has exactly two sections. We say that an
orientable vector bundle E is oriented, if a section of |E| is chosen.

If X is a finite dimensional manifold, we abbreviate by |X| = |T'X| the orientation
cover of X. We say that X is oriented if a section of | X| is chosen. If X = {z} is a point
the space |X| is canonically identified with {£1} and an orientation of z is denoted by
signx € {£1}. If X is a manifold with boundary X, then an orientation of the interior
induces a canonical orientation on 0X by demanding that for all x € 0X and outward
pointing vectors oy € T, X the isomorphism is orientation preserving

To0X & EquR = T, X . (9.1.7)

Given smooth smooth maps ¢ : X — Z, 19 : Y — Z between smooth finite dimensional
manifolds X, Y and Z. We define the fibre product

X Xy Y =X xzY ={(2,y) | p(z) =¢(y)} C X xY.

If the maps are evident from the context we simply denote the fibre product by X xz Y.
We say that the fibre product is cut-out transversely if at each point (z,y) € X xz Y
the differentials d, ¢ and dyv are transverse in the sense above. If so the fibre product is
a manifold with tangent space at (z,y) give by the fibre product of d ¢ with d,1. Let
O — Z be a double cover. An O-orientation on ¢ : X — Z is a section of | X|® ¢*O.
Similar an O-coorientation on v : Y — Z is a section of |Y|® ¢¥*|Z]¥V @ ¢¥*O.

Lemma 9.1.3. An O-orientation on ¢ and an OV -coorientation on 1) induce an orien-
tation on the transverse fibre product X Xz Y.

Proof. The tangent space of X xz Y is the fibre product of d,¢ with d,. Let z =
o(x) = ¢(y) and pick orientations of O, and T,Z. We obtain orientations of 7, X and
T,Y using the sections and an orientation on the fibre product via (9.1.5). It is easy to
check that the orientation on the fibre product is independent of choices. ]
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If G is a Lie group acting freely on the manifold X , then the quotient X := X /G is a
manifold. Let g = T.G be the Lie algebra of G. We obtain an exact sequence

0 g T, X Tiy X —0, (9.1.8)

which is natural with respect to homotopies. Hence if X and G are oriented we obtain
a canonical orientation on X via (9.1.1) and (9.1.8).

The determinant bundle over the space of Fredholm operators Let X,Y be Banach
spaces and denote F(X,Y) the space of Fredholm operators from X to Y, equipped with
the induced topology as a subspace of the bounded linear operators from X to Y. We

define the determinant line bundle, denoted det(X,Y), as line bundle on F(X,Y) with
fibre over D given by

det D := det(ker D) ® det(coker D)" . (9.1.9)

The fibre det D is called determinant line. Although in general the dimension of the
kernel and the cokernel is not constant as D varies continuously in F(X,Y), we have
the following fact.

Proposition 9.1.4. The space det(X,Y") is a locally trivial line bundle.

A proof is given in [53, Theorem A.2.2] or [2, §7]. A simple observation shows that
if X 2Y and X is an infinite dimensional Hilbert space the determinant line bundle is
not orientable (cf. [53, Exercise A.2.5]). Also we denote by |D| = | det D| the orientation
torsor and we call the elements of |D| the orientations of D. We say that D is oriented
if an element of |D| is chosen. If D is an isomorphism the orientation torsor |D| is
canonically identified with {£1} and an orientation of D is denoted by sign D € {£1}.

9.2. Spin structures and relative spin structures

We recall the notion of a spin structure and a relative spin structure. The definition
which we give is due to Wehrheim-Woodward (cf. [74, §3]).

Cech cohomology We give basic definitions which are taken from [74, §3] and [16, §5,
10]. Let X be a manifold and G a topological group which is not necessarily abelian.
For k € Ny and an open cover U = {U, C X | a € I'} with totally ordered index set I a
Cech k-cochain with values in G is a tuple of continuous maps

p — (paoal...ak : Uao N Ua1 n---N Uak — G)aoal...ak

indexed over all strictly ordered subsets in I with k& + 1 elements. We write C*(U, Q)
for the space of all such tuples. The space C*(U, G) is a group with group law given by
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pointwise multiplication and neutral element given by the cocycle 1, which is the function
mapping each point to the neutral element in G. We define the Cech differential

k+1

—1)J
d: C*U, G) = C*NU,G), (dP)agorarer = L] Poger ooy
=0

and the Cech k-cocycles,
Z8U,G) = {pc C*U,G) |dp=1}.

The group C°(U, G) acts from the left on Z* (U, G) by (h.p)as = ha Pas hgl. We define
the Cech cohomology groups by

HYU,G):=C°U,c)\ z*U,G), H'U,G):=2°U,G).

If G is abelian then for any k € Ny the Cech k-cochains are abelian groups and together
with the Cech differential form a cochain complex, which allows us to define the Cech
cohomology groups, denoted H* (U, G), for all k € Nj.

A refinement V of U is a cover V = {V,y C X | o/ € I'} such that for all indices o € T
there exists o/ € I’ with V, C U,. We have natural restriction maps

C*U,G) = C*(V, @), Pagor..ar = Pajal..al, -

On the right-hand side it might be that the indices are not strictly ordered. To allow
indices of any order we use the convention paga,..p = pso}fz;'%(l)m%(k) for any permu-
tation o of k + 1 elements and paga;..op = 1 if any two indices are the same ([16, p.
93)).

A good cover U is a cover such that all multiple intersections are contractible. One
shows that for any good cover U the group H*(U,G) does not depend on U up to
canonical isomorphism and in that case we denote the group by H*(X, G). Moreover if
G is abelian and equipped with a discrete topology this group is canonically isomorphic
to the usual cohomology groups with coefficients in G, so there is no ambiguity in the
notation. Any open cover on a manifold has a refinement which is a good cover (cf. [16,
p. 43]) and by restricting we always assume that cochains are given with respect to a
good cover.

As Cech cochains are basically maps, we naturally define the pull-back with respect
to continuous maps ¢ : X — Y and the push-forward with respect to continuous group
homomorphisms 7 : G — H. To define the push-forward we put

Tx - Ck(u, G) — Ck(u, H), (T*p)aoal...ak =TO paoal...ak .
For the pull-back we define
(P* : Ck(uYa G) — Ck(uXv G)v (90*p)a0a1---ak = Pagai..ar, ¥,

where Uy = {U, C Y | a € I} is an open cover of Y and Ux = ¢*Uy = {o }(U,) C
X | @ € I} is the pull-back cover.
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Spin structures For n > 2 the spin group Spin(n) is by definition the non-trivial double
cover of the special orthogonal group SO(n). We denote by 7 : Spin(n) — SO(n) the
covering map and identify the kernel of 7 with Zs. Write the action of an element h € Zo
on g € Spin(n) via (—1)"g. Let X be a manifold and 7 : E — X an oriented finite
rank vector bundle equipped with a Riemannian structure. We denote by SO(F) the
oriented orthonormal frame bundle, i.e. the principle bundle over X with fibre over the
point z € X given by all oriented orthonormal bases in the vector space E, := 7~ !(z).
The transition maps for local trivializations of SO(FE) over the open sets of a good cover
Ux = {Uy C X}aer define a Cech cocycle f € Z'(Ux, SO(n)). If a cocycle f arises in
such a way for some local trivializations we say that f represents SO(E).

Definition 9.2.1. A spin structure on E is a Cech cocycle p € Z'(Ux, Spin(n)) such
that 7.p represents E. We call two spin structures p and p’ isomorphic, if there exists a
cochain b € C°(Ux, Z3) such that h.p = p’.

Remark 9.2.2. Classically a spin structure on E is a Spin(n)-bundle P — X together
with a double cover p : P — SO(E) such that p(g.p) = 7(g).p(p) for all g € Spin(n)
and p € P (cf. [49, Dfn. 1.3]). A spin structure p in the above sense is formed by the
transition maps from a local trivialization of P. Conversely, given a spin structure p as
above, we obtain a principle Spin(n)-bundle P by gluing. Since 7.p represents F the
map P — X lifts to a double cover p: P — SO(FE) with the required property. See also
[74, Prop. 3.1.3].

Not every oriented vector bundle admits a spin structure. The topological obstruction
is given by the second Stiefel-Whitney class wo(E) € H*(X,Z3). The class wy(FE) is
defined as follows: Let f be a cocycle representing SO(E). We find p € C1(Ux, Spin(n))
such that 7.p = f. Then dp is a cocycle with values in Zy and wy(FE) = [dp] is its
cohomology class (cf. [49, page 83]). If wo(E) = 0, the bundle E admits a spin structure
and moreover a free and transitive action of H'(X,Zs) on the isomorphism class of spin
structures on E. Consequently the space of isomorphism classes of spin structures on
E is an affine space, which is (non-canonically) isomorphic to H'(X,Zs) (cf. [49, Thm.
I1.1.7]). If X is an oriented Riemannian manifold, a spin structure of X is a spin structure
of its tangent bundle and we call X spin if it admits a spin structure or equivalently if
wo(TX) =0.

Relative spin structures Given a smooth map ¢ : X — Y between smooth manifolds
and an oriented finite rank vector bundle 7 : £ — X equipped with a Riemannian
structure. Fix good covers Uy and Uy of X and Y respectively such that Uy is a
refinement of the pull-back cover ¢*Uy .

Definition 9.2.3. A spin structure of E relative to ¢ is a pair (p, 1) consisting of a
cochain p € C1(Ux, Spin(n)) and a cocycle o € Z%(Uy, Z3) such that 7.p is a cocycle
representing E and we have dp = ¢*v. Two relative spin structures (p,to) and (p’, ')
are isomorphic, if there exists cochains h € C%(Ux,Zs) and € € C*(Uy,Zs) such that
h.p = p’ and €10 = d€ + v = ’. The cohomology class w := [w] € H2(Y,Zs) is called
the background class.
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For example an ordinary spin structure on FE is a special case of a relative spin structure
with trivial cochain tv. That our definition of a relative spin structure is equivalent
to [36, Def. 8.1.2] is proven in [74, Prop. 3.1.15]. Let ¢* : C*(Y; Za) — C*(X; Z2) be the
pull-back. The cone of ¢*, denoted C*(¢; Zs), is the complex C*(X;Zs) @ C*TH(Y'; Zo)
equipped with boundary operator d(h, ) = (db + ¢*¢,dt). Here we have used the more
familiar notation of writing the group law in Zo additively. The space of cocycles is
denoted by Z*(¢;Zs2) and the homology by H*(¢;Zs). The next proposition is proven
in [74, Prop. 3.1.13].

Proposition 9.2.4. A bundle E — X admits a spin structure relative to ¢ : X —'Y if
and only if there exists a class w € H*(Y,Zs) such that ¢*w = wo(E). If so, H*(¢*; Zs)
acts freely and transitively on the set of isomorphism classes of relative spin structures
via [h,€).[p, 0] = [(—1)" p, € + 1] for each (h,€) € Z'(¢*; Zs).

Bundles over strips The purpose of relative spin structures is to keep track of homotopy
classes of trivializations for bundles over the boundary of a strip. Abbreviate by ¥ =
R x [0, 1] the strip with boundary 0¥ = R x {0,1}.

Lemma 9.2.5. Given a vector bundle F — 0% with fized trivializations ®_ and &, of
the restrictions F|(7007,SO}X{071} and F’[so,oo)X{O,l} respectively. A relative spin structure
of F relative to the inclusion 9% C ¥ induces a homotopy class of trivializations of F®R
which agree with ®_ and ®1 over the ends.

Proof. See [74, Prop. 3.1.15, Prop. 3.3.1] for the same statement for compact surfaces
with boundary.

Let (p,t) be the relative spin structure defined with respect to open covers Uy, and
Uss. Since X is contractible the cycle t is exact and we find v € C!(Us, Z2) such that
dv = w. Fix £k = 0,1 and we denote by v := U|]R><{k:}7 P = p|Rx{k} and toy = m|RX{k}
the pull-back of the cochains to the boundary, which we identify with cochains on R
with respect to an open cover Ug. Consider the cochain

pr = (pr, —0x) € O (Ur, Spin(n) x Zs).

Let Spin(n) xz, Zy denote the quotient of Spin(n) x Zg by the anti-diagonal action of
Zs, which is a Lie group because Zs acts by central elements. The boundary of p; is
(g, —wy) hence the push-forward of pi to a chain with values in Spin(n) xz, Zs is a
cocycle, which we denote by px. By assumption the push-forward of py to a SO(n) x {1}-
chain is (fg, 1), where f}, is the cocycle obtained from a trivialization of SO(F}). By the
homotopy lifting principle we have the commutative diagram in which the vertical arrows
are double covers and horizontal arrows are inclusions

Spin(n) Xz, Zo — Spin(n + 1)

.

SO(n) x {1} —= SO(n +1).
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The push-forward of p; along the inclusion Spin(n) xz, Zs — Spin(n+1) is denoted by
pr. By commutativity we conclude that the push-forward of pi to SO(n + 1) is (g, 1).
Thus py, is a spin structure of Fi,®R. By gluing (cf. Remark 9.2.2) we obtain Spin(n+1)-
bundles Py over R and maps P, — SO(F}) @ R), which are non-trivial double covers on
each fibre. Using the trivializations ®_ and ®, we identify the fibre of P} over s for
|s| > so with Spin(n + 1). Because the spin group is connected there exists a section of
Py, which is the identity element over (—oo, —sg] and [sg,00). The push-forward of the
section to SO(Fy, @ R) gives the trivialization. Since the spin group is simply connected
any two choices of the section of P, are homotopic through a homotopy that fixes the
endpoints. Hence the trivialization does not depend on the choices up to homotopy. [

9.3. Orientation of caps

For ordinary Morse theory an orientation on the moduli space of Morse trajectories
is given once an orientation of the space of unstable directions for each critical point
is fixed. Unfortunately for the moduli spaces of holomorphic strips with boundary on
Lagrangians in clean intersection the situation is not so simple. In fact already for
Morse-Bott functions on finite dimensional manifolds, the space of Morse trajectories is
not necessarily orientable anymore. However it still holds locally that the orientation of
the tangent space of the moduli space of Morse trajectories at any Morse trajectory is
given canonically in terms of the orientations of the unstable directions of the critical
points which the trajectory connects. If the Lagrangians are relatively spin the situation
is similar for the moduli space of holomorphic strips where orientation of the caps take
the role of the orientation of the unstable directions.

Given a symplectic manifold M and Lagrangians submanifolds Ly, L1 C M such
that there exists a relative spin structure on 7L U T'L; relative to Lo U L1 — M (cf.
Definition 9.2.3). We repeat the definition adapted to the context.

Definition 9.3.1. A relative spin structure for (Lo, L1) is a triple (pg, p1, to) such that w
is a Zy-cocycle on M, py, is a Spin(n)-cochain on Ly, T.py represents T'Ly and dpy, = 1o|r,
for k=0, 1.

Let X = Xy be the Hamiltonian vector field of a clean Hamiltonian H € C*°(]0, 1] x
M) and J : [0,1] — End(T'M,w) be a path of almost complex structures. The following
discussion easily generalizes when X and J are admissible in the sense of Definition 5.1.1.
However for the sake of simplicity we only consider the case of R-invariant structures. Use
the short-hand notation Z := Zg(Lg, L1) for the perturbed intersection points. Choose
a constant € > 0 and consider the space of strips (cf. Definition 6.1.8 for the definition
of C**-regularity)

B:={ue C(R x [0,1], M) | u(-,k) C Ly for k = 0,1, u(+oc) € T}.

Fix an element x, € Z once and for all. A cap of x € Z is an element v € B such that
u(—00) = z, and u(oco) = z. We denote by B(z,,z) C B the subspace of all caps of x
and by B(x,) the space of all caps.
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Remark 9.3.2. The space B(z,) replaces the space Z(Ry,) from [36, §8.8].

By Theorem 6.1.10 we see if € is small enough then for all w € B the linearized Cauchy-
Riemann operator D,, is Fredholm and we denote by |D,,| = | det D,,| the corresponding
orientation torsor.

Lemma 9.3.3. Given u € B and caps u_,us € B(x,) such that x— := u(—00) = u_(00)
and x4 = u(0o) = uy(00). A relative spin structure for the pair (Lo, L1) induces an
isomorphism

Du_ | |Du] 2 |Dy, | @ T T (9.3.1)

which is natural with respect to homotopies, i.e. given homotopies (UT)Te[a,b] C B and
(uD)refap), (Ul )refap C B(xi) such that 27 = u”(—o0) = u’ (o0) and 27 := u"(c0) =
u, (00) we have have the commutative diagram

Dyt | @ | Dys| —> Dyt | © Ty 7|

| |

in which the horizontal maps are by (9.3.1) and the vertical are induced by the homotopy.

Proof. Disclaimer: The construction of the isomorphism involves choices. These choices
are unique up to homotopy and hence the isomorphism on the orientations does not
depend on these choices. We will not specifically mention this every time.

Consider trivializations ®,,, ®,_ and ®,, of v*T'M, u* TM and u’ TM respectively
with properties listed in the proof of Theorem 6.1.10 and such that ®,(—o0) = ®,,_(00),
Py (00) = @, (00) and &, (—o0) = P, (—00) = P, where &, is a trivialization
of (z,)*T'M which is fixed once and for all. As explained further in the proof us-
ing the trivializations we obtain maps S, S_, S, : R x [0,1] — R?"*27 and F, F_,
Fy :R — L(n) x L£(n) such that (F,S), (F_,S_) and (F},S4+) are admissible and the
operators Dy, D,_ and D, are conjugated to Drg, Dr_ s and Dp, g, respectively.
By construction we have asymptotics o_ := S(—o00) = S_(o0), 04 := S(00) = 54 (00)
and o, := S_(—o0) = S4(—00), where o, is a path which is fixed once and for all. In
particular o, does not depend on the maps u, u— and uy. Using the isomorphism the
kernel of the operator A,_ is conjugated to T,,_Z (cf. Lemma 3.2.13). Via pull-back we
have relative spin structures and by Lemma 9.2.5 trivializations of F', F_ and F which
are standard over the ends. Using the trivializations in Lemma 9.4.3 we obtain integers
p—, {1, piy € Z and isomorphisms of |D,|, |D,_| and | D, | with |p.o_ : o4, |p—.0% : 0_]
and |p4.0. @ 04| respectively. For any v € Z we fix once and for all an orientation in
]J* : 1/.0*\. The claim follows by linear orientation gluing Lemma 9.4.1 and the canonical
isomorphism (9.4.1). Indeed we have

Du| 2 ot 1404 @ 300 2 04| 2 0w s 04 @ o 0],
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and plugging this isomorphism in the next

[Dy_| @ |Du| = |ow : (p— + p).0s| @ |p—.0x 1 0| @ |p.0— 2 04|
=low: (p- +p).ou| @ (0 + p).0s s po| @ [po- oy

~

|ox 1 04| @ |0y 04| @ |o— 1 0]
oy 04| ® oy 04| @ |Ty_Z|
= Dy, | ©|T: 11

This shows (9.3.1). Since all isomorphisms are natural with respect to homotopies we
also have the commutative diagram. O

In particular if u € B is such that u(s,-) = x for all s € R, we have canonically |D,,| =
|T,Z| and we conclude that a relative spin structure induces a canonical isomorphism
for any two caps u_, uy € B(zy, )

which is natural with respect to homotopies. Thus the following double cover is well-
defined.

Definition 9.3.4. Given a relative spin structure for (Lo, L;). We define the double
cover O — 7 with fibre over x € Z given by

O, = |_| ’Du’/"’

UEB(I* ,w)

in which two elements o € |D,| and o' € |D,,/| are equivalent if they are identified by the
isomorphism (9.3.2).

Remark 9.3.5. If we pull-back the double cover O to B(x,) along the fibration B(z.) — Z,
u — u(o00) it is isomorphic to the double cover B(z.)™ — B(z,) with fibre over u given
by |D,| (cf. [36, Prp. 8.8.1]). Using notation of [36, §8.8] the cover O is the orientation
bundle of ©.

We come to the main result of the chapter. Given connected components C—, Cy C
Z. We denote by M(C_,C4;J, X) the space of (J, X)-holomorphic strips u such that
u(—o0) € C_ and u(oc0) € Cy which comes equipped with the evaluation map

ev = (ev_,evy) : M(C_,Cy;J, X) — C_ x Cy, u > (u(—00),u(0)) .
For more details see Section 7.1.

Theorem 9.3.6. Assume (Lo, L) is equipped with a relative spin structure and let O be
the associated double cover (cf. Definition 9.5.4). Given connected components C_,Cy C
Zr (Lo, L1) and suppose that J is reqular for X = Xg. For any u € M(C_,CJ,_;J,X)
connecting x_— = u(—o00) to x4+ = u(o0) we have the canonical isomorphism

’M(C*a C+; ‘]’ X)‘u = O;/, ® OCE+ ® |I|$— )

which is natural with respect to homotopies.
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Proof. See [36, Proposition 8.8.6]. The result easily follows from Lemma 9.3.3. By
assumption the linearized Cauchy-Riemann operator D, is surjective and the tangent
bundle of M(C_, Cy; J, X) at u is the kernel of D,,. We conclude | T, M(C_,C4; J, X)| =
|Dy|. Choose caps u_ and uy of z_ := u(—o00) and x4 := u(c0) respectively. The fibers
O,_ and O, are represented by orientations of D,_ and D, respectively. Then with
Lemma 9.3.3 we have the natural isomorphism |Dy| = |Dy_|Y ® |D,, |® |T,_C_|. O

Corollary 9.3.7. Given a smooth map ¢o_ : W_ — C_ such that J is reqular for X
and p. An OV-orientation for p_ induces an OV -orientation for

evy : MW_,C;J,X) = Oy, (w,u) — u(c0) .

Proof. Using the canonical orientation of the tangent space on the fibre product (cf.
equation (9.1.5)) and Theorem 9.3.6. O

9.4. Linear theory

We proof the orientation gluing for Cauchy-Riemann operators with degenerated asymp-
totics defined on strips. This generalizes the orientation gluing for Cauchy-Riemann op-
erators the cylinder with non-degenerated asymptotics as was established in [24, Section
3].

Fix a constant § > 0, we denote by A the space of paths o : [0, 1] — R?"*2?" such that
o(t) is symmetric for all ¢ € [0, 1] and the operator (cf. equation (6.2.4))

Ay - Hy([0,1],R?™) — L2([0, 1], R?™), £ Jgadl+ o€,

with A = (R",R"), has spectral gap ¢(A,) > J (cf. equation B.1.1). Fix two paths
o_,04 € A and a constant ¢ such that 0 < e < min{¢(A,_,(As,)}. We define

D(o_,04) = {S € C(R x [0, 1], RZ*2) | S(+c0,") = o }.

To any S € D(o_,04) and F : R — L(n) x L(n) such that (F,S) is admissible (cf.
Definition 6.2.1) we associate the operator (cf. equation (6.2.2) and (6.2.8))

Drps  Higp (9, R*) — L¥(S,R™), € 0.6 + Jwadi€ + SE,

with W = (ker A;_,ker A, ). In case when F is such that F(s) = (R",R") for all s € R
we simply write Dg. By Lemma 6.2.5 the operator D g is Fredholm and we denote by
det Dp g and |Dpg| the associated determinant line and orientation torsor respectively.
We identify D(o_,04) with an open subset in the space of Fredholm operators, via
S +— Dg. Moreover it is easily seen that D(o_, 0 ) is convex, hence the pull-back of the
determinant line bundle to D(o_, 0 ) is orientable. We denote by

lo_, 04| (9.4.1)
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the space of the two possible orientations of the determinant line bundle over D(o_, o),
i.e. the space of sections in the double cover over D(o_, 04 ) where the fibre over S is
given by the two possible orientations of the Fredholm operator Dg.

For any u € Z and t € [0, 1] define the unitary matrix

Pu(t) = (eﬂow g) : (9.4.2)

There is an action of Z on A given by p.0 = ¢_,, 0 ¢, + Jsta ¢—u0r¢,. Alternatively the
action is defined for the associated operator by A, , = ¢_, A; ¢,. This easily shows
that the spectrum of A, is not changed under the action, which implies that the spectral
gap is left invariant. Moreover for all u € Z we have ¢_,, Dg ¢, = Dy_, S ¢ptJsad—0idy
and thus a canonical isomorphism for all p € Z

|:U"O-—7 /‘j“'0-+| = |0—7 U+| . (943)
We now state the main lemma.
Lemma 9.4.1 (Orientation gluing). Given o_,0,04 € A, there exists an isomorphism

|0-*>O-| ® |U7 J+| — |O’,O’| ® |O-*70-+| s (944)

which is natural with respect to homotopies, i.e. given homotopies (o7),(c7) and (o7)
in A, then there exists a commutative diagram,

02.0%] @ |6, 0% | — [0, °| © |01

"

o101 @ o1t | — Jol. 01| oL oL

)

where the horizontal isomorphism is induced by (9.4.4) and the vertical by homotopies.

Proof. Choose Sy € D(o_,0) and S; € D(o,04+) with Sy(s, ) = Si(—s,-) for all s > 2.
For any R > 2, we consider the glued map Sy#RrS1 as given in (9.4.6). We obtain an
isomorphisms |Dg| ® |D;| = | ker As| ® |Dg|, constructed in Lemma 9.4.9 below. Note
that ker A, is the same as ker D, and D,, is surjective, hence | ker A,| = |D,|. Extend the
isomorphism uniquely to obtain (9.4.4) via the homotopy lifting principle. We explain,
why the isomorphism does not depend on the choice of Sy, .S1: Choose another elements
Sy € D(o—,0) and S7 € D(0,04). These are joined to Sy and S; via a homotopy
(S)refo,1) and (ST)rejo1) respectively. By naturality of the gluing construction, the
obtained isomorphism on the orientations is the same (cf. Lemma 9.4.11). We argue
similarly to show that the isomorphism is natural with respect to homotopies of o_, ¢
and 0. O
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Lemma 9.4.2. The isomorphism (9.4.4) is associative. More precisely, given paths
0o,-..,03 € A, then we have a commuting square

|0, 01| @ |01, 02| ® |02, 03] —— |01, 01| ® |00, 02| ® |02, T3]

|0, 01| @ |02, 02| ® |01, 03] —— |01, 01| ® |02, 02| ® |00, 03] .

in which all but the lower horizontal map is given by the gluing map (9.4.4) and the
lower horizontal map is given by commuting the factors and the gluing map (9.4.4).

Proof. See [74, Lmm 2.4.2] or [22, Lemma 3.5]. O

Path of Lagrangians

We show that a stable trivialization of F' induces an orientation of Dpg up to data
which only depends on the asymptotics and the index of F. We view F' as a bundle
over R x {0, 1} with fibre over (s, k) € R x {0,1} given by F(s). Suppose that Fj(s) =
F(—s) =R" for all s > sg, k = 0,1. An admissible trivialization is a trivialization of F'
given by a special orthogonal frame which is standard over (—oo, —sp] and [sg, c0).

Lemma 9.4.3. Given S € D(o_,04) and F : R — L(n) x L(n) such that (F,S) is
admissible. Let p be the Robbin-Salamon index of F. An admissible trivialization of
F &R induces an isomorphism

Drps| = ooy, (9.4.5)

which is natural with respect to homotopies, i.e. given homotopies (ST), and (FT), where
7 € [a,b] and such that S™ € D(o7,07) with 0. = S7(£00,-) and (S™,F7) is admissible
for all T € [a,b], then an admissible trivialization of F®R gives the commutative diagram

|DFajsa| e ‘,LLO'a_,O'_ai_|

| |

’DFb,Sb‘ - ‘IU,.UE, UEH )

in which the horizontal isomorphism is induced by (9.4.5) and the vertical is induced
homotopies.

Proof. For k = 0,1 a trivialization of F} is given by a frame e, ..., eﬂfbﬂ : R — R2n+2
of Fj, @ R which is standard over (—oo, —sp] and [sg,00). For s € R define the unitary
matrix Wy (s) with column vectors ef(s), ..., e% | (s) and Jga€f(s), ..., Jsaek 1 (s). Thus

Fi(s)®R = Ui (s)R™! for all s € R. The Robbin-Salamon index of F' is an integer, since
F starts and ends at (R",R"). With ¢, as given in (9.4.2) the concatenation ¢,#¥
has the same Malsov index as ¥;. By [63, Thm. 4.1] we conclude that the paths are
homotopic with fixed endpoints, which implies the existence of a map ¥ : ¥ — U(n+1)
such that
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o U(s,k)R"! = Fy(s) @R C C"™! forall s € R and k =0, 1,
o U(s,t) = ¢,(t) for all s < —sp and ¢ € [0, 1],
o U(s,t) =1 for all s > sy and ¢t € [0, 1].

To see that ¥ exists uniquely up to homotopy, let ¥’ be another choice. Along the
boundary of [—sg, so] x [0, 1] we identify ¥ and ¥’ to obtain an map from S? to U(n+1).
Since the unitary group is two-connected we find a homotopy from ¥ to ¥’

Now define the map Sy := U1 SU + U 19,U + Jq 019,V and F' = (F}, F]) with
F/(s) = Fi(s) ® R for k = 0,1. The operators Dps g and Dg, are conjugated by V.
The kernel of Dgr g splits into ker Dp g @ R where R is given by the space of constant
maps ¢ : R x [0,1] — R*™ @ R2, £(s,t) = (0,a) for some a € R. Moreover the cokernel
of D/ g and Dp g are the same. Fixing the standard orientation on R, then ¥ induces
an isomorphism between the orientation torsors of Dpg and Dg,. By construction
Sy (—00,-) = p.o_ and Sy(oo, ) = oy. This shows (9.4.5).

We show naturality. Using the trivialization of F’ we define W as above on the six sides
of the cuboid [a,b] x [—s0, so] x [0,1] such that W(r, —so,t) = ¢,(t) and (7, s0,t) = 1
for all 7 € [a,b] and t € [0,1]. Note that the by the homotopy axiom the Robbin-
Salamon index of F7 is independent of 7. Because the unitary group is two connected
the map extends to a map defined on the cuboid ¥ : [a, b] X [—s0, s0] X [0,1] — U(n+1),
U™ = U(r,-). In particular the orientation torsor of Dpg is isomorphic to Dg,, by
conjugation with U”. Since Syr € D(p.0”,07) for all 7 € [a, ] the claim follows by the
homotopy lifting principle. O

Linear gluing

Given Sp € D(0_,0) and S1 € D(0,04) such that Sy(s,-) = Si(—s,:) =0 for all s > 1.
For each R > 1 we define

Sop=So0o7_2r ifs<—-R
SR = So#Rsl = S()(OO) = 5’1(—00) if ‘S‘ < R (9.4.6)
S1,r = S10TR if s> R,

where 1o : ¥ — ¥ denotes the translation 7r(s,t) = (s — 2R, t). We abbreviate
e the asymptotic operators A_ := A, , A:= A, and Ay := A,_,
o their kernels C_ :=ker A_, C' :=ker A and C :=ker A,,

e the operators Dy := Dg,, D1 := Dg, and D := Dg, which are defined on the
Banach spaces Hy, H, and Hr with target Lo, L1 and Lg respectively,

e the restricted operators Doy := Do @& Di|n,, : Hor — Loi1 where Hyy C Ho & H;
consists of functions (&p, &1) such that £y(oc0) = &1(—o0) and Loy := Lo @ L.

Lemma 9.4.4. We have ind Dy; = ind Dp.
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Proof. We denote by Hffd C Hp and Héﬁd C Hp; the subspaces of functions with
vanishing asymptotics, i.e. £ € Hg with {(+oc0) = 0 and (§p,&1) € Hoyp with §y(£o0) =
€1(£o00) = 0. Secondly denote D4 and D! the operators Dg and Dy restricted to
the spaces le%ed and Hé‘id respectively. We have

ind Dg; = ind D5 4 dim C_ + dim C + dim Cy

; (9.4.7)
ind Dr = ind DR + dim C_ 4 dimker C; .

The indices of the reduced Fredholm operators are computed in Lemma 6.2.6. We have

ind D54 = ind Dy + ind D3

1 1

= p(VR",R") — p(V_R",R") — 2 dim C_ — 2 dimC
1 1

+ (VR RY) — p(WR"R") — 2 dim € — 2 dim C'

where W_, ¥ and W, are the fundamental solutions of o_, o and o respectively. Thus
ind Di¢ = (W, R™, R") — u(¥_R™, R") — %dim C_ —dimC — %dim C..
On the other hand we have
ind D4 = (W, R™,R") — u(¥_R"™,R") — %dim C_ — %dim C..
Plugging the last two equations in (9.4.7) proves the lemma. O

Adapted norms For R > 0, we define a weight function v: R — R

e 02R+s) if g < 2R
v(s) = ed(2R—ls)  if |s| < 2R
ed(s—2R) if s >2R.

For any n € Ly := L*°(X, R?") we defined the weighted norm

, 1/2
Il = ( JAl m%,Rdsdt)

and for any & € Hp with &1 = £(£00) and & = P£(0,-), where P denotes the orthogonal
projector to ker A, we define the norm

1€l gy, == =11+ [|€]] + 1€ 0+
+ (1€ - gf)'YHLQ;E:if + H(& - 5_)7"1,2;23‘§R +[1(¢§ - §+)'7||172;Zg<1} .

It is easy to see that these define equivalent norms for every fixed R > 1.
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Pregluing and breaking Fix once and for all a cut-off function 37 and B~ given
in (8.2.1). Further denote 3, = 3~ o7g and BJRF = T o1 we define the linear pregluing
operator via

Or : Hy1 — Hg, (€0:61) = E+ BT (&1 0omr — &) + Br(€hoT—2r — §),
with € = &o(00) = &1(—00) and the breaking operator Zg : Lr — Lo®L1, 1 — (Mo,r, N,R)
in which
0 for s > 2R

s,t) =
o.R(5: 1) {7](8 —2R,t) for s <2R

n(s+2R,t) for s> —2R

1) =
MR (s t) {O for s < —2R.

We define another linear pregluing operator Qg : Lo ® Ly — Lg, (no,m1) — nr in which

~ Jno(s+2R,t) fors <0
= m(s —2R,t) fors>0.

It is easily seen that =g is a right-inverse for Qp.

Lemma 9.4.5. There ezists constants ¢ and Ry such that for all (,&1) € Ho1 and
R > Ry we have

100,01, < € (6ol 5+ Il 25)

Moreover we have for allm € Ly,
2 2 2
1n0,ell5,5 + [1n0,21l5.5 = I, -

in which (no,r,M.r) = ZR(N).

Proof. We have the same estimates as in the proof of Lemmas 8.3.1 and 8.3.2. Note that
we are now in a much simpler situation where the connection is flat and all the parallel
transport maps are given by the identity. O

Approximate pseudo-right inverse Fix a finite dimensional subspace Y C Lg; such
that Dy is transverse to Y, i.e. im Doy +Y = Lg;. Without loss of generality we assume
that all functions in Y are compactly supported. Define X := DgllY.

Lemma 9.4.6. The linear pregluing operators are injective when restricted to X or'Y
respectively, for all R sufficiently large.

Proof. We find sy such that functions in Y are supported in [—sg, so] X [0,1]. The fact
that Qgly : Y — Lp is injective for all R > s directly follows by its definition. Suppose
that (£0,&1) € X. Then D& is supported inside [—sg, sg] X [0, 1] and thus by elliptic
regularity &y must be constant outside. Similarly for &;. Yet if ©g(&p,&1) = 0 for R > s,
then & and &; have to vanish. O
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Let X+ C Hp; be some closed complement of X and define Y+ := Dg;(X+). Ob-
viously we have a splitting Lo = Y @ Y+ and since Dy restricted to X is injective,
there exists a unique bounded operator Qo1 : Lo1 — Hoi satisfying

im Qo1 = X+, ker Qo1 =Y, DpQun=n VYney™ .
We define the approximate pseudo-right inverse
@R = 0OproQp1oZr: Lg — Hp.
Moreover we define subspaces of Hg and Lg by

Xp = Or(X), Xf = Op(X™),
Yg = Qr(Y), Yi = Qr(Y ).

By Lemma 9.4.6 and since the linear pregluing maps are surjective we have splittings
Hp=Xp® Xg and Lg =Yr® Y.

Lemma 9.4.7. We have im @R = Xﬁ, ker @R = Yr and there exists constants c and
Ry such that for all R > Ry we have

3 A —6R
QR y, < clnllz, . |1DRQRN =1, < e nllg, -
for alln € YRL.
Proof. The statements about the kernel and the image directly follow from the definition.
The first estimate follows directly from Lemma 9.4.5. We turn to prove the second

estimate. Follow the lines of the proof of Lemma 8.3.4 to show that for all £ € Hg; we
have

IDRORE = QrDorE,, < O™ [€] g, -
We abbreviate the norm ||| = |||| .. For any n € Yz we have
|DRQRN — 1| < |2rDo1Qu1ZRN — 1| + O(e™°F) |In]| -

Decompose Zrn = 1o + 11 along the splitting Y @ Y+ and continue using the fact that
Qo1 is a pseudo-inverse we see

|DRQrN —nl| < [|2rm —nl| + O %) [n] < O(e™*F) |In]| -

The term Qrn; —n vanishes because as 2 is a right-inverse to {0g we have n = Qr=rn =
Qrno + Qrm1 = Qrn1 since by assumption n € Yé‘ and Qgrno € Yr. O
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Gluing construction Via (8.3.15) we use the approximate pseudo-inverse @R to define
an actual pseudo right-inverse Qg : Lr — Hpr which is uniformly bounded and satisfies

imQr = Xg,  kerQp=Yxg, DrQrn=n, VneYg.
Moreover abbreviate Pr = 1 — QrDp the projection onto D]_%IYR along im QR.

Lemma 9.4.8. For all R sufficiently large, the restriction Pr|x, : Xr — DEIYR s an
isomorphism.

Proof. We write any n € Lr as 7 = n9 + m1 along the splitting Lr = Ygr ® YI%-. Then
n = no+ Dr@Qprn. This shows that n € im D + YR, thus Dp is transverse to Yr. Hence
the space DI_%IYR has dimension dim Yz+ind Dg. Since pregluing is injective restricted to
Y01 (cf. Lemma 9.4.6), the dimension of Yz and Yj; are the same. Similarly we conclude
that dim Xp = dim Xo; = dimYp; + ind Dy;. The index of D and Dy agree (cf.
Lemma 9.4.4). We conclude that the spaces D}_zlYR and Xp have the same dimension. It
suffices to show that Pg is injective. The kernel of Py is the intersection DleRﬂim Qr.
Suppose by contradiction that there exists a non-trivial £ € DI_%lYR Nim Qr. Hence
& = Qpgn for some n € Yﬁ- with DrQprn € Yr. By the properties of Qr we have
n = DrQrn = 0. O

Associated to the canonical exact sequences 0 — ker Dg; — X ﬂ Y — coker Dy; —
0 and 0 — ker Dp — DleR DR, Yr — coker D — 0 are the isomorphisms |Dgp| =
|X|® Y]V and |Dg| = |Dg'Yr| ® |Yr|" respectively via (9.1.1). We define the gluing
isomorphism as the composition

|PrOR|®IQR]Y

|Do1| — | X | @ |Y|Y |DR'YR| ® |Yr|Y —|Dg| . (9.4.8)

In order to glue the operators Dy and D1 we use the following simple algebraic lemma.

Lemma 9.4.9. There exists an exact sequence

0 — ker Dg; — ker Dy @ ker D1 — ker A — coker D1 —
— coker Dy & coker D1 — 0,

which together with (9.4.8) induces an isomorphism |Dg| @ |Di| — | ker A| ® |Dg|.

Proof. The claim follows directly from the snake lemma on the commutative diagram of
short exact sequences.

0 Hy Hy® Hy ker A 0

e s |

0—=LOL—-LOL—0,

in which the map Hy @ H; — ker A is given by (&y,&1) = &o(o0) — &1(—00). By equa-
tion (9.1.1) we have an isomorphism |Dg| ® |D;| & | ker A| ® |Do1]. O
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Naturality We show that the orientation gluing map (9.4.8) is independent of choices
and natural with respect to homotopies (cf. Lemmas 9.4.10 and 9.4.11 respectively).
Given two linear complements Y, Y C Lg1 which are transverse to Do; and denote the
corresponding maps from (9.4.8) on the level of determinant lines by g, g : det Dg; —
det DR respectively.

Lemma 9.4.10. For all R sufficiently large, the composition
1,[);%1 ¢} JR s det D01 — det D01 R
is given by multiplication with a positive number.

Proof. Without loss of generality ¥ C Y. We denote the spaces and maps appearing in
the construction using Y with X X1 ete. To define the maps Yr and @pr we have the
commutative diagram

det X @ det YV det D}}l}/}R ® det }A/g
det Do det Dg
det X ® det YV det D'V ® det Yy

The map g is obtained by following the diagram along the lower arrows and we get the
map 12 r using the upper path. The two vertical arrows are computed in [2, Lmm. 5.2] and
are given as follows: Consider a splitting Y = Y ®Y” and set X’ := Dy (Y'). We have a
splitting X = XX’ and Do, |x: : X’ = Y’ is an isomorphism. Fix generators a € det X,
B € detY and v € det X’. Then Dg17 is a generator of det Y’ and the map on the left-
hand side is given by a ® 8Y +— (a Avy) ® (Do1y" A BY). On the other side consider the
splitting Yp=Yro® Y}, with Yg := Qg(Y) and Y}, := Qg(Y”). We have a corresponding
splitting DEI?R = DEIYR <) DEIY]’{, generators ap € det D;ilYR, Br € detYgr and
vr € det DR'Y}h and the map is given by ap ® 8%, — (ag A vr) @ (DrYj A BY)-
We assume that the generators are picked such that ap = PrOpra, Sr = Qgr(8) and
Dryr = QrDp1y. We conclude by following the definition of the maps around the
square, that 1/1;%11#3 is given by multiplication with the determinant of the map

ﬁR@R X = DEI?R,

where det X is oriented by a Ay and det DEI?R is oriented by ar A vg.
We claim that (Pr — Pg)¢ € D}_BIY]’% for any £ € Xg. Indeed given £ € Xg and split
Dgé& = no+m + 12 along the splitting Yr & Y}, ® YRL. Then since they are right-inverses

Dr(Pr — Pr)¢ = Dr(Qr — Qr)Dré = DrQri2 — DrQR(m + n2) =
=MnN2—N1—MN2="n.

150



9.4. Linear theory

This shows the claim and we conclude that ﬁRG) RO A ]33@ RY = QRr N\ ]33@ rY.- We are
left to compute the number a € R which is defined by

nglyéPR@R’Y =a- YR,

. . X —1%, 1yt : : -1
in which Tpatyy D.R Yr —» D R Yy denotes the projection along Dy Ygr. We apply
Dpg on the last equation and obtain

Wy]/?DRﬁR@R’)/ =a- DR"}/R =a- QRD()l’y.

Abbreviate the generator v} := QrDg1y € detYy. The inverse of the map QgD :
X' — Y}, is Qo1 0=g and hence v = Qo1=rYg. Plugging that back into the last equation
we conclude that a is the determinant of the map

WYéDRﬁR@R : Y},Z — Y},Z .

To show that the determinant is positive for all R sufficiently large enough it suffices to
show the following: There are constants ¢ and Ry such that for all R > Ry and n € Y,
we have

HDRJSR@RTI - TIHLR < ce O nllL,, -

Choose any 7 € Y. Abbreviating ||| = ||-[|,,, we compute

| DrPrQrn — 1| = | Dr(1 — QrDr)Qr1|
< |DrQrn — || + | DrROrRDRQ R
= |DrQrn — 1| + |DRQR(DRQRN — 1)|| < ce™*F |In]| .

Using the fact that @ rn = 0 and Lemma 9.4.7. O
Lemma 9.4.11. Given homotopies (S§)rc(ap) and (ST )rejap Such that S§ € D(o”,07),

ST € D(o7,07%) and S§(s,-) = S7(—=s,-) = o7 for all s > 1 and 7 € [a,b]. For corre-
sponding operators D{j; and Dy and R sufficiently large we have a commutative diagram

|D81’ - ’D?ﬂ

_—

| D4y | — | D

where the horizontal arrows are given by (9.4.8) and the vertical arrows are induced by
the homotopies.

Proof. Let 7 — YT C L be a continuous path of subspaces such that for each 7 € [a, ]
the space Y7 is transverse to D§;. For R sufficiently large D7, is transverse to the glued
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space Y7 for all 7 € [a,b]. By definition of the gluing map we have a commutative
diagram
| DFy | ——|(Dg) Y| @ [Y7]

l lw}z@y@ﬂa
Dl —= [(DR)~'Yi| @ V|-

The spaces (DJ;)"1(Y7), ?ﬁ etc. are the fibers of vector bundles over [a,b] and the
isomorphisms P;O7% and QF are bundle maps. By continuity we obtain a commutative
diagram. O

152



10. Pearl homology

10.1. Overview

Pearl homology is a version of Floer homology of Lagrangian intersection, which has
the advantage that if Lagrangians intersect cleanly we do not need to perturb the La-
grangians into transverse position. We call the invariant pear! homology because it is
a direct generalization of an invariant associated to a single monotone Lagrangian in-
troduced by Biran and Cornea in [12] with that name. The construction was already
sketched out by Frauenfelder in [33, Appendix C] under the name of Floer-Bott homol-
ogy. Here we give a detailed account of the theory for the monotone case including
orientations.

Pearl trajectories Choose an auxiliary Morse function f : Lo N Ly — R and metric
on Ly N L; and a path of almost complex structures J : [0,1] — End(T'M,w). Given
critical points p_, p4 € crit f, a pearl trajectory connecting p— to p4 is either a negative
gradient flow trajectory u : R — Lo N Ly with u(—o00) = p_ and u(co) = p4 or a tuple

u = (u1,...,up) of non-constant finite energy J-holomorphic strips R x [0,1] — M
with boundary in (Lo, L1) such that u;(—o0) € W*(p—_), um(c0) € W*(p4) and for each
j=1,...,m—1 there exists a negative gradient flow line from w;(c0) to uj41(—00). For

reasons of transversality we require that each curve in the tuple is not a reparametrization
of another. The number m is called the number of cascades. If u is an ordinary Morse
flow line, we say that u has zero cascades. We denote by M(p_, p+) the space of all pearl
trajectories connecting p_ to py modulo reparametrization with an arbitrary number
of cascades. If J is sufficiently generic every connected component of M(p_,py) is
a manifold with corners and for d € Ny we denote by M(p—,p4)jq the union of all
d-dimensional components.

Grading Let P be the space of paths 7 : [0,1] — M such that v(0) € Ly and (1) € L;.
We denote by N € N the minimal Maslov number of the pair (Lg, L1) with respect
to a fixed element x, € P. For every critical point p € crit f we choose a map u, :
[-1,1] x [0,1] — M such that uy(s,-) € P for all s € [-1,1], up(—1,-) = x, and
up(1,-) = p. The grading of a critical point p € crit f is

L.
Ip| = p(p) — pwlup) — 3 dimT,Lo N Ly . (10.1.1)

Orientation Let O — Ly N L1 be the double cover associated to a fixed relative spin
structure (cf. Definition 9.3.4). For any critical point p € crit f fix an orientation
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op € |TyW"(p)| ® Op. In the paragraph before Lemma 10.2.7 we define orientations
on M(p—,p+) with these choices. An orientation of [u] € M(p—,p4)(g is just a number
in {£1} which we denote by sign(u).

Pearl complex Let A := A[A~! )] be the ring of Laurent polynomials in one variable
of degree —N. The pearl chain complex CH,(Lg,L1) is given as the free A-module
generated by all critical points of f with grading |[p ® A\¥| = |p| — kN and equipped with
the A-linear homomorphism

0 : CH*(Lo,Ll) — CH*,l(Lo,Ll)

> signu - g @ Ad=lPI+D/N
p Zqécritf Z[u]ef\/l(p,q)[o] & 1

The next theorem as proven Fukaya et al. in [37] for the very general case of semi-
positive symplectic manifolds and unobstructed Lagrangians, which includes the case of
monotone Lagrangians.

(10.1.2)

Theorem 10.1.1. We have 900 = 0. The homology group QH.(Lo, L1) = ker /im0 is
called pearl homology and is independent of choices of J, f, the metric and orientations
op. Moreover we have a natural isomorphism

QH.(Lo, L1) = QH«(Lo, pr(L1)) . (10.1.3)
for any Hamiltonian H .

By the invariance we conclude that pearl homology is isomorphic to Floer homology.
Namely if we choose H such that ¢ (L) intersects Lo transversely, then pearl homology
for Ly and ¢ (L) agrees with Floer homology by definition.

10.2. Pearl trajectories

In the following we abbreviate Z := Ly N L; and fix an auxiliary Morse function f on
Z. We denote by ¥ : R xZ — Z, ¥* := 1(a,-) be the negative gradient flow of f
with respect to a sufficiently generic metric. Note that in general Z has many connected
components with possibly different dimension. Pick a path of almost complex structures
J :[0,1] — End(TM,w). Given an integer m € N and submanifolds W_, W, C Z we
define

Mo (W_ Wi ) o= {(ua, ..., um) C CP(2, M) | a) — )}, (10.2.1)
to be the space of tuples (ui, ..., uy) such that
a) for all j =1,...,m the map w; is J-holomorphic with boundary in (Lo, L1),

b) the tuple (u1,...,un) is distinct, i.e. for all i # j, a € R we have u; o 7, # u;,
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c) forall j =1,...,m — 1 there exists a; > 0 such that
P (uj(00)) = ujy1(—00), (10.2.2)
d) we have u;(—o0) € W_ and u,,(00) € Wi

For m = 0 we define Mo(W_,W,;J) :== W_ N W,4. The elements of the space
M, (W_, Wy J) are called parametrized J-holomorphic pearl trajectory with m cas-
cades connecting W_ to W4 and boundary in (Lo, L1). If in particular W_ = W*(p_)

and Wy = W5(p4) for some critical points p_, p4 € crit f we abbreviate furthermore

Mu(p—,p13J) = My (W (p-), W3(py); J) .

The elements of Mvm(p_,p+;J) are simply called pearl trajectories with m cascades
connecting p— to py. As we shall see in a moment the connected components of these
spaces are manifolds with corners if J is chosen sufficiently generic.

Transversality

For the correction description of the space Mvm(W_, W,;J) we need the notion of a
manifold with corners, which is a mild generalization of the notion of manifolds with
boundary. Unfortunately there is no standard concept in the mathematical literature.
We stick with the definition of [47]. Briefly a manifold with corners is a topological space
M equipped with an atlas of charts locally modeled on open subsets in [0, oo)k x Rk
and chart transition maps which extend to smooth maps from R" to R”. The dimension
of the manifold is the number n. The depth of a point is the number of zeros among the
first k£ coordinates in a chart. The depth is well-defined independently of the choice of
local coordinates and gives rise to a stratification of M. The top stratum is given as the
space of all points with depth equal to zero. Obviously the each stratum is a manifold
in the usual sense. For more details see [47].

Fix an integer m € N. Let Mvm(J ) denote the space of distinct m-tuples of J-
holomorphic curves and consider the evaluation map

ev: My (J) = T2
(wts oy um) = (u1(—00), u1(00), uz(—00), -+, um(0))
On the other hand consider the map
W_ x T P x Wy x R™ 1 72m

(p07pl7wal(pl)7p27¢a2(p2)a" . (1023)

(p07"'7p y A1, ..., 04 —1) —
" " . 7Pm—17¢am*1(pm—l))pm)

We say that J is regular for W_ and W if J is regular for X = 0 and the map (10.2.3)
in the sense of Definition 7.3.3, i.e. the operator D,, ; is surjective for all J-holomorphic
strips u and the evaluation is transverse to (10.2.3).
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Lemma 10.2.1. The subspace of J € C*([0, 1], End(T'M,w)) which are reqular for W_

and W is comeager. If J is reqular then each connected component of My, (W_, W,; J)
is a manifold with corners and the component which contains u = (uq,...,up) has
dimension

1 1
wvig(u) + dim W_ — idimC'_ +dim W, — §dimC++m—1,

in which pyie(w) = >0 pvie(uy) and C— C I, C C T are the connected components
containing W_ and W respectively.

Proof. In Theorem 7.3.4 we show that the space of regular structures is comeager. Each
connected component of the space W_ x T™ 1 x W, x [0,00)™ ! is clearly a manifold
with corners. We see that //\/lvm(W,, W, J) is the fibre product of the evaluation map
with the map (10.2.3) restricted to the subspace W_ x T~ ! x W, x [0,00)™~!. Hence
by [47, Thm. 6.4] connected components of Mm(W_, W,.J) are also manifolds with cor-
ners. To compute the dimension, choose some tuple (u1,...,uy,) € Mvm(W_,W+; J)
in the top stratum, which is equivalent to say that the tuple of non-negative numbers
(a1, ...,am—1) defined by (10.2.2) has no zeros. Let Cy, C1,Ch,...,Cy, C Z be the con-
nected components of the points uq(—00), u1(00), u2(0), . .., um(00) respectively. With
the dimension formula from Theorem 7.3.4 we have

o - 1 1
dim T, My, (J) = z;uw(uj) + 5 dim Cjy + 5 dim G
]:

By the exact sequence (9.1.4) we conclude that the dimension d of the fibre product
M, (C—,Cy; J) at u is given by

m—1 m—1
d = dim M (J) + dimW_ x ] ¢ x Wy x R™! —dim [] C; x Cjp
Jj=1 Jj=0
1 e 1
= p(u) + 5 dim Co + > dimCy + 5 dim Gy +dim W + dim Wy +m — 1
7j=1

m
— Z dim Cj
§=0
. 1. . 1 .
= p(u) + dim W_ — §d1mC0 + dim Wy — idlmCm +m-—1.
This shows the claim. O

From now on we fix an almost complex structure .J, which is sufficiently generic in the
sense that it is regular with respect to all upcoming pairs of submanifolds and omit the
reference to J whenever convenient, eg. we write M(p, q) to denote M(p, ¢; J).
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Compactness

A broken J-holomorphic pearl trajectory connecting p— to p+ is a tuple of pearl trajec-
tories v = (v1,...,vx) such that v; connects p; to p;+1 for alli =1,...,k — 1 and some
critical points p_ = p1,...,pr = p4+. For i =1,..., k we denote by m(v;) the number of
cascades of v;.

Definition 10.2.2. We say that a sequence of pearl trajectories

(UV)Z/EN = (ullla cee 7ul7/n)l/€N )
Floer-Gromov converges to the broken pearl trajectory v = (vy,...,vg) if
e for each j = 1,...,m the sequence (ug)yeN Floer-Gromov converges to w; =

(wj,. .., wj;) (cf. Definition 5.1.3)
e for each (i,7) with 1 <i <k and 1 < j < m(v;) there exist a pair (¢, k) such that
Vij = W,

e the map {(4,7) | 1 <i <k 1<j<mvy)}—=>{lkr)|1<l<m]l <k <k},
(7,7) — (¢, k) mentioned above is surjective and strictly monotone with respect to
the lexicographic order.

Lemma 10.2.3. Assume that Ly and L1 are monotone with minimal Maslov number at
least three. Let (u”) ey = (uf,...,u%,)ven be a sequence of pearl trajectories connecting
p— to p4 such that sup, E(u”) < oo, then at least one of the following holds:

(i) a subsequence of (u”) Floer-Gromouv converges to a broken pearl trajectory connect-
ing p— to p4,

(ii) there exists a broken pearl trajectory v connecting p— to py satisfying u(u”) >
w(v) + 3 for all v sufficiently large.

(iii) p— = py and p(u”) > 3 for all v sufficiently large.

Proof. For each j = 1,...,m we obtain by Theorem 5.1.4 a subsequence of (ug’ ) still
denoted by the same sequence, which Floer-Gromov converges modulo bubbling to the
broken strip w; = (wj1, .. .,wikj) possibly containing constant components. We also

have u(—00) — wj,1(—00) and u}(00) — wjk,;(00). Let (b7) C R be the sequence such
that wbgu;(oo) = uj(—00). We distinguish two cases. In the first case (b7),en is

bounded, then a subsequence converges to b; and we have
WP (g, (00)) = wji1,1(—00) . (10.2.4)

In the second case (b7)yen is unbounded. For each v € N let v} be the Morse trajectory
from u¥ (o) to uj;(—00). Then a subsequence of (7}),en converges to a broken Morse
trajectory (vj1,742;---»Vje;) With £; > 2, where ;1 and ;¢ are half-trajectories. Set

pj = 7;.1(00) and pj = 7j75j(—oo). In particular if j > 2 the critical points pj_,p;F are
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joined by the broken Morse trajectory (vjz2, ..., 7j,¢;—1) and if £; = 2 they are equal p; =
p;r. In any case we have w;x;(c0) € W¥(p;) and wjt1,1(—o0) € W“(p;“) Regrouping
the non-constant components of the tuples (w;;) and (vj2,...,7;¢,-1) using (10.2.4)
shows they constitute to a broken pearl trajectory v which connects p_ to p;. Moreover
by Lemma 5.5.4 either each all w;; are non-constant and (u”) Floer-Gromov converges
to v or u(u”) > u(v) + 3 or if all components had been discarded p(u”) > 3 for all v
large enough. O

If m > 1 the reparametrization group of Mvm(p_, p+) is R™ which acts freely via
(a1, yam).(Ury ..o Uy) = (U10Tgy, -+« , UM OTy,, ) With 7, : RX[0,1] — Rx [0, 1], (s,t) —
(s —a,t) for a € R. If m = 0 and p_ # py there is a free action of R on Mo(pf,er)
given by the negative gradient flow. In any case we denote by M,,(p_, p+) the quotient
and moreover

M(p—7p+) = U Mm(p—ap+)'

meENy

For any d € No we denote by M(p—,p+)g C M(p-,p+) the union of components with
dimension d. Further let

Mﬁ%(p*aer) C Mm(p*7p+) ’

be the subspace of points with depth £ = 0,...,m, i.e. given by equivalence classes of
pearl trajectories such that there are exactly ¢ zeros in the tuple (ay,...,an—1) defined
by (10.2.2).

Corollary 10.2.4. For all critical points p,q € crit f, the space M(p,q)(o) is finite and
the boundary of the Floer-Gromov compactification of My, (p, q)m is given by the union

of
o Mu(p, Q)
o M} (P @) 5
o My(p,7)j) X Mg(r,q)jo] for all v € crit f and £,k € No with £+ k = m.

v

Proof. Fix d and let (u”) = (uY,...,ul,.) € Moo (P—s P+ )d+m») be a sequence of pearl
trajectories. Since every non-constant holomorphic strip carries a minimal energy (cf.
Proposition 5.4.1) we have an uniform constant i > 0 such that E(u}) = [(u})*'w > h.
From the dimension formula and the action-index relation (cf. Lemma 5.5.3) we conclude
that there exists a constant ¢ such that

v

3

=y
I

1 1
() + p(p-) = p(ps) — 5 dim C- + S dimCy — 1> 7 'm¥h + c.
1

<.
Il

Hence the sequence (m") is bounded and after possibly passing to a subsequence we
assume without loss of generality that m” = m for all v > 1. By the same token
we conclude that d > 77! >t [E (u7) 4+ c and that the energy of (u}) is uniformly
bounded for all j = 1,...,m. We apply Lemma 10.2.3 and assume by contradiction that
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10.2. Pearl trajectories

the second case holds, i.e. we obtain a broken pearl trajectory v = (vy,...,vg) which
connects p_ to p4 such that p(u”) > p(v) + 3. Let p1,...,pp—1 (resp. Cq,...,Ck_1) be
critical points (resp. connected components) such that vy connects py—1 to py (resp. Cyp—q
to Cy) for each £ =1,...,k — 1. The dimension formula for v, implies

L. 1.
w(ve) > p(pe) — p(pe—1) + 3 dim Cy — 5 dimCyp_; + 1. (10.2.5)

Note that even if vy is not in the top stratum, the index is still bigger or equal to the
number of cascades of vy. By the dimension formula for «” and last estimate

- 1 1
dzzlﬂ(“j)"hu(p)—M(p+)—2d1m0+2d1mC+_1
J:

k

1 . 1 .
Z;M(vz)+3+u(p—)—ﬂ(p+)—2dlm0—+2dlm0+—1
>k+3-1>3.

Hence if d = 0,1 the second case of Lemma 10.2.3 is impossible. Now assume that the
third case holds, i.e. p_ = py, C_ = C; and p(u”) > 3. By the same estimate we have
d = p(u”) —1 > 2, which is again impossible for d = 0,1. The first case implies that
a subsequence of (u”) converges to the broken pearl trajectory v connecting p_ to p4
with p(u”) = p(v). By the same estimate as above we have

v 1. 1 ..
d pwi) + plp-) = ulp+) — 5 dimC- + 5 dim Oy — 1

Il
- 11

1 1
(ve) + p(p-) — pp+) — 5 dmC-_+odimCy —12k—1.
1

14

We conclude that if d = 0, then & = 1 and the unparametrized curve of vy is in fact
an element of M(p_,py))- If d = 1, then possibly £ = 2 and hence is an element of
the given boundary. To show that every element appears as the boundary consider the
proof of Lemma 10.2.7 below. O

Orientations

To define homology with integer coefficients or more generally with coefficients in a ring
of characteristic # 2, we need to orient the moduli spaces. As already mentioned the
orientations should be compatible with gluing and breaking (i.e. coherent in the sense
of [24]). We now explain that with more detail.

Denote by M, (p, q)1 the Floer-Gromov compactification of My, (p,q)pj- In view
of Corollary 10.2.4 we see that the points Ml (p, q)[o] occur as boundary points of
M(p, @)y and Mo, —1(p, q)p1j- Define the space with common boundary points identi-
fied

Mu(p.q) = | Mm(p. @)/~ -

meENy
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Definition 10.2.5. Given orientations of the spaces M,,(p, q)[o] for all p,q € crit f and
m € Ng. We say that the orientations are coherent, if there exists an orientation on
M4 (p, q) such that its oriented boundary is given by

UM(p7 T)[O} X M(Tv Q)[O] )

with union over all critical points r € crit f.

Remark 10.2.6. If coherent orientations exists, then pearl homology with integer co-
efficients is well-defined. Given two sets of orientations which are coherent, there is
no reason why the homology should be the same. In particular in [17], Cho found
non-isomorphic Floer cohomologies for the same pair of Lagrangians but with different
choices of orientations associated to non-equivalent relative spin structures.

Construction of the orientation For all m € N and any connected component C' C
LoNL; we consider the space M, (p,C) := M, (W¥(p), C) equipped with the evaluation
map

ev: Mp(p,C) — C, (Ul -y Um) > U (00).

Let O — Lo N Ly be the double cover associated to a fixed relative spin structure (cf.
Definition 9.3.4). Fix an element in |T,W*(p)| ® O, for each critical point p € crit f.
We construct recursively an OV-orientation on ev : M,,(p,C) — C, i.e. a section of
|Mn(p, C)|®ev*OV. First of all notice that since W*(p) is contractible to the point p our
choices fix an OV-orientation on W*¥(p) by parallel transport. Then by Corollary 9.3.7 we
obtain an OY-orientation on M (p,C) — C and hence an OV-orientation on the quotient
Mi(p,C) — C by (9.1.8). An OV-orientation on ev : M,,(p,C) — C induces and OV-
orientation on evy : R x M, (p,C) — C, (a,u) — ¥*(ev(u)) by parallel transport.
Suppose for m > 2 we have an OV-orientation on ev : My,_1(p,C") — C’ for some
connected component C’. There exists an induced OV-orientation on

[(R % Myp—1(p,C")) e X e Ma(C',C)] ) ~ = C, (10.2.6)

in which the quotient is with respect to the group of reparametrizations acting on the
last factor. More precisely the OV-orientation is constructed by the remarks above,
Corollary 9.3.7 and the quotient orientation 9.1.8. Here the order of each step matters.
In particular we first construct an orientation on the fibre product and then take the
associated orientation on the quotient and not the other way around. Every connected
component of M, (p,C) is of the form (10.2.6) for some component C' C Ly N Ly and
thus by induction we obtain an OV-orientation on M,,(p, C) — C as promised. We have
the isomorphism |T,W"(q)| ® O; = (O, @ |T,C/T,W*(q)|). Thus our choices fix an
O-coorientation on W#(q). Finally we obtain an orientation on M,,(p,C) xc W¥(q) =
M., (p, @) by Lemma 9.1.3.

Lemma 10.2.7. The orientations are coherent.
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10.2. Pearl trajectories

Proof. As mentioned in Section 9.1 the orientation of M, (p, ¢)1; induces an orientation
on its boundary points, denoted dM,,(p, Q)[ll' We define an orientation on My (p, q)
induced by (—1)-M,,(p, q)m. Step 5 and Step 6 show that the orientation is well-defined.
Step 1 to Step 4 shows that the orientations are coherent.

Step 1. We show Mo (p, 7)jo) X Mo(r,q)jo) C (=1) - OMo(p, ¢)y

Given (u,v) € Mo(p,7)j0) X Mo(r,q)jo)- Pick an orientation of O,. By parallel trans-
port along u and v we obtain an orientation of O, and O, respectively. By our choices
we obtain orientations of W*(p), W"(r) and a coorientation of W#(q). We identify
Mo(p, ¢)p) with the intersection Wit (p) N W?(q) where a € R is a regular value of f
with f(p) > a > f(q). By Lemma 9.1.2 the identification is orientation preserving. By
Lemma 8.8.1 we obtain a smooth map R +— wp € Mo(p,q)y) such that orientation of
Orwy, is —signusignv, impg oo wp = u and limpg wQng = .

Step 2. With m > 1. We show M, (p,7)[0) X Mo(r,q)o) C (=1) - OMm(p, q)p)-

Given (u,v) € M (p, 7)) X Mo(r, )10 We have u € M, (p, C) for some component
C C LoN L;. Identify an open neighborhood of u in M,,(p, C') with the image under
the evaluation M,,(p,C) — C. Denote the image by W_, which is submanifold in a
neighborhood of ev(u). The space W_ has an OV-orientation by construction. Pick an
orientation of 0,. We obtain a coorientation of W#*(q) and an orientation of W_ for all
points in W_ N W#*(q) by parallel transport. By Lemma 9.1.2 the identification of an
open subset of M,,(p,q) with W_ N W?#(q) is orientation preserving. By Lemma 8.8.1
we obtain a smooth map R — wj € M,,(p, q) with the same properties as in last step.

Step 3. With m > 1. We show Mo(p,7)0) X Mu(r,q)o) C (=1) - OMm(p, q)p]

Given (u,v) € Mo(p, 7)) X Mm(r,q)). Abbreviate M (C,q) = Mp(C,W*(q))
with quotient M,,,(C, q) for some component C C Lo N Ly such that v € M,,,(C, q). We
identify an open neighborhood of v in M,,(C,q) with the image under the evaluation
map M,,(C,q) — C. Denoted the image by W, C C, which is a submanifold in a
neighborhood of ev(v). Then an open subset of M, (p, ¢) is identified with W*(p) N W..
Similarly we identify M., (r, ¢) with W*(r)NW,. By Lemma 8.8.1 we obtain R — wg €
W (p) N W, such that limp oo wp = v and limp_ o ¥~ 2Fwpr = u. It remains to check
that the orientation of Opwp is — sign(u) sign(v).

Fix some w = wg for R sufficiently large. In the following we will often talk a little
imprecisely about an orientation of the space M,,(p,q) or M,,(p,q) where in fact we
mean an orientation of an open neighborhood of w (or its lift) inside this space. We will
not mention that every time.

By Theorem 9.3.6 and Lemma 9.1.3 construct an orientation of Mm (p,q) as the fibre
product for some connected components Cy, Cy, ..., Cy, chosen appropriately

W (p) xc, (MVXR) Xy (va R) Xy X,y (va R) x¢, ﬁ/lvxcm W?(q), (10.2.7)

in which M denotes the space of J-holomorphic strips with obvious evaluation maps.
We obtain an alternative orientation on the quotient M, (p, q) via (9.1.8) and using the
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commutation rule (9.1.3) we conclude that this orientation differs from the orientation
above by the action with (—1)2®) where

Aw) == A1+ Ag+ -+ Ay, Ay =dim Ty, ) Mre(p, C) -

By the dimension formula (cf. Lemma 10.2.1)

1 . 1 .
A = plp) + plwn) + plwa) + -+ plwy) — 5 dim Gy + 5 dim Gy — 1

Similarly we obtain another orientation of M, (r, ¢) which agrees with the old orientation
up to action with (—1)2(") where A(v) = Ay(v) + Ay(v) + --- + A,,_1(v) and for
k=1,...,m—1 we have

1 1
Ag(v) = p(r) + p(v1) + - - + p(vg) — §dimC'0 + idika -1.

Moreover we obtain an O-coorientation of M,,(C,q) — C by writing M,,(C, q) as fibre
product (10.2.7) without the first factor. We obtain a canonical O-coorientation on the
quotient W, by (9.1.8). Let /Wm(p, q) and M, (p, q)" etc. be the space with orientation
induced by (10.2.7). By associativity of the fibre product orientation (cf. Lemma 9.1.1)
we conclude

Mun(p.q) = W*(p) X0 M(C. ).
Let G = R™ be the group of reparametrizations. By definition we have as oriented
spaces My, (p,q) = G x My (p,q)" and M,,(C,q) = G x W,. Hence
G x Mm(p,q) = W"(p) xc (G x W4).
By commuting and canceling the factor G we obtain
(—1)IMum(p, @) = (1) W*"(p) xc Wy = (=1)"* W"(p) N W,

in which we have used small letters to denote the dimensions of the spaces. Similarly
we show

M (r,q) = (1) W (r)Nn W

Pick an orientation of O,. By parallel transport along u we obtain an orientation of O,.
By our choices we obtain an orientation on W"(p) and W*(r) as well as a coorientation
of W, such that signu = gp, where ¢ is the usual Morse trajectory orientation and
signv = (—1)2+9%+ ) where ¢ is the orientation of the point v as an element of the
intersection W*(r) N W,.. Moreover we conclude with Lemma 8.8.1 that the orientation
of 8RwR is

(—1)AFgwtIoge) = (1) AW F20w 9 TR0 gion (4) sign(v) .

We have Aj(w) = Aj(v) + 1 forall j =1,...,m — 1. Hence A(w) = A(v) +m — 1.
Moreover g = m. Hence A(w) + A(v) + g =1 mod 2. This shows the claim.
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Step 4. With m > 2 and k + ¢ = m with k # 0, m. We show My (p, 7)) X Me(r,q)j0) C
(=1) - OMum(p, )1y

Given (u,v) € My (p,7)0] X Me(r, ). We consider u and v as elements in My, (p, C)
and My(C, q) for some component C' C Ly N Ly respectively. Identify open neighbor-
hoods of u and v in M(p,C) and M,(C,q) with submanifolds W_ € C and W, C C
respectively using the evaluation map. Then an open subset of M,,(p,q) is identified
with W_ x,, W, (cf. equation (8.8.1)). By Lemma 8.8.1 there exists R — wr € Mpn,(p, q)
such that limp_,oc wp = v and limp_,oo ¢2Rw g = v. It remains to show that the orien-
tation of Ogrwpg is — sign(u) sign(v).

With alternative orientations as described in the last step we have

Mm(pa Q), = (-/,Gl/k’(pv C), X R) Xc ME(C7 Q)/ :

Let G_ = R¥ (resp. G4 = RY) be the group of reparametrizations of ka(p, C) (resp.
My(C,q)). Pick an orientation on O,. We obtain an orientations of My(p,C) and a
coorientation of M,(C,q) — C. Hence an orientation on W_ C C and a coorientation

on W, C C such that My (p,C) = G_ x W_ and M,(C,q) = G4 x W,. Thus (cf.
equation (8.8.1))

(=) My (p, q)' = (—1)7H+H(W_ x R) x¢ Wi = (=19 + - W_ x,, Wi . (10.2.8)
Similarly we conclude that
M(p,r) = W_nW?*(r), M(r,q) = (=) +Wh(r)N W, .
Hence we have signu = (—1)2®gq with g is the orientation of u as an element in the

intersection W_ N W*(r) and signv = (—1)2®)+9%+¢; with £; is the orientation of v as
an element in the intersection W*(r)NW,. By Lemma 8.8.1 the orientation of Ogwg, is

(—1)AIrgrwrtw—tgr oo — (1) AWFAMFAR)FW-FI+ gion 4 sign v .

We have Aj(u) = Aj(w) for all j = 1,...,k — 1. Moreover u(r) = w_ = Ag(w). By
definition we have the recursive formula for all 7 =1,...,m —1

1, . .
Aj(w) = Ajfl(w) + ,u(w]) + i(dlmij(oo)LO N Ly —dim ij(—oo)LO N Ll)
and similarly for Aj(v). Since for all j = 1,...,¢—1 the index of v; is the same as wj;,
and the asymptotics lie on the same connected components we have A;(v) = A p(w)—1.
We conclude that A(w) = A(u) + A(v) +w— + £ —1 and
Aw)+A(u) + A(w)+w_+gy =0—1+gy =1 mod 2.

This shows the claim.
Step 5. For m > 2. We show M, (p,q)o] € (—1) - OM(p, q)p)-
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We have not yet constructed an orientation on M} (p,q) so technically the statement
does not make sense on the level of oriented spaces. But our orientation algorithm
easily generalizes to give an orientation of the space M} (p,q), if we leave out the R-
factor in (10.2.6) at the appropriate place. So we assume in the following that the space
ML (p, q) is oriented in that way.

Also similarly as above we construct an orientation on M2 (p, ¢) via (10.2.7) in which
we omit the R-factor at the appropriate place. We obtain an alternative orientation
on the quotient and we denote the space equipped with the alternative orientation by
ML (p,q)'. Given u € ML (p,q). Lets say we have uy(co) = upy1(—oc0) for some
k=1,...,m—1. Then the orientation as an element of M} (p, )’ is changed with action
of (—=1)2() where A(u) = Ay(u) + -+ Ay (u) and Aj(u) = dim Ty, ... u;)M;(p, C;)
if j <k, Ap(u) =0and Aj(u) = dimT(Uh_._,uj)/\/lJl- (p,Cy) if 7 > k. We identify My (p, C)
as a submanifold W_ C C and M,y(C, q) as a submanifold W, respectively. Hence by
the same computation as (10.2.8) we have

Min(p, @) = (1) Ty, W
Similarly we conclude
ML (p,q) = (~1)9*++W_NW, .
We have sign u = (—1)9+%“+T2W¢  where ¢ is the sign of u seen as an element of W_NW,..
A local construction gives a family R — wgr = (R, wg,wg) € W_ xy W with wg =
(0,u,u) (cf. Step 7 in the proof of Lemma 8.8.1). Moreover dpwp induces an orientation
on W_ x, W, which is € o where o is the canonical orientation on W_ xy, W, (cf. Step 6

of the same proof). For M,,(p, q) the vector Orwp gives an orientation that is changed

by the action with

(_1)A(w)+g++w_+A(u) sign(u) _
We have Aj(w) = Aj(u) forall j=1,...,k -1, Ap(w) = w_, Ag(u) =0 and Aj(w) =
Aj(u)+1forall j =k+1,...,m—1. We conclude that A(w) = A(u) +w_+¢—2. Since
g+ = ¢ and with the last equation the vector changes orientation by sign(u). But since

this time the vector dpwp points inward the induced boundary orientation is — sign(u).
Step 6. For m > 1. We have M}, ., (p,q) C OMp(p, Q-

With oriented spaces as explained in the last step we have
M1 (9,9) = (Mi(p,C-) x R) xc. M xc M xc, (R x My(Cy,q)),
Mm(p7 Q), = (Mk(pa C—>/ X R) XC_ M XCy X(R X MK(C+7q))7

with obvious evaluation maps. Let G = R™ (resp. G = R™ G_ = R* and G, =
RY) be the reparametrization group of My, (p,q) (resp. M} (p,q), My(p,C-) and

M,(Cx,q)). Via the evaluation map we identify the quotients My (p, C_) and M,(Cly, q)
with submanifolds W’ C C_ and W/ C C. respectively. Moreover we embed W_ =
R x W’ (resp. Wy =R x W.) into C_ (resp. Cy) via the Morse-flow. We have

G' X M1 (pq) = (1% G- x (W_ xo. M xe M xa, Wy) x Gy
G X Mp(p, @) = (—1)9++G_ x (W_ x¢. M xc, Wy) x Gy .
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Denoting the quotients of the terms inside the parentheses on the right-hand side by
MY W_, W) and M(W_, W, ) respectively, we conclude that

Mii1(pyq) = (=1)AOFI s MY W W),

M (p,q) = (_1)A(w)+9+w++g+M(W_7 Wy).

By Theorem 8.1.1 we have MY(W_,W,) = (=1)% - OM(W_,W,) in which ¢g; = 1
is the dimension of the group of reparametrizations acting on the second factor of

MY (W_,W,). Thus
M1 (p,q) C (—1)AWFTAWITIFIGN, (p, q) .

Again we have Aj(u) = Aj(w) for all j = 1,...,k and Ag(u) = 0. By the additivity
axiom for the Viterbo index p(uy) + p(ur+1) = p(wy) and so Aj(u) = A1 (w) for all
j=k+1,...,m. So A(u) + A(w) =m—k—1=/¢+1 mod 2. This shows the claim
because g = /. O

10.3. Invariance

In this section we construct a canonical isomorphism

QH. (Lo, L1) = QH. (Lo, ¢r(L1)) (10.3.1)

for any clean Hamiltonian function H. The construction of the isomorphism is well-
known and goes along the lines of [61], [7], [33, Section 7] and [13]. The novelty we present
here is the gluing analysis for cleanly intersecting Lagrangians and the orientations.

10.3.1. Perturbed pearl trajectories

Fix a vector field X € C°°(X, Vect(M)) such that X(—s,-) = X_ and X(s,:) = X4
for all s > 1. Moreover let J denote the space of almost complex structures J €
C*(¥,End(TM,w)) such that J(—s,-) = J_ and J(s,-) = J4 for all s > 2. We
abbreviate by Z_ (resp. Z,) the space of perturbed intersection points of H_ (resp.
H,), fix a Morse function f_ (resp. fi) and denote the negative gradient flow by 1_
(resp. 14) with respect to some sufficiently generic metric. For any m > 1, J € J and
submanifolds W_ C Z_, W, C Z; we define the space

My (W, Wi J, X)) i={(ug,...,up) € CC(E, M) |a) - )},
as the space of tuples u = (uy,...,un) such that there exists k € N and
a) the tuple (uy,...,ux_1) is a (J—, X_)-holomorphic pearl
b) the map ug is a (J, X)-holomorphic strip,

c) the tuple (ugy1,...,un) is a (J4, X+ )-holomorphic pearl
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d) all strips have boundary in (Lg, L),

e) there exists a_, a; > 0such that ¥* (ug_1(00)) = uy(—00) and also ¢ (ug(c0)) =
Uj41(—00),

f) we have u;(—o0) € W_ and uy,,(o0) € Wi

The elements of Mm(W_, Wy J, X) are called (J, X')-holomorphic pearl trajectories with
m cascades connecting W_ to W,. If in particular W_ = W"(p) and W, = W#(p) for
critical points p € crit f_ and ¢ € crit f1, we abbreviate

Mo (p, @ J, X) == Mo (W¥(p), W*(q); J, X)

with elements called (J, X)-holomorphic pearl trajectories with m cascades connecting p
to q.

Transversality

For m € N and any connected component C'_ C Z_ write /\7;1 = Mm(W_, C_;J_,X_)
and denote the evaluation map

ev” :RXMVJQAC,, (@ Uty ... Upm) = P (U (00)) .

Similarly given C'y € Z let //\Z,i; = Mm(C+, Wy Jy, X+) equipped with the evaluation
map .
evt 1R x M} — Cy, (a,uty ..., um) —= P (ui1(—00)).

Assume that W_ and W, are chosen such that J_ is regular for X_ and W_ and J; is
regular for Xy and W, (cf. Definition 7.3.3). We call J regular if it is regular for X and
the above evaluation maps for any connected components, i.e. the fibre product

(Ry x My) o M(C=,Chi J, X) xc, (R x M)

is cut-out transversely with Ry = [0,00) and R_ = (—o0,0] for any connected compo-
nents C_ and C and integers k and ¢. We show in Theorem 7.2.4 that the subspace
of regular almost complex structures in J is comeager and we fix a regular J € J for
the rest of the section. Obviously the space M,,(W_,W,;J, X) is the union of the
fibre product over all connected components and integers k, ¢ such that k +¢ =m — 1
and every connected component of it is a manifold with corners. We conclude with a
computation similarly as in the proof of Lemma 10.2.1 the dimension of the component
in M,,,(W_,W,;J, X) contain the element u is

1 1
dim W_ + dim W — idimC'o - §dimCm +m— 14 p(u),
in which Cy C Z_ is the connected component containing uj(—o0) and C,, C Z; is the

connected component containing 1u,,(cc) respectively. There is a free R™!-action on
the space M,,(p, ¢; J, X) given by reparametrizations and we denote the corresponding
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quotient by M, (p,q; J, X). Since J is fixed, we omit the reference to it and write
M, (p, q) to denote the space M., (p,q; J, X). Moreover for some ¢,d € Ny we denote
by M, (p, q)(g) the union of all d-dimensional components and M (p,q) the union of all
elements of depth /4.

Compactness

A broken (J, X)-holomorphic pearl trajectory connecting p to q of height k is a tuple of
pearl trajectories (v1,...,v) such that v; is a (J;, X;)-holomorphic pearl connecting p;
to piy1 for all i =1,... k — 1 for critical points p = p1,...,p¢ € crit f_, pps1,.. ., Pm =
q € crit fy for some ¢ < k and we have

(J_,X_) ifi=1,...,0—1
(Ji, Xi) =S (J,X)  ifi=¢
(J+,X+) leZE-f-].,,k

Completely analogous to the case without the Hamiltonian perturbations we define the
notion of Floer-Gromov convergence, prove that the space M,,(p, q)[o} is finite and
M, (p, q)[l] is compact up to breaking of height two, i.e. the Floer-Gromov boundary
consists of the union of

b M11n<p7 q)[O]v
® M%n—l—l(pv Q)[O]a
o My(p, 7)o X Me(r—,q)[) for all _ € crit f_ and such that k + £ = m,

o My (p,7+)j0) X Me(r+,q)o) for all i € crit fy and such that k + £ = m.

Orientations

Let M (p,q)p) be the Floer-Gromov compactification of My, (p,q);; and define the
space

My(p,q) = | M,/ ~,

meN

as disjoint union with double boundary points identified.

Definition 10.3.1. Orientations of the spaces M(p,q)|) for all p € crit f_ and ¢ €
crit f1 are coherent, if there exists an orientation on My (p,q) such that its oriented
boundary is given by the union of

o (—1)  My(p,r-)j0) X My(r—,q)[q for all r_ € crit f_ and such that k + £ = m,

o My(p,m+)0) X Me(r4,q)[) for all 74 € crit f and such that k + £ = m.
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We construct orientations on the spaces M., (p, ¢) completely analogous as described in
the paragraph before Lemma 10.2.7. A little more precisely we construct the orientation
recursively using the fibre-product (10.2.6) and replace M;(C’, C') in the expression with
Ml(C’, C,J_,X_), le(C’, C;J,X) or le(C’, C; J;, X+ ) appropriately.

Lemma 10.3.2. The orientations on OMy(p,q) are coherent.

Proof. The proof follows the steps from the proof of Lemma 10.2.7.

To show My (p,74)[0) X Mo(r+,q)0) C (=1) - OMuu(p, ¢)) proceed as Step 3.

To show Mo(p,7—) 0] X M (r—,q)jg) C OMm(p, @)1 proceed as in Step 2 but now
the dimension of the group of reparametrizations is g = m — 1.

To show My(p,r-)j0) X Me(r—,q)j0q) € OMup(p,q)py) for r— € crit f- and k # 0
proceed as in Step 4 but now the dimension of the group of reparametrization on
the right is g4 = ¢ — 1.

To show My (p,r4)1) X Me(r+,q)0) C (1) - OMm(p, @)y for ro € crit fy and
£ # m proceed as in Step 4 but now the dimension of the group of reparametrization
on the right is g4 = ¢.

To show My (p, C) xc M(C, q)jo) € OMm(p,q)p if C C I proceed as in Step 5

To show My (p, C) xc M(C,q)jo) C (1) - OMm(p,q)p if C C I, proceed as in
Step 5 with g4 = 4.

To show My y1(p, C) xc Me11(C,q)g) C (=1) - OMin(p, q)p) for C C I proceed
as in Step 6 with g + g1 = £.

To show My y1(p,C) xc Me11(C,q)jgp € OMm(p,q)p) for € C I proceed as
Step 6 with gy +¢g1 =4+ 1.

The above steps show that the orientation on My (p, ¢) induced by (—1) - M (p, ¢)py is
well-defined and shows that the orientations are coherent. O

10.3.2. Chain map

Define the A-linear homomorphism

Cx«(J,X) : CH.(Lg, L7) — CH. (Lo, LT)

i . (lal=Ipl)/N
pr qucrit Iy Z[u]eM(p,q) sign(u) - ¢ ® A .

[0]

Because the orientations are coherent the homomorphism Cy.(J, X) is a chain map.
To see that we have to show C'xx_1 0 Oy = 04 0 C'x«. By definition the coefficient of
Cxx—1(0+p) — 0.(Cx«p) in front of ¢ € crit f1 is given by
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with summation over all (ug,u1) € M(p,r-)j0) X M(7—, q)[o] and (vo,v1) € M(p, 74 )(0) X
M(ry, q)[o] and all critical points r_ € crit f_ and r € crit f,. Since the summation
agrees with the summation of the signs of the oriented boundary points of My (p, q) it
vanishes. Having established that C'x.(J, X) is a chain map we denote the induced map
on homology by

x«(J, X) : QH. (Lo, L7) — QH, (Lo, LT). (10.3.2)

Naturality

Lemma 10.3.3. The homomorphism x.(J, X) does not depend on the choice of X and
J.

Corollary 10.3.4. The map (10.3.2) is the identity if Ly = L], J_ = J; and f— = f4.

Proof. By Lemma 10.3.3 we are free to choose X and J. Choose X and J which are
R-invariant. Then there is an additional free R-action on the space of tuples (u, .. ., um)
in M,,(p,q) with u; non-constant. Thus such tuples are not counted in the definition
of the morphism x(J, X ). This shows that x(J, X) is the identity on chain level. O

Proof of Lemma 10.5.3. Let (Xq,Js) and (X3, Jp) be two different choices. Fix a map
X € C*(Ja,b] x X, Vect(M)) such that X(a,-) = X4, X(b,-) = X and X(R,=+s,-) =
Xpr(£s,) = X4 for all s > 1 and R € [a,b]. We abbreviate by J the space of
J € C®([a,b] x ¥,End(T'M,w)) such that J(a,-) = Ju, J(b,) = Jp and J(R,+£s,-) =
Jr(xs, ) = Jg for all s > 2 and R € [a,b]. For critical points p € crit f_, ¢ € crit f4 a
natural number m € N and J € J we define the space

M (p,q; J, X)),

as the space of pairs (u, R) where R € [a,b] and u is a (Jgr, Xg)-holomorphic pearl

trajectory connecting p to q. The space M,,(p,q; J, X) is equally defined as the union
of the fibre products

(Ry x Mv,:_l X le(C_,C+;J,X) xc, (R- x MVZ),

over all possible connected components C_, C; and with k + ¢ = m. We say that J
is regular if it is regular with respect to X (cf. Definition 7.2.2) and for any connected
components and critical points the fibre product is cut-out transversely. We conclude
by Theorem 7.2.4 that a generic J € J is regular and we fix such a regular J. The
components of the the space M,,(p, q; J, X) are manifolds with corners. We compute
the dimension of a component containing (R, u) to be

1 1
p(u) + pu(p) — pu(q) +m — 3 dim Cy + 3 dim C,, , (10.3.3)
in which again Cy C Z_ (resp. Cp, C Z) denotes the connected component containing

p (resp. q). The group of reparametrizations is R™~! and we denote the quotient by
M (p,q; J, X). With the same arguments and notations as in the sections above we
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show that M, (p, g; J, X)[o] is finite and the Floer-Gromov boundary of M, (p, ¢; J, X))
is given by broken trajectories of height at most two. Moreover we obtain orienta-
tions on the spaces constructed recursively using the fibre product (10.2.6) in which
M(C’,C) is given by M(C’,C; J_, X_), M(C’,C’; J, X) or MV(C’,C’; J4+, X4) appro-
priately. Let My (p, ¢; J, X) be the disjoint union of all the Floer-Gromov compactifica-
tions of M,,(p, q; J, X )[1} with double boundary points identified. We say that orienta-
tions on the boundary of Mu(p, ¢; J, X) are coherent, if there exists an orientation on
My (p,q; J, X) such that its oriented boundary is given by the union of

o (=1) Mu(p, @ Ja, Xa) 0],

o Mn(p, q; Jb, Xb) (o),

o (—1) - My(p,m; J—, X_)jo) x My(r,q; J, X)) for all k+ £ =m and r € crit f_,
o My(p,r;J, X)jo) X Me(r,q; 4, Xy )o) for all k + £ =m and r € crit f;.

If we show that the orientations are coherent we are done because, then we define the
A-linear homomorphism

O, : CH.(Lo, L7) = CHuy1(Lo, L)

P Y > sign(u) - g @ A9/
q€crit f1 [u]le M(p,q;J,.X)[g]

Now since the orientations are coherent we conclude that ©, is a chain homotopy from
Cxx(Ja, Xa) to Cxs(Jp, Xp), i.e.

05004 — 04100, = Cxu(Ja, Xa) — Cx(Jp, Xp),
which implies that the induced morphism on homology agree. O

Lemma 10.3.5. The orientations on OMxy(p,q; J, X) are coherent.

Proof. Abbreviate OM := OM,(p,q; J, X )[1]. The proof of coherence follows the steps
from the proof of Lemma 10.2.7.

e To show M, (p,r;J, X)) x Mo(r,q; J+, X4)j0) € (=1) - OM proceed as in Step 2,

To show Mo(p,7;J—, X_)jo) X Mu(r,q;J, 7)) C OM proceed as in Step 3. We
have g =m — 1.

To show My (p,r;J—, X)) x Me(r,q;J, X)j9) C OM proceed as in Step 4. We
have g = ¢ — 1.

To show M. (p,7;J, X)) X Me(r,q; J+, X4 )j9) C (=1) - OM proceed as in Step 4.
We have g4 = /.
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e We show M, (p, q; Jo, Xa)jo) C (—1) - M. For appropriate submanifolds W_ and
Wy we have M, (p,q;J, X) = M(W_,Wy;J, X) as well as My, (p,q; Ja, Xo) =
MW_ W Ja, Xs). Fix some element (a,u) € M(W_,Wy;J,, X,). By the
implicit function Theorem we obtain R +— (R, wg) with w, = u. Using notation
as the proof of Proposition 8.7.4 in case (C) we conclude that sign(u) = sign Dy,
which equals the orientation induced by the vector (1,0rwpr) € ker ZA)R. Since
(1,0pwpg) points inward the orientation of the boundary point is — sign(u).

e To show My, (p, q; Jp, Xp)jgp C OMp, proceed as above but this time the vector
points outward.

e To show My(p,C;J-, X_) xc M(C,q;J, X)g) C OMm with k + £ = m proceed
as in Step 5 with g =0 — 1,

e To show My(p,C; J, X) xc My(C,q; J+, X4 )j0) C (=1)-OMn(p, q; J, X)) proceed
as in Step 5 with g, =/,

e To show My 1(p, C5J-, X ) xe My1(C, q; J, X)jo) € (=1)-OM with £+k =m—1
proceed as in Step 6 with g+ + g1 = ¢

e To show My y1(p, C;J, X) xo Me1(Crq; J4, Xy )jo) € OM with £+ k =m — 1
proceed as in Step 6 with gy + g1 = ¢+ 1.

This shows the claim by putting the orientation on My (p,q;J, X) induced by (—1) -
M (p, ¢; J, X)) for any m € N. n

Functoriality

Lemma 10.3.6. We show that the map (10.3.2) is functorial, i.e. the map defined
in (10.3.2) gives rise to a commutative triangle

- T
QH (Lo, L1) — QH (Lo, L2) — QH(Lo, L3) ,
for any Lagrangians Lgy, L1, Lo and L3 such that L1, Lo and Ls are Hamiltonian isotopic.

Corollary 10.3.7. The map (10.3.2) is an isomorphism.

Proof. The map QH (Lo, L{) — QH (Lo, Ly) is inverse to QH (Lo, Ly) — QH (Lo, L})
because by Lemma 10.3.6 their composition is QH (Lo, L;) — QH (Lo, L] ) which by
Corollary 10.3.4 is the identity. O

Proof of Lemma 10.5.6. Suppose that L; = ¢y (L), Ly = g (L) and Ly = ¢g, (L) for
some Hamiltonians H_, H and H; and a fixed Lagrangian L. We abbreviate the per-
turbed intersection points Z_ := Zy_ (Lo, L), T := Zy (Lo, L) and Z . := Iy, (Lo, L). Fix
vector fields X, X7 € C°(X, Vect(M)) such that Xo(—s, ) = X_ = Xu_, Xo(s,:) =
Xi(=s,-) = X := Xy and Xi(s,:) = X4 := Xp, for all s > 1. Denote the Morse
functions f_, f and fi and paths of almost complex structures J, Jo and JI with
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respect to which the pearl homology groups are defined. Denote by J be the space pairs
(Jo, J1) C C®(E,End(T'M,w)) where Jo(—s, ) = J, Jo(s,:) = Ji(—s,:) = Jx and
Ji(s,-) = J4 for all s > 2.

Given some J = (Jy,J1) € J critical points p € crit f_, ¢ € crit f and a number
m € N with m > 2 we denote by

N (p,a; 7, X)),
the space of tuples u = (uq, ..., uy) such that for some 1 <k <m —1
a) the tuple (uq,...,ux) is a (Jo, Xo)-holomorphic pearl trajectory,
b) the tuple (ugt1,...,un) is a (J1, X1)-holomorphic pearl trajectory,
c) all trips have boundary in (Lo, L),
d) there exists a > 0 such that ¥®*(ug(c0)) = ugy1(—00),
e) we have W"(p) € u1(—o0) and W*(q) € up(c0).
As usual we conclude that for generic J each component of these spaces are manifolds

with corners. The component containing the element v € N, (p, ¢; J, X) has dimension

1 1
p(u) + p(p) — plq) + §dimC’0 — idimCm—l—m— 1.

The group of reparametrizations has dimension m — 2 and acts freely. With usual
notations as explained in the last sections we show that the quotient N, (p, ¢; J, X )jo] s
finite and the Floer-Gromov boundary of Ny, (p, ¢; J, X)) is given by breaking of height
at most two. Also the spaces are oriented using the algorithm given in the paragraph
before Lemma 10.2.7. We denote by Ng(p,q;J, X) the disjoint union of the Floer-
Gromov compactification of Ny, (p, ¢; J, X) over all m € Ny with double boundary points
identified. We show as above that there exists an orientation on Nx(p, ¢; J, X) such that
its oriented boundary is given by

o (=1) - Km(p,q; J, X)) (see definition below)

o Ni(p,r;J, X) o) x My(r,q; JE, X)) for r € crit fy and k + £ = m,

o (—1) - My(p,r; Jg, X ) jo) X Ne(r,q; J, X)q) for v € crit f— and k + £ =m,
o My(p,7;Jo, Xo)jg) X Me(r,q; J1, X1)[o) for r € crit f and k + £ =m.

Here K. (p,q;J,X) C NL(p,q;J, X) is the subspace of equivalence classes of tuples
(u1,...,um) such that uy is (Jo, Xo)-holomorphic, ugy; is (Jy, X1)-holomorphic and
ug(00) = ug41(—00) for some k € N.
Remark 10.3.8. The space K,,(p,q; J, X)[O} appears as a boundary of the glued space
N (p, q; J, X) because if we glue elements in Kp,(p, ¢; J, X)[g) we do not obtain elements
inside the space No,—1(p, ¢; J, X)p)-
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We need to define another moduli space. For critical points p € crit f_, ¢ € crit f;
and a number m € N we denote by

Mo (p,¢;J, X)),

the space of pairs (u, R) such that R > 2 and u is a (Jg, Xgr)-holomorphic pearl tra-
jectories connecting p_ to py with glued structures Xp = Xo#rX1 and Jp = Jo#rJ1
as defined in (7.2.4) and (7.2.5) respectively. By Theorem 7.2.4 we conclude that for
a generic J each connected component of the spaces is a manifold with corners. The
dimension of a component containing u is (10.3.3). The group of reparametrizations has
dimension m — 1 and acts freely. The quotient M., (p, ¢; J, X )[0] is finite and the Floer-
Gromov boundary of M, (p,q; J, X)) is give by broken trajectories of height at most
two. There also exists an orientation on the spaces as explained in the paragraph before
Lemma 10.2.7. Let My (p, q; J, X) denote the union of all My, (p, ¢; J, X)p) over m € N
with double boundary points identified. We show as above there exists an orientation
on My (p,¢q; J, X) such that its oriented boundary is given by

(=

My (p, 75 I, X )jo) X Me(r,q; J, X)jg) for all r € crit f_ and k+ £ =m

P13 s X))o X Mo(r,q; J%, X4 ) o) for all 7 € crit f and k +£=m

o (—1

1)-
Mi(
) - Min(p, 43 Jr, XR)[g) With R = 2,
Kon(

;¢; J, X)[g) (which appears considering sequences (u,, R,) with R, — c0).

We define the A-linear homomorphism

O, : CH*(Lo,Ll) — CH*(Lo,Lg)

p— Z Zsignu g @ Nd=lpl=1

gecrit f [u]
in which the second summation is over all elements [u] in the disjoint union
N, ¢; J, X)jo) U M(p, q; J, X)) g -

If the orientations on ON4(p,q; J,X) and OMy(p,¢; J,X) are coherent, we conclude
that O, is a chain-homotopy from the composition x(J1, X1) o x(Jo, Xo) to x(Jr, XRr)
with R = 2. Note that the boundary components K,,(p, ¢; J, X) appears in both spaces
but with opposite signs. ]

10.4. Spectral sequences

In this section we prove Theorem 2.3.2. Recall that a spectral sequence is a sequence of
complexes

(EL,0),(E%0),...
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such that EI*t! = kerd”/imd” for all r € N. We say that the spectral sequence
(EL,0")ren collapses (at page ro) if there exists rg € N such that 9" = 0 for all r > rg.
In that case we have E7t! = E” for all r > 79 and we define E> := ET0. We say that
a spectral sequence converges to the graded module H, if there exists a filtration F on
H, such that F2° = @p FPH,/FP~L1H,. If H, is a vector space this always implies that
E° = H, although the isomorphism is not canonical. The spectral sequence is bigraded
if there exists a decomposition £} = P, ,_, Ey, for all » € N and the boundary op-
erator 9" has degree (i,j) it 0"(E},) C Ep,,, ;- We abbreviate a bigraded spectral
sequence by E¥,. For more details see [51].

Let N denote the minimal Maslov number of the pair (Lo, L1) and 7 be the mono-
tonicity constant. As explained in Section 2.3 we decompose Ly N L; into connected
components C1,...,Cy and choose maps u; : [—1,1] x [0,1] = M, u(s,-) € P(Lg, L1)
such that u;j(—1) = z1 and u;(1) = z; € C;. By concatenating to u; with path we
assume without loss of generality that the caps w, for all critical points p € crit f we
have caps u, that satisfy

Aluy) = / Wi € [0,7N) (10.4.1)

We call a pearl trajectory u connecting p to q local if p(u) = p(up) — p(uq). Moreover we
define the local pearl chain complex CH(Lg, L1) as the free A-module over all critical
points p € crit f graded by (10.1.1) and equipped with the boundary operator (10.1.2)
without the A factor and summation only over local trajectories. The next lemma shows
that local pearl homology, denoted QH'¢(Lg, Ly), is well-defined.

Lemma 10.4.1. Let (u”) be a sequence of local pearl trajectories Floer-Gromov converg-
ing to the broken trajectory v = (v1,...,vx). Then v; is local for alli=1,... k.

Proof. Let v; be cap of v;(oo) with 0 < [vfw < 7N for alli=1,...,k and 9y be a cap
of v1(—o0) with 0 < [ 0w < 7N. Define k; := p(v;) + p(0;—1) — pu(v;) for alli = 1,... , k.
We have to show that k; vanishes for all ¢+ = 1,...,k. Let m; denote the number of
cascades in v; and assume without loss of generality that m; > 1 since otherwise v; is
local by definition. By the integer axiom we have k; € Z and by monotonicity

m;
* % -
Tk N = E /vm-w—i—/vilw—/viw.
J=1

Due to the energy condition on the caps and the fact that v; consists of holomorphic
strips we have 7k; N > —7N. Hence k; > 0. Again by monotonicity and Floer-Gromov
convergence we have

k
TNZI@ :E(v)+/ﬁa‘w—/f};§w
i=1

_ 1 v —x %
= VlbnoloE(u )+/v0w /vkw

=T (JE& pvis(u”) + prvie(To) — uvn(%)) =0.
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This shows that Zle k; = 0. Since all k; are non-negative, this shows that k; = 0 for
alli=1,...,k. O

Proof of Theorem 2.3.2. The proof is motivated by [10, proof of Theorem 5.2.A]. Let
(Cy,0) = (Cu(f) ® A, 0) denote the pearl-complex. A spectral sequence is canonically
determined by an increasing filtration, i.e. a sequence of subcomplexes (F*C,)rez such
that

.CcFle.cFfCL - Ch, kET. (10.4.2)

We construct a filtration by the degree of the Novikov variable. More precisely for every
k € Z we define the free A-module

FrC = p@ Xt > —k).

Clearly the sequence (F¥C,)xez satisfies (10.4.2). To show that (F*C,)ez is a filtration,
it remains to show that the modules are subcomplexes, i.e. OF kc, c FEC, for all k € Z.
By A-linearity of the boundary operator 0 it suffices to check this for £ = 0. Moreover
it suffices to check this on generators of the form p ® 1 for some critical point p. Assume
that the coefficient for dp in front of ¢ ® A¢ is not zero. We need to show that ¢ > 0.
By definition there exists a rigid trajectory u connecting the critical points p to g. We
have two cases. In the first case u has zero cascades. Then necessarily p and ¢ lie on the
same connected component and /N = |p| — [¢| + 1 = pu(p) — u(q) +1 = 0. Hence £ =0
and we are finished. In the second case u = (uq,...,u,,) has at least one cascade. Then
by the dimension formula of Lemma 10.2.1 and the definition of the grading (10.1.1) we
have with connected components C_ and Cy of p and ¢ respectively

w(uj) + p(p) — plg) —1/2dimC- +1/2dim Cy + m — 1

<
Il
—

i
o

pwug) + plup) — plug) + |pl = gl = 1+m

<
Il
-

I I
NERANGE

() + p(up) — plug) — N +m .

<.
Il
_

By monotonicity we have

m
TEN:Z/u;w—i—/u;w—/uZw.
j=1

Since w; is J-holomorphic [ ujw > 0 for all j and since by our choice (10.4.1) we have
fu;w > 0 and fu;w > —7N we obtain 7¢N > —7N. This shows that ¢ > 0 and that
we have truly defined a filtration.

We claim the filtration is bounded, i.e. for every m € Z there exists k_, ky € Z such
that
0=F*Cp C F**Cp - c FH*710, C FMCip = G,
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10. Pearl homology

where F*C,,, := (p@ N | |p| —¢N = m, £ > —k). Indeed, define the integers k_ := | (m —
m)/NJ —1land k+ = ’V(m - m)/NL where m := minpécritf |p‘ and m := maXpecrit f |p|
For every p ® X € C,, we have

m=|p| —¢N >m—IN = {> (m—m)/N > —k, .

Hence p ® Xt € F*C,, and this shows F*+C,, = C,,. On the other hand arguing
indirectly assume that there exists p @ ¢ € F5~C,, then

m=|p| —¢N <m—4N<m+k-N = (m—m)/N <k_.

This gives the contradiction k= = [(m —m)/N] —1 < (m —m)/N < k_ and shows
FF-C,, = {0}. We have deduced that the filtration is bounded.

The rest of the proof follows from standard algebraic arguments. Our main reference
here is [51]. In particular the next result is valid for any complex (C., 9) equipped with
a bounded increasing filtration F and a boundary operator of degree —1. For every
p,q € Z,r € N we define

Zpq = FPCprg N O FP T Cpyga,

ng = prp+q N 8.7:p+GC+q+1,
~1 ~1

Epq = Zpal (2 101 T Bpg ) -

A simple computation shows 027 = B) . ., 1 C Z7 , ., 4 and that 0 induces a
morphism
O By, —E, i1 (10.4.3)

The proof of [51, Theorem 2.6] adapted to this setting shows that we obtain a spectral
sequence and moreover we have the isomorphisms

a) E;jgl = ker (0" : E),,—~E ., ireq)/ im (07 : El g1 = E;’q),
b) Ep = Hyio(FPCL/FPC., [0),
C) EI?»CZI = ‘FpHP+q(C*)/]:p_1Hp+q(C*)v

where FPHyy4(Cy) = im (Hpyq(FPCy) — Hpi4(Cy)) and E denotes EJ , with suffi-
ciently large r. Coming back to our specific case, consider the index transformation

Br, o | By iR ENZ,
’ 0 otherwise .

Then by (10.4.3) we have 9" : Ezl — E‘;_NT’HNT_I. We interpret that as the rN-th

boundary operator setting all other boundary operators to zero. This shows that Ei‘* is
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10.4. Spectral sequences

a homological spectral sequence (i.e. the 7-th boundary operator has degree (—7,7—1)).
To obtain the first page of E, we use b) and compute

Epq = Hpig(FPC/FP1CL, [0)) & Hpy oy (Cu(f) @ (A7), 80 ® 1)
= p+quN(C*(f)v 60) ® <)‘_p> y

where Jp : Ci(f) = Ci—1(f) is precisely the boundary operator of the local pearl com-
plex. Hence E| , = QHéij(l_N)p ® (A\P) < E}, = QH}*° ® (\"P). This shows the
statement (ii) of Theorem 2.3.2.

We show statement (iii) of Theorem 2.3.2. Abbreviate H, := QH,.(Lo,L;). By in-
variance we have QH,.(Lo,L1) = HF,(Lo,L1) (cf. equation (10.3.1)). By ¢) and we
obtain an isomorphism of E° &2 @p FPH,/ FP~LH,. It remains to show that the graded
module is isomorphic to H, even in the case when the ground ring A is not a field. We
define the valuation

ifz=0

v:kerd — Z U {oo}, Z OO_ . L
min{k € Z |z, #0} if 2=, 2, QN* #0.

Since 0 is A-linear, the module ker 9 is a A-module. In particular there is an automor-
phism of ker 0 given by multiplication with A. It is immediate from the definition that
for all z € ker @ and ¢ € Z we have

v(\2) =L+ v(z) . (10.4.4)
For every p € Z we define

7z i ={z€kerd|v(z) > —p} =kerd N FPC;,
By :={2€imd | v(z) > —p} =imIdNFPC; .

It is easy to see that FPH, = Z2°/B;°. We abbreviate the quotient H,:= F°H,/F'H,
and define
¢:kerd — H,® A, 2 AV @ AVE)

To check that ¢ is well-defined, we need to see that \™*(*)z € Zg°. But with (10.4.4)
this is obvious since v(A\"*(*)2) = —v(2) 4 v(z) = 0. The morphism ¢ is surjective, since
every element of H, ® A is a linear combination of elements of the form [z] ® A with
v(z) = 0 and such elements have the preimage A’z. The kernel of ¢ is given by im 9,
because z € ker ¢ <= A Yz €imd <= z € imd. Hence ¢ induces an isomorphism

H,~2H,®A\. (10.4.5)

Restricting ¢ to Zg" shows that we have the isomorphism FPH, = H, ® FPA, where
FPA = (X | £ > —p). Since the quotient FPA/FP~'A = (A\7P) is free we have
FPH,/FP~1H, = H, ® (\"P). Together with ¢) and (10.4.5) we obtain the statement.
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10. Pearl homology

We show statement (i). The spectral sequence is constructed again by a filtration.
This time we use the local pearl complex. Abbreviate by C, := CH°¢(Lg, L) the local
pearl complex. Define F/C, = 0if j < 0and F/C, = C, if j > k+1. If 1 < j < k define
FIC, C C, to be the submodule generated by all critical points p with A(u,) < a;. We
need to show that this defines a filtration. By construction Fr-1o, ¢ FkC,. Given a
critical point p with A(u,) < a; and suppose that the coefficient of dp in front of ¢ is
not zero. We need to show that A(u,) < ai. There must exists a rigid local pearl u
from p to g. If u has zero cascades then p and ¢ are on the same connected component
and we are done because then A(uq) = A(up) < ag. If u= (u1,...,un) has at least one
cascade, then since the trajectory is local we have

0= puluy) + () — plug) = 7 [ 3 / wiw — Alup) + Alug)
. 2

Jj=1

Since u; is non-constant and holomorphic we have [ ujw >0 for all j and hence

ar > Al) = / Wi+ Alug) > Alug) (10.4.6)
=1

We have deduced that (F*C,)ez truly defines a filtration, which is evidently bounded
by construction. As above we obtain a spectral sequence E%* with first page given by

B = e (P P10 10).

The complex F*C,/F*~1C, is generated by critical points p such that A(u,) = a) and
the boundary operator [9] of p is Op projected to F*C,/FF~1C, (i.e. we forget any critical
points of lower action). Suppose that there exists a non-trivial contribution of [d]p in
front of ¢. Then by definition there exists a trajectory u connecting p to g. If u has at
least one cascade we know by estimate (10.4.6) that A(ug) # A(up). Hence trajectories
connecting critical points with the same action value are only Morse trajectories and
hence [0)] is counting standard Morse trajectories. Taking our orientation algorithm (cf.
paragraph before Lemma 10.2.7) and the degree-shift into account shows the claim. [
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11.1. Abelianization Theorem

In this section we prove theorem 2.1.1. Before we submerge into the details we explain
the overall strategy.

Consider the space V := ug'(0)/T, which is called abelian/non-abelian correspon-
dence. Abbreviate with i : V' — M /T the embedding induced by ug'(0) C uz'(0) and
with 7 : V' — M//G the projection Tx — Gz. Written in a diagram

V—"sM)T

|

M@,

It is easy to see i is an embedding, m an G/T-fibre bundle and V' a Lagrangian sub-
manifold of M /T x M /G for the symplectic form wy; )7 © —wyryq embedded via i x 7
(cf. Proposition 11.1.1 below). Provided that M /G are simply connected and M /T is
monotone, the Lagrangian V is simply connected and monotone with minimal Maslov
number equal to 2cp /7 (cf. Lemma 3.1.2). Fix a compatible almost complex structure
J. For each non-negative integer £ we denote by ME the space of J-holomorphic discs
in M /G x M//T with boundary in V, of Maslov index 2kc;;r, one interior marked
point and a boundary marked point passing through a cycle representing the class D.
Evaluation at the interior marked point gives the diagram

ME " My (11.1.1)

lm@

MjG,

where 7, (resp. if) is the evaluation on the interior marked point composed with projec-
tion to M//G (resp. inclusion into M //T). The push-pull of the diagram (11.1.1) gives
maps

Oy : H*(M)T;Q) — H* 2kamyr (MG, Q),  aw— mita.
Then define the homomorphism
O:QH*(M)T;A) — QH*(M))G;A), P=0;Rid+ P @A+ D@ N>+ ...,

where by abuse of notation we denote with A the homomorphism of A given by multi-
plication with A. The space Mg’ consists of constant disks and hence ./\/lg) is precisely
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11. Proofs of the main results

the cycle representing D. This shows that ®q(a) = 7'(i*a — D), which is the classical
homomorphism considered by Martin. In that sense we think of the maps ®;, ® \* of
higher order (i.e. k > 1) as quantum correction terms. To obtain the isomorphism (2.1.2)
it suffices to show that ® is a ring homomorphism when restricted to QH*(M J/T; A)W,
that ® is surjective when restricted to QH*(M JT; A)" and to compute its kernel.In the
rest of the section abbreviate the symplectic quotients

(X,wx) == (M)/G,wryc), (Ywy) := (M )T, wnyr) -
We denote by X~ the manifold equipped with the symplectic form —wx.

Proposition 11.1.1. Embedded via i X w the space V is a Lagrangian submanifold of
Y x X~

Proof. We show that V is isotropic or equivalently i*wy = m*wyx. Consider the diagram
with commuting square

_ J _ k
pg'(0) == puz'(0) =M

By the defining relation for the symplectic form in symplectic reduction and the com-
mutativity of the diagram we have

T wy = pfwy = K w = (k) w = (m7) wx = T wx .

Since 7 is a submersion, 7 is injective and thus *wy = 7*wx as required.
It remains to show that V has the right dimension. Because the value 0 is regular and
the quotients are taken with respect to free group actions we have

dimV =dimM —dimG — dim T
dimX =dimM — 2 dim G
dimY =dimM — 2 dimT .

Multiply the first equation with 2 and subtract the second and third equation to show
2dimV =dimY + dim X. O

Lemma 11.1.2. Assume that Y is monotone and X is simply connected. Then the
Lagrangian V. C'Y x X~ is monotone and the minimal Maslov number of V' given by
twice the minimal Chern number of Y .

Proof. Via the embedding 7 : V' < Y the space V is a fibred coisotropic submanifold
with leaf isomorphic to G/T. It is well-known that the homogeneous space G/T is
simply connected (see Proposition D.1.1). This implies by Proposition 3.1.4 that X is
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11.1. Abelianization Theorem

monotone with minimal Chern number divisible by cy. Hence the product ¥ x X~ is
monotone with minimal Chern number cy. By the exact homotopy sequence shows that
V' is simply connected. Then by Lemma 3.1.2 we conclude that V' is monotone with
minimal Maslov number given by 2cy. O

Let 6 : T — S! be a root (cf. Section D.1 for more details). We have an associated
complex line bundle Ly := p7: (0) x1Cg) over Y in which C 4y denotes the complex space
equipped with the action t.2 = 0(t)z for all z € C and t € T. Let ®* = {61,...,0,,} be
a set of positive roots we define the canonical anti-invariant class

D= ] alLs) € B™(Y). (11.1.2)
fed+

In Lemma D.2.1 we show that the pull-back i*D € H?™(V) agrees with the Euler class
of the vertical bundle kerdr C T'V.

Lemma 11.1.3. The submanifold V C'Y x X is relative spin.

Proof. First we need to show that V' is orientable. This follows because its tangent bundle
splits into 7*T' X @ ker dm, the bundle 7*T'X is orientable because it is a complex bundle
and the bundle kerdn is orientable by Lemma D.2.1. By Proposition 9.2.4 we need to
show that there exists a class w € H?(Y x X,Zs) which restricted to V is the second
Stiefel-Whitney class of the bundle TV. For a root § € ®* let wo(Ly) € H*(Y;Zs) be
the second Stiefel-Whitney class of the associated line bundle Ly. We claim that the
class is given by
w=wy(X)+ > wa(Le).
o+

To see this consider again the splitting TV = n*T X @ ker dm and Lemma D.2.1. O

In the following we assume that X and hence V is simply connected and Y is monotone.
Let ¢y € N be the minimal Chern number of Y. Under these assumptions we work with
the simplified Novikov ring, which is the ring of Laurent polynomials

A:=Q\ MY, deg A = —2cy . (11.1.3)
We denote by QH*(X) = H*(X;A) and QH*(Y) = H*(Y; A) the quantum cohomology

rings, which are the cohomology modules equipped with the quantum product. We
recapitulate the main steps for the proof

(i) define the homomorphism ¢ : QH*(Y) - QH*(X),
(ii) show that ®[gp-yyw : QH" (Y)W — QH*(X) is a ring homomorphism,

(iii) show that ®|qp«(yyw is surjective and compute the kernel.
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The morphism ® and its properties are deduced via the study of moduli spaces of
holomorphic curves and auxiliary Morse functions. For that purpose fix Morse functions
fx, fy and fyy on X, Y and V respectively and choose Riemannian metrics which
are sufficiently generic. Moreover we fix compatible almost complex structures J_ €
End(7TY,wy) and JI € End(TX,wx) which are sufficiently generic in the sense that
they satisfy certain requirements as explained in the upcoming sections.

11.1.1. Definition of ¢

The map ® is deduced from a count of holomorphic discs with a boundary marked point
passing through a cohomology cycle representing the canonical anti-invariant class.

Moduli space Abbreviate by D = {z € C | |z| < 1} the closed unit disk with boundary
0D = {z € C | |z| = 1}. We denote by J? the space of maps J : D — End(TY,wy) ®
End(TX, —wx) such that J(z) = Jg ® —J% unless 1/4 < |z| < 3/4. Given J € J? let

M®(J) = {u:(D,0D) = (Y x X,V) | 9yu =0},

be the space of J-holomorphic disks with boundary on V. For critical points p € crit fy,
r € crit fiy and ¢ € crit fx we define the subspace

M®(p,r,q) € M2(J),

of elements v = (v, u") : D — Y x X satisfying the point constraints u=(0) € W3(p),
ut(0) € W¥(q) and u(1) € W5(r). We call J regular if the linearized Cauchy-Riemann
operator at every J-holomorphic disc u € MX(J ) is surjective and the evaluation at
points 0 and 1 is transverse to W*(p) x W*(q) and W*(r) with respect to all critical
points.

Lemma 11.1.4. The subspace of reqular almost complex structures is comeager in J 2.

Proof. The proof is classical and is a straight forward adaptation of [53, Theorems 3.1.5,
3.4.1]. To obtain the generic almost complex structures of split form in the case where
w=(u",u") and u" is constant and u~ is not constant, use [76, Theorem 3.2]. If u~ is
constant then this implies that u™ is constant by the boundary condition. O

Remark 11.1.5. Note that for Lemma 11.1.4 we do not need any monotonicity assump-
tions on V. Transversality is achieved by allowing domain dependence of J. The anal-
ogous result for domain independent J is much harder and needs the monotonicity
assumption. For more details see [13, Section 3.3].

Fix a regular structure J € J®. With the index formula from [53, Theorem C.1.10]
we conclude that the dimension of the component of M®(p,r,q) containing u is given
by

//'Mas(u) + ,UfMor(Q) - ,UfMor(p) - ,UfMor(T) + dim G/T . (1114)
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For any d € Ny we denote by /\/l‘b(p,r, q)[d] the union of all connected components of
dimension d. We say that a sequence (u,) C M(I’(p, r,q) converges to a disk v up to
Morse breaking of index k if the convergence is uniformly with all derivatives and the
Morse half-trajectories from u;, (0) to p, from ¢ to u} (0) and from u,(1) to r converge
to broken trajectories of total index k.

Lemma 11.1.6. Suppose that Y is monotone and X is simply connected. If pu(r) <
2cy — 1, then M®(p,r, q)(0] 18 finite. If moreover u(r) < 2cy — 2, then M®(p,r, Q) s
compact up to Morse breaking of index one, i.e. the boundary of the compactification is
given by

o Mo(p',p) x M®(p/,r, q)[o) for all critical points p’ with p(p') = p(p) +1,
o Mo(r',r) x M®(p, 7', q)0) for all critical points r' with p(r') = p(r) + 1,
o M®(p,r, q")jo) X Mo(q,q') for all critical points q" with u(q") = p(q) — 1.

Proof. By Lemma 11.1.2 we conclude that V' is monotone with minimal Maslov number
given by 2c¢y. Since bubbling has codimension 2cy the markings which evaluate into V'
converge under the limit. For details see [13, Section 3.4]. O

By Lemma 11.1.3 the submanifold V is relative spin. We fix a relative spin structure.
With the choice of a relative spin structure we obtain a class of stable trivializations
of (Ou)*T'V which gives a canonical orientation on the Cauchy-Riemann operator D,
hence an orientation on M®(.J) (cf. [74, Prop. 4.1.1]). We also obtain by Lemma 9.1.3
a canonical orientation on the fibre product M®(p,r, q) from choices of coorientations
of W*(p), W#(r) and W*(q).

Chain map For some d € Ny let C*<¢(fy; A) € C*(fy; A) denote the submodule of the
Morse complex which is generated by critical points of index < d. Similarly we abbreviate
H*<4(V; A) the submodule of the cohomology of degree < d. With orientation on the
spaces M‘I)(p,r, q) as explained above we define the A-linear map of degree —2m with
2m = dim G/T,

©: C*(fri A) @ C* = (fys A) = C P (fx; A,

porm T X sgmgewreorn
g€Ecrit fx [u]e M® (p,7,9)[0)

By the compactness Lemma 11.1.6 the homomorphism ® is well-defined and moreover
similarly to Lemma 10.2.7 we show the identity

d(dpr)+ (-1)"PP(pedr) =dd(por),

where d denotes the Morse differential (cf. equation (3.3.3)). The last equation shows
that ® induces an homomorphism H*(Y;A) ® H*<>™(V;A) — H*(X;A) still denoted
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by the same symbol and we finally define using the canonical anti-invariant class (cf.
equation (11.1.2))

O HYV:A) - H'(X:A),  ar |V1V|&>(a®D).

This finishes the construction of the homomorphism .

11.1.2. The ring homomorphism property

In this subsection we show that ® is a ring homomorphism for the quantum cup product
when restricted to the subring of elements which are invariant under the action of the
Weyl group W. For details on the Weyl group see Section D.1.

Lemma 11.1.7. For alla € QH*(Y)" and b € QH*(Y) we have
O(a) x P(b) = P(axb) . (11.1.5)

Proof. Here we give the principal steps, which are each proven in separate lemmas later
on. First we define a homomorphism

X H(Y;A) @ H(Y;A) @ H*(V x5 V;A) = H*(X; M),

in which V x, V := {(p,p') € V xV | w(p) = =(p')} denotes the fibre square. In
Lemma 11.1.14 we show that for all a,b € QH*(Y) we have

Plaxb) =x(a®b®dy), (11.1.6)

in which dy € H*(V x, V; A) denotes the class which is Poincare dual to the embedded
submanifold V' C V x, V given by the diagonal embedding. In Lemma 11.1.16 we show
that for all a,b € QH*(Y') we have we have

®(a) * P(b) a®b® pryD), (11.1.7)

_ 1
“ X

where pry : V X, V — V denotes the restriction of the projection to the second factor.
Since the action of W on Y is vertical, the group W x W acts on V x,; V and hence
on H*(V x; V;A). In Lemma 11.1.17 we show that for any element of the Weyl group
w e W and for all a,b € H*(Y;A), c € H*(V %, V;A) we have

X(a®b®ec)=x(w.a®b® (w,1).c) . (11.1.8)

In Proposition D.2.2 we show that

> (w,1).dy =pr3D.
weWw

184



11.1. Abelianization Theorem

Given an invariant element a € QH*(Y)" and b € QH*(Y). We conclude

D(a*b) = H;/| Z O (w.a xb)
weW

1
— Z X(w.a ®b® dy)
|W| weWw
1
Z a®b® (w,1).dy)
wGW
= — b 5D
\W|X(a® ® pryD)
= ®(a) x P(b) .
This shows (11.1.5). O

Remark 11.1.8. Identities similar to (11.1.6) and (11.1.7) where already observed in [75,
Theorem 6.2] and are deduced by geometric homotopies of moduli spaces. Our homotopy
is slightly different because we keep track of a marked point.

Definition of y

In order to show the ring homomorphism property we express the left and the right-hand
side as counts of certain holomorphic curves which we describe now.

Moduli space  We abbreviate by JX the space of maps J = (J,,J;,J7) : D —
End(TY, wy )®End(TY, wy )®End(T X, —wx) such that such that J(z) = J_®J H—J%
unless 1/4 < |z] < 3/4. Given J € JX we define the space

MX(J) = {u=(ug,u,u"): D =Y xY x X |dsu+ Jou =0, (11.1.9)},
with boundary condition
(ug (e29),ut(e?) eV, (uy (e*®),ut (=) eV, Voel0n]. (11.1.9)

It is easy to convince oneself that for all elements (ug,uj,ut) € MX(J) we have u™ (1) =
u(—1) and thus (uy (1),u; (1)) € V x- V:i={(p,p) € V x V| n(p) = 7(p)}.

Remark 11.1.9. With terminology from Wehrheim& Woodward the elements of the space
MX(J) are pseudo-holomorphic quilts. In particular see [75, Sscomp in Figure 15].
Pseudo-holomorphic quilts are holomorphic maps with certain non-local Lagrangian
boundary conditions (i.e. Lagrangian seams) and are studied by the mentioned authors
in great detail in [75] and [74]. The statements we use here are almost already proven
in their work (cf. [75, Theorem 3.9]). We have written “almost” because the mentioned
authors assume that at boundary punctures the Lagrangians seams intersect transversely
in an appropriate sense. We would need an extension of their results to include clean
intersections. Although such an extension is conceivable using the results which we have
developed in this work, we choose to give an ad-hoc treatment of the space MX(J) to
be concrete.
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We put a smooth structure on the moduli space MX(J) for a generic J. For that we
follow the same general steps as given for the space of holomorphic strips, viz. construct
an appropriate Banach manifold, show that the non-linear Cauchy-Riemann operator
is Fredholm, show that for generic choice of almost complex structure it intersects the
zero-section transversely,

Banach manifold Let ¥, := {z=s+it € C|s > 0,t € [0,1]} be the half-strip and
consider the holomorphic function € : ¥4 — D\ {1}, z — (™ —1i)/(e™* +1i). The function
is called strip-like end and satisfies limg_, oo €(s 4+ it) = 1 for all ¢ € [0,1], e(s) € dD—
and €(s+1) € 9D for all s > 0, where dD_ (resp. 9D ) is the boundary with negative
(resp. positive) imaginary part. To a map (ug,u;,u’): D =Y x Y x X we associate
the half-strip ue : Xy - Z:=Y x X XY x X given by

ue(z) = (ug (w?), u™ (w), uy (W), u* (~w)),  w=ez). (11.1.10)
By construction we have

ue(00) := lim uc(s,-) = <u5(1)7U+(1)7u1_(1)au+(—1))7

§—00

and if u satisfies the boundary condition (11.1.9) then w,. is a half-strip with boundary
condition

ue(,0) C Lo == {(y, 2,9/, z) € Z | (x,y), (2',y) € V},

ue(,1) € L= {(y,2,y/,2') € Z | (2,y), («/,y) € V}.
The spaces Ly and L; are Lagrangian submanifolds of the symplectic manifold Z =
Y x X7 xY x X~ which intersect cleanly and their intersection LyoN L is diffeomorphic
to V x V. Moreover if u € MX(J), then u, is Jz-holomorphic where Jz := J_®—JL @
Jo ® —J5.

Fix p > 2 and ¢ > 0 sufficiently small and define B to be the space of continuous maps

u=(uy,uy,u"):D—Y xY x X such that

R 1, 1,
o (ug,up) € HEP(D\ {1}) and w* € HEP(D\ {~1,1}),
e u satisfies the boundary condition (11.1.9),

e the integral f2+(dist (te, ue(00))P + |due|P)ed*Pdsdt is finite.

The tangent space of B at u, denoted T,B, is given by sections & = (§;,&7,€T) €
C°(u*T M) such that
o (& .&) € Myl (D\{1}) and £" € H0(D\ {£1}),

loc

e ¢ satisfies the linearized version of condition (11.1.9),
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e the following norm is finite,

1€

1Lps = ( ngzl,p(p\g(z”) +

+ [l ~ el + Ve — Tg(eo)P)erdsar)
Xy

with 2 = u(00), {(o0) = (&5 (1),£7(1),&7(1),€7(—1)) and & defined by (11.1.10)
using ¢ instead of u.

We also define the the Banach bundle £ over B with fibre over u € B given the space
of sections n = (ng,ny ,n") of the bundle w*TM such that (ng,ny) € LY (D \ {1}),
nt € L (D\ {£1}) and the norm is finite

loc
5 = Ul sy + [ IncPel®rasat.
+

where again we define 7). via (11.1.10) using 7 in place of u. Note that we have changed
the exponential weight! This is necessary so that the linearized Cauchy-Riemann oper-
ator

D, :=Vs+ Ju)V+ (VJ(uw)owu : Tu,B — &, ,

is a bounded operator (cf. Lemma 11.1.10 below). To relate the index of D,, to topological
data we define the Viterbo index of an element u = (ug,u; ,u") € MX(J) as follows.
Let U C Z be a small neighborhood of z = u(o0) and choose an unitary trivialization
®:U xR 2TZ|y,(p,€) — ®(p)¢ € T,Z such that there exists linear Lagrangians
Ao, Ay with @(p)Ag = TpLo for all p € UN Ly and ®(p)Ay = T, L, for all p € UN Ly (cf.
Lemmas 3.2.10 and 3.2.11). Then choose an unitary trivialization ®, = (5, ®;,®") of
wT(Y xY x X7) such that ®,(e(s,t)) = ®(ue(s,t)) for all s > sg, t € [0, 1] and some
so large enough. Define paths of linear Lagrangians

FO(Q) _ (q)a(ezie) D (I,+(ei9))T(ua(62¢9)7u+(eie))v:

. . (11.1.11)
Fi(0) = ((bl (6210) ©® (I)+(_619))T(Uf(ﬁ”")m‘*‘(eie))v'
Define the Viterbo index using the Robbin Salamon index
() = prs(Fo, Fo(0)) + prs(F1, F1(0)) . (11.1.12)

The index does not the depend on the choice of the trivialization, because another choice
will lead paths which are homotopic to Fy and F} with fixed endpoints.

Lemma 11.1.10. The operator D,, : T,B — &, is Fredholm of index p(u)+dimV x V.

Proof. We follow the proof of Theorem 6.1.10. Using the trivialization ®, we conclude
that the differential operator D, is conjugated to Dg = 05 + Js1a0: + S, with lower order
term S : D — R?™X2™ where 2m = 2dim Y +dim X. The domain of the operator is the
Banach space, denoted Hp, given by maps £ = (§,,&;,&T) satisfying
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o &6 € HP(D\{1}) and £F € HP(D\ {£1}),

loc loc

e with boundary condition for all 6 € [0, 7],
(& (29),67 (™) € Fo(0), (&5 (¢*),67 (=€) € Fa(8)
e there exists {(c0) € Ag N A such that the norm is finite

||§”1,p;5 = Hg‘|H1,p(D\e(2+)) + [(& — 5(00))"56HH1,?(2+) )
with weight-function ks(s) = €% and &, defined via (11.1.10) using ¢ in place of w.
Using the trivialization ®, : ¥, x R?" — w!TZ, ®.(s,t) = ®(uc(s,t)) we see that
D,, = Vs+Jz(u)Vi+ (VJz(ue))Oue is conjugated to 9s + Jstq0¢ + Se, with lower order
term S, : ¥4 — R?"*2" By Lemma 4.4.1 we conclude that S.(s,) converges to 0 and

that S, has p-decay. We conclude via (6.2.9) that for any smooth & : ¥, — R?*" and
&(00) € Ag N Ay we have

|(0s + Jsta0r + Se)&e| < [d(&e — £(00)] + O(1)|€e — £(00)] + O(e™"*)|¢(00)] -

Given any & : D — R?™ set n := Dgé = (05 + Jsta0; + S) & and define 7. and &,
via (11.1.10) using n and & respectively in place of u. A simple computation using the
chain-rule and that u, € are holomorphic as well as |de| ~ e~ as s — oo we conclude
that

[nel = O(€™) |(0s + JstaOr + Se )& - (11.1.13)
With this and the last estimate we conclude that the operator Dg is bounded. Also
by that estimate and the isomorphism 05 + Jsq0s : H}\’p“s(E,R%) — LP9(%,R*™) with
A(s) = Ag x A; for all s € R, we conclude that exists a constant so > 0 such that

€111 56 < OM) [Ds&ll 5 (11.1.14)

for all £ € Hp supported in €(X5°) and with {(co) = 0. Using standard elliptic estimates
and cut-off functions we conclude that

16111 s < c([[Dséll,s + HéHLP(D\e(Egg))):

for all £ € Hp with £(oc0) = 0. This implies that Dg is semi-Fredholm because the
restriction Hp — LP(D \ €(X37)) is compact. By considering the formal adjoint we
conclude that Dg is Fredholm. To compute the index see that Dg is homotop to the
glued operator Dy# D1, of the operators Dy = 05 + Jstq0¢ : Hpr — LP;S(D,R%@) with
constant boundary conditions F' = (Fj, F{) such that F{(0) = Fy(0), F{(0) = F1(0) for
all 0 € [0, 7] and Dy = 05+ Jsa 0 +5" : Hﬁ%{f(ﬁ,ﬂ%%) — LPO(3,R?") with F = (Fy, FY),
W = (Ao N A, AgNAy) and S : ¥ — R?™*27 has the asymptotics S’(+o00) = 0. By
linear gluing we have

ind Dy +ind D1 = ind D, +dim Ag N A;.

We also by Corollary 6.2.7 we know that ind D1 = u(F') + dim Ag N A;. The operator
Dy is surjective an has kernel consisting of constants, hence ind Dy = dim Ag N Ay. This
shows the claim since u(F) = p(u) and dimAg N Ay =dimV x, V. O
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Choose a Morse function fyx,v : V XV — R and a sufficiently generic metric. Given
critical points pg,p1 € crit fy, r € crit fy, s € crit fyyx_ v and g € crit fx we define the
subspace

MX(p07p17 r,sSs, q) C MX(']) )

to be the space of u = (ug,u; ,u") satisfying the point-wise constraints

ug (0) € Wo(po) , uy (=1) € W*(r), u(0) € W¥(q),

uy (0) € W(p1), (ug(1),uy (1)) € W3(s). (11.1.15)

We call J € JX regular if the operator D, is surjective for all v € MX(J) and the
space MX(po,p1,7,58,q) is cut-out transversely for all possible critical points. We show
similarly to Theorem 7.2.1 that the space of regular J is comeager and fix J.

Lemma 11.1.11 (Energy-Index relation). Suppose that X is simply connected and that
Y is T-monotone, then for every u = (ug,uy,ut) € MX(J) we have Tu(u) = E(u) =
J(ug Vwy + [(u] ) wy — [(uh)*wx.

Proof. By Lemma 11.1.2 we see that V is a 7-monotone Lagrangian. Similar to [75,
Remark 2.2(2)] we show that there exists an uniform constant ¢ such that Tu(u) =
E(u) + ¢. However the constant map u has vanishing energy and vanishing index, thus
c=0. O

Lemma 11.1.12. Suppose that Y is monotone and X is simply connected. If pu(r) <
2cy — 1 and p(s) < 2cy — 1 then MX(po,p1,7,8,q)[g) s finite and if moreover pu(r) <
2cy —2 and p(s) < 2ey —2 then MX(po,p1,7,8,q)p s compact up adding broken Morse
trajectories of index one.

Proof. The principal strategy of the proof is similar to Lemma 11.1.4. We show that
bubbling has codimension 2cy, hence the evaluation into V and V x, V converges. We
give some more details.

Fix d = 0,1. Given a sequence (u”) = (uy"”,u; ", u™) C MX(po, p1,7,5,q)q- It
suffices to show that |0su”| is uniformly bounded. Assume by contradiction that it is
not. Provided with the index formula we have

d= p(u”) +dimY —dim X — p(po) — p(p1) — p(r) — p(s) + pu(q) - (11.1.16)

By the energy-index relation we conclude that the energy F(u") is uniformly bounded.
By Gromov compactness (u”) is compact up to bubbling, i.e. a subsequence of u” con-
verges to a stable map v = (v;);er modeled on a rooted tree T with root ig € T' such
that v;, is an element in MX(J) and for each i € T'\ {ip} the map v; is either

e a J__-holomorphic sphere in Y,
e a —J-holomorphic sphere in X,

e a (J @ —JL)-holomorphic disk in Y x X with boundary on V,
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e a Jz-holomorphic strip in Z with boundary on (Lo, L1).

Also the subsequence of the energies E(u”) converges to E(v) = >, p E(v;). Consider
the bubble energies

ms:= lim lim E(u/;[s,00) x [0,1]),

§—00 V—0O0

my = lim lim F(z — (ug”(2%),u™"(2)); D N B(i)) .

e—>0v—o0

We distinguish two cases
(i) we have mg =m, =0,
(ii) we have ms > 0 or m, > 0.

For case (i): In this case there is no i € T such that v; is a strip in Z and we have
convergence of the points (ug (1), u; (1)) and (ug " (—1),u™" (7)) evaluating into V X,
V and V respectively. Therefore the root vi, = (vg ;. vy, ZO) € MX(J) satisfies

(vaio(l),viio(l))ews(s') and v( 1) e We(r'), (11.1.17)

with p(s’) > u(s) and p(r’) > p(r). Moreover we have three leaves iy, ,i" € T such
that Uiy U are spheres in Y and v;+ is a sphere in X with via(O) € W5(py) and
Vi (0) € W*(p}) and vi+(0) € W¥(¢') in which p{,p] € crit fy and ¢’ € crit fx are
critical points satisfying p(pj) > p(po), p(p)) > p(p1) and p(q’) < p(g). Consider the
subtree 7" C T where we have discarded all discs and spheres which are not between any
of those leaves and the root. Then we reduce all remaining spheres to simple spheres
without increasing the index. Assuming that J, J, and J are sufficiently generic the
space of such configurations is a manifold of dimension

dy =Y p(vi) — u(ph) = u(r') = p(s") + () + dimY — dim X .
€T’

We have lim,_, E(u”) > ZzeT’ E (vi). By monotonicity and the energy index relation
T1(viy) = E(v;,) we conclude p(u”) > >, v p(v;). Thus

dy < p(u”) = p(po) — p(pr) — p(r) — p(s) + p(g) + dimY —dimX =d <1.

But if there is a non-constant sphere v; for some i € T"\ {ig} then d, is a least two since
the space admits a free action of a 2-dimensional subgroup of PSL(2,C). If instead
T" = {ip} but |0su”| is unbounded, we must have discarded a non-constant bubble and
continue as in case (i7).

For case (i7): Assume that m, > 0 and ms > 0. The other subcases are similar. By
the same reasoning as above we obtain a stable map v = (v;);c7v indexed on a rooted
tree 7" with exactly three leaves and with root v;, € MX(J) and all other components
are simple holomorphic spheres in X or Y and such that for the leaves iy, i; and i* we

190



11.1. Abelianization Theorem

have the point condition v, (0) € W*(pyp), vi;(O) € Wo(p}) and v;+(0) € W*(¢'). If J,

J3 and J are sufficiently generic the space of such configuration is of dimension

There possibly exists i € T\ T” such that v; is a non-constant strip. The intersections
Lo N Ly is connected. We find a strip ¢ lying completely in Ly N L; such that v(o0) =
v;(—00) and v(—o00) = v;(c0). By the concatenation and zero axiom of the Viterbo index
we have p(v#v;) = pu(v)+p(v;) = u(v;). The connected sum w := v#wv; is a annulus with
boundary in (Lo, L1). Because Ly is simply connected we find a disk @ lying completely
in Ly such that w#w is a disk on Li. Because Li is monotone with minimal Maslov
index 2cy we have p(w#w) = p(w) + p(w) = p(w) = p(v;) € 2eyZ. Altogether we
conclude that since v; is non-constant p(v;) > 2cy. Similar we have p(v;) > 2cy if v; is
a holomorphic disk or sphere. Thus p(u”) = > .cp u(vi) > D cqr pu(vi) + 4cy for some
v € N large enough and thus

0< > pulvi) = p(pp) — ul(ph) + p(q') + dim Y — dim X
ieT
< p(u’) —4dey — p(po) — p(p1) + p(g) + dimY — dim X
<d+p(r)+p(s) —dey <d—2.

Which implies that d > 2 and contradicts the assumption. ]

The pair (Lo, L1) is relative spin with background class priws(X)@®prsD@®priws(X)®
pryD where pr; denotes the projection to the i-th factor. Let O — LoNL; be correspond-
ing double cover given in Definition 9.3.4. A slight generalization of Theorem 9.3.6 shows
that we have a canonical isomorphism [MX(J)], = OY ®|C|, for every u € MX(J) where
x = u(o0) and C' = Ly N L;. Hence by an O-coorientation of W*(s) and coorientations
of W*(po), W*(p1), W*(r) and W"(q) we obtain an orientation on MX(pg, p1,7,$,q) via
the Lemma 9.1.3.

Chain map We define the A-linear homomorphism of degree —4m

5(\: C*(fy) Q C*(fy) Q C*§2m+l (fV) ® C*§2m+1(fv><7rv) QA — C*—4m(fX) ® A

PoRPLOT RS Z Z signu - q © AVit)/2ey
qeerit fx [u]e MX(po,p1,7,5,q) (0]

Lemma 11.1.12 shows that X is well-defined and induces a homomorphism on the ho-
mology groups which we still denote by the same symbol. Finally we define

X H*(Y;A) @ H (Y;A) @ H*S?*™(V x Vi A) = H*4X; A),
1 (11.1.18)
aRb®c— Wx(a®b®v®c).

This finishes the section.
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Left homotopy

In this subsection we show equation (11.1.6).

Moduli space Using an idea of [3] we write down a concrete model of the Riemannian
surface which moderates the homotopy. Define the half-disks D~, D* via D* = {z =
s+it € C||z| <1,£t > 0}. We establish a chain-homotopy using the count of pseudo-
holomorphic curves defined on a family of Riemann surfaces D, with p € [1/2,1] defined
by D, = Dt U D~/ ~ with identifications

(5,07) ~ (=5,07)
s

Jr — . .
(s,07) ~ (s,07) if |s| > p and 0h) if |s|]<p.

For 1/2 < p < 1 the surface D, is homeomorphic to a disk and for p = 1 the surface D,, is
homeomorphic to a wedge of two disks connected in one boundary point. Equivalently
one can think of the family (D,);/2<,<1 as a fixed disk D equipped with a family of
varying almost complex structures. Technically speaking the almost complex structure
is singular at the points —1/2,0 and 1/2, but these singularities are mild in the sense that
a punctured neighborhood is bi-holomorphic to an annulus. So in that sense we think
of the holomorphic curves which we are about to define, as finite energy holomorphic
curves on the punctured surfaces which are continuously extended over the punctures.
Let 7 C C*(D,End(TY,wy) ® End(TX, —wx)) the space of maps J = (J~,J%)
such that J~(z) = J unless 1/8 < |z +4/2] < 1/4 and J"(z) = —JF unless 1/4 <
2| < 3/4. Note that J~ defines a map C*(D,, End(TY,wy)) for each p since it is
constant at points which are identified. Given J = (J~,J%) € J© we define the space

u :D,—=Y
M(T) = {<u+:D—>X)

Also define M®(J) := {(u,p) | u € M?(J)} and the subspace

dsu® + JEWH)ou® =0,
VO (u (€9, ut () eV

M@(p07p17 T, Q) C M@(J)
consisting of elements with pointwise constraints
u”(i/2) € Wi(po), u(—i/2) € W (p1), wu (i) € Wi(r), w"(0) € W"(q).

Topologically every element u € ./\/ll(?(J ) is a disk in Y x X with boundary on V and
we denote by unas(u) € Z its Maslov index. We show similarly to Lemma 11.1.4 that
there exists a comeager subset of almost complex structures jr(g)g C J° such that for all
J e Jr(?g the space M®(.J) is component-wise a smooth manifold of dimension fingas() +
dim V41 at (u, p) € M®(J) and that M® (pg, p1, 7, q) is cut-out transversely. Abbreviate
again M® (po, p1, 1, q)[q) the union of the d-dimensional components for any d € Ny. Not
so obvious is the following compactness lemma. We assume without loss of generality
that the Morse function fy « v on the fibre square V' x V' is chosen such that in a tubular
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neighborhood of the submanifold Ay C V X,V it equals fiy + (neg. quadratic form) and
that fiy has a unique minimum. We denote the minimum considered as a critical point of
the function fy«_yv by Smin. The Morse index of sy, is dim G/T. By these assumption
the Poincaré dual to the diagonal [Ay/] is represented by smin (see [21, Section 3]).

Lemma 11.1.13. Suppose that Y is monotone and X simply connected. Suppose that
dim G/T < 2cy — 2. If u(r) < 2cy — 1 then M®(py,p1,7, q)[g) 18 finite and if moreover
w(r) < 2cy — 2 then M®(pg, p1, 7, q)1) s compact up to adding the boundary given by

e broken Morse trajectories of index one,
o MX(po, p1,, SminaQ)[O] as p— 1,
b M?/2(po,p1,7’, q)[O} as p — 1/2

Proof. Fix d = 0,1 and let (u”,p”) € M®(poy,p1,r, q)[q) be given. If p” is bounded
away from 1 we conclude similar as in the proof of Lemma 11.1.6 that |0su”| is uni-
formly bounded, which is sufficient to show the claim. In the case when p” is not
bounded away from 1 we need a little different argument, which we summarize at first:
We identify v” with holomorphic strips in Z := X% x Y with boundary on four La-
grangians. As p” converges to 1 we show that the strip breaks into two strips, one of
which is constant in a generic situation and the other is identified with an element in
MX(po; p1, T, Smin; @)[o]- The reverse process is then given by gluing a constant strip to
an element in MX(po, p1,7, Smin, ¢)jo]- We give details.

Define the quater disk DT :={z=s+it € C| |z] < 1,s,t > 0} the strip ¥ := {z =
s+it € C |t e [0,1]}. There exists a homeomorphism ¢ : ¥ — D*+\ {0,1} which
fixes 4 and is holomorphic in the interior. Given (u™,u™) € M?(J ) we define a map
u= U ,ut): X = Z:=Y*x X4 by

~+ + ~+ + —
Uy (2) = u™(w), uy (z) = u* (—w), w=(z),
u u™ (w)
Denote the spaces AYP?? = {(y,y,v,y) |y, ¥ € Y} C Y A2 ={(y,v, v, y) | .y €

Y} etc. and R” := o !(p”). We obtain a sequence of strips (u”) satisfies the boundary
conditions

~V 1122 1122 ~v

W] o1 € AV X AR, lis0m1 EV XV XV XV, L)
g 1122 1221 ~v 1221 1221 -1
0| o ymg € AV X AR, 07| L g € AV X ARG

By Gromov-compactness a subsequence converges to a stable map (v;)ier such that
E(u”) = Y ;cr E(vi), the tree T has two distinguished vertices i, i, € T such that the

map v_ = v;_ : X — Z satisfies the boundary condition
1122 1122 4 1122 1221
u_|8§07t:1 c AV x AY# u_}sz()’t:l ev?, v,y € AYF AR, (11.1.20)

the map vy :=wv;, : ¥ — Z satisfies the boundary condition

1122 % A}?Ql,

4 1221 1221
vy, € VY, € AY e AL A2

U+|5<0,t=0 U+ ‘520,t=0
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for all vertices ¢ € T between ¢_ and ¢4 the map v; is a Jz-holomorphic strip with
boundary on (VA‘,A%}22 X A}(Qﬂ) and for all other indices i € T the map is either a
Jz-holomorphic sphere, disk with boundary on any of the Lagrangians or strip with
boundary on (Ai}?2 x ALI22 AI122 x A1221) or (V4 AL221 x AL221),

We have V4N A%/HQ X A}?Ql =Vin A%/lm X A}(lll = Ayy,v. The constant map
v:3F = Z, (s,t) = vy (—00) is a point in ¥ € VAN A2 x A2 A2 5 AL22 hence
satisfies (11.1.20). Thus the glued map v#v satisfies the boundary condition (11.1.19).
Reversing the identification v#wv4 is a disk in Y x X with boundary on V. Since V is
T-monotone with minimal Maslov number 2cy, we conclude that if v, is non-constant,

then
2ktey = /(v#v+)*wz = /viwz +/v*wz = /viwz >0.

This shows that E(v.) > 27cy. The strip v_ gives an element (v—,v%) € M9 (J)
which is identified with an element (uy,u;,u’) € MX(J) satisfying ug (1) = uj (1)
via ug (22) = v (2) for all z € Dy, uy(2%) = v (2) for all z € D_ and u™(z) =
vT(2). Using that E(v;) > 27cy for all i € T'\ {i_}, we show as Lemma 11.1.12 that
vy must be constant and we have no bubbling. Generically since u; (1) = u; (1) we
have(ug (1),u7 (1)) € W*(smin). This shows the claim. O

Lemma 11.1.14. For all a,b € QH*(Y; A)
Plaxb)=x(la®b®dy),
in which dyy € H*™(V x, V;A) is the Poincare dual of the diagonal Ay CV x, V.

Proof. The elements of M@(J ) are holomorphic disk on V', hence the space is canonically
oriented by the relative spin structure and we obtain corresponding orientations on
MO (pg, p1,7,q) using Lemma 9.1.3. We define the A-linear map

O : C*(fy; A) @ C*(fy; A) @ C*=2" T (fy  A) — C* 727 (fx; M),

: . pvit(u)/2cy
pO ® pl ® " qucrit fX ZueM@(pmpl,r,q)[O] Slgnu q ® )\ ’

From Lemma 11.1.13 we conclude that © is well-defined and establishes a cochain ho-
motopy between Y(- ® spyin) and the cochain homomorphism 6 obtained by counting the
elements of M?/Q (Po,p1,7,q)[0)- Another homotopy argument shows that ¢ is cochain

homotopic to do (,u ® id), where p denotes the cochain homomorphism of the quantum
cup product. Since spyiy is a cycle generating the Poincaré dual of the diagonal class dy
we conclude

Dlaxb®D) =

P(axb) = ab@D®dy)=x(axbxdy) .

L LY
W] WX

This proves the lemma. O
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Right homotopy

In this subsection we deduce equation (11.1.7). We mirror the construction from the
previous step to obtain a cochain homotopy relating the quantum product of two ® with
x- This time the branch point is approaching from the right-hand side.

Moduli space  We study maps defined for every p € [1/2,1] on S, := DT LID~/ ~ with
identifications

+ - (5’07) ~ (_5’07) .
(5,07) ~ (s,07)if |s| < p and (5.0%) ~ (—s,07) if |s|>p.
For all 1/2 < p < 1 the surface S, is homeomorphic to the cylinder S x [0,1]. If p = 1 it
is homeomorphic to a disk with two boundary points identified. Define J= as the space
of maps J = (J;,Ji,J") € C®(D,End(TY,wy) ® End(TY,wy) ® End(TX, —wx))
such that where J; (z) = J; (2) = J unless 1/4 < |z| < 3/4 and J*(z) = —J unless
1/8 <|z+i/2| <1/4. Given a tuple J = (J;,J; ,J*) € J= and p € [1/2,1) we define

ug :D—=Y Osu+ J(u)0u =0,
(=3 | ur D=y || Voe o] (uy () ut(?) eV,
ut S, = X/ |Voe0n]: (uy(e?),ut(—e?) e V.

M

Moreover define M=(J) = {(u,p) | u € M5(J),p € [1/2,1)} and the subspace
ME(p07p17 0,71, Q) C ME(‘])
of all elements satisfying the pointwise constraints
ug (0) € W¥(po), ug (=1) € W*(ro), ut(0) € W(q)
uy (0) € Wo(p1), uy (1) € Wo(ry).

The elements of the space M=(J) are holomorphic quilt without punctures hence by [75,
Theorem 3.9] and index formula in [53, Appendix C] we conclude that M=(J) is a
manifold of dimension pias(u) +dimY + 1 at u € M=(J). Similarly we show that
ME(po, p1,70,71,q) is cut-out transversely. Let pry : V x; V — V denote the restriction
of the projection to the second factor. For the next lemma we assume that the Morse
function fy v is a small perturbation of the function prf such that

e the critical points of fy« . v project to critical points of fi via pry,
e gradient flow lines of fy «, v project to gradient flow lines of fy via pry,

e for every r € crit fyy the function fy . v restricted to each fibre pry 1(7“) CVxV
is a Morse function with only one minimum, denoted 7.

If we assume this special form of fy v the pull-back pr : H*(Y) - H*(Y x,Y) is
defined on cochain level by sending 7 to 7 (for details see [57])
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Lemma 11.1.15. If pu(ro), u(r1) < 2cy — 1, then ME(po,pl,ro,rl,q)[O] is finite and if
moreover u(ro), pu(r1) < 2cy — 2, then the space M=(pg,p1, 70,71, q)1) s compact up to
adding

e broken Morse trajectories of index one,
s Mlg/g(poaplaro,ﬁ,q)[g] as p — 1/2,
b Mx(pl)uplvr()a 7217 q)[(]] as p — 1.

Proof. The new part is when p approaches 1. Let (u”, p”) € MZ(J) be a sequence with
p” — 1. We use notations from the proof of Lemma 11.1.13. Given (u, p) € M=(J) we
define the strip @ = (@~,47) : ¥ — Z := Y* x X* via where w = ¢(z)
g (2) = ug (w?), @y (2) = ug (@7), 4 () = u
Uy (2) = uy (w?), 5 (2) = uy u
Set R” := ¢~ !(p”) — oco. We have the boundary condition

~U

m c A1122 % A1122, ,&I/‘

c A1122 % A1221,

eEVXVxVxV,

c A1122 % AHZQ.

‘sgo,t 1 5>0,t=1

al/

’sSR‘ﬂt =0 ‘SZR”,tZO

As in the proof of Lemma 11.1.13 we obtain a stable map (v;);er with two distinguished
vertices i_, iy such that v_ := v;_ is identified with an element in MZ(J) = MX(.J)
and v := v;, satisfies the boundary condition

,U+‘t:1 C V4, C A1122 % A1221, C A1122 « A1122 )

U+ ‘sSO,t 0 U+ ‘szo,t 0

It suffices to show either v, is constant or E(vy) > 27cy. We have vy (—o00) € V4n
A2 5 ALZ2L_ A AL AL Ay e,

’U+(-OO) = (y’y7y/’y/7x7$)x7$)a

for some (y,y') € V x, V with 7(y) = 7(y') = x. The fibre 7~!(x) C V is isomorphic to
G/T thus connected. We find a path v : R — 7~ 1(x) such that y = v(—s) and y’ = 7(s)
for all s > 1. Define the map v : ¥ — Z, (s,t) — 0(s,t) by

u(s,t) = (y,y,7(s),7(s), z, 2,2, 2) .
For some R > 0 the connected sum w := v#v’ satisfies the boundary conditions

C A1221 % A1221, w’

C A1122 % A1122 ’LU{

A similar unfolding process as in the proof of Lemma 11.1.13 shows that w defines a disk
with boundary on V. Hence E(w) = 2ktcy for some k € Z. Moreover E(w) = E(vy) >
0. This shows that E(v4) > 27¢y for a non-constant v . O
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Lemma 11.1.16. For all a,b € QH*(Y; A) we have

1
—x(a®b®pr;D) .

D (a) x ®(b) = i

Proof. The relative spin structure defines an orientation on M=(.J) and we obtain an
orientation on M= (pg, p1,70,71,¢) via Lemma 9.1.3. We define the homomorphism

= C*(fy) ® C*(fy) ® C*§2m+1(fv) ® C*S2m+1(fv) QA — C*_4m_1(fX) ® A,

PoRPL@To DT Y sign u - g © AMMas()/20y

gEcrit fx ZUEME(}?O,M,"’OJ”LQ)[O]
Using Lemma 11.1.15, we see that the homomorphism = is well-defined and establishes
a cochain homotopy between X o (id ® pr3) and the homomorphism & obtained by count-
ing elements in the moduli space M%/Q(po, P1,70,71, q)[O]. Another homotopy argument

shows that & is cochain homotopic to o (@ ® </IS), where p denotes the cochain homo-
morphism of the quantum cup product. We conclude for a,b € QH*(Y)

1 = =~ 1 *

1 ,
= WX(G ®b® pryD) .

This shows the lemma. O

Weyl group action
In this subsection deduce the identity (11.1.8).
Lemma 11.1.17. For allw € W, a,b € H*(Y;A) and c € H*(V x; V;A) we have

X(a®@b®c)=x(w.a®b® (w,1).c).

Proof. As before we construct a cochain homotopy between the morphisms on cochain
level. Actually we will use two cochain homotopies. The first comes from a cobordism
obtained by a homotopy of almost complex structures and the second by varying the
length of the Morse trajectories. In the process we possibly pick up a minus sign in the
first homotopy which is then canceled by the second homotopy. We give details.

Fix an arbitrary element w € W and denote by ¥ : ¥ — Y the symplectomor-
phism given by the action with w. Recall that the sign (—1)¥ € {+£1} is given as
the determinant of the linear action of w on the Lie algebra of the maximal torus (cf.
equation (D.1.5)). The map v preserves the submanifold V' C Y and @ZJ‘V V=V
is orientation preserving (resp. reversing) if the sign of w is positive (resp. negative).
Given u = (ug,uy,u") € MX(po,p1,7,5,q) then (vy,v;,v") = (Y oug,uy,ut) is
(¢YuJy . Ji, JT)-holomorphic, where ¢,J; := dip o Jj o dy~!, and satisfies the point
constraints

v (0) € $(W*(po)), v (—1) € p(W*(r)), v (0) € W"(q)

1)1_(0) S WS(p1), (1}0_(1),1)1_(1)) € (i x id) (WS(S)) ) (11.1.21)
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11. Proofs of the main results

Let Mg(pg,pl,r, s,q) be the space of elements in MX(J) with these constraints. We
define a the A-linear homomorphism Q similar to X by replacing MX(po, p1,7, 5, q)[0)
with M (po, p1,7, 5, q)[g) in the formula (11.1.18). Using a homotopy of 1..J; to J5 we
define a cochain homotopy between X and the homomorphism (—1)"-€Q. The sign (—1)"
comes up because the identification with MX(po, p1,7, s, q)[g) changes sign depending on
the orientation of v restricted to V.

We come to the second homotopy. Denote by ¢y, ¢, and @g,  the the nega-
tive gradient flow of fy, fy and fy«, v respectively. We abbreviate the compositions

VY = 9, 0, Yy 1= ¢f, o9 and (¢ x id)* == oy © (¢ x id) for all @ > 0. Let
M (po,p1,7,5,q) be the space of tuples (u,a) where v € MX(J) and a > 0 such that
the following pointwise constraints hold

vo (0) € ¥ (W*(po)), vo (—1) € ¥ (W*(r)), v (0) € W (q),
v (0) € W2(p1), (vg (1), v (1)) € (¥ x id)* (W*(s)) .

The compactification of the space MQ(po, pl,r,s,q)m has the boundary (the spaces
MY (po, ph) etec. are defined in (3.3.2))

e Morse breaking of index one,
o M (po.p1,7,5,9)] as a — 0,

o MX(py, 1,78, q)0) X MY (po, ppy) x MY (r,r") x M¥*1d (s, &) for all critical points
Py, s and ' with p(s’) = u(s), p(r") = p(r) and p(pj) = ulpo) as a — cc.

We conclude that M (Po;p1,7,8,q)1) defines a cobordism showing that € is cochain
homotopic to ¥ o (¢¥* ® id ® (¢|v)* ® (¢ x id)*). The class D is anti-invariant (see
equation (D.2.5)). Using all above homotopies we conclude that on cohomology level

| PN
X(a®b®c)zmx(a®b®D®C)

(e
W]

(e
W]

(~1)"

= (-1)*R(w.a®b® D ® (w,1)c)

QaxbD®c)

X(w.a ®b®w.D® (w,1)c)

1
= — X(w.a®b®D® (w,1)c)
(W]
=x(w.a®b® (w,1)c) .

This shows the lemma. O
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11.1.3. Surjectivity and the kernel of ¢

We are left to show that ® restricted to QH*(Y;A)" is surjective and compute the
kernel.

Lemma 11.1.18. The homomorphism @|qg«y,ayw is surjective.

Proof. Recall that QH*(Y;A) = H*(Y;Q) ® A. By monotonicity we have pinas(u) > 0
for all u € M®(J) which implies that ® respects the filtration induced by the powers of
A and we have the expansion

b =PyRid+ P} DN+ Py @ N> +

with @, : H*(Y;Q) — H*~2kev (X; Q) for all k € Ng. The homomorphism @ is defined
by purely Morse-theoretical means and given by ©'o(D — -)oi* : H*(Y;Q) — H*(X;Q).
In [50] it is shown that ®q is surjective when restricted to H*(Y;Q)" (in particular
see [50, equation (3.2)]). Let ¥ : H*(X;Q) — H*(Y;Q)" be a right-inverse. With
O = &0V : H*(X;Q) — H* 2ty (X;Q) and © := > ,~, Or ® \* we have

Po(V®id) =id+0; @A+ 00N+ =id+0 .

The homomorphism Oy is nil-potent for all £ > 1, thus the homomorphism © is nil-
potent and (id + ©) is invertible. Hence (¥ ® id) o (id + ©)~! defines a right-inverse of
. O

Lemma 11.1.19. The kernel of ®|qp-(y,ayw is given by {a € QH*(Y; M)W | axD = 0}.

Proof. A simple homotopy argument, which turns a boundary marked point into an
interior marked point, shows that ®(a ® i*D) = ®(a* D ® 1) for all a € QH*(Y; A). To
define i(a* D®1) we only need to prescribe the interior marked point of the disk, which
without loss of generality is 0. After possibly another homotopy, we assume that the
almost complex structure .J used to define M®(.J) is invariant under the S'-rotation of
the disk. We conclude that the subspace of non-constant maps in M®(J) admits a free
Sl action and will not show-up in the count of <T>(a * D ®1). Hence only the constant
maps are counted and @(a *D®1) = 7'(i*(a* D)). Gathering all, we conclude similarly
to the proof of [50, Thm. A] for some a € H*(Y; Q)W

a€ker® < P(a)xP(b)=0, Vbe QH"(Y;A) surjectivity of ®
< P(axb) =0, Vbe QH*(Y;A) equation (11.1.5)
= P(axb®i*D) =0, Vbe QH*(Y;A) Definition of ®
— PlaxbxD®1)=0,Vbe QH*(Y;A) see above
— 7 (i*(axbxD)) =0, Vbe QH*(Y;A) see above
< axbxD=0,Vbe QH*(Y;A)
< axD=0.

This shows the claim. O
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11.2. Quantum Leray-Hirsch Theorem

Fix a fibre F' := 77 !(pt) C LY and denote the embedding j : F C LY. Assume that
there exists classes ay,...,a, € H*(L") which pull-back to a basis of H*(F). The
classical Leray-Hirsch isomorphism is given as the linear extension of

H*(F)® H (L) — H*(LY),  j*a;®bws a; — 7 (b). (11.2.1)

We prove the isomorphism (2.2.2) by defining a map with “quantum correction terms”.

Special Morse functions Choose Morse functions f : L — R and fy : LY — R with
sufficiently generic Riemannian metrics on L and LY respectively. We assume without
loss of generality that fi is chosen such that in a tubular neighborhood of F' C LY such
that it is given by h + (neg. quadratic form) where h is a Morse function on F. Under
these assumptions every critical point for A of index k is identified with a critical point
for fy with index k£ 4+ dim L and we have a similar identification for negative gradient
flow lines between critical points of h. In this form a right-inverse of the umkehr map
map associated to the embedding F C LY on Morse chain level is given by the inclusion
C*(h) € C*(fV) (see [21, Section 3]). The subspaces LxLY ¢ XxY " andV C X xY~
intersect cleanly in a manifold which is isomorphic to LY. We identify the intersection
manifold with LY and assume it is equipped with the Morse function fy .

Moduli space Fix almost complex structures Jx € C*°([0,1], End(7TX,wx) and Jy €
C*([0,1], End(TY,wy). Let J be the space of almost complex structures J € C*(R x
[0,1], End(TX,wx)®End(TY, —wy)) such that J(+s, ) = Jx®&—Jy forall s > 1. Given
J € J, m € N and critical points p € crit f and r, g € crit fiy we define

M (p,7r,q) = {u=(u1,...,un) | a) —e)}
be space of tuples u = (uq, ..., uy) such that there exists £ € {1,..., m} satisfying
a) (u1,...,up—1) is an Jyx-holomorphic pearl trajectory with boundary on (L, L),

b) uy = (uyf,u) ) : (—00,0]x[0,1] — X xY ~ satisfies dsup+J (ug)Opug = 0, E(up) < 00
and
Ugli—o C L x LV, uglg—y € L x LV, Upls—o C V, (11.2.2)
¢) (Ugst,---,um) is a Jy-holomorphic pearl trajectory with boundary on (LY, LV),

d) there exists numbers a_, a; > 0 such that
Y (ug-1(00)) = up (=00), P (g (=00)) = ugs1(—00),
e) we have the point constraints

ui(—00) € W¥(p), ue(0) € W¥(r),  um(o0) € W*(q).
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11.2. Quantum Leray-Hirsch Theorem

We denote by M%(p, r,q) the space of Mv?n(p,r, q) modulo reparametrizations and
M?(p,7,q) = Upen M%(p, r,q). Provided that the almost complex structures are suf-
ficiently generic each connected component of the space M?(p,r,q) is a manifold with
corners and the dimension of the component containing u is given by

p(u) + p(p) + p(r) — p(g) —dim L,

in which p(u) denotes the sum of the Viterbo indices of all u;. Let N denote the minimal
Maslov number of (L x LY, V). Assume that u(r) > dim LY — N + 1, then standard
compactness arguments similarly to Lemma 11.1.6 show that the union of the zero
dimensional components M®(p, r, q)[o) is finite and if moreover y(r) > dim LV —N+2
then compactness and gluing shows that the union of the one-dimensional components
M®(p,r, q)[1) has a compactification up to breaking of height one, i.e. is given by

o M(p,p)jg) x M?(¥',7,q) [ for all critical points p’ € crit f,
o M?(p,r, Q")) X M(¢', @)o) for all critical points ¢’ € crit g,
o Mo(r,r")) % M (p, 7', q)[g) for all critical points 7" € crit g.

We point out that the last line states that only honest Morse trajectories break off at
the corner, which holds due to the bound of the index of r.

Chain map Let A := Zy[\, A\7!] denote the ring of Laurent polynomials with deg \ =
—N. We define the A-linear homomorphism

Co: Cu(f; A) @ Cu(h; A) = Cu(frs A),

p(w) /N
pRT= qucritf ZuéMWP%Q)[o} 1% '

(11.2.3)

Here we have used the identification of critical points of h with critical points of fi
which have index at least dim L. Note that since N > dim F' + 2 we have u(r) >
dim L > dim LY — N + 2, which was necessary for compactness. We conclude that C¢ is
a chain map with respect to the pearl differential and thus induces a map on homology,
denoted

¢:QH,(L,L;\) ® H (F;A) = QH, (LY, LV; A). (11.2.4)

We want to show that ¢ is an isomorphism. The intersection of L x LY with V is
connected and using the energy-index relation we conclude that 7u(u) = E(u). In par-
ticular pu(u) > 0 for all u € M?(p,7,q) and p(u) = 0 if and only if u is constant. The
subspace of all u € M®(p,r,q) which are constant is given by the triple intersection
7 (W¥(p)) N W¥(r) N W?(q), which is transverse after a suitable choice of Morse func-
tions. We conclude that C'¢ respects the filtration given by powers of A and the induced
morphism on the first page of the associated spectral sequence is (11.2.3) with M?(p, 7, q)
replaced by 7~ (W"(p)) N W¥(r)NW?#(q). This is precisely the Morse-theoretic descrip-
tion of the classical Leray-Hirsch morphism (11.2.1) (up to Poincaré duality). Hence by
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11. Proofs of the main results

the Leray-Hirsch theorem C'¢ induces an isomorphism on the second page of the spec-
tral sequence. Then it follows by standard algebraic arguments that C'¢ also induces an
isomorphism on the final page of the spectral sequence (see for example [51, Theorem
3.5]) or in other words ¢ is an isomorphism.
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12. Applications

12.1. Quantum cohomology of the complex Grassmannian

Choose integers k < n and define the complex Grassmannian as the moduli space of all
complex k-dimensional subspaces in C", i.e.

Gre(n, k) :={V Cc C" | dimc V = k}.

equipped with the Fubini-Studi metric the complex Grassmannian is a Kéhler manifold
and in partiuclar a monotone compact symplectic manifold. The quantum cohomology
of Gre(n, k) was first computed by Witten. We illustrate how Theorem 2.1.1 is used to
compute it. For simplicity we set the Novikov variable to one.

Proposition 12.1.1. The rational quantum cohomology of Gre(n, k) is given by

Q[O—la 02y, O—k]/<hn7k+la hn7k+27 e 7hn—17 h’n - 1) .
in which o (resp. h;) are the elementary (resp. complete) symmetric polynomials.

The space Gre(n, k) is also obtained via symplectic reduction of an U(k)-action on
C™F via g.A = Ag* where g € U(k) and A € C™** thought of as a n x k-matrix (cf.
[50, Section 7]). The abelian quotient Y is the k-fold product of the complex projective
space CP"~! and the abelian/non-abelian correspondence V is given by the complex
Stiefel manifold

V= {(@1,62,...,&{) ey ‘ l; L(cﬁj VZ%]},

where by /; L¢ ¢; we mean that the complex lines ¢; and ¢; are perpendicular with respect
to the standard Hermitian product on C". The projection 7 : V' — Gre(n, k) sends the
tuple (¢1,/a,...,¢) the the complex k-plane spanned by the lines. The minimal Chern
number of Y is n and the dimension of U(k)/T is k* — k. Hence the theorem applies as
long as 2n > k? — k + 2.

It is well-known that the rational quantum cohomology ring of CP" ! is Q[z]/(z" —1).
By the Kiinneth formula the quantum cohomology of the product Y is

Qlz1, ... xg]/(xl —1,..., 2 = 1).

The Weyl group W of U (k) is the symmetric group of k letters. The group W is acting
on S := Q[z1,...,xk] by exchanging the arguments of a polynomial, i.e. for w € W and
p € S we define

(w.p) (x1,22, ., Zk) = P(Tw(1)s Tw(2), - - Tw(k)) -
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The ring of such invariant polynomials is well studied. In particular we know that S"

is a polynomial ring generated by the elementary symmetric polynomials o1,...,0, € S
given by
ad(xl,...,xk) = Z Lj1Ljg - Tjy s (12.1.1)
1<j1<j2<-+<ja<k
or equivalently generated by the complete symmetric polynomials hy, ..., hiy € S
ha(x1,...,zK) = Z Lj Ly ... Lj, . (12.1.2)

Denote the ideal I := (2} — 1,...,2} — 1). In view of Theorem 2.1.1 we have to
compute the ring (S/I)" /annD. We claim that there is an isomorphism

(/DY /annD = SV /(1 : DN SY),

in which I : D is the ideal quotient given by {p € S | Dp € I}. Indeed, consider the
map ¢ : S = SV, p [W|71Y o w.p. The map ¢ descends to ¢ : S/I — SV /(I :
DN SY). It is easy to see that ¢ is surjective restricted to the subring (S/I)" (a
preimage of p 4 (I : D) N S being p + I) and that the kernel of @ is the annihilator of
D.

The rank of U(k) is k and we identify the symmetric Q-algebra associated to the
weight space of U(k) with the polynomial ring S (cf. Section D.1). It is well-known that
a set of positive roots for U(k) is given by (z; — 2j)1<i<j<r C S (cf. [55, p. 285]). We
conclude that the canonical anti-invariant class is given by

D= H Xr; — ZL‘j .
1<j
To compute the ideal quotient I : D we use classical results about the ring of invariant
polynomials. We quote from [72, Chapter 7]. A composition « of length k is a tuple of

k non-negative integers o = (aq, o, ..., a ). To such a composition o we associate the
an anti-symmetric polynomial, called alternant, given by

ao (11,22, ..., x)) = det (a:?‘i)lg’jgk )

A well-known computation shows that
D = as, 0 =(k-1,k-2,...,1,0). (12.1.3)

A partition X of length k is an tuple of non-negative integers (A1, Ag, ..., Ax) which is
ordered, i.e.
AL > Ay > 2 A

The degree of a partition A is defined by deg A := A1 + Ao+ - - -+ A;. We denote by Pary,
the space of partitions of length k. To a partition A we associate the complete symmetric
polynomial given by (12.1.2) and

h)\ = h)\lh)\2 . "h/\k s
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and the Schur polynomial

sy 1= ag—:‘s (12.1.4)

In [72, Prop. 7.8.9 and Cor 7.10.6] it is proved that

Proposition 12.1.2. Each set of polynomials {hy | A € Parg} and {s) | A € Pary}
constitutes to a Q-basis of SV

On the space of partitions with the same degree there is a partial order, called domi-
nance order. This is defined by p < X iff deg u = deg A and for all ¢ < k,

p1 oty AL+ Ao+ A
Moreover, write p < A if 4 < A and pu # A.
Lemma 12.1.3. There are numbers Ky, € N such that
ashy = aups + Y Knutsn - (12.1.5)
B=A
These numbers are called the Kostka numbers.

Proof. By [72, Cor. 7.12.4] we have h, = ), Ky,sx where sy have a combinatorial
definition. In [72, Thm. 7.15.1] it is shown that this agrees with (12.1.4) and finally in
(72, Prop. 7.10.5] that K, has the required properties, that is K, = 1 and K, =0
unless p = A O

Lemma 12.1.4. Letn—k+1<d <n—1 we have Dhy € I. Moreover we have for all
d >0 we have D(hyyq—hg) € 1.
Proof. By (12.1.3) we have D = a5. Set £ =d —n+ k — 1. The element pu = (d,0,...,0)
is maximal for the dominance order. Thus (12.1.5) has a particular simple form,

ashd = as1(40,..0) = Gd+k—1,k-2,..1,0) -
We have 0 < ¢ < k — 2 and thus ax_2x-3,..,1,0) = 0. Therefore after the last equation

we have

ashd = ag—11dk-2,..,1,0) = A0,k—2,k—3,..1,0)

x’f_Hd—acf xlf_2 x]f_g A1
gh=l4d _ gl ph=2 pk=3
2 2 T2 2
= det ]
k—1+d 0 k=2 k—3
xy, —r T Ty R |
0 k—2 —
(2t —1) xllgz mllgg ceooxp 1
z — —
xy(zy — 1) x5 Zo ooz 1
= det )
¢ k-2 k-3
rp(r, —1) = xy A T |
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Expanding the determinant in the first column shows that ashg is of the form
(@ =D+ (23 — g2 + -+ (z — Daw

for some polynomials ¢1,qo,...,qr € S or equivalently an element of I. This shows the
first claim. The second follows from a similar computation. O

Corollary 12.1.5. For any partition A = (A1, A2, ..., Ag) withn —k+1< X\ <n-1
we have ashy € I. Moreover for a partition X = (A1, A2, ..., A\g) with A\; > n for some j
we have as(hy — hy) € I where X' is a reordering of (A, A2, ..., A\j —n,..., Ap).

Given ¢ € N we denote by Pary, C Pary, the subset of partitions A = (A, A2, ..., Ag)
such that Ay < ¢. By subtracting a multiple of n from the components we see that for
any partition A € Par there exists a unique v € Pary ;1 such that v is a reordering of
A —na for some composition . We call v the base of A and write A ~ v. More generally
given two partitions A, u € Parj, we define A ~ p if there exists v € Pary, 1 such that
A~ v and p ~ v and say that A and p are base-equivalent.

Lemma 12.1.6. For every A\ € Pary there is an alternative: Either ayys € I or there
ezists 0 = o(X) € {—1,1} and a unique v € Pary,_p with A+ 6 ~ v+ 0 and ayi5 —
oa,qs €1.

Proof. Let V' € Pary,_1 be the base of A+ 4. If v/ = (v],14,...,v}) is not a strict
partition (meaning that not necessarily v; > 7, for all j =1,...,k — 1) then the asso-
ciated alternant a,. vanishes. By a similar computation as in the proof of Lemma 12.1.4
we conclude that ay,s € I. If instead +/ has only distinct entries then there exists
v € Pary, ,—j such that v/ = v + . Then we have ay;s — 0a,45 € I. The sign o is the
sign of the permutation of A +§ — na to v + 4. O

Lemma 12.1.7. The two ideals are the same

j — <hn—k’+1> hn—k+2a sy h‘nfla hn - 1; hn+l - hl) hn+2 - h27 .- >
J = <hn—k+1a hn—k+27 SRR hnfly hy — 1> .

Proof. Clearly J C J. We show the other inclusion. By [72, Equation (7.13)] and (12.1.1)

we have for all » > 0
T

Z(_l)dadhr—d =0.

d=0
Note that o4 = 0 for d > k. We distinguish two cases. First case d < k, then

hayn = hayn—101 — hayn—202 + -+ £ hayn_rox,
hd = hd,10'1 — hd,QUQ == ad -

Subtracting

hatn —ha = (hatn—1 — hi-1)01 — (hd4n—2 — ha—2)o2 + . ..
+ (]’Ln — 1)0d F hn_10d+1 +..-+£ hn+dfk0'k .
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Thus by induction on d we find that hgy, — hg € J for all d < n. Suppose now that
d > n, then

hatn = hiatn—101 — hdtn—202 + - & hayn—kog
hg = hq_101 — hg_202 + -+~ £ hq_roy .

Subtracting

hayn —ha = (hayn—1 — ha-1)o1 — (hayn—2 — ha—2)o2 + - £+ (harn—k — ha—k)ok -
Again an induction over d shows that hgq , — hq € J for all d > k. Thus J C J. O

Lemma 12.1.8. For any d > 0, the set {Dh, | p € Pary i, degp = d} is linearly
independent in S/I over Q.

Proof. Suppose there is a dependence relation ) y uuDhy, € I with some numbers v, € Q
where the sum runs over all u € Pary, ,_ with degp = d. By (12.1.5), D = a5 and our
definition of the Schur polynomials (12.1.4) as the quotient of two alternates we obtain

Z Z uKypaxis € 1.

H A=A

We use Lemma 12.1.6 to reduce the expression modulo I. More precisely the alternant
ax+s is either in I or equivalent to o(A)a,+5 modulo I where v+ 4 is the base of A+ 4§ and
o(\) € {—1,1} is the sign of the permutation. Using this fact we regroup the previous

sum modulo I as
Z ( Z U(A) Z UHK)\,u)aV-HS .

vEPary n_k {)\‘A(Iegj\’;rf {ulp=r}

Let w, € Q denote the term in the parenthesis. By assumption we have > w,a,4s € 1.
Since v € Pary ,_, in the alternant a,,s no variable x; appears with power greater
or equal to n. Hence the statement ) wya,y5; € I is equivalent to ) wya,15 = 0.
Dividing by as we obtain ), w,s, = 0 and using the fact from Proposition 12.1.2, that
the Schur polynomials are linearly independent, we conclude that for all v € Pary ,,—,
we have w, = 0. Obviously if A+ ~ v+ 6 and deg A = degv, then A = v and o(\) = 1.
Thus for all v € Pary, ,,—;, with degr = d we have

w, = E u, Ky, =0.
u=v

Finally the upper triangular form of K, (see [72, Prop. 7.10.5]) implies that u, = 0. O

Proof of Proposition 12.1.1. In view of Theorem 2.1.1 it suffices to show (I : D)NSW =
J. By Lemma 12.1.7 it is even enough to show that (I : D) N S" = J. Suppose that
doaunhy € (I :D)N SW for some uy € Q with A € Parj such that deg\ = d. By
Corollary 12.1.5 we have:
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e if A\~ )\ then Dhy = Dhy, mod I,
e Dhy € I whenever A = (A1, \a,..., A\p) withn—k+1< X\ <n-—1

Hence

> usha€(I:D) <= > uDhyel
deg \=d deg A=d

— Z Z uxDh,, € I

pePary i {)\ | de)%)\:d
~p

= Z uy =0 Vi € Parg p—p
deg A=d
1E I v
The last equivalence follows by Lemma 12.1.8. Whenever deg i = d we have {\ | deg A =
d, X\ ~ u} = {u} and hence u, = 0 in that case. This shows that Y, urhy € J. The
converse just follow the equivalence upwards. O

Remark 12.1.9. The previous considerations generalizes to other examples. For exam-
ple yield a computation of the quantum cohomology of the partial or incomplete flag
manifold. Given a tuple of natural numbers (k1, ks, ..., kr) € N" define n =, k;. The
partial flag manifold F1(kq, ..., k) is defined in one of the following equivalent ways:

e the space of filtration F' = (V4 € Vo C --- C V.1 C C") such that dimV; —
dimVj_y =k; forall j=1,...,7 —1 (where dim Vj = 0),

e the homogeneous quotient Fl(ky,..., k) =2 U(n)/U(k1) x -+ x U(ky),

e a coadjoint orbit of the action of U(n) on the its dual Lie algebra u(n)Y, where,
after an identification of the latter with the space of Hermitian matrices, the orbit
is taken at an Hermitian matrix with r eigenvalues of geometric multiplicities

(k1,..., k) (see [77, Example 5.1.1]).

e the Hamiltonian quotient given as follows. Define the tuple (¢1,...,¢,) := (k1, k1 +
ko, k1+ka+ks,...,ki+---+k;). The group G := U ({1) xU(l2) X+ xU(l,—1) acts
on the vector space V = Hom(C%,C") & Hom(C*,C%) & --- @ Hom(C*-1,C")
via

(91,92, 9r—1)-(A1, Ag, ..., Arq) = (91A1951792A29§1, s Gr—14r_1) .

The action is Hamiltonian with moment map p: V — u(f1) ®u(ly) & -+ - du(lp_1)
given by

1
pAL - Arer) = S (ATAL LAY = A3As, o AL Ary — Ardp = 1)

However the associated abelian quotient is not as simple anymore.
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12.2. Lagrangian spheres in symplectic quotients

In this section we give the proof of Corollary 2.2.2. We quickly repeat the statement.
Let G be a compact group which acts on a complex vector space M via linear maps
with moment map pg. Let T C G be a maximal torus which acts on M with moment
map pur : M — tY. Let w € tV be the unique value such that the symplectic quotients
Y := p;'(w)/T is a monotone symplectic manifold and set X := pg'(w)/G. We denote
the minimal Chern numbers by ¢y and cx respectively. Assume that 2cy > dim G/T'+2.
Since cx divides cy we also have 2cx > dim G/T + 2. Suppose that X contains a closed
Lagrangian submanifold L which has the same homology as a sphere. The claim of
Corollary 2.2.2 is that one of the following holds

e 2cy divides n +1

e dimG/T <2 and n <4,

where dim L = n. Without loss of generality we assume that n > 2 and dimG/T > 2.
Since the Lagrangian L satisfies Hi(L) = 0 we conclude that the minimal Maslov number
is divisable by 2cx, which is larger than 3 because 2cx > dim G/T +2 > 4. Hence Floer
homology of L is well-defined. Assume by contradiction that 2cy does not divide n + 1.
This implies that 2cx does not divide n + 1. Thus Oh’s spectral sequence collapses at
the first page and we have

HF,(L,L)=2 H,(L)®A,  A=7Z[\ A"} with deg\ = —2cy .

Let V. C Y x X~ be the abelian/non-abelian correspondence, which is a fibered corre-
spondence with fibre G/T (cf. Prop. 11.1.1). It is a classical fact that G/T is simply
connected. According to the exact homotopy sequence we conclude that LY is simply
connected. This implies that LY is monotone with minimal Maslov number divisible by
2¢y (cf. Lemma 3.1.2). Since V arises as a T-quotient of the G-principle bundle uél (0)
the pull-back to the fibre G/T is surjective (cf. equation (D.2.1)) By Theorem 2.2.1 we
conclude that

HFE(LV,LYV) 2 HF.(L,L) ® H.(G/T;Z3) = H,(L; Z) ® Hy(G/T;Zs) @ A..

By definition Y is a symplectic toric manifold. Using the Seidel element, there exists an
invertible element of degree two in the quantum cohomology of Y (cf. [53, p. 441]) which
by the quantum action induces an isomorphism of degree two of HF,(L",L"). In other
words HE,(LY,LV) = HF},o(LV, L") for all k € Z. In particular

Zo = HFy(LY,LV) = HF (LY, LV) = Hy(G/T) .

But if dim G/T > 2 then the dimension of Hy(G/T) is at least two (cf. Corollary D.1.8)
and we obtain a contradiction. If on the other hand dim G/T" = 2 but n > 4 then

Zy = HFy(LV,LV) = HFy(LV,L") =
= (Ha(L) @ Ho(G/T)) @ (H2(L) @ Ha(G/T))

Since by assumption dim L = n > 4 the right-hand side vanishes. This leads to a
contradiction and hence n < 4 as claimed.
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A.1. Derivative of the exponential map

In the section we have collected estimates for the derivative of the exponential map of
the Levi-Civita connection. These results are well-known, yet we have always included
the proofs, since we have not found a good reference. Let M be a compact Riemannian
manifold with Levi-Civita connection V. The connection induces a splitting of the
tangent space T¢(T'M) at £ € T, M into horizontal and vertical space and we define the
horizontal and vertical lift

LMN(€) : T,M — TR (TM),  LY(&) : T,M — Ty (TM).

Associated to the connection is an exponential map exp : TM — M. Using the horizon-
tal and vertical lifts we define the horizontal and vertical differential of the exponential
map at some & € T, M

E;lor(f) = df exp OLh(f) : TPM — Texp(f)Ma
By (§) == deexpoLl?(§) : TyM — Texpe)M -

Given a smooth curve u : (a,b) — M and a smooth vector field £ € T'(u*T'M) along u, we
write ug = exp, € @ (a,b) — M where ug(z) = expy(,) {(z). With the above definitions
we have

Dptie = BN (€)0pu + B (E) V€ . (A.1.1)

Proposition A.1.1. For alle > 0 there exists an universal constant ¢ with the following
significance:

e Given vectors §,§ € TyM with |§| < e, we have the estimates
[Ep(©)€| <cl|e'],  |Bp(OE — ()¢ | < clél]e]

o Letu: (a,b) = M be a smooth curve and given vector fields &,&" € T'(u*TM) such
that ||€|| ;o < € then we have the estimates

VaEu(€)€ — Eu(€)Va€| < c|€'] €] (10zul +Va€]) (A.1.2)

where I1,(§) : T,M — Toxp(eyM is the parallel transport along the geodesic curve y —
exp,(y€) and Ep,(§) denotes either By (€) or EX° ().
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Proof. By (A.1.1) the vector field Y (y) := E,(y£)¢ is a Jacobi vector field along the
geodesic ¢ : [0,1] — M, y + exp,(y§), i.e. solves the equation V,V,Y = R(¢,Y)¢
where R denotes the curvature tensor. Given any Jacobi field Y, we define the function
F:00,1] = R, y = [Y(y)| + |VyY (y)|. We have

F'y) S VY [+ IV VY < VY |+ Rl €7 Y] < (14| R €2)f -
Hence f(y) < c1f(0) with constant ¢; := e +IRIe*) and so
Y[+ [VyY ()] < er([Y(0)] + [V, Y (0)]) . (A.1.3)

Since the estimate holds for any Jacobi field ¥ we have in particular the estimates
Ehor(g)f'} < 1 |€] and |EY(£)E| < ¢1 (€| as required.
We show the second inequality. We define the vector field X € I'(¢*T'M) via

X(y) =1,y Y (0) + yIL, (&) V, Y (0).

Consider the function
0] =R, f(y) =Y (y) = X+ VY (y) = VyX ()] + e |R] €] [€] -
We derive
f'y) S IVyY = VX[ +|V, VY| < V)Y =V, X[+ [R(6,Y)e| < f(y).

This shows that | B, (€)€' — TL()€'] < £(1) < ef(0) = ecre || Rl I¢] I

We come to the third inequality. Define the map w(x,y) := exp,(,) y¢(x) and the fam-
ily of geodesics ¢, := w(x,-). The vector fields Y (z,y) = E(y&(z))¢'(z) and Z(z,y) :=
E(y&(2))V.& (x) are vector fields along w which are Jacobi fields when restricted to c,.
We claim that there exists a uniform constant ¢y such that

VyVaV,Y = V¥V, 2] < calé] €] (100u] + Va€l) + 2[RI VY — 2] . (A1)

Indeed use (A.1.3) to show in particular that |,w| + |V, 0,w| < ¢1(]0zu| + |V €|) and
Y]+ VY| < c1|¢|. Abbreviate R(0;, 0y) = R(0,w, dyw) etc. and estimate
\V,V.V,Y -V,V,Z|
< |R(0y, 02)VyY | + |V R(0y, Y)0yw — R(9y, Z)0yw|
< |R(Dy,0:)V, Y| + [VoR(Dy, Y)dyw — R(y, VY )Dyw| +
+ |R(0y, VY — Z)0yw|
< ||RI| €] 100w] |V Y]+ [IVRIHE 00w] Y]+ 2 | R] €] |V Q0] Y] +
+ R [ V.Y - Z|
< 2 [€]1€'] (10zu] + |Va€]) + € | BRI VoY — Z] .
Define the function f : [0,1] — M, where c3 := c3 + 2 ||R]|,

F) =1IVaY = Z| +|VaVyY = VyZ| + cs [¢] €] (10zu] + [ Vat]) -
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We derive using (A.1.4)

f'(y) <IVyVaY = VyZ| + |V, V. V,Y -V, V, Z|
<|R(Dy, 0x)Y | + Vo VY = Vo Z| + ca €] |€'] (10u] + [V2€])+
+|R| € V.Y - Z|
< (1+|RII€*)f(y)-

This shows that |V,Y — Z| < £(1) < e1£(0) = cies |€] |€'] (105u] + [Vo£]). O

Corollary A.1.2. There exists universal constants ¢ and € with the following signifi-
cance. Given a smooth curve u : (a,b) — M and a vector field £ € I'(u*T'M) such that
€] e < € we have

|0zue| < ¢ (|0zul + | Vat]) (A.1.5)
\Vz§| < C(Wx“’ + |8xU£D ) (A.l.ﬁ)
‘ch& - Hzgaﬂﬂ < c(|0zu] €] + |VE]) - (A.1.7)

Moreover for all vector fields £,&' € T(u*TM) with ||€]| o + |||l < € we have

| expy exp, & —TLE'| < el (A.1.8)
|V expy, exp, & — T Vol'| < e (|0pul [€] + [Va€]) - (A.1.9)
Proof. Estimate (A.1.5) follows by the first inequality of Proposition A.1.1 and (A.1.1).

We show the estimate (A.1.6). By the second inequality of Proposition A.1.1 we have
an universal constant ¢; such that

|1 - I B ()] = [T — By (§)] < erlé] -

If |§] < 1/2c1 then the operator E () is invertible with inverse ), o (1—II5, EYer)F oIl ’
which is bounded by 2. By (A.1.1) we have

Vg = | () BR Oy — (BL) " Oyue| < 21 [0yl +2 |oue]

This shows the claimed bound.
Estimate (A.1.7) follows because after Proposition A.1.1 we estimate the norm of
Oputg — L, d,u by

‘Eﬂor(f)(‘)xu — I,* dpu

+ES(OVa]

which is bounded by O(1) |9sul €] + O(1) |V €]

For estimate (A.1.8) we define the curve w : (a,b) x [0,1] — M, via w(z,y) =
€XPy () Y& (x). If £, ¢ are sufficiently small we define implicitly a vector field ¢ along w
via

eXpu(CIZ) §I(x) = expw(ar;,y) C(mv y) )
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for all € (a,b) and y € [0,1]. Deriving the last equation by J, using (A.1.1) gives
ERT(0)dyw 4+ EX(C)V,¢ = 0. (A.1.10)
Fix x € (a,b) and define the function

F0) =R,y [Cla,y) — T ()]

By construction we have w(z,0) = u(z), w(z,1) = ug(z), {(z,0) = {(z) and ((z,1) =
exp;;(x) eXPy(z) § (%) for all x € (a,b), which implies that f(0) = 0 and that we have to
estimate f(1). We compute using (A.1.10) and the mean-value theorem omitting the
arguments z,y whenever convenient

| expy exp, & = L€' = f(1) = 9, f(y) < [VyC| =[BT (O ERT ()0,
which is in particular bounded by O( ) €]
We show (A.1.9). By definition we have ((1) = exp,, 51 exp,, & and after the mean-value
theorem
Vol =TV | = 0y | Vel — MYV | < [VyVal| < [R(Oyw, Oyw)C| + [V V(| -

By (A.1.5) the first term on the right-hand side is in O(|0zul|{| + |Vz€|). Hence it
suffices to estimate |V,V,(|. Abbreviate E}" := E;"(¢) and estimate

V2Vl < O() [Ey" Ve V(| <
< OM) Vo By V(| + O [(Vo By = Ey*Va) V(|

With (A.1.10) we have |[V,(| < O(1). By (A.1.2) the second term on the right-hand
side of the last estimate is in O(|0zul|{| + |Vz€|). We continue to estimate the first.
Using (A.1.10) again we have

|szzfuervyC‘ — ‘VxELl}orayw‘ < ‘(V:EEBJM _ Egorvx)ayw} + O(l) |Vx8yw\ .

Again by (A.1.2) the first term is in O(|0,u|[¢| + |V€|) and it suffices to bound
|Vz0yw| = |Vy0zw.
Vydaw| < |Vy B (y€)dpu| + [V EV () (yVaé))|
O(1) [¢] |0zul + O) [€] | Vat] + | By (y) Vat|
< O)(I€]10zul + [Va£]) -

This shows the claim using the last four estimates. O

Corollary A.1.3. There exists constants ¢ and € with the following significance. Given
a point p € M and two vectors &y, &1 € Tp,M such that [&o] + |&1| < €, then we have

1/c|€o — &i| < dist (exp,(€0), exp,(&1)) < cléo — &1 - (A.1.11)

Moreover let u : [a,b] = M be a curve and &,§ € T'(u*TM) be a vector field along u
with ||€|| o + 1€ |l < €, then

|V exp;:, u— Vg exp;;/ ue| < (€] |0zul + €] | V€| + [Va€]) - (A.1.12)
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Proof. To show the estimate on the right-hand side of (A.1.11) set £(z) = (1 —x)&o+x&1
and u(z) = p for all z € [0,1]. Then the inequality follows after integrating the norm of
Oyug over [0, 1] and using estimate (A.1.5) of Corollary A.1.2.

To show the estimate on the left-hand side of (A.1.11) let ¢ : [0, 1] — M be the unique
shortest geodesic from exp,, §o to exp,, {1. We define the path of vectors £ : [0,1] — T, M
via (y) := exp;1 ¢(y). By the mean-value theorem we have a value y € [0, 1] such that
& — & = Vy€&(y) and hence after (A.1.6) there exists a uniform constant ¢; such that

1&1 — &ol = |Vy&(y)| < 1 |0yc] = crdist (expp £0, exp,, 51).
We show (A.1.12). Abbreviate the curve v := exp, & and define implicitly the vector
field ¢ : [a,b] x [0,1] = v*T'M via
€XPy(x) ((r,y) = €XPu(z) yE(y) -
Deriving the equation by V., and by V, we get
Ey* (Q)VaC = By (y€) 0zt + y By (y€) Vak — By ()0
EFT(QVy¢ = BT (y€)E -

By construction we have (o := ((+,0) = exp, ' u and ¢ = ((-,1) = exp, ' us. Hence
after the mean-value theorem

|Vaexp, ' u— Vyexp, ' ue| = |Vy Vil < VoV (| + | R(Oyu, yu)(] .

(A.1.13)

Since u does not depend on y the last term vanishes and we are left to estimate the norm
of V;V,(. Abbreviate E, = Ey*((), then

IVaVy(| < O(1) [Eu Ve V(| < O(1) [(EoVe = Vo Eu)Viy(l + O(1) [V EL V(| -
Via (A.1.2) the first term on the right-hand side is bounded by
[(BvVa = Vo Ey)Vy(| < O(1) [Vl [C] (10z0] + [Vad]) <
< O() [€] (192l + [Vat'| + [Vat])

For the last estimate we have used (A.1.13). To show the claim it suffices to estimate
the norm of V,E,V,( = V,E " (y&)E. Abbreviate Ey* (y€) = E, and estimate

VaEug| < [(VaEy — EVe)E| + [EuVa€] < O(1) €] (10zu] + [Va€]) + O(1) V€] -
This shows the claim using the last three estimates. O

The next corollary states that the distance between parallel geodesics is uniformly
bounded by the distance of their starting point.

Corollary A.1.4. There exists positive constants € and ¢ such that given points p,q € M
and a vector § € T, M satisfying dist (p, q) + |§| < e then we have

dist (exp, &, exp, IT1¢) < cdist (p, q)

Proof. Let u : [0,1] — M be the unique shortest geodesic from p to ¢. Extend £ to a
parallel vector field along u. Integrate the estimate (A.1.5) of Corollary A.1.2 over [0, 1],
using V¢ = 0 and that |0,u| = dist (p, q). O
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A.2. Parallel Transport

Let M be a compact Riemannian manifold equipped with a metric connection V. For
any curve v : [a,b] — M, let

H(’)/) : TW(G)M — T’y(b)M
denote the parallel transport along « with respect to the connection V.

Lemma A.2.1. There exists a constant ¢ such that for any map w : [0,1]> — M we
have

[TL(y1) T (uo) — T(u1)II(70)] < C/[O . |0z w(z, y)| [Oyw(z, y)| dzdy .

with curves u; = w(t,-) and v = w(-,7) for 7 =0,1.

Proof. Fix & € Tyy(0,0)M and define vector fields &, 1 € I'(w*T'M) along w such that
g;é-(l‘,y) = 77(95, ) =
Vy§(0,y) = Vyn(z,y) =
£(0,0) = 5 ; n(0,0) =

We have to estimate the norm of £(1,1) — n(1,1). Let R be the curvature tensor. We
have
0y [Van(@,y)| < [VyVan| = [R(Ozw, Oyw)n| < ||| |0zw] |8yw] |l -

Then V,n(z,0) =0 and by integrating the last inequality we obtain

1
IVan(z, y)| < [|R| \fo!/o |0z w(z, y)| |8yw(z,y)| dy .

We have 9, |£ —n| < |V,n| and integrate again using the last estimate and £(0,y) —
n(0,y) = 0 we show the claim. O

Lemma A.2.2. There exists a constant ¢ such that for any curve w : [0,1]> — M and

section & € I'(w(-,0)*T'M) we have

1
VTl = T00) V] < ele] | oete )] 0uta )] dy.
with curves v, = w(x,-) for x € [0,1].
Proof. Define £, € T'(w*T'M) via

Vyg(x,y) =0, Vyﬂ(wvy) =0,
5(%,0) :f(x), 77(3370) :vmf(‘r)

We compute
Oy |V — | < |VyVal] = [R(Oyw, Orw)E| < || Rl [Ozw] [Oyw] [€] -
Since V;&(x,0) = n(x,0) the result follows by integration. O

216



A.3. Estimates for strips

Corollary A.2.3. There exists uniform constants € and c such that for all curves u :
[0,1] = M and vector fields & € I'(w*T'M) with ||£||, < ¢ we have

1
[TL(y1) T (uo) — T(ua)II(70)] < 0/0 €] (10zu] + [Vag])dz .

with curves vy, uy @ [0,1] — M given by v2(y) = uy(x) := expy,) yé(x) for all z,y €
[0,1]. In particular if ug and uy are short geodesics we have

[TI(y2) I (uo) — I (u1)I(70)| < ¢ (dist (uo(0), uo(1)) + dist (u1(0), u1(1))) -
Proof. Define w(x,y) := 7.(y). We have [0,w| = |{] < e. By Corollary A.1.2 there

exists constants ¢ and e such if [£| < € we have |0;w| < ¢(|0zu| + [Vz€]|) and |0,w] <
c(|0zup| + |0zu1|) . Then conclude by Lemma A.2.1. O

Corollary A.2.4. There exists constants € and ¢ such that for all curves u : [0,1] — M
and vector fields §,& € T'(w*T M) with ||{||,, < € we have

Vall(72)€" = T(72) V€' | < clé] €] (10au] + [Vaé])
with curves v, : [0,1] = M given by 7, (y) := expy(y) y§(z) for z,y € [0, 1].
Proof. Define w(z,y) := 7,(y). Conclude by Lemma A.2.2, |0,w| = |{| and Corol-
lary A.1.2. O
A.3. Estimates for strips
For a smooth map u : R x [0,1] — M consider the differential operator F, and its

linearization D,, given by equation (6.1.5) and (6.1.6) respectively. In this section we
establish auxiliary estimates for these operators. We assume for simplicity that X = 0.

Pointwise estimates

For the following estimate ||.J|| o2 denotes the C?-norm of the tensor J using the induced
norm on End(7TM) coming from the fixed Riemannian metric on M. All universal
constants are independent of .J.

Lemma A.3.1. There exists universal constants ¢ and € such that for all smooth maps
u: R x[0,1] = M and vector fields § € T'(u*T M) with €|, < e we have

|DuITE T DLE| < o1+ (| T o) (€] €] ] + [Ve]|€'] + Il [VET) . (A3.)

with ug : R x [0,1] — M defined by ug(s,t) = expy s &(8,1).
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Proof. We have to estimate the norm of
Dy L ¢ =L Dy = VILE = ILAVE + J(ug) Vil ¢ — LS J (u) Vi€
+ (vnzfg"](uf)> Opug — IS (Verd (u)) dpu

Denote the norm of the successive differences of the right-hand side by 77,75 and T3.
By Corollary A.2.4 we have a constant e such that if |{| < ¢ then

71 < O(1) [¢] €] (10sul +Vs€]) -
Similarly
Ty < |J(ue) VAL — J(ue) IS Vi€ | + + | T (ue) L Vi€ — ILS T (w) V€|
<o | VAL = ILEVE | + VI |l [Ve€'| €]
<O [ lloz 1€][€'] (1Deul + VD) + 1Tl o2 €] | Vo€’

)

and
T3 < ‘ (VHZ%,J(UE)) (Gtu§ - Hgfatu)) +
| (Ve () ) Tk Opu — T (VeI (w)) Dy
< IVl €] |0rue — TLEOwu| + [V (V)| |€]1€] 18]
<O) [Tl (10eul €] €] + 1€ IVe€]) -
This shows the claim. O

Lemma A.3.2. There exists universal constants ¢ and € such that for all smooth u :
R x [0,1] = M we have and vector fields §,§' € T'(u*TM) with ||§]||,, <& we have

|[dFu(€)8 = Dug'| < e(L+ ]l c2) (Idul ] [€'] + Vel [¢] + 1] [VE']) -

Proof. For 7 € R small enough denote ug, = exp,(§ + 7’), ue := exp, £ and the vector
field 7, := F, (& + 7¢'). By definition we have IT," 7, = I1,5" F, (€ + 7¢') = djue, and
after deriving that equation covariantly for 7 and restricting to 7 = 0 we obtain

Dy (Ey™(€)¢) = VAL 0| __y = VoL 0, — ILS7 0rny|__ o + IS d T, (€)E

T=

For the second identity we just added zero and used that by definition 9;n;|,—0 =
dF.(&)E. Hence

|dF. ()¢ — Do | = | dF. ()€ — D, ¢ |
< VAL nr — IS 0ene 70| + | Du By ()€ — ILSDyE'| . (A3.2)

To estimate the first term of the right-hand side, we use corollaries A.2.4 and A.1.2

|V LS 0 — ILS 0rnrlr—o| < O(1) |07ug, | & n-| | __y < O(1) |€'] 1€] [0ul
<O) € 1€/ (1 + 1]l ) [dul  (A.3.3)
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A.3. Estimates for strips

We now focus on the second summand of the right-hand side of (A.3.2). The differene
Dy, EYer (€)' — 11, D¢ equals

Uge~u

Vs By (€)€ — L V€' + J (ug) VeEy™ ()€ — T J (u) Vi
+ (VExer(s)glJ(ug)) 8tU§ — HZ£ (Vé’/l](u)) Gtu.

Denote the norm of the successive differences of the right-hand side by 77,7 and T5.
By Proposition A.1.1 and Corollary A.1.2 we have a constant € > 0 such that if || < e

Ty < |VEy™(6)€ — By (V| + [EX™ (&) Ve — V¢
< O() €] (|19sul [€] + |V s€]) + O(1) [¢] | Vs€’

)

Abbreviate E(£)¢ = E}(£)¢') and estimate using Proposition A.1.1 and Corollary A.1.2

Ty < |J(ue)ViB(€)E — J(ue)ILAVE| + | T (ug) Iyt Vi€ — TS T (u) V€|
<N |loo [VeB(©)E — ILEVE | + |V €] | Vi€
<O | llo €] (10eul €] + V&) + 1 TNl €] V€| -

and

T3 < (Ve (ue)) due — (VeI (ue)) T Gyu| +
+ | (Ve (1) T Oy — (Ve ol () ) T O] +
< VIl | E©)E| |0rug — T Opu| + |V || | E()E — TLEE| |Orul +
+[[V2I]| €] 1€l |0pul
<O [Vl [€] (180l [¢] + IV i]) + 1V T || oo €] €] |8rul +
+ V2| €'l 1€l Oeul
<O+ ITle2) (I€]1€| 10wl + |€'] 1V:€]) -

Putting everything together we obtain the result by the last three estimates and esti-
mate (A.3.3) plugged into the identity (A.3.2). O

Sobolev estimates

Here we have collected estimates for the weighted Sobolev norms. For any a < b consider
the domain X% := [a,b] x [0,1]. We also abbreviate the half-open strips ¥° = [a,00) x
[0,1] and ¥° = (—o0,b] x [0,1]. The next lemma states that functions on £% satisfy
a Sobolev estimate with a constant independent of a and b as long as the strip is long
enough.
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A. Estimates

Lemma A.3.3. For all constants p > 2, a and b with possibly a = —oco or b =
satisfying b — a > 1 and all functions f € HLP(ZZ,R) we have

1/p
4p
Ifllcogsy < 2 (/E” |fIP + ]df]pdsdt> :

Proof. Tt suffices to show the estimate for any given smooth function f : ¥4 — R. Fix
an arbitrary z = s+ it € ZZ. An easy geometric observation shows there exists sg € R
such that |s — sp| < 1 and 350+ C $°. We have for every 2’ € [so, so + 1] x [0, 1]

1
F2) = $() + /O af (6= + (1 - 0)2')[ — 2/]a0 .

Integrate 2’ over B30+ := [s9, 50 + 1] x [0,1] and estimate using |z — 2’| < 2 and the
Holder inequality

1
2| < /z;g+1 £()| a2 + 2/0 /zgg+1 df (62 + (1 - 6)2)] d='d
1 1/p
. INVIEW,
< HfHLp+2/0 </2§8+1 |df(0z+ (1 —0)2")]| dz) de

1/p
' df (&)
S / / az)  de
171 o \Ja-ozotiie: (1—0)°

1
<11l + 2 I o /O (1—0)-2/rdg

2p
S—

4p
U fll e +1ldf Nl 1) < P £l e -

This shows the claim by taking the supremum over all z O

Lemma A.3.4. For all p > 2, there exists a constant ¢ such that for all strips u €
BYPO(C_,C,), vector fields ¢ € T,B"P° and R > 1 we have

1€lloe < cll€ll1 s 5 V€l < c(X+ ldull,s) 1€l
||€||oo S c ||€H1,p;57R7 Hvé-Hp,d,R S C(]‘ + ||du||p767R) H&-Hl?p;(iR )

in which the norm |||y s g s defined in (8.2.5).

(A.3.4)

Proof. The proof is given in [5, Lemma 10.8] and [5, Lemma 10.9]. For some vector field
& e T(u*TM) we have the inequality

]l = [{(VE, )1/ 1€l < [VE] . (A.3.5)
For any (s,t) € £§° we have by Lemma A.3.3

€ < 28 (J€ — TI% ) &(00) " + [£(c0) ")
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A.3. Estimates for strips
Then by estimate (A.3.5) and since ¢°/*l > 1 we have
P < 0(1) /Z e =TT € e0)[” + |d[€ — T )€ (00)[[Pdsdt + 27 [ (00) "
0

which is easily bounded by O(1)[[¢]|; ,5- Similarily we proceed for the negative end

and for 22}% r appearing in norm || - Hl,p; 5.R- Note that the Sobolev constant of Ezg R is
independent of R by Lemma A.3.3. This shows the two inequalities on the left-hand side
of (A.3.4).

For the two inequalities on the right-hand side we use Corollary A.2.4 to see that the
norm of V¢ is bounded by

V(€ =TT ) 6(00)) | + | VITE ) €(00)| < V(& =TI )€(00)) | + s |dul [€(0)] -

Multiply the estimate with el*l, use the inequality (a + b)? < 2P(a? + bP) for all positive
a, b and integrate over X3° to conclude that there exists a constant c4 such that

/ (VeP eflslPdsdt

ZO
< / [V (€ — I3 )6 (00)) [P Pdsdt + 4 [¢(o0) " / dul” PelPdsdt
x5 nge
Similar we proceed with the negative end and 22_]; - This shows the claim. O

Lemma A.3.5. For all p > 2, there exists a constant ¢ such that for all § > 0, strips
u € BYPO(C_, Cy), vector fields € € T,BYPY and s > 0 we have

T —ds
1€ = T00)€(00) | o e moppoyy < €€ M€l s -
A similar estimate holds for the negative end.

Proof. A proof is given in [5, Lemma 4.4]. Abbreviate {7 := £ — ﬁz(m)g(oo). By
Lemma A.2.2, the Sobolev estimate A.3.3 and estimate (A.3.5) we have uniform con-
stants c¢; and cg such that

e s [ (e + ) o < ol

S

This shows the claim after multiplying with e %% on both sides and taking the p-th
root. O

Corollary A.3.6. There exists constant ¢ and ¢ such that for all u € B'"P°(C_,Cy)
and smooth vector fields ,§ € T'(u*TM) satisfying ||§|| ., < & we have

| Du5€ — T D' < 1+ 1)+ lduly) s €]
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A. Estimates

Proof. Integrate the pointwise estimate from Lemma A.3.1 and then use the Sobolev
estimates from Lemma A.3.4. A completely similar argument appears in the proof of
Lemma 8.4.1. O

Corollary A.3.7. There exists a constant ¢ such that for all u € BY"P9(C_,Cy) and
€ e T,BYP we have

1Dl s < (A [Tl =) (1 4[| dull5) 1€l s -

Proof. By definition of the operator D, we have the point-wise estimate
[Du] < (14 [[Tlloo) [VE[+ [Tl (€] 1duf -
Now integrate the estimate and use the estimates given in Lemma A.3.4. O

Lemma A.3.8. There exists a constant € > 0 such that for all u € BYP9(C_,Cy) and
€ e T(w*'TM) with ug = exp, & € BYPO(C_,Cy) and |||, < & we have & € T,BLP?°.

Proof. Abbreviate p = u(oco) and ¢ = wug(oo). Define the vector {(c0) € T,M via
q = exp, {(o0). Since the distance between parallel geodesics is uniformly bounded (cf.
Corollary A.1.4) we have for all (s,t) € R x [0, 1] with s large enough

}5 _ Hgf(oo)| < O(dist (ug, exp,, HZ&(OO)) )
< O(dist (u§, q) + dist (eXPp §(00), exp,, Hg§<oo)) )
< O(dist (ug, q) + dist (u, p) ) )

and using bounds on the derivative of the exponential map (cf. Corollary A.1.2) as well
as the bound for the commutator of II}; with V (cf. Corollary A.2.4) we obtain

V(¢ —1I¢ (o0 )| < O (|du| + |dug| + dist (u, p)) .

Since u and u¢ are elements of BP9 (C_, Cy) the integral is finite

/ (e = Tize(oo) | + |V (¢ ~ Tije(o0)) ") e dsd <

0(1)/ (|duf? 4 |dv|P + dist (u, p)? + dist (v, q)?) *Pdsdt < co.
200

0

Similar we proceed on the negative end. This shows the claim. O

Lemma A.3.9. Gromov topology is finer than the topology of BYPO(C_,C1) if 6 > 0
is sufficiently small, i.e. given a sequence (uy,)yen of (Jy, Xy )-holomorphic curves which
Floer-Gromov converges to the (J, X)-holomorphic strip u, then for all § > 0 small
enough and v € N large enough we have u, = exp, &, for some vector field &, € T, BP9
and moreover (&,||, s converges to zero.
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A.3. Estimates for strips

Proof. By Floer-Gromov convergence we have in particular that u, converges to u uni-
formly on R x [0,1] (cf. Lemma 5.3.1). Hence there exists &, € I'(u*T'M) such that
u, = exp, &, for all v large enough. Lemma A.3.8 shows that the norm [|§, ||, ,,.s is finite
for all v large enough. It remains to show that [|§,[[; ,,5 converges to zero.
By Lemma 4.3.2 we see that there exists a constant g such that for all s > 0 and
v € N large enough
dist (uy, uy(00)) + |duy| < cre™°.

The same holds with u,, replaced by u. Abbreviate py := u(00), Py o= uy(00), &,(00) 1=
exp, ! pf and &F =&, =TI £,(00). We use Corollary A.2.4 to get
V&S] < O(|dul + [duy| + dist (u, ) < O(e™).

By Lemma A.3.8 we have lims_,o | (s,1)| = 0 and hence
g0l = [ - gt < [ Ve o] do <

< O(l)/ e "do < O(e™#).

For § < p and s > sg with sg large enough we conclude

/Zoo (‘f;—‘p + ‘Vfﬂp)&mdsdt < ||£V||gl(230)/0 97do + 0(1)/5 o~ (1=8)a 4,

0
< 0(e”) 161l zs) + O(e~(#=0)).
Similar we proceed with the negative end to show that for all s > sg we have
60115 < O™ €ullen ) +Ofe™#0%) < o(1) +O(e#=9%).

Because s was chosen freely the left-hand side converges to zero. O

Lemma A.3.10. With the same assumptions as Lemma A.3.9. There exists a constant
¢ such that for all € € T,B"P°(C_,C4) and v € N large enough we have u, = exp, &,
for some &, € T, BYP9 and

(D n T = T2 D )| 5 = 16 s + 190 = Tl ) Il -

In particular the operator D, j 1w — 113w D, j converges to zero in operator norm.

Proof. By Lemma A.3.9 the vector field &, exists. Corollary A.3.6 implies that there
exists a constant c; possibly depending on u and J but independent of v such that for
all sections £ € I'(u*T'M) and v large enough we have

(Do, T2 = T2 Dy V€l s < 1 16,
Directly from the Definition we have
|(Dus, = Du)él, 5 < 21T = Tullen (el Nvalls -+ [Vl

This shows the estimate using Lemma A.3.4. With the estimate we conclude convergence
of the operator since by Lemma A.3.9 the norm ([, ||, , s converges to zero. O

|17p;§ ”£H17p;5 :

223






B. Operators on Hilbert spaces

Let H be a separable real Hilbert space. We will write (-,-) and ||-|| for the inner
product and respectively the norm of H. In this section we consider unbounded self-
adjoint operators A and with dense dom A C H. Let L(H) denote the space of bounded
linear operators of H and for B € L(H) we denote by ||B|| the operator norm.

B.1. Spectral gap

Given a self-adjoint operator A : dom A — H we denote by o(A) C R its spectrum and
by
L(A) :=inf{|A\| | A € o(A)\ {0}} (B.1.1)

the spectral gap of A.

Lemma B.1.1. Let A be self-adjoint operator with domain dom A C H. Assume that
the spectrum o(A) C R is bounded from below, then for all £ € dom A we have

(A&, &) > info(A) [I€]* .
If additionally the range of A is closed then the spectral gap of A is positive and satisfies

AL = «(A) [I€]]
for all £ € dom A with £ | ker A. Both inequalities are sharp.

Proof. The first part is proven in [48, Section 10]. To show the second inequality use the
first inequality with A2. It remains to show that +(A) is positive. Assume without loss
of generality that A is injective. Since A is self-adjoint with closed range it is invertible.
Since A is a closed operator, the closed graph theorem implies that A~! is bounded.
Hence for some constant ¢ > 0 we have HA_IUH < ¢|n|| for all n € H which implies
€]l < c||AE]| for all £ € dom A. This shows that ¢«(A) > 1/c since the inequalities are
sharp. O

Corollary B.1.2. Let A be a self-adjoint operator with domain dom A and closed range,
then we have for all £ € dom A

JAE|® > L(A)(AE, €) .

Proof. Let P: H — ker A denote the orthogonal projector to ker A as subset of H. With
Lemma B.1.1 we have

(AL, &) = (A1 — P)&, &) = (1 — P)&, AL) < [|(1— P)E | A8l < o(A) 7 || Ag) .
This shows the claim. ]
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B. Operators on Hilbert spaces

The next lemma states that the spectral gap is lower semi-continuous for bounded
perturbations of A which preserve the dimension of the kernel.

Lemma B.1.3. Let A be a self-adjoint operator with closed range and finite dimensional
kernel. For all € > 0 there exists a constant 6 > 0 such that for any bounded symmetric
operator B with ||B|| < § and dimker A + B = dimker A we have «(A+ B) > 1(A) — €.

Proof. Write A’ = A+ B and denote by P, P’ the orthogonal projection to the kernel of

A, A’ respectively. We claim that for any € > 0 there exists § such that
€

20(4)°

Let {E(N\)},{E’(N\)} be the spectral families associated to A, A’ respectively. The spec-

trum of A has a gap at £1(A)/2. By [48, Thm. 5.10] we have for any £ > 0 a constant
0 such that (¢ :=(A))

|[A-A|| <6 = |P-P|< (B.1.2)

[A—A|| <5 = ||B(/2) - B(—1/2) — (E'(1/2) — E'(—1/2))| < % (B.1.3)

Note that in our situation the quantity 5(A,A’ ) as defined in [48, p. 197] reduces
to ||A — A’||. Since zero is the only spectral value in the interval [—¢/2,:/2] we have
E(t/2) — E(—t/2) = P. To show (B.1.2) it remains to show E’(¢:/2) — E'(—¢/2) = P'.
By monotonicity of the spectral family we have

impﬁmww—%ﬂﬂ»QmEMM—EFW» (B.1.4)
By (B.1.3) the projection E’(1/2) — E'(—¢/2) converges to P, in particular their images
have the same dimension. Hence

dimim P’ < dimim (E'(¢/2) — E'(-¢/2)) = dimim P.

By assumption we have dimim P’ = dimim P, hence we have equality in the last esti-
mate, which shows that we have equality in (B.1.4) and thus P’ = F’'(¢/2) — E'(—/2).
Hence (B.1.2) follows from (B.1.3).

We now proof the lemma. Since A’ is a bounded perturbation we have dom A’ =
dom A. By possibly decreasing § we assume that § < § and estimate using (B.1.2) for
any £ € dom A with [|£|| =1 and £ L ker A’

1=lg] < (1= P)e) + [P — P)g|

1
<~ ||+ ||P- P

1 1
<Lae|+ Lja- a4 p-P
< 1

, e €
’Mﬂ+g+g-

B
Hence 1+ — e < ||A’¢|| and the lemma follows by taking the infimum over all £ € dom A
with ||¢]| =1 and § L ker A'. O
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B.2. Flow operator

B.2. Flow operator

Given a Banach space V' such that there exists a compact and dense inclusion V C H.
Let £(V, H) denote the space of bounded operators from V to H. In this section we
analyze the asymptotic properties of bounded functions ¢ : [0,00) — V which solve the
differential equation

95€(s) + A(s)€(s) + B(s)E(s) = n(s) (B:2.1)
where 7 : [0,00) — H and A : [0,00) — L(V,H), B :[0,00) — L(H) are continuously

differentiable functions satisfying the assumptions:

(i) The operator A(s) is symmetric for every s. There exists an operator A, €
L(V, H) such that A(s) — Ax and 0s;A(s) extend to bounded linear operators on
H and we have
lim [|A(s) — Axo|| = lim ||0sA(s)|| =0. (B.2.2)
S§—00 S5—00
(ii) The operator A is Fredholm but not necessarily injective.

(iii) The operator B(s) is skew-symmetric for every s > 0 and

lim ||B(s)| = 0. (B.2.3)

§—00

Remark B.2.1. These assumptions are almost identical to the assumptions in [65, Section
3] except that we do not suppose that A, is injective.

Lemma B.2.2. Let P : H — ker Ay denote the orthogonal projection. Assume that
lims o0 [[£(8)|| = 0 and for every constant e there exists so such that for all s > so we
have

1PE(s)| < ell€(s)]l- (B.2.4)

Further suppose that there exists positive constants § and c¢ such that for all s > 0 we
have
()l + 19sm(s)]| < ce™®.

Then for any p < min{i(Aw),d} there exists a constant sg = so(p) such that [|£(s)]| <
e # for all s > sg. Moreover if n =0 then we have

(A(9)(5),E(5)) = nllE@s))
for all s > s.

Proof. We follow closely the lines of the proof of [65, Lemma 3.1]. We just need to insert
assumption (B.2.4) at the right place. Consider the function g : [0,00) — R given by

o(s) =3 eI
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B. Operators on Hilbert spaces

We suppress the argument s whenever convenient and write g etc. to denote the derivative
by 0s. Since B(s) is skew-symmetric we have

g(s) = (€.€) = (&n — Ag). (B.2.5)
Differentiating again we have with assumptions (B.2.2) and (B.2.3) for any € > 0
§=(&m—248) + (&7 — Ag)
= 2|[AEI° + [lnl]* — (A&, 3n) — (BE,m) + (2BE, A) + (€, i) — AE)
> (2= &) 4¢P = (1 + 4D IBIP + [| ]| + ) e = (1 +967) |lnll> -
=i
> (2= &) [ AZIP = (o(1) + &) ¢]]* = c2(1 + 107 )2,

where we have used the Cauchy-Schwarz inequality and the estimate —ab > —ca? —b? /e
for all a,b > 0. Similarly we have

1As€ll* = 1(A — Ax)é ]l + 2((A — As )€, A) + || A€
<(I+e” )IIA—Aoo||2||£||2+(1+€)IIAEII2
< o(1) JI€]* + (1 + ¢) || A€

Combining the last two estimates we get a constant ¢; = ¢1(g) such that

52 TS Al — (1) +2) [ = ere7
> (2 42) A€ — (0(1) +) €] - cre™

Let ¢ := 1(Aoo) denote the spectral gap of As,. With Lemma B.1.1 we have
1AsEl* = P11 = P)EI* = P IE]* = 2 1PEN® = & |€]|* - o(1) [I€]I*
in which we have used the assumption (B.2.4). Combining the last two estimates shows
i(s) = 22— o) JlEll* — (o(1) + &) ll€)* — ere™™*
> (22 — 4% — e — 0(1)) ||€]|* — cre™ %
In particular there exists a constant sy = so(g) such that for all s > sy we have
G(s) > 2(202 — 4% — 4e)g(s) — cre 2%,

The previous computation holds with any e. Now choose ¢ < (12 — u?)/(2:2 + 2) to
conclude

i(s) > 4pPg(s) — cre .

By assumption we also have lim,_, g(s) = 0. Provided with the last estimate the rest
of the proof is completely analogous to the proof of [65, Lemma 3.1]. O
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B.2. Flow operator

Lemma B.2.3. Assume that n =0 and the integral is finite
|14 -l 1B ds.

then there exists an element ¢ € ker Ay, such that limg_o &(s) = (. Moreover assume
that there exist constants € > 0 and ¢y such that for all s > 0

[A(s) = Asoll + [ B(s)[| < 1677,

then for all p < min{e,1(Ax)} we have a constant so = so(p) such that [|£(s) — (]| <
e M8 for all s > sg.

Proof. Let P : H — ker A be the orthogonal projection. Apply P on (B.2.1) to show
that
O, PE = —PAE — PBE = P(Aw — A)E — PBE.

Since £ is bounded we conclude that there exists a constant ¢ such that
105 PE|| < c(]|Aoe — Al + || B]]) -

Since 0, P¢ is integrable and ker A is finite dimensional the path s — P&(s) converges
to an element ¢ € ker Ay,. The difference s — &(s) — ¢ solves the equation

Os(§ =)+ A -+ B(E—-C) =n,
with 7(s) = (Asx — A(s))¢ — B(s)(. We conclude using Lemma B.2.2. O

For the rest of the section we assume that 7 = 0 in (B.2.1). The proof of Agmon-
Nirenberg Lemma (cf. [65, Lemma 3.3]) goes through without any change. Thus £(s) # 0
for all s > 0 and we define

_LS) §) = (U(S S)U(s

The proof of [65, Lemma 3.4] requires an adjustment.

Lemma B.2.4. With the assumptions of Lemma B.2.2 and n = 0. Suppose that the
two integrals are finite

|14 — Al + 1B s, N =20+ [ 1B + Al ds
0 0

Let p denote the constant from Lemma B.2.2. Then the limits

N > lim A(S) = Aoo > U, lim v(s) = v ,

§—00 §—00

exist, where the latter convergence is in H and we have AscVoo = AooVoo-
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B. Operators on Hilbert spaces

Proof. We differentiate
V=M —Av—Buv, (B.2.6)

and . .
A = 2(0, Av) + (v, Av)

= 2(\v — Av — Bu, Av) + (v, Av)

) . (B.2.7)
= —2||Av — Av||” + 2(Bv, \v — Av) + (v, Av)
< IBIP + Al =[x — Av|* .
Consider the function v : [0,00) — R defined by
3s) = M)+ [ B + (o) Jdo
Since 4 = A — || B||* — HAH it follows from (B.2.7) that for every s > 0
44 || Av — xo|? < 0. (B.2.8)

We see that « is decreasing. Moreover v is bounded from below since with Lemma B.2.2
we have y(s) > A(s) > u. Hence v(s) converges to a positive real number

Aoo = lim ~y(s) = lim A(s).

§—00 §—00

Since v(0) = N and ~(s) > p for all s > 0 we have that
<Aoo <N

We claim that A, is an eigenvalue of A,,. By contradiction we assume that Ao — Ao
is injective. Since V < H is compact and Ay is a Fredholm operator, Ao, — Ao 1S a
Fredholm operator as well. In particular Ay, — As is closed and there exists a constant
c1 > 0 such that

1= v]] < e1 | Asov = Asov]] -

We estimate
| Acot — Aac|| < ||A — Acol| + |A — Ao| + [[Av — Av]| .

Hence by assumption and definition of Ay, for any € > 0 we find sy such that for all
s > so we have
|Accv — Aao|| < €4 [|Av — o] . (B.2.9)

Suppose € < 1/2¢; then the last estimates show that ||Av — Av|| > 1/2¢; and by (B.2.8)
also §(s) < —1/4c? < 0 for all s > sg. This contradicts the fact that v(s) converges.
Thus we have proved that Ay is an eigenvalue.
Consider the eigenspace F = ker(As — A ) and the orthogonal projection P : H — E.
We want to show that
lim |ju(s) — Pu(s)|[*=0. (B.2.10)

5—00
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B.2. Flow operator

Set o(s) :=1/2||v(s) — Pv(s)||* and compute with (0, v) = 0 and (B.2.6)
o= (v,(1 = P)v) = —(0v, Pv) = (Bv, Pv) + (Av — \v, Pv) =
= (Bv, Pv) + (Av — Axov, Pv) + (Moo — A) (v, Pv) + (Asov — Asov, Pv) .

The last term on the right-hand side vanishes because P projects to the kernel of Ay, — Ao
and we conclude that the derivative of o converges to zero. Now suppose by contradiction
that (B.2.10) does not hold. Then we find a constant ¢ > 0 and a sequence s, — 00
such that o(s,) > € for all v € N. But since the derivative of o converges to zero we
have for all v € N sufficiently large

|sy — 5| < 1= 0(s) >¢/2.
Since Ay — Ao 18 closed there exists a constant co such that
lv — Po|| < c2 ||Acct — Aot -
By (B.2.9) we conclude that for all v sufficiently large and s € [s, — 1, s, + 1] we have
9 2 9
© < o(s) < BIIAGs)o(s) ~ Ms)els) | +
Again by (B.2.8) it follows 7(s) < —e/4c% < 0 for all s € [s,—1, 5, + 1], which contradicts
that ~v(s) converges. Thus we have proved that
lim |lv(s) — Pu(s)| =0, lim ||Pv(s)|| = lim (v(s), Pv(s)) =1. (B.2.11)
§—00 §—00 $—00
Hence for s large enough we have ||[Pv(s)|| # 0 and define

_ Pg(s) _ Pus)
O = el = TP
By assumption £ solves 9§ + A + B = 0 and A\ P{ = PA&. We conclude
P& = P(Ay — A)E — PBE — Ao PE .

Abbreviate ¢ := (Ao — A)¢ — B¢ and plug this into the computation of the derivative
of w to obtain

P¢ (P&E) P¢ (¢, Pg) P¢ (¢, PE)
= - = — oW — AooW = — .
O Pl T e T Rl e T T Pl e
According to (B.2.11) we have for all s large enough
€ < 2([PE(s)l, IS < 2([|A(s) — Aol + 1B(S)[) 1PE)
for hence
] <4]|A - Al +4|B] , (B.2.12)

Thus ||w|| is integrable after the assumptions and w(s) converges to some element v, €
E. By (B.2.11) we have furthermore
Yoo = Jig, wls) = Jig, Pole) = fim vle)

This proves the lemma. O
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B. Operators on Hilbert spaces
Provided Lemma B.2.4 and equations (B.2.11), (B.2.12) the proof of [65, Lemma 3.5]
and [65, Lemma 3.6] goes through up to very small changes. We state it here.

Lemma B.2.5. In the situation of Lemma B.2.4. Assume that s — B(s) is continuously
differentiable and that there exists positive constants ¢ and € such that

1A(s) = Aol + 1 B(s)| + [|A() | + | B(s)]| < ce™

then there exists a non-zero eigenvalue Aoy 0f Aoe with corresponding eigenvector Voo
and for every u < e there exists a constant ¢ such that for all s > 0 we have

1€(s) — e vgg || < cemPoetils,
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C. Viterbo index

In order to relate the Fredholm index of the Cauchy-Riemann-Floer operator to topo-
logical data we generalize the index defined by Viterbo [73] and Floer [26] to maps
with boundary on not necessarily transversely intersecting Lagrangians in terms of they
Robbin-Salamon index for paths pgrs given in [63].

Let Lo, L1 C M be any two Lagrangian submanifolds and H_, Hy : M x [0,1] — R be
any two Hamiltonian functions. Consider the perturbed intersection points Zy_(Lg, L1)
and Zp (Lo, L1) as defined in (3.2.6). To a continuous map u : [-1,1] x [0,1] — M
satisfying

u(:l:l, ) S IHi (Lo, Ll), u(,O) C Lo, u(~, 1) C Ly, (COl)
we assign an half-integer pvit(u). Let us explain the construction. Since the base [—1, 1] x

[0, 1] is contractible the symplectic bundle ©w*TM is trivial and any two trivializations
are homotopic. Choose a symplectic trivialization

®, : [-1,1] x [0,1] x R*"™ — w*T M, (5,8,6) > Dy(s,1)€ € Tys M
that is a bundle isomorphism ®, such that for all (s,¢) € [~1,1] x [0,1] and &, &' € R??

wu(s,t)(q)u(sa t)f, q)u(sv t)‘fl) = wstd(éa fl) :

Denote by £(n) the space of linear Lagrangian subspaces in R?® and by ¢y L 0 [0,1] x
M — M, ¢4, = ¢u.(t,-) the Hamiltonian flow associated to Hx. For s € [~1,1] and
t € [0,1] define the Lagrangian spaces

Fo(s) = ®u(s,0) " Tys0) Lo, F-(t) = @u(—1,¢) " dely Ty1.0)Lo

» L (C.0.2)
Fi(s) = @u(s, 1) Tyylr, Fi(t) = Qu(+1,8)" dey, Tyl -

We denote by Fy, Fi, I and F. the continuous paths of Lagrangian spaces defined by
s+ Fi(s) for k = 0,1 and ¢t — F4(t) respectively. Finally the index pvit(u) is defined
by

pvit(u) == prs(Fo, F1) + prs(Fy, F1(1)) — prs(F-, F1(=1)) . (C.0.3)
Lemma C.0.1. The index pvit(u) is defined independently of the choice of ®,,. Moreover
given two Hamiltonian functions H_,H, : M x [0,1] — R and let u : [0,1] x [—1,1] x
[0,1] — M be such that u; := u(r,-) satisfies (C.0.1) for all 7 € [0,1], then pyit(u;) =
wvit(uo) for all T € [0,1].

Proof. Given two trivializations ® and ®;. Because [—1, 1] x [0, 1] is contractible there
exists a homotopy ®, between ®y and ®;. Using ®, we define via (C.0.2) homotopies
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C. Viterbo index

of paths. Note that throughout the homotopy the dimension of the intersection of the
two spaces at the endpoints is constant. A homotopy satisfying that property is called
stratum homotopy and leaves the Robbin-Salamon index invariant (see [63, Theorem

2.4]). Similar we proceed for the family u..

Proposition C.0.2. The index pviy has the following properties

(i) If Hy = H_ = 0 vanishes and Lg, L1 intersect transversely, then the index pvi(u)

agrees with the one given in [13].

(i) Given u : [-1,1] x [0,1] — M satisfying (C.0.1). Let v : S2 — M be a sphere
(resp. v : (D,0D) — (M, Ly) be a disk with k € {0,1}), such that v has an point

(resp. a boundary point) in common with u, then we have

pvis(uFtv) = pvie(u) + 2(c1 (T M), [v]),
(resp. pvit(udfv) = pvie(u) + pivas(v))

where by # we denote the connected sum at the common point (see the proof for

the concrete definition).

(iii) Given u : [—1,1] x [0,1] — M satisfying (C.0.1) and v : [0,1]> — M satisfying
v(0,-) = v(1,-), v(-,0) C Ly and v(-,1) C Ly. Assume that there exists sop € [—1,1]

such that u(sg,-) = v(0,-) then it holds

pvic(u#v) = pivie(w) + pinas(v)

here u#v denotes the connected sum along the path u(so, ).

(iv) Given three Hamiltonian functions Hy, Hi, Ha : [0,1] x M — R and maps ug, uy

satisfying the boundary condition uy|i—o C Lo, ugli=1 C L1 for k € {0,1} and

uO(_la ) € IHO(L()?Ll)?
uO(la ) = ul(_lv ) € IH1 (L0> Ll)a
’LL1(1, ) S IHZ(L()aLl) .

Then we have
pvic(uoFur) = pvie(uo) + povie(ur) -

Where ug#uq denotes the connected sum.

(v) Assume that H = H_ = H is clean for the pair (Lo, L1) and given u : [—1,1] X

[0,1] = M such that u(s,-) € Zg(Lo, L1) for all s € [—1,1] then pvit(u) = 0.

(vi) Let H_,Hy be clean. Given two connected components C_ C Ly (Lo, L1) and
Cy C Iy, (Lo, Ly). Supposew : [—1,1]x[0,1] — M satisfies (C.0.1) and u(*1,-) =

x4 € Cy, then
1
wvis(u) + 5 (dimCy +dimC_) € Z .
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Proof. We will deduce these properties from the axioms of the Robbin-Salamon index.
Step 1. We show (i)

Since Lo, L intersect transversely, the intersection Ly N L1 is a discrete set of points.
Necessarily the map ¢ — wu(+1,t) = py is constant. We choose a trivialization ®
satisfying for all ¢ € [0, 1]

O(+1,t)T,, Lo =R" @ {0}, O(+1,t)T,, L1 = {0} & R" .

Since H_ = Hy = 0 the paths Fy defined in (C.0.2) are constant. Define the path
F:[0,1] = L(n) via

t > F(t) = (cos(nt/2)1 + sin(rt/2) Juq) (R” @ {0}) .

Denote by Fv, FY etc. the path F, Fy run with reverse orientation. We define a loop
Floop : ST — L(n) via the concatenation of the paths

Floop = FO#F#FI\/#FV .

In [73] the index is defined as the Maslov index of the loop Fi,op. Using [63, Remark
2.6] we have fix

pMas(Floop) = RS (Floops F1(0)) - (C.0.4)
By the concatenation axiom, the homotopy axiom and the zero axiom we have
prs(F. Fi(1)) + pns(F, Fi(1)) = prs(FHE Fi(1)) = pms(F(0), Fi(1)) = 0.
Similarly prs(Fi, F1(1)) + prs(£y, Fi(1)) = 0 and
prs(F1(0), F1) + prs(F1, F1(1)) =0,
which shows ugrs(F)’, F1(1)) = urs(F1(0), F1). Since F} is a loop we have
prs(F1(0), F1) = prs(Fo(1), F1)

Using the last identities we continue with (C.0.4)

ivtas(Floop) = tirs (Fo# F#FY #F " Fi(1))

= prs(Fo, F1(1)) + prs(F, Fi(1)) — prs(F1, Fi(1)) — prs(F, Fi(1))
= prs(Fo, F1(1)) + prs(F1(0), F1)

= urs(Fo, F1)
= pvie(u) -

Step 2. We show (ii)
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C. Viterbo index

Let v : (D,0D) — (M,p) be a sphere and assume for simplicity that the sphere
has an interior point in common with u, say u(1/2,0) = p. Without loss of generality
we assume that D = {(s,t) € R? | s + (t — 1/2)? < 1/4} C [-1,1] x [0,1]. Let
¢ : [-1,1] x [0,1] — [-1,1] x [0,1] be a continuous map, which maps D to the point
{(1/2,0)}, is a homeomorphism on the complement and fixes each arc of the boundary.
We define the connected sum

v(s,t) if (s,t) € D

s t) = {u«o(s,t» if (5,6) ¢ D

Choose symplectic trivializations @, : «*TM — R?*"* and ®, : v*'TM — R?". The
change of trivialization defines a loop v : D — Sp(2n), (s,t) = ®,(s,t) 0 ®,(1/2,0)7L.
We assume with loss of generality that 1 is unitary. Let W : [—1,1] x [0,1]\ D — U(n)
be an extension of ¢ such that ¥(s,t) = (s, t) for all (s,t) € D and ¥(s,t) = 1 for
(s,t) € {—1} x [0,1]U[-1,1] x {1} U {1} x [0,1]. Abbreviate w = u#v. We define the
symplectic trivialization ®,, : w*TM — R?" via

Boy(s.1) = D, (s,1) if (s,t) € D
TN W(s, t) 0 Bul(p(s, 1)) if (s,6) €D

Define Ff', F}', FY (resp. Fy’, F}*, FY’) via (C.0.2) using ®,, (resp. ®,,). By construction
we have F§’(s) = ¥(s,0)F§(p(s,0)) for all s € [-1,1], F{ = FY and F{* = F}’. We have
after a homotopy in the domain ¢'F} = ¢'Fy(—1)#Fy. Hence by the concatenation
axiom

pvit(w) = prs(Fy’, F17) + prs (FY, F1°(1)) — prs (FY, F1°(=1))
= urs (V' Fy', FY') + prs (FYE, FY'(1)) — prs(FY, Fy'(=1))
= prs (V' Fy' (=1), F{'(=1)) + prs (Fy', FY') + prs (FYE, F'(1))— (C.0.5)
— prs(FY, F1'(=1))
= MMas(w,Fg(_l)) + pvie () -

Abbreviate F := F§'(—1). Since ¢ and 1’ are homotop within U(n) (via ¥), the Maslov
index of the loop 'F is the same as ¥ F, which by definition is given as the degree of
the map det(t) o) : St — St (see [53, C.3.1]). On the other hand it is a classical fact
that degdet v = (c1(T'M), [v]). We summarize the argument

MMas(¢/F) = ,UMas(wF> = deg det(¢ © ¢) =2 deg det ¢ = 2<Cl (TM)v [’U]> .

This shows the identity for spheres using equation (C.0.5).

Now let v : (D,0D) — (M, Ly) be a disk. Denote by zyp € dD and sy € [—1,1]
the points such that v(zg) = u(sg,0). We give the definition of the connected sum:
Define Q := {(s,t) € [-1,1] x [0,1] | s> + > < 1/2} and let o : Qo — D be a
continuous map which maps the arc v := {(s,t) € [-1,1] x [0,1] | s* + * = 1/2}
to the point {z} and which is a homeomorphism on the complement. Secondly define
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O = {(s,t) € [-1,1] x [0,1] | 2+t > 1/2} and let o1 : Q1 — [-1,1] x [0,1]
be a continuous map such that ¢(v) = {(sg,0)}, which is a homeomorphism on the
complement and which fixes the arcs {—1} x [0, 1], [-1,1] x {1} and {1} x [-1,1]. With
these preparations we define the connected sum

ool i (s.8) €
(ufv)(s,2) = {u(«pl(s,t)) if (5,6) € O .

We deduce the equation. Choose symplectic trivializations ®, : w*TM — R?" and

®, : v*TM — R that agree on u(sg,0) = v(z). Using ®, and ®, we obtain a

trivialization ®,, : w*TM — R?® where w = u#v. Define FY¥, Fl', FY{ (resp. Fy’, F}*,

FY) via (C.0.2) using @, (vesp. ®,,). Secondly define F(s) := ®,(0(s,0)) T3 (,0(s,0)) Lo

for all s € [-1/2,1/2]. By construction we have F¥(—1/2) = FY(1/2), F}* = F},
Y= FY and F' = F§'[[—1,s0)# P # ' |[s0,1)- Then using the concatenation axiom

pvit(w) = prs(Fy's Fy') + prs(FY, F1°(1)) — prs (FY, F1¥(—1))
= prs (F0 [~ 1,50) F1'|[=1,50]) + RS (FY, F{*(50)) + RS (F'[150,1)> F1'l[50,1])
prs(Fy, FY'(1) — prs(FY, FY'(—1))
= purs(Fy', FY') + prs(FY, F1'(1)) — prs(FY, F{'(=1)) 4+ prs(F*, F{'(s0))
= pvit(u) + fMas(v) -

Step 3. We show (iii)

Choose a symplectic trivialization ®, : v*TM — R?** and ®, : v*TM — R?" that
agree over v(0,-) = u(s,-). We obtain a symplectic trivialization ®,, of w*T'M where w
is the connected sum u#v. Define paths of Lagrangians F', F*, F* and FY via (C.0.2)
using ®,,. Similarly define

Fy(s) i= @y(5,0)To(s Lo, FT(5) := Pu(s, )Tys,1) L s

for all s € [0,1]. Further define Fiy’, F*, F*¥ and F{ via (C.0.2) using ®,. By construc-
tion we have F/(0) = F}/(1) = F!(s0), I’ = Filj—1,s0)#FFR#F|[s0,1) for £ = 0,1 and
¥ = F. Using the concatenation axiom we have

pvie(w) = prs(Fy”, FYY) + prs(FY, F1°(1)) — prs(FY, F1°(—1))
= prs (F0'l1=1,50) F1'l[-1,50]) T BrS(FG s FT) + prS (F0' 150,11 F0'lfs0,1])
+ prs(FY, FY' (1)) — prs(FY, FY'(=1))
= prs(Fo' F1') + prs(FY FY' (1)) — prs(FY, FY'(1)) + prs (Fy , FY)
= pvie(w) + pMas(v) -

Step 4. We show (iv)

Choose symplectic trivialization ® : uiTM — R?" for k = 0,1 that agree over
up(1,-) and u1(—1,-). We obtain a symplectic trivialization of the connected sum ug =

237



C. Viterbo index

up#u; denoted ®o. For k = 0,1,2 denote the paths ng’“,F{Pk and FE’“ associated to
®;, by (C.0.2). We have FT° = F®' and Fy°(1) = F2'(—1) for k = 0,1. By the
concatenation axiom

p(F FL0) + p(Fg FY) = (B Fy2)

The shows p(ug) + p(u1) = p(ug) inserting the definitions.
Step 5. We show (v).
Choose a symplectic trivialization ®g of u(-,0)*T'M and define the trivialization ® of
uw*T'M by
O(s,t) = dpy Po(s) ,
where %, denotes the Hamiltonian flow of H. By the property of the Hamiltonian flow
® is a symplectic trivialization. By definition

_ _ —1
Fu(t) = ®(£1, 1) delyTyar,0Lo = Po(£1) 7 (dely) ™ delyTyr1,0)Lo =
= Fy(+1).

Thus prs(Fx, F1(£1)) vanishes after the zero axiom. Since pg(Lo) intersects L; cleanly
we have for all s € [0, 1]

Fo(s) N Fi(s) = ®(s,0) " Tys.0)Lo N @(s, 1) Tys1) L
= ®(s,1)" (de g Tougs,0yLo N Ty 1y L)
= ®(s,1) " (Ts.1yr(Lo) N Tyues iy L1)
= ®(s, 1)_1Tu(s,1) (¢ (Lo) N L1)

We see that the dimension of Fy(s) N Fi(s) is constant for all s € [—1,1]. This shows
that purs(Fo, F1) = 0 by the zero axiom.

Step 6. We show (vi)

Choose a symplectic trivialization ®. Define the Lagrangian paths Fp, F1, F— and F..
by (C.0.2). We have by definition Fy(—1) = F_(0) and Fp(1) = F4(0). As a result the
concatenation F_ o = FT'4Fy#F, is a well-defined continuous path of Lagrangian
subspaces starting from F_ (1) and ending at F; (1). By the concatenation axiom and [63,
Theorem 2.4] we have

ivie(u) = prs(Feoss Fi) = % (dim F\ (1) 0 Fy(1) — dim F_(1) 0 Fy(—1)) + Z .

This shows the claim since

T,,Cp = o(1L1) (F(1) N F(1), T C = d(—1,1) (F_(1) N Fy(~1) .
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D. Quotients of principal bundles by
maximal tori

Let (G, P, P/G, ) be a principle G-fibre bundle where G is a compact Lie group. Fix a
closed subgroup 7' C G. The restriction of the G-action to the subgroup 7" turns P into
a principal T-bundle with base P/T and moreover these spaces fit into a commutative
diagram

P/T e (D.0.1)

P/G |

where 7 : P/T — G/T, Tx — Gz is a fibre bundle with fibre G/T'. In this section we
study the cohomology of P/T in case when T is a maximal torus. As a precursor we
review the classical facts of compact Lie groups and their quotients by maximal tori.
The main reference for this section is the article by Borel [15] and the introduction of

the article by Borel and Hirzebruch [14]. For a more modern treatment we also refer the
reader to book by Mimura and Toda [55].

D.1. Compact Lie groups

Let G be a compact connected Lie group. A closed, connected and abelian subgroup
of G which is not contained in a strictly larger suchlike subgroup is called a mazimal
torus. Two maximal tori are conjugated by inner automorphism of G and their common
dimension ¢ defines the rank of G. A well-known theorem of Hopf states that the coho-
mology ring H*(G, Q) is isomorphic to the exterior algebra of a vector space generated
by ¢ homogeneous elements of odd degree (see [15, Prp. 7.2] or [55, VI.5.3] for a proof).
The tuple of the degrees of the generators in ascending order is the (rational) type of G.

Fix a maximal torus T' C G. The Weyl group W is defined as the group of auto-
morphisms of 7" induced by inner automorphisms of G leaving the subgroup 7' as a set
invariant. The group W is isomorphic to N(T')/T, where N(T) :={g € G | gTg~ ' =T}
is the normalizer of T in G. Tt is a finite group and its order |IW/| is given by the number
of connected components of N(T') in G. Since any two maximal tori are conjugated
by inner automorphisms the corresponding Weyl groups are isomorphic. Thus it makes
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D. Quotients of principal bundles by maximal tori

sense to talk about the Weyl group of G without giving a reference to the maximal torus
used to define it.

Proposition D.1.1. Given a compact Lie group G of type (2m1+1,2ma+1, ..., 2mp+1).
The Betti numbers of G/T wvanish for odd degrees. The Euler characteristic of G/T
satisfies

X(G/T) = W],

where |W| denotes the order of the Weyl group. The Poincaré polynomial of G/T is
given by

P(G/T,x) = (1 — 2¥™+2)(1 — g2m2t2) | (1 — 22™F2) /(1 — 2t . (D.1.1)

Proof. The first statement is [15, Lmm. 26.1], the second is [55, V.3.14] and the third is
[15, Prp. 26.1]. O

Let g and t be the Lie algebra of G and T respectively. The adjoint representation
t — Ad(t) of T in g is fully reducible and there exists a direct sum decomposition

gEtON O d - Dy, (D.1.2)

into invariant subspaces where t is the largest subspace on which T operates trivially.
Eachn; (j =1,...,m) is two-dimensional and the adjoint action restricted to n; has the
matrix form

cos 27r§j (t) —sin 27T§j (t)> VteT

Ad(t) ‘n]- = (Sin 27ng (t) cos 27T§j (t)

for some non-trivial homomorphism éj : T'— R/Z uniquely determined up to sign. The
homomorphism 0; is a root of G and we denote by

B = (B, ~01, 03, O, Oy O} |

the set of all roots.

A weight is a homomorphism 6 : T — R/Z. In particular any root is a weight. Let
exp : t — T denote the exponential map and T := exp~!(e) the unit lattice, where e is
the unit element of the group 7. Every weight @ uniquely lifts to a linear form 6 : t — R
such that the following diagram commutes

t

expl l (D.1.3)

TR /7.
Conversely every linear form on t that maps the unit lattice I' to Z defines a homomor-
phism 7" — R/Z via the above diagram. From now on we take the liberty to identify

weights and in particular roots with linear forms on t and make no notational distinction
between 6 and 6 anymore.
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Choose a basis 1,...,2¢ € t¥ of vectors that map the unit lattice I' to Z, hence
constitute to an integer basis of the space of all weights. Abbreviate by M the space of
weights and S its associated symmetric algebra, i.e.

M := Hom(T,R/Z), S :=Symy (M) = Zlxy,...,z .

We equip S with grading by deg = 2 for all § € M and abbreviate Sg := S ® Q. Given
a weight 6 € M, we denote by Cy) = C the representation space on which T" acts via

2mi6(t)

tz=e z. We define the characteristic homomorphism

¢: S — H*G/T,Z), (D.1.4)

as the ring homomorphism induced by sending 6 € M to ¢1(Lg), the first Chern class of
the line bundle Ly := G X1 Cg).

Proposition D.1.2. The characteristic homomorphism ¢ ® Q is surjective.

Proof. This is a classical fact. We give references for the cornerstones of the proof. Let
p be the fundamental class of R/Z. The map M — H'(R/Z), § +~ 0*u defines an
isomorphism. Thus we have a degree preserving ring isomorphism Sg = H*(BT,Q),
induced by M > 6 +— 7(0*u), where 7 is the transgression for the fibration 7' — ET —
BT and BT is the classifying space (see [15, Thm. 19.1] or [55, I11.5.4]). The pull-back for
the rational cohomology of the classifying map i : G/T — BT is surjective (see [15, Prp.
29.1] or [55, VII.3.29]). To finish the proof it remains to show that ¢;(Lg) = i*7(0* ) for
all @ € M. This follows from the naturality of the transgression (see [55, II1.(6.4)]). O

By the very definition the Weyl group acts on GG with action descending to the quotient
G/T inducing an action on H*(G/T'). Moreover the linearization of the action at the
unit element gives an action of W on the Lie algebra g that leaves t invariant. We obtain
an action on t and by duality on tV. A simple observation shows that the action on tv
maps weights to weights and even roots to roots (see [55, V.4.21]). Finally we note that
the action on M induces an action on S. It is obvious from the naturality of the first
Chern class, that the characteristic homomorphism is W-equivariant. By a Lemma of
Leray the action of W on H*(G/T,Q) is equivalent to the regular representation (see
[15, Lmm. 27.1] or [55, VII.3.26])

We define 6 = Zle a;x; € tV as positive, if the first non-vanishing coefficient is
positive. Of course the definition depends on the choice of the basis. Up to changing
the signs we assume without loss of generality that ®* := {61,0s,...,60,,} is the set of
positive Toots, i.e. the set of roots which are positive. A root is simple if it is positive
and not the sum of two positive roots. For every root § € &, there exists an element
wyg € W such that wy.0 = —6 and wy fixes a linear complement of R - 6 in t¥ (see [55,
V.4.27]). Such an element wy is called a reflection.

Proposition D.1.3. Every reflection wy associated to a simple root 0 permutes the set
&1\ {0}. Moreover W is generated by reflections associated to simple roots.
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Proof. The first statement is [55, V.6.15] the second statement is [55, V.6.12]. O

Let g € N(T) belong to the coset of w € W. Then the adjoint action Ad(g) leaves
the subspace t invariant and we define sign of w as the determinant

(=1)" :=det(Ad(g) : t = t) . (D.1.5)

For instance any reflection has a negative sign. Let H be a module equipped with an
action of W. An element a € H is (anti-)invariant if w.a = a (resp. w.a = (—1)"a) for
all w € W. We denote by H" (resp. H?) the invariant (resp. anti-invariant) elements.
It is a deep fact that the subring S(S/ C Sg is generated by ¢ homogeneous polynomials
of degrees (2mi + 2,...,2my + 2), where (2my + 1,2mo + 1,...,2my + 1) denotes the
rational type of G (see [15, Thm. 19.1, Prp. 27.1] or [55, VII.2.12, VII.3.29)).

Proposition D.1.4. The kernel of the characteristic map ¢ @ Q is given by Sg+, the
subspace generated by W -invariant elements of positive degree.

Proof. See [55, VIL.3.29] or [15, Prp. 29.2, Prp. 27.1]. O

An important anti-invariant element of S is the discriminant

A= 0.

Ocd+
Lemma D.1.5. We have ¢(A) = |W|u, where p is the fundamental class of G/T.

Proof. Choose and Ad-invariant metric on g. We have induced splittings g = t & n and
TG = (G x t) @ (G x n). The first bundle is spanned by the fundamental vector fields
of the T-action on G, hence T(G/T') = G xr n, where the action on n of T is via the
adjoint representation. By (D.1.2) we obtain a further splitting n = @;ﬂ:l n; and by our
choice of positive roots we have the T-equivariant isomorphism n; = C(gj). Now with
Proposition D.1.1 we have (recall Ly = G x1 Cp))

(Wp = x(G/T)u = eu(TG/T) = eu( @eeqﬁ Lo) =[], .. ci(Le) = (D).

0edt

This shows the claim. O

Lemma D.1.6. The submodule S& is a free S’(S/—module of rank one generated by A.

Proof. That A is anti-invariant follows by Proposition D.1.3. The rest is proven in [23,
Lmm. 1.2]. O

The root lattice M® is the submodule of M generated by ®. It is freely generated by
the simple roots, which implies that if G is semi-simple, then M® = M.
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Corollary D.1.7. The characteristic homomorphism induces the isomorphism

H*(G/T,Q) = Sg/SY 4 (D.1.6)
H*(G/T,Q=M*®Q, (D.1.7)
further we have
H*(G/T,Q)" = H*(G/T, Q) (D.1.8)
H*(G/T,Q)* = H*™(G/T,Q) . (D.1.9)

Proof. Equation (D.1.6) directly follows from propositions D.1.2 and D.1.4. We further
deduce equation (D.1.8) from (D.1.6) using equivariance of the characteristic homomor-
phism. Equation (D.1.9) holds since by Lemma D.1.6 and D.1.5 we have

H*(G/T,Q)* = S4/Sy . = ASY /Sy + = A-Q= H*™(G/T,Q) .

For (D.1.7) it suffices to show the W-equivariant splitting M = M"Y @ M®. Choose
an Ad-invariant inner product. A reflection wy fixes all points of (R - #)*. Thus by

Proposition D.1.3 the subspace of t" which is fixed by W is given by (,(0-R)* = (M‘D)J'.
Hence elements of M which are orthogonal to M® are exactly all invariant elements. [J

Corollary D.1.8. Assume that diim G/T > 2, then dim H*(G/T,Q) > 2.

Proof. If dim G/T > 2, then m > 2 and there are at least two different positive roots
61,02 € ®+. By standard properties of roots these are linear independent (see [14, 2.2]
or [55, V.4.25]). Hence by (D.1.7) we have 2 < dim M® ® Q = dim H?*(G/T, Q). O

D.2. The cohomology of the quotient of principle bundles by
maximal tori

The quotient V := P/T is naturally a G/T-bundle over X := P/G with projection
m: V=X, Tx — Gx .

The Weyl group W naturally acts on the T-orbits V via w.Tx = Tg.x if g € N(T)
belongs to the coset of w € W. If § € M is a weight we have the associated line bundle

Ly ::PXTC(Q)—)V.

Take a basis 61, ...,0, of the weight space M, which we identify with H?(G/T,Q) us-
ing (D.1.7) assuming that G is semi-simple without loss of generality. Since by (D.1.6)
these elements generate H*(G/T;Q) as a ring the following W-equivariant homomor-
phism is well defined on the generators

H*(G/T;Q) @ H*(X;Q) —» H*(V;Q), 0; @ a— c1(Lp,)m*a. (D.2.1)
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We conclude by the Leray-Hirsch theorem (see [15, Prop. 4.1] or [55, IT1.4.4]) that this is
an isomorphism of H*(X;Q)-modules. If the restrict the map to the invariant elements
we obtain by (D.1.8) the well-known isomorphism

H*(X,Q) = H*(V,Q)Y, amn*a. (D.2.2)

If we restrict to the anti-invariant elements we obtain by (D.1.9) with 2m = dim G/T
and D = [[pcq+ c1(Lg) the isomorphism

H*(X,Q) — H*™™(V,Q)*, aw~ Dr*a. (D.2.3)
Lemma D.2.1. We have a splitting ker dm = @ycg+ Lo into complex line bundles.

Proof. Choose an Ad-invariant metric. We obtain a splitting g = t ® n. Using Killing
fields and a G-connection we get an G-equivariant isomorphism

TP~Pxt®oPxndnsTX,

where on the right-hand side G acts on P x t and P x n with the adjoint action. Under
this identification the bundle P x t is spanned by the fundamental vector fields that
generate the T" action. We obtain

TV 2P xrn@drn'TX .
Again under the identification P X n is spanned by the vector fields which generate the

G-action, hence ker dm = P x7 n. Now consider the splitting (D.1.2). O

Fibre square The fibre square V x,V :={(p,p') € V x V | w(p) = w(p’)} fits into the
commutative diagram of G /T-fibre bundles

Vx, V-
lm lw (D.2.4)
VT X,

here pr; (resp. pry) denotes the projection to the first (resp. second) factor. On the
other hand the fibre square is a the quotient of the (G x G)-principle bundle P X, P
by the maximal torus T' x T'. Its Weyl group W x W acts naturally on V x, V. The
diagonal

Ay :={(p,p) €V xz V|peV},
embeds into the fibre square as a submanifold of codimension dim G/T.

Proposition D.2.2. A choice of positive roots induces an orientation of kerdn and a
coorientation of Ay CV X,V and with respect to these orientations we have

Z (17w)'dV = pI'TD, Z (’UJ, 1)dV = pI‘ED )
weW weW

where dy € H*(V X, V,Q) is the Poincaré dual of the diagonal Ay C V X,V and
D € H*(V,Q) is the Euler class of the bundle kerdm — V.
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Proof. By analogy we only prove the first identity. By Lemma D.2.1 the bundle ker dmw
is oriented by a choice of positive roots. Obviously the pull back prj ker dr is point-wise
a linear complement to the tangent bundle of Ay in V' X, V. Thus prj kerdr gives a
normal bundle. Via this identification and again Lemma D.2.1 we have for any element
wewWw

w.D = (-1)"D, (w,w).dy = (—1)"dy . (D.2.5)

The class ), cy (1, w).dy is invariant with respect to the {1} x W action. By (D.2.2)
there exists a € H*(V, Q) such that

Z (1,w).dy = pria .

weW

For any v’ € W we compute with (D.2.5)

priw'a = (v, 1)pria = (v, 1) Z (1, w)dy = (—1)* Z (1,w")dy =
weWw w'"eWw

= (—1)"pria.

Since pr} is injective we conclude that a is anti-invariant. By (D.2.5) the class D is also
anti-invariant. Since both classes are anti-invariant and of degree 2m = dim G/T we
have with (D.2.3) D = ra for some r € Q. It remains to show that r» = 1.

Consider the commutative diagram

G)T x G)T -V x, V

G)T — v,

where 7, denotes the projection to the second coordinate and ¢ the inclusion of the fibre.
Let dg/r denote the Poincaré dual of the diagonal in G/T x G/T. We compute via
functoriality of the Poincaré dual (see [16, p.69])

mifa=ipria= Y (Lw)i*dy = > (Lw)dgr.
weW weW

Consider a homogeneous basis ey, eg,...,e; of H*(G/T;Q) over Q and assume that

ex is the generator of H?™(G/T;Q) with 2m = dim G/7T. Consider the dual basis

ey,ey,...,e], i.e. we have dege; + degey = 2m and if dege; + dege; = 2m we have
v

ejej = Oije (Kronecker delta). Since the cohomology is supported only in even degrees

a classical computation (cf. [54, Thm. 11.11]) shows that

k

k
dayr = Z(—l)degeiei Re = Zei Re; .
i=1 i=1
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Plugging this into the last equation shows

k k
Ti%a = Z(l,w)Zei®eiv:Zei®é;/,

weWw =1 i=1

where &} 1= oy w.ef € H*(G/T)". By (D.1.8) the only invariant class in H*(G/T)
is e} which generates H%(G/T) and we conclude that

e = Wirey
since 71 is an isomorphism onto the invariant elements,
jra=|W|eg.
On the other hand by naturality of the Euler class and Proposition D.1.1 we have
7D =eu(TG/T) = x(G/T)er, = |W]ey, .

With the last two equations we see that 7 = 1. This shows the claim. O
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