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Abstract. Let Q be a closed manifold admitting a locally free action of a compact Lie
group G. In this paper, we study the properties of geodesic flows on Q given by suitable
G-invariant Riemannian metrics. In particular, we will be interested in the existence of
geodesics that are closed up to the action of some element in the group G, since they
project to closed magnetic geodesics on the quotient orbifold Q/G.
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1. Introduction
Let Q be a closed locally free principal G-bundle, that is, a smooth closed manifold
equipped with a smooth, effective and locally free action of a compact Lie group G.
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On Q we consider a Riemannian metric gQ that is G-invariant and restricts to a fixed
Ad-invariant metric on fundamental vectors. The study of the geodesic flow of (Q, gQ) is
made particularly interesting by the fact that from the existence of geodesics that are closed
up to G-action and satisfy some additional constraint (roughly speaking, the angle that
such geodesics form with fundamental vector fields is equal to some a priori fixed angle),
constrained G-closed geodesics for short, one obtains the existence of closed magnetic
geodesics on the quotient orbifold Q/G.

More precisely, let (M, gM ) be a closed (throughout this paper, always effective)
Riemannian orbifold and let σ be a closed two-form on M . A closed magnetic geodesic
for the pair (gM , σ ) is a loop µ : [0, T ] → M that locally lifts to a classical magnetic
geodesic, meaning that, for every t ∈ [0, T ], there exists ε > 0 small enough such that the
restriction of µ to (t − ε, t + ε) is entirely contained in an orbifold chart (U, 0, ϕ) and
any lift µ̃ : (t − ε, t + ε)→U of µ to U is a magnetic geodesic (in the classical sense)
for the Riemannian metric g̃M and the two-form σ̃ obtained, respectively, by lifting the
Riemannian metric gM and the two-form σ to U . We say that the closed magnetic geodesic
µ has energy k if every local lift µ̃ has energy k in the classical sense. We readily see that
this definition naturally extends the usual definition of closed geodesics for Riemannian
orbifolds (see, e.g., [26] or [30]).

To the authors’ best knowledge, the magnetic problem on Riemannian orbifolds has
not been studied yet, whereas the corresponding problem for manifolds has received the
attention of numerous outstanding mathematicians over the past decades (e.g. Contreras,
Ginzburg, Novikov, and Taimanov, to mention just some of them). Nowadays, a rich
literature about magnetic flows on manifolds is available (see, e.g., [3, 10, 12, 13, 17, 23,
24, 33–35, 37, 38]; for generalities we refer to [8]). As orbifolds are perhaps the simplest
generalization of manifolds to singular spaces, and since they arise naturally in several
different fields of mathematics—for instance in dynamical systems presenting symmetries,
but also in representation theory, algebraic geometry, topology and so on— it is interesting
to determine to what extent known results for magnetic flows on manifolds extend to this
more general setting.

Closed magnetic geodesics on orbifolds are related with constrained G-closed geodesics
by projection, meaning that every closed magnetic geodesic on M for the pair (gM , σ )

lifts to a constrained G-closed geodesic on a suitable Riemannian locally free principal G-
bundle (Q, gQ) over M and, conversely, every constrained G-closed geodesic on (Q, gQ)

projects to a closed magnetic geodesic on M for the pair (gM , σ ). The latter turn out to
correspond to critical points of the functional

Sk :M :=W 1,2(S1, Q)× L2(S1, g)× (0,+∞)→R

given by

Sk(γ, φ, T )=
1

2T

∫ 1

0
|γ̇ (t)+ φ(t)(γ (t))|2 dt −

∫ 1

0
〈φ(t), Z〉 dt + kT . (1.1)

Here g denotes the Lie algebra of G, Z ∈ g is a suitable central vector of unit length with
respect to some fixed Ad-invariant metric on g and φ(t) denotes the fundamental vector
field on Q associated with the Lie algebra element φ(t). All definitions will be given
rigorously in §§2 and 3.
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Remark 1.1. This correspondence also shows that magnetic flows on orbifolds are
intimately related to the field of dynamics of mechanical systems with non-holonomic
constraints (see, e.g., [14, 20]), i.e., systems given by a Lagrangian L defined on T Q
in which the equations of motion are derived by the Lagrange d’Alembert principle on
curves γ (t) that satisfy the constraint γ̇ (t) ∈Dγ (t) for some non-integrable distribution
D ⊂ T Q. When Q is the total space of a principal bundle, D is the horizontal distribution
of a principal connection and the Lagrangian L is invariant under the group action, one
speaks of a (generalized) Chaplygin system.

The first result of the present paper is the following generalization of the main theorem
in [8]. In the statement below, πorb

` (M) denotes the orbifold-theoretic homotopy groups as
defined in [5, Definition 1.50].

THEOREM 1.2. Let (M, gM ) be a closed non-rationally aspherical Riemannian orbifold,
i.e., such that πorb

` (M)⊗Q 6= 0 for some `≥ 2, and let σ be a closed 2-form on M. Then,
for almost every k > 0, there exists a closed magnetic geodesic for the pair (gM , σ ) with
energy k.

COROLLARY 1.3. Suppose that (M, gM ) is a closed Riemannian orbifold and σ is a
closed 2-form on M such that one of the following conditions is satisfied.
(i) πorb

1 (M) is finite.
(ii) σ is not weakly-exact (i.e., its lift to any cover is not exact).
Then, for almost every k > 0, there exists a closed magnetic geodesic for the pair (gM , σ )

with energy k.

An orbifold M is called developable if it is isomorphic to a quotient M̃/3, where M̃ is
a manifold and3 is a discrete (not necessarily finite) group acting properly on M̃ , and it is
non-developable otherwise. In this latter case, adapting the argument in [26] to our setting
yields the following theorem.

THEOREM 1.4. Let (M, gM ) be a non-developable Riemmanian orbifold and let σ ∈
�2(M) be a closed two-form on M. Then, for almost every k > 0, there exists a closed
magnetic geodesic for the pair (gM , σ ) with energy k.

The easiest example of non-developable orbifolds is given by the so-called weighted
projective spaces (cf. [5, Example 1.15]), whose definition we now recall. For two coprime
integers k, ` ∈Z, the weighted projective space WP1(k, `) is defined as the quotient of the
standard unit sphere S3

⊂ C2 by the S1-action given by

u.(z1, z2) := (uk z1, u`z2). (1.2)

Topologically, WP1(k, `) is a two-sphere, and as the quotient of a manifold by a locally
free action of a compact group it carries a canonical orbifold structure, namely, with
two singular points with isotropy groups Zk and Z`, respectively. One easily sees
that WP1(k, `) is non-developable, for instance since its orbifold fundamental group is
trivial. Hence, Theorem 1.4 immediately applies to WP1(k, `) and yields closed magnetic
geodesics for almost every energy for any choice of Riemannian metric and closed two-
form. Observe that Theorem 1.2 applies as well, for πorb

2 (WP1(k, `))⊗Q=Q. As a
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concrete example, we consider the metric gM and magnetic form σ constructed as follows.
The S1-action (1.2) preserves the ellipsoid

E = {(z1, z2) ∈ C
2
| k2
|z1|

2
+ `2
|z2|

2
= 1}

and the quotient E/∼ is an orbifold isomorphic to WP1(k, `). The metric g given by
restricting the Euclidean metric to E is S1-invariant and has the property that the norm
of the fundamental vector field Z(z1,z2) = i(kz1, `z2) is constant along E . In particular,
we obtain a connection form and a metric gM on the quotient (see §3.1). Furthermore,
the connection form induces a curvature form and a closed two-form σ = σZ on the
quotient via (3.4). Using Lemma 3.3, we see that any geodesic γ̇ on E with 〈γ̇ , Z〉 = 1
projects to a magnetic geodesic for the pair (gM , σ ). We shall notice that, in general,
although integrable, the dynamics on E is quite complicated (cf. [18]), and hence it is
not straightforward to determine the energy levels for which there are closed magnetic
geodesics by explictly looking at the geodesic flow on E , except for the case k = `= 1, in
which we retrieve the standard geodesic flow on S3, and on the quotient CP1, the magnetic
flow defined by the round metric and the induced area form.

We now briefly give an account of the methods used to prove Theorems 1.2, 1.4 and
Corollary 1.3: the idea is to use critical point theory for the functional Sk and consists
roughly speaking on building, under the given assumptions, a non-trivial minimax class
for Sk to which (an infinite dimensional version of) Morse theory will be applied. This
approach has been already implemented in [11] in the particular case of free principal S1-
bundles and yielded an alternative proof of the existence of one closed magnetic geodesic
for almost every energy level on closed non-aspherical Riemannian manifolds equipped
with a closed two-form representing an integer cohomology class. However, extending
this approach to general Lie group actions is by no means straightforward. Also, the
orbifold structure enters in an essential way into several steps of this process.
• It forces G to be non-abelian (for manifolds we can always assume that G =TN for

some N ∈N). This is the reason why the functional Sk takes the form (1.1) rather
than the simpler one suggested by [11] (see also Remark 5.3). Indeed, non-abelianity
obligates us to allow also time-dependent fundamental vector fields, as constant Lie
algebra elements do not give enough symmetry to infer that projected curves are
magnetic geodesics. Moreover, since the infinite dimensional group W 1,2(S1, G) acts
on M leaving the critical set of Sk invariant, one has to formulate a version of the
Palais–Smale condition modulo this gauge group action.

• In the study of the geometry of Sk close to the set of vertical loops (that is, loops
which are almost everywhere tangential to fundamental vector fields) it is important to
exclude Palais–Smale sequences that have T -variable going to zero. In doing this, we
have to take into account that there are exceptional ‘shorter’ fibers, as the G-action is
only locally free.

• In all arguments involving exact homotopy sequences, one has to replace the orbifold
M by its classifying space. As a consequence, the construction of a non-trivial
minimax class for Sk requires the use of rational homotopy theory techniques.
Speaking of which, an analogy with the manifold case would hint that Theorem 1.2
holds true also if M is merely non-aspherical, i.e., πorb

` (M) 6= 0 for some `≥ 2.
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However, in this case, we are not able to prove an analogue of Lemma 6.1, which
is the key tool for building a non-trivial minimax class for Sk .

The approach introduced in this paper can be used also to study the existence of closed
geodesics on Riemannian orbifolds. As an application, in §7, we give an alternative proof
of [26, Theorem 5.1.1].

THEOREM 1.5. A closed Riemannian orbifold (M, gM ) carries a closed geodesic,
provided one of the following conditions is satisfied.
(1) M is not developable.
(2) πorb

1 (M) is either finite or contains an element of infinite order.

To the author’s best knowledge, all known methods to produce closed geodesics with
positive length fail for developable orbifolds whose orbifold-theoretic fundamental group
is a so-called monster group, that is, an infinite finitely presented group whose elements
are all torsion (see [26]), even though recent developments provided positive answers for
suitable subclasses of such orbifolds (see [19] for more details)†. The methods developed
in this paper could be used to treat such orbifolds and potentially yield new results; this is
subject of ongoing research.

We finish this introduction with a brief summary of the contents of the paper.
• In §2, we recall the definition and basic properties of orbifolds.
• In §3, we construct the locally free principal G-bundle Q starting from a closed

Riemannian orbifold (M, gM ) and a closed two-form σ on M .
• In §4, we explain the relation between constrained G-closed geodesics and critical

points of a suitable Rabinowitz-type action functional Ak .
• In §5, we introduce the functional Sk and study its properties.
• In §6, we prove Theorem 1.2 and Corollary 1.3.
• Finally, in §7, we prove Theorem 1.5.

2. Orbifolds
Orbifolds appear naturally in several different fields of mathematics, including
representation theory, algebraic geometry, physics and topology. Roughly speaking, they
are generalizations of manifolds by allowing certain singularities. As such, they have many
properties in common with manifolds and share known constructions, such as tangent
bundles, differential forms, vector fields etc. We quickly recall these definitions and
highlight basic properties, accounting to [5].

Let M be a paracompact Hausdorff space and fix n ∈N. An orbifold chart is a
triple (U, 0, ϕ) such that U ⊂Rn is a connected open subset, 0 is a finite group acting
effectively on U by smooth automorphisms and ϕ :U → M is a 0-invariant map inducing
a homeomorphism of U/0 onto its image. An embedding (U, 0, ϕ) ↪→ (U ′, 0′, ϕ′) of
orbifold charts is an embedding λ :U ↪→U ′ such that ϕ ◦ λ= ϕ′. An orbifold atlas U =
{(U, 0, ϕ)} is a set of compatible orbifold charts such that

⋃
U ϕ(U )= M : for all p ∈ M

and all orbifold charts (U1, 01, ϕ1), (U2, 02, ϕ2) ∈ U with p ∈ ϕ1(U1) ∩ ϕ2(U2) and there

† It is actually not known whether such finitely presented monster groups exist, even though they are generally
believed to (cf. [32]). Also, many such examples are known under the assumption that the group is only finitely
generated.
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exist (U, 0, ϕ) ∈ U such that p ∈ ϕ(U ) and embeddings (U, 0, ϕ) ↪→ (Ui , 0i , ϕi ) for
i = 1, 2. We define the transition function near p as the diffeomorphism φ12 = λ2 ◦ λ

−1
1 :

λ1(U )→ λ2(U ). We say that an atlas U is a refinement of U ′ if, for every chart of U ,
there exists an embedding into some chart of U ′. Two atlases are equivalent if they have
a common refinement. Every orbifold atlas has a unique maximal refinement and two
orbifold atlases are equivalent if and only if they have the same maximal refinement.

Definition 2.1. An effective orbifold of dimension n is a paracompact Hausdorff space M
equipped with an equivalence class of n-dimensional orbifold atlases.

As the definition above suggests, there is a further generalization of the notion of an
orbifold by allowing non-effective local actions. However, we will not consider these
objects in this paper and refer to effective orbifolds simply as orbifolds.

Definition 2.2. A map f : M→ N between two orbifolds is smooth if, for every p ∈ M ,
there exist charts (U, 0, ϕ) and (U ′, 0′, ϕ′) with p ∈ ϕ(U ) and f (p) ∈ ϕ′(U ′) together
with a smooth map f̃ :U →U ′ satisfying f ◦ ϕ = ϕ′ ◦ f̃ .

Exactly as for manifolds, we define the tangent bundle of an orbifold M by gluing
together tangent bundles of the local charts using transition functions.

Definition 2.3. We define the tangent bundle as the space

T M =
⊔

(U,0,ϕ)∈U
(U ×0 Rn)

/
∼,

where U ×0 Rn denotes the quotient space of U ×Rn by the diagonal action of 0 and ∼
is defined via [p, v] ∼ [p′, v′] if and only if φ12(p)= p′ and dpφ12(v)= v

′ for all charts
(U, 0, ϕ), (U ′, 0′, ϕ′) ∈ U such that p ∈U and p′ ∈U ′.

The tangent bundle of an orbifold carries a natural orbifold structure and there is a
canonical foot-point projection map T M→ M . It is worth mentioning that fibers are no
longer vector spaces but rather quotients Rn/0p, where the finite group 0p varies with
p ∈ M . By a similar gluing construction, we define the cotangent bundle T ∗M and its
exterior as well as symmetric tensor powers. Further, we define vector fields, differential
forms and Riemannian metrics as smooth sections of such bundles. One shows that by
virtue of the definitions we find local representatives of such sections which, in addition
to satisfying the usual transformation rules, are equivariant with respect to the local group
action. In particular, integral curves to a local representative of a vector field depend
equivariantly on the starting point, which implies that vector fields on orbifolds induce
flows as usual. We define metric connections verbatim as for the manifold definition and,
by the previous observation, we see that the geodesic flow and the magnetic geodesic flow
on an orbifold are well defined. In this sense, a magnetic geodesic on M is a curve which
locally (i.e., in every orbifold chart) lifts to a classical magnetic geodesic. More precisely,
given a Riemannian metric gM and a closed two-form σ on M , a path µ : (a, b)→ M
is said to be a magnetic geodesic if, for each t0 ∈ (a, b), there exists ε > 0, an orbifold
chart (U, 0, ϕ) such that µ(t) ∈ ϕ(U ) for all t ∈ (t0 − ε, t0 + t) and a smooth map µ̃ :
(t0 − ε, t0 + ε)→U with µ|(t0−ε,t0+ε) = ϕ ◦ µ̃ such that

〈∇t ˙̃µ, u〉 = σ̃µ̃(u, ˙̃µ) for all u ∈ TqU. (2.1)
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Here ∇, 〈· , ·〉 are σ̃ , respectively, the Levi-Civita connection and the local representatives
of gM and σ . We say that the magnetic geodesic µ has energy k if every lift µ̃ has energy
k in the classical sense.

Example 2.4. The Zn-football orbifold Fn is defined as the quotient of S2 by the Zn-
action generated by the rotation of angle 2π/n around the z-axis. A magnetic pair on Fn

corresponds to a magnetic pair on S2 given by a Riemannian metric and a closed two-
form which are invariant under the Zn-action. In particular, magnetic geodesics on Fn are
obtained by projecting down the magnetic geodesics of S2.

More generally, magnetic geodesics on developable orbifolds are always the projection
of magnetic geodesics on the (not necessarily compact) manifold cover.

Example 2.5. A manifold N with non-empty boundary ∂N can be seen as an orbifold
in which the boundary points have Z2-charts with the Z2 acting by reflection about a
hyperplane. An orbifold magnetic field in this setting then corresponds to a two-form on N
that is invariant under reflection along ∂N . For instance, in the case n = 2, this means that
σ vanishes on the boundary, while in the case n = 3 (where we can identify magnetic fields
with vector fields), the magnetic field is orthogonal to the boundary. Furthermore, orbifold
magnetic geodesics correspond to magnetic billiard trajectories in N , that is, curves in N
that satisfy the Lorenz equation in the interior of N and Snell’s law of reflection when
hitting ∂N .

Another important source of examples of orbifolds are quotients of smooth manifolds by
compact Lie groups which act locally freely, i.e., with all stabilizer groups finite. Orbifold
charts for such quotients are provided by the slice theorem. As it turns out, every orbifold
is of this form. We cite [5, Corollary 1.24].

PROPOSITION 2.6. Every n-orbifold is diffeomorphic to a quotient orbifold for a smooth,
effective and locally free O(n)-action on a smooth manifold.

3. Locally free actions
Let Q be a smooth manifold equipped with a smooth action G × Q→ Q, (g, q) 7→ g · q
of a compact Lie group G. Throughout the paper, we assume that the action is effective
and locally free, i.e., with all stabilizer groups finite. Let g denote the Lie algebra of G
and let Adg : g→ g denote the adjoint action map for g ∈ G. For any X ∈ g, we denote by
X : Q→ T Q the fundamental vector field on Q defined by

Xq =
d
dt

∣∣∣∣
t=0

exp(t X) · q ∈ Tq Q for all q ∈ Q. (3.1)

By assumption, the linear map jq : g→ Tq Q, X 7→ Xq is injective for all q ∈ Q.
Moreover, since locally there is no difference between locally free and free actions, the
concept of a principal connection form literally carries over.

Definition 3.1. A principal connection form θ ∈�1(Q; g) is a g-valued differential one-
form such that:
(i) θ(X)= X for all X ∈ g; and
(ii) ϕ∗gθ = Adg · θ for all g ∈ G, where ϕg : Q→ Q, q 7→ g · q.
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One easily checks that the standard results, as given, e.g., in [29, Ch. II], hold true in the
locally free setting: the space of principal connection forms is a non-empty affine space.
Also, any given θ induces a projection jq ◦ θq : Tq Q→ Tq Q for all q ∈ Q as well as a
splitting of the tangent space into subspaces

Tq Q = ker θq ⊕ im jq for all q ∈ Q, (3.2)

which are called horizontal and vertical, respectively, and we have a corresponding
curvature form � ∈�2(Q; g) defined by

�= dθ + [θ, θ ], (3.3)

which satisfies ϕ∗g�= Adg ·� for all g ∈ G and is horizontal, meaning that �(u, v)= 0
whenever at least one of u, v ∈ Tq Q is vertical (cf. [29, Theorem 5.2]).

A central covector, that is, any Z ∈ g∨ such that Ad∗g Z = Z for all g ∈ G, defines a
G-invariant two-form �Z := 〈Z , �〉, where 〈· , ·〉 denotes the duality pairing. As �Z is
also horizontal, it descends to the quotient orbifold M = Q/G. More precisely, we denote
by τ : Q→ M the quotient map, which is smooth in the sense of Definition 2.2, and we
define a two-form σZ ∈�

2(M) by

τ ∗σZ :=�Z = 〈Z , �〉. (3.4)

This means that if �̃ ∈�2(U, g) and τ̃ :U →U ′ are local representatives of � and τ ,
respectively, then the local representative σ̃Z of σZ is given by

σ̃Z (dq τ̃u, dq τ̃ v)= 〈Z , �̃(u, v)〉 for all q ∈U, u, v ∈ TqU.

It is straightforward to check using Bianchi’s identity (cf. [29, Theorem 5.4]) that σZ is a
well-defined closed two-form.

3.1. Horizontally lifted metric. Suppose that the quotient M = Q/G is equipped with
a metric gM and that Q carries a fixed connection form θ . The key observation of this
section is that for a particular metric on Q, which we call horizontally lifted metric, the
geodesic flow on Q restricted to a certain invariant sub-bundle projects to the magnetic
geodesic flow on M , where the magnetic form is determined by the curvature. To this end
we fix an Ad-invariant positive definite bilinear form B on g, which is possible since G is
assumed to be compact, and we define a Riemannian metric gQ on Q by requiring that:
• the splitting (3.2) is orthogonal;
• τ : Q→ M is a Riemannian submersion, i.e., dq τ̃ : ker θ̃q → Tτ̃ (q)U ′ is an isometry

for all q ∈U , where τ̃ and θ̃ are local representatives; and
• the metric restricted to the kernel of τ is given by B, i.e., jq : g→ Tq Q is an isometry

onto its image for all q ∈ Q.
In other words, the local representative of gQ is given by

B(θ̃q(v), θ̃q(w))+ g̃τ̃ (q)(dq τ̃ (v), dq τ̃ (v)) for all q ∈U and for all v, w ∈ TqU,

where g̃ denotes the local representative of gM . It is easy to see that the metric gQ is G-
invariant and restricts to the fixed Ad-invariant bilinear form on the fundamental vectors.
Conversely, given a metric gQ on Q satisfying these properties, we obtain a connection
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form θ and a metric gM on M by setting 〈θq(v), X〉 = (gQ)q(v, Xq) for all q ∈ Q, v ∈
Tq Q, X ∈ g and by requiring that τ be a Riemannian submersion.

In what follows, we denote the metrics gQ , gM and the bilinear form B on g all with
〈· , ·〉 if they cannot be confused. Also, we denote by ∇ the Levi-Civita connection of gQ

or gM and we identify g∨ with g using B.

LEMMA 3.2. For any X ∈ g, consider the two-form �X := 〈X, �〉 ∈�2(Q). We have

�X (u, v)=−2〈u, ∇vX〉 + 〈X, [θ(u), θ(v)]〉 (3.5)

for all p ∈ Q and all vectors u, v ∈ Tp Q.

Proof. We first observe that, for every X ∈ g and all p ∈ Q,

Tp Q × Tp Q 3 (u, v) 7→ 〈u, ∇vX〉

is an antisymmetric bilinear form. Indeed, after extending u and v along the flow-line
t 7→ gt p, gt := exp(t X) by u(t)= dpϕgt u and v(t)= dpϕgt v, respectively, we have

0= X〈u, v〉 = 〈∇X u, v〉 + 〈u, ∇Xv〉 = 〈∇u X , v〉 + 〈u, ∇vX〉,

where we have 0= [X , u] = [X , v].
Now let p ∈ Q and u, v ∈ Tp Q be fixed and extend u and v to vector fields, which we

still denote by u and v, respectively. By (3.3),

�X (u, v)= dθX (u, v)+ 〈X, [θ(u), θ(v)]〉, (3.6)

where θX := 〈X, θ〉 ∈�1(Q). We assume, for the moment, that u and v are both horizontal
and compute

�X (u, v)= u(θX (v))− v(θX (u))− θX ([u, v]).

=−〈[u, v], X〉

=−〈∇uv, X〉 + 〈∇vu, X〉

= 〈v, ∇u X〉 − 〈u, ∇vX〉

=−2〈u, ∇vX〉,

where in the last step we used antisymmetry and in the second-from-last we used the
identity

0= u〈v, X〉 = 〈∇uv, X〉 + 〈v, ∇u X〉.

Since � is horizontal, it suffices to check that the right-hand side of (3.5) is horizontal
as well. For that, we assume, without loss of generality, that v = Y for some Y ∈ g and
compute using antisymmetry and the fact that 〈Y , X〉 = 〈Y, X〉 is constant on Q

〈u, ∇Y X〉 = −〈Y , ∇u X〉 = 〈∇uY , X〉 = −〈∇X Y , u〉 = −〈∇Y X , u〉 − 〈[X , Y ], u〉.

We conclude that
2〈u, ∇vX〉 = −〈[X , Y ], u〉.

If u is horizontal, then the right-hand side vanishes as [X , Y ] is vertical. Finally, if u is
vertical and given by u = Z with Z ∈ g, then

2〈u, ∇vX〉 = −〈[X , Y ], Z〉 = −〈[X, Y ], Z〉 = 〈X, [Z , Y ]〉 = 〈X, [θ(u), θ(v)]〉.

Using antisymmetry we conclude that the right-hand side of (3.5) vanishes whenever at
least one of u and v is vertical. This completes the proof. �

https://doi.org/10.1017/etds.2018.122 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2018.122


G-geodesics and closed magnetic geodesics on orbifolds 1489

LEMMA 3.3. For any geodesic γ : (a, b)→ Q for gQ we have that X := θ(γ̇ ) ∈ g is
constant along γ . Moreover, if X ∈ g is central, then µ= τ ◦ γ : (a, b)→ M is a
magnetic geodesic for the pair (gM , σX ).

Proof. The first statement follows directly from antisymmetry, i.e.,

∂t 〈θ(γ̇ ), Y 〉 = ∂t 〈γ̇ , Y 〉 = 〈γ̇ , ∇t Y 〉 = 0 for all Y ∈ g.

For t ∈ (a, b), we set p := µ(t) and extend the vector µ̇(t) to a vector field v̄. Fix any
other vector ū at p and extend it to a vector field, again denoted by ū, such that

(∇µ̇(t)ū)p = (∇v̄ ū)p = 0. (3.7)

We lift ū, v̄ to horizontal vector fields u, v, respectively, and compute at p

〈∇t µ̇, ū〉 = ∂t 〈µ̇, ū〉 = ∂t 〈γ̇ , u〉

= 〈γ̇ , ∇γ̇ u〉

= 〈v + X , ∇v+X u〉

= 〈X , ∇X u〉 + 〈v, ∇X u〉 + 〈X , ∇vu〉 + 〈v, ∇vu〉

=−〈∇X X , u〉 + 〈v, ∇u X〉 − 〈∇vX , u〉 + 〈v, ∇vu〉.

The last summand above vanishes. Indeed, by [29, Proposition 1.3], adapted to the locally
free setting, and (3.7),

〈v, ∇vu〉 = 〈v, ∇uv〉 + 〈v, [u, v]〉

=
1
2 u(|v|2)+ 〈v, [u, v]〉

=
1
2 ū(|v̄|2)+ 〈v̄, [ū, v̄]〉

= 〈v̄, ∇ū v̄〉 + 〈v̄, [ū, v̄]〉

= 〈v̄, ∇v̄ ū〉 = 0.

Using Lemma 3.2 we conclude that

〈∇t µ̇, ū〉 = −2〈∇vX, u〉 =�X (u, v)= σX (ū, µ̇).

This shows that µ is a magnetic geodesic for (gM , σX ), as required. �

3.2. Constructing the bundle. In this section, we show how to construct, starting from
a given orbifold M equipped with a closed two-form σ ∈�2(M), a locally free principal
G-bundle Q and a connection form θ such that the quotient Q/G and M are isomorphic
as orbifolds and σ is determined by the curvature of θ .

PROPOSITION 3.4. Let M be a closed orbifold and let σ ∈�2(M) be a closed two-form.
Then there exist:
• a locally free principal G-bundle Q, G compact Lie group;
• a connection form θ ∈�1(Q, g); and
• a central covector Z ∈ g∨ \ {0}
such that M ∼= Q/G as orbifolds and σ = σZ is given by (3.4).

https://doi.org/10.1017/etds.2018.122 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2018.122


1490 L. Asselle and F. Schmäschke

Before proving the proposition, we recall the definition of the Euler class for principal
S1-bundles using Čech cohomology. Let ρ : Q→ P be a principal S1-bundle and let P
be a smooth manifold. Choose an open cover U = (Ui )i∈I of P such that Q|Ui is trivial
for all i ∈ I , and let gi j :Ui ∩U j → S1 be the corresponding trivialization change maps
for all i, j ∈ I . The family g = (gi j ) is a Čech-cocycle and defines a Čech-cohomology
class [g] ∈ Ȟ1(P,OS1), where by OS1 we denote the sheaf of smooth maps with values
in S1. The short exact sequence of groups 0→Z→R→ S1

→ 0 induces a long exact
sequence in Čech-cohomology

· · · → Ȟ1(P;OR)→ Ȟ1(P;OS1)
δ
→ Ȟ2(P;OZ)→ Ȟ2(P;OR)→ · · · , (3.8)

where by OR, OZ we denote the sheaf of smooth maps with values in R, Z, respectively.
Note that OZ is also the sheaf of locally constant maps denoted by Z. There is a
canonical isomorphism Ȟ2(P;Z)∼= H2(P;Z), where the right-hand side denotes the
singular cohomology with integer coefficients (cf. [16, Theorem III.1.1]). We identify
these groups without further mention and define the Euler class

eu(Q) := δ([g]) ∈ H2(P;Z).

It is a classical fact that the free part of the Euler class is represented by a curvature
form: the Lie algebra of S1 is canonically identified with R, and a connection form on Q
is simply a one-form θ ∈�1(Q) that is S1-invariant and satisfies θ(Z)= 1, where Z is the
fundamental vector field of the fiber rotations. The two-form σ = σZ defined in (3.4) is
now given via ρ∗σ = dθ . It is a closed form and after identifying the deRahm cohomology
with H2(P;R) we denote by [σ ] ∈ H2(P;R) the cohomology class represented by σ .
Further, we denote by eu(Q)R ∈ H2(P;R) the element eu(Q)⊗ 1 under the canonical
isomorphism H2(P;Z)⊗R∼= H2(P;R). A classical computation (cf. [25, p. 141])
shows that

eu(Q)R = [σ ] ∈ H2(P;R). (3.9)

Conversely, given a cocycle g = (gi j ) ∈ Ȟ1(P;OS1), we obtain a circle bundle Q over
P via the gluing construction

Q :=
∐

i

Ui × S1/∼ (3.10)

with identification (p, θ)∼ (p′, θ ′) if and only if p = p′ and θ = θ ′ + gi j (p), where p ∈
Ui and p′ ∈U j . Using the gluing construction and the exact sequence (3.8), we conclude
that, for any [σ ] ∈ H2(P;R) representing an integer cohomology class, there is a circle
bundle Q→ P such that eu(Q)R = [σ ].

Now assume that on P we additionally have a locally free action ϕ : G × P→ P ,
ϕ(g, ·)= ϕg of a compact Lie group G. Then the quotient M := P/G is canonically
an orbifold; we denote by τ : P→ M the quotient map.

LEMMA 3.5. For any e ∈ H2(M;Z), there exists a principal circle bundle Q→ P
equipped with a G-action ϕ̃ : G × Q→ Q, ϕ̃(g, ·)= ϕ̃g such that eu(Q)= τ ∗e and the
G-action commutes with the S1-action, i.e., τ ◦ ϕ̃g = ϕg ◦ τ for all g ∈ G.

Proof. It suffices to find an open cover U = (Ui )i∈I of P by G-invariant open subsets
Ui ⊂ P and a cocycle g = (gi j :Ui ∩U j → S1)i, j∈I such that:
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• gi j is G-invariant; and
• δ([g])= e.
Indeed, the product action of G × S1 on the patches Ui × S1 descends to an action of
G × S1 on the quotient obtained by the gluing construction (3.10).

Since M admits a partition of unity, we have Ȟ i (M;OR)= 0 for i ≥ 1, and replacing
P with M in the sequence (3.8) we conclude that we have a canonical isomorphism
δ̄ : Ȟ1(M; S1)∼= Ȟ2(M;Z). Also we have a canonical isomorphism Ȟ2(M;Z)∼=
H2(M;Z) (in fact, for any paracompact Hausdorff space M , cf. [16, Theorem III.1.1])
and we identify these groups via the isomorphism. Pick a good cover Ū = {Ūi }i∈I

of M and consider the pull-back cover U = {Ui }i∈I of P , where Ui = τ
−1(Ūi ). Let

[ḡ] ∈ Ȟ1(Ū; S1)∼= Ȟ1(M; S1) be a class such that δ̄([ḡ])= e and let g = τ ∗ḡ be the pull-
back. Recall that this means that g = (gi j ) is defined by gi j :Ui ∩U j → S1, gi j = ḡi j ◦ τ .
Obviously, gi j is G-invariant, and since all involved isomorphisms are canonical we also
have δ([g])= τ ∗δ̄([ḡ])= τ ∗e. �

Proof of Proposition 3.4. By Proposition 2.6 we know that there exists a smooth manifold
P equipped with a locally free O(n)-action such that M ∼= P/O(n). Let τ : P→ M be the
quotient map.

If σ is exact with dη = σ , then we define Q := S1
× P equipped with the product

action of the Lie group G = S1
× O(n). Pick any Ad-invariant positive bilinear form on g

such that the splitting g=R⊕ o(n) is orthogonal, where o(n) denotes the Lie algebra of
O(n), and identify g∨ with g using the bilinear form. Then Z = (1, 0) ∈R⊕ o(n) and the
connection form is given by

θ = ρ∗θ0 + (τ̂
∗η + dt)⊗ Z ,

where t denotes the variable in S1, θ0 is any connection for P , ρ : S1
× P→ P is the

projection to the second coordinate and τ̂ = τ ◦ ρ. Moreover,

d〈θ, Z〉 = τ̂ ∗dη = τ̂ ∗σ.

Now suppose that σ is not exact. Let e1, . . . , em be a basis of the free part of
H2(M;Z) which we identify under the isomorphism H2(M;Z)⊗R∼= H2(M;R) with
a basis of H2(M;R). Let Q1, . . . , Qm be principal circle bundles over P with Euler
classes τ ∗e1, . . . , τ

∗em , respectively, and which are equipped with lifted O(n)-actions in
the sense of Lemma 3.5. Consider the fiber-product

Q = {(p1, . . . , pm) ∈ Q1 × · · · × Qm | ρ1(p1)= · · · = ρm(pm)},

where ρi : Qi → P denotes the quotient map. The space Q is a principal Tm-bundle
over P . Moreover the diagonal O(n)-action on Q1 × · · · × Qm leaves Q invariant
and commutes with the Tm-action, so that the corresponding G :=Tm

× O(n)-action
restricted to Q has only finite stabilizers and the quotient is isomorphic to M . By
Satake’s theorem [5, p. 34], we find closed forms σi ∈�

2(M) such that [σi ] = ei for
i = 1, . . . , m. Further, we find constants a1, . . . , am ∈R which are not all zero such
that [σ ] =

∑m
i=1 ai ei . Thus, up to changing representatives, if necessary, we have

σ =
∑m

i=1 aiσi . By the isomorphism (3.9), we can choose connection forms θi on Qi
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such that dθi = τ
∗

i σi , where τi = τ ◦ ρi . We identify the Lie algebra of Tm with Rm ,
so that the quotient map is the exponential map. Further, we pick any Ad-invariant
positive bilinear form on g such that the splitting g=Rm

⊕ o(n) is orthogonal and which
is standard when restricted toRm

⊕ 0. We identify g∨ with g using the bilinear form. Then
Z = (a1, a2, . . . , am, 0) and the connection form is

θ = ρ∗θ0 +

m∑
i=1

pr∗i θi ⊗ Zi ,

where Zi is the i th unit vector if Rm , ρ : Q→ P is the quotient map and pri : Q→ Qi is
the projection to the i th factor. By construction,

d〈θ, Z〉 =
m∑

i=1

ai pr∗i dθi =

m∑
i=1

ai pr∗i τ
∗

i σi = τ̂
∗

m∑
i=1

aiσi = τ̂
∗σ,

where τ̂ : Q→ M denotes the quotient map. This completes the proof. �

4. Symplectic reduction
Here we give a brief account on the Hamiltonian formulation of the dynamical problem
(for more details, we refer the reader to [31]). This chapter serves only as a motivation on
how we will deduce the functional Sk , and hence can be skipped by a reader who is only
interested in the main argument.

It is easy to see that the action of a compact Lie group G on a manifold Q lifts to a
Hamiltonian action of G on T ∗Q

g · (q, p)= (ϕg(q), ϕ∗g−1 p)

with corresponding moment map given by

A : T ∗Q→ g∨, (q, p) 7→ (X 7→ 〈p, X〉),

where 〈· , ·〉 denotes the duality pairing. If G acts freely on A−1(Z) for a fixed central
covector Z ∈ g∨, the Marsden–Weinstein quotient is defined by

((T ∗Q)Z , ωZ )
def
= (A−1(Z)/G, ωred),

where ωred is uniquely determined by pr∗ωred = ı∗ω. Here ω denotes the standard
symplectic form on T ∗Q, and ı : A−1(Z)→ T ∗Q and pr : A−1(Z)→ A−1(Z)/G are the
canonical inclusion and the quotient projection, respectively. The construction carries over
if G acts only locally freely: in this case, (T ∗Q)Z is a symplectic orbifold.

As it turns out, ((T ∗Q)Z , ωZ ) is symplectomorphic to a twisted cotangent bundle. To
see this, we fix a principal connection form θ ∈�1(Q, g) and denote by M = Q/G, τ :
Q→ M the base and the quotient map, respectively. We define the map 5 : A−1(Z)→
T ∗M implicitly via

〈5(q, p), dqτ(v)〉 = 〈p, v〉 − 〈Z , θq(v)〉 for all v ∈ Tq Q.

Observe that 5 is well defined since the kernel of dqτ consists precisely of vectors on
which the right-hand side vanishes. Moreover, 5 is a G-invariant bundle map whose
fibers are G-orbits. We conclude that 5 induces a diffeomorphism (T ∗Q)Z ∼= T ∗M .
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LEMMA 4.1. The map 5 induces a symplectomorphism

((T ∗Q)Z , ωZ )∼= (T ∗M, ω̄ + π̄∗σ̄Z ),

where ω̄ is the standard symplectic form on T ∗M, π̄ : T ∗M→ M is the canonical
projection, and σZ ∈�

2(M) is given in (3.4).

Proof. See [11, Proposition 2.1]. �

In particular, we see that the magnetic flow on M given by the pair (gM , σZ ) lifts to
the geodesic flow on Q defined by the metric gQ , as constructed in §3.1. More precisely,
let H̄ : T ∗M→R and H : T ∗Q→R be the kinetic Hamiltonians defined by gM and
gQ , respectively, and let X H̄ , X H be the corresponding Hamiltonian vector fields. In the
Hamiltonian formulation, Lemma 3.3 reads as follows.

LEMMA 4.2. The geodesic flow on T ∗Q with respect to gQ leaves the subset A−1(Z) ∩
H−1(k) invariant and projects to the magnetic flow on H̄−1(k̄)⊂ T ∗M given by the pair
(gM , σZ ), where k = k̄ + 1

2 |Z |
2.

Proof. See [11, Lemma 2.2]. �

It follows that any curve x̄ :R→ T ∗M satisfying

˙̄x = X H̄ (x̄), x(T )= x(0), H̄(x)= k̄, (4.1)

for some T > 0, lifts to a curve x :R→ T ∗Q such that

ẋ = X H (x), x(T )= g · x(0), H(x)= k, A(x)= Z , (4.2)

for some g ∈ G, that is, to a constrained G-closed geodesic. Conversely, every constrained
G-closed geodesic projects to a curve satisfying (4.1).

Observe that, if g = exp(X) for some X ∈ g, then the rescaled curve

y :R→ T ∗Q, y(t)= exp(−t X) · x(tT )

satisfies

ẏ =−X〈A,X〉(y)+ T X H (y), y(1)= y(0), H(y)= k, A(y)= Z , (4.3)

where by X〈A,X〉 we denote the Hamiltonian vector field associated with the Hamiltonian
function 〈A, X〉 : T ∗Q→R and the standard symplectic form. Conversely, every loop
y satisfying (4.3) defines a curve x satisfying (4.2) by reversing the scaling. Following
[22, §4.2], we see that such loops correspond to the critical points of the functional Ak :

C∞(S1, T ∗Q × g)×R→R given by

Ak(y, φ, T )=
∫ 1

0
y∗λ−

∫ 1

0
[T (H(y)− k)− 〈A(y)− Z , φ〉] dt,

where λ denotes the Liouville one-form on T ∗Q.
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5. The functional Sk

Let M be a closed orbifold equipped with a Riemannian metric gM and a closed two-form
σ . In the previous chapters, we have reformulated the closed magnetic geodesics problem
for (M, gM , σ ) as the problem of finding constrained G-closed geodesics on a suitable
Riemannian locally free G-bundle (Q, gQ), a G compact Lie group or, equivalently,
critical points of the Rabinowitz-type action functional Ak . Inspired by this, we now define
a functional over a suitable space of loops in Q × g, whose critical points correspond
precisely to periodic magnetic geodesics in M of fixed energy. Thus, fix k > 1

2 and, with
the notation introduced in §3, define

Sk :W 1,2(S1, Q)× L2(S1, g)× (0,∞)→R,

Sk(γ, φ, T )=
1

2T

∫ 1

0
|γ̇ (t)+ φ(t)(γ (t))|2 dt −

∫ 1

0
〈φ(t), Z〉 dt + kT,

where 〈· , ·〉 is any Ad-invariant metric on g such that 〈Z , Z〉 = 1 and φ(t) denotes the
fundamental vector field associated with the Lie algebra element φ(t). For notational
convenience we will hereafter omit the t-dependence everywhere. We set

M :=W 1,2(S1, Q)× L2(S1, g)× (0,+∞),

and we observe that M has a natural structure of (non-complete) product Hilbert manifold;
we denote the product metric by gM. We also notice that the functional Sk is smooth
on M and that the connected components of M are in one-to-one correspondence with
conjugacy classes in π1(Q).

Remark 5.1. The functional Sk can be thought of as the Legendre dual of the functional Ak

introduced in §4. Indeed, computing for every fixed (φ, T ) the Lagrangian Lφ,T , which is
the Fenchel dual of the Hamiltonian Hφ,T := T · H − 〈A, φ〉, and then letting (φ, T ) be
free yields precisely the functional Sk above.

LEMMA 5.2. If (γ, φ, T ) is a critical point of Sk , then the curve t 7→ µ(t/T ), µ := τ ◦ γ
is a T -periodic magnetic geodesic for the pair (gM , σ ) with energy k̄ = k − 1

2 .

Proof. By rescaling, it is enough to show that µ= τ ◦ γ is a magnetic geodesic for
(gM , Tσ) with energy T 2(k − 1/2). For any ψ ∈ L2(S1, g),

0=
d
ds

∣∣∣∣
s=0

Sk(γ, φ + sψ, T )

=
1
T

∫ 1

0
〈γ̇ + φ, ψ〉 dt −

∫ 1

0
〈ψ, Z〉 dt

=
1
T

∫ 1

0
〈θ(γ̇ )+ φ − T Z , ψ〉 dt.

Therefore
θγ (γ̇ )+ φ = T Z for almost every t ∈ S1. (5.1)

Now, for any interval (a, b)⊂ S1, define

ρ : (a, b)→ G, ρ := exp η,
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where η : (a, b)→ g is such that η̇ = φ. Given any ξ ∈W 1,2(γ ∗T Q) with compact
support in (a, b) and s sufficiently small, we define

γs : (a, b)→ Q, γs(t) := expγ (t) sξ(t),

νs : (a, b)→ Q, νs(t) := ρ(t) · γs(t),

and we compute using ν̇s = dρ(γ̇s + φ) and partial integration

0=
d
ds

∣∣∣∣
s=0

2T · Sk(γs, φ, T )

=
d
ds

∣∣∣∣
s=0

∫ b

a
|γ̇s + φ|

2 dt

=
d
ds

∣∣∣∣
s=0

∫ b

a
|ν̇s |

2 dt

=

∫ b

a
〈ν̇, ∇tζ 〉 dt

=−

∫ b

a
〈∇t ν̇, ζ 〉 dt,

where ζ := (d/ds)|s=0νs = dρ ξ and ν := ν0. Since dρ is an isomorphism, we conclude
that ν is a geodesic. Moreover, using (5.1), the equivariance property of the connection
form θ and the centrality of Z we obtain

θ(ν̇)= θ(dρ(γ̇ + φ))= T Z .

Lemma 3.3 implies therefore that µ= τ ◦ ν = τ ◦ γ is a magnetic geodesic for the pair
(gM , Tσ). Finally, using (5.1) again we obtain

0=
d
ds

∣∣∣∣
s=0

Sk(γ, φ, T + s)

=−
1

2T 2

∫ 1

0
|γ̇ + φ|2 dt + k

=−
1

2T 2

∫ 1

0
(|µ̇|2 + |θ(γ̇ )+ φ|2) dt + k

=−
1

2T 2 (|µ̇|
2
+ T 2

− 2kT 2),

where with slight abuse of notation we denoted a local representative of µ in a chart with
the same letter. This shows that the energy of µ is T 2k̄, as required. �

Remark 5.3. If G is abelian, then the fundamental vector fields associated to (constant) Lie
algebra elements give already enough symmetry to infer that critical points of Sk project to
closed magnetic geodesics in M . In fact, in this setting, closed magnetic geodesics turn out
to correspond to critical points of the functional Sk :W 1,2(S1, Q)× g× (0,+∞)→R

given by

Sk(γ, X, T )=
1

2T

∫ 1

0
|γ̇ + X(γ )|2 dt − 〈X, Z〉 + kT .

In the special case G = S1, we retrieve precisely the functional considered in [11].
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5.1. The gauge group. The domain of Sk has many degrees of freedom which do not
play any role for the magnetic geodesic obtained in the quotient. By the same token,
different critical points of Sk might correspond to the same periodic magnetic geodesic
in M . To remedy this fact, we introduce on M the action of a group G which leaves the
critical set of Sk invariant. The group is the loop group

G =W 1,2(S1, G)

with group law given by pointwise multiplication and action on M given by

ρ · (γ, φ, T )= (ργ, Adρ φ − ∂tρρ
−1, T ) for all (γ, φ, T ) ∈M.

LEMMA 5.4. If (γ, φ, T ) is a critical point of Sk , then ρ · (γ, φ, T ) is also a critical point
of Sk for any ρ ∈ G.

Proof. Set γ ρ := ργ and φρ := Adρ φ − ∂tρρ
−1. We compute directly γ̇ ρ = dργ̇ +

∂tρρ
−1, where dρ denotes the differential of the ρ-action. Using the identity Adρ φ =

dρφ, we conclude that, for almost all t ∈ S1,

γ̇ ρ(t)+ φρ(t)= dρ(t)(γ̇ (t)+ φ(t)).

A straightforward computation shows now that dSk(ρ · (γ, φ, T ))= 0, as claimed. �

Although the set of critical points of Sk is, the functional Sk is not invariant under the
action of G. In fact,

Sk(ρ · (γ, φ, T ))= Sk(γ, φ, T )+1ρ for all ρ ∈ G and for all (γ, φ, T ) ∈M, (5.2)

where 1ρ is given by

1ρ :=

∫ 1

0
〈∂tρρ

−1, Z〉 dt. (5.3)

In the case ρ = exp(η) for some path η : [0, 1] → g,

1ρ = 〈η(1)− η(0), Z〉. (5.4)

Indeed, ∂tρρ
−1
= Adρ ∂tη almost everywhere and hence∫ 1

0
〈∂tρρ

−1, Z〉 dt =
∫ 1

0
〈∂tη, Z〉 dt

since Z is central. The claim then follows by the fundamental theorem of calculus. It is
worth noticing that, if G is not connected, then not every ρ ∈ G can be written as exp(η)
for some η : [0, 1] → g. However, for our purposes it will always be sufficient to consider
elements ρ which admit such a representation.

Also, Sk is not bounded from above nor from below. Indeed, consider X ∈ g such that
〈X, Z〉 6= 0 and exp(X)= e, where e is the neutral element of G. For every m ∈Z, define
ρm ∈ G via ρm(t)= exp(m Xt). Then, by (5.2),

Sk(ρm · (γ, φ, T ))= Sk(γ, φ, T )+ m〈X, Z〉.
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5.2. The Palais–Smale condition up to gauge transformations. In infinite-dimensional
Morse theory, the Palais–Smale condition plays the role of compactness since it, roughly
speaking, allows one to find critical points of a functional on a Hilbert manifold from
a sequence of approximately critical points. The lack of such a compactness property
therefore poses major difficulties and one is forced to look for additional information in
order to prove the existence of critical points. Evidence of this is represented precisely by
the functional Sk :M→R. Indeed, in the case of S1-actions treated in [11], the Palais–
Smale condition for Sk does not hold on M but rather on subsets M[T∗,T ∗] ⊂M of triples
(γ, X, T ) with 0< T∗ ≤ T ≤ T ∗. As it turns out, this is enough to show the existence of
critical points of Sk—for almost every k—by means of a clever monotonicity argument,
better known as the Struwe monotonicity argument [36] (for other applications, we refer
the reader to, e.g.. [1–4, 6–9, 17]).

In the setting considered in this paper, the situation becomes even more delicate, since
for G 6= S1 the functional Sk fails to satisfy the Palais–Smale condition even on the subsets
M[T∗,T ∗]. Nevertheless, a suitable generalization of the Palais–Smale condition (namely,
the Palais–Smale condition ‘up to gauge transformations’) for Sk on M[T∗,T ∗] turns out to
hold true. Recall that a sequence (γh, φh, Th)h∈N ⊆M is called a Palais–Smale sequence
for Sk if there exists c ∈R such that

lim
h→+∞

Sk(γh, φh, Th)= c, lim
h→+∞

|dSk(γh, φh, Th)| = 0.

More precisely, we say that (γh, φh, Th)h is a Palais–Smale sequence for Sk at c. In the
definition above, | · | denotes, with slight abuse of notation, the (dual) norm on T ∗M
induced by the metric gM. The functional Sk is said to satisfy the Palais–Smale condition
if every Palais–Smale sequence admits a converging subsequence.

Definition 5.5. A sequence (ρh)⊂ G is called admissible if the sequence (1ρh )h ⊂R,
defined as in (5.3), is bounded from above and below.

Let (γh, φh, Th)h ⊂M be a Palais–Smale sequence for Sk and let (ρh)h∈N ⊂ G
be an admissible sequence. Then, up to passing to a subsequence, if necessary,
(ρh · (γh, φh, Th))h is again a Palais–Smale sequence for Sk . Indeed, after passing
to a subsequence, we can assume that 1ρh →1 converges. The claim follows now
from Lemma 5.4 and Equation (5.2). If G 6= S1, then it is easy to construct an
admissible sequence (ρh)⊂ G such that (ρh · (γh, φh, Th)) does not contain a converging
subsequence, even though (γh, φh, Th)⊆M[T∗,T ∗]. Observe that the gauged sequence
still belongs to M[T∗,T ∗] since M[T∗,T ∗] is obviously G-invariant. Therefore, Sk does not
satisfy the Palais–Smale condition on M[T∗,T ∗].

On the other hand, given a Palais–Smale sequence (γh, φh, Th)⊆M[T∗,T ∗], one
might hope to find an admissible sequence (ρh)⊆ G such that (ρh · (γh, φh, Th)) has
a converging subsequence. By this observation, we are naturally led to the following
definition.

Definition 5.6. A G-invariant subset K ⊂M is said to satisfy the Palais–Smale condition
up to gauge transformations if, for any Palais–Smale sequence (γh, φh, Th)h ⊂K,
there exists an admissible sequence (ρh)⊂ G such that (ρh · (γh, φh, Th))h contains a
converging subsequence.
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Before we come to the main result of this subsection, namely, that M[T∗,T ∗] does
satisfy the Palais–Smale condition up to gauge transformations, we prove some elementary
estimates for Palais–Smale sequences that will be useful later on.

LEMMA 5.7. Suppose (γh, φh, Th) is a Palais–Smale sequence for Sk at level c. Then∫ 1

0
|γ̇h + φh(γh)|

2 dt = O(T 2
h ),

∣∣∣∣∫ 1

0
〈φh, Z〉 dt

∣∣∣∣= O(Th). (5.5)

Moreover, Th→ 0 if and only if
∫ 1

0
〈φh, Z〉 dt→−c. In this case,

∫ 1

0
|γ̇h +

φh(γh)|
2 dt→ 0.

Proof. We have

c + o(1)=
1

2Th

∫ 1

0
|γ̇h + φh(γh)|

2 dt −
∫ 1

0
〈φh, Z〉 dt + kTh, (5.6)

o(1)=
∂Sk

∂T
(γh, φh, Th) = k −

1
2T 2

h

∫ 1

0
|γ̇h + φh(γh)|

2 dt. (5.7)

From (5.7), it follows that

1
2Th

∫ 1

0
|γ̇h + φh(γh)|

2 dt = kTh + Tho(1).

The first equation in (5.5) follows. Replacing the last expression in (5.6) gives

−

∫ 1

0
〈φh, Z〉 dt = c − 2kTh − Tho(1)+ o(1). �

LEMMA 5.8. Suppose that (γh, φh, Th)h ⊆M is a Palais–Smale sequence for Sk such
that Th = O(1). Then there exists an admissible sequence (ρh)⊂ G such that the
gauged sequence (ρh · φh = Adρh φh − ∂tρhρ

−1
h )h admits a (strongly in L2) converging

subsequence.

Proof. We divide the proof in two steps.

Step 1. Fix a maximal torus T ⊂ G (that is, a connected, closed and abelian subgroup of
maximal dimension) with Lie algebra t. For every h ∈N, we define

φh :=

∫ 1

0
φh(t) dt ∈ g.

By [15, Theorem 6.4], there exists gh ∈ G such that Adgh φh ∈ t. Set 3 := {X ∈ t |
exp(X)= e}, where, as usual, e denotes the neutral element in G. The subgroup 3⊂ t

is a lattice and so we find X ′h ∈3 such that |Adghφh − X ′h | is uniformly bounded. With
Xh := Ad−1

gh
X ′h , we now have

|φh − Xh | = O(1). (5.8)

Now, for all h ∈N, define ηh : [0, 1] → g and ρh : [0, 1] → G by

ηh(t) :=
∫ t

0
φh(s) ds − t (φh − Xh), ρh(t) := exp(ηh(t)).
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Notice that ηh(0)= 0 and ηh(1)= Xh . Therefore ρh ∈ G for all h ∈N as, by construction,
ρh is of class W 1,2 and exp(Xh)= e. Gauging φh by ρh yields

ρh · φh = Adρh φh − ∂tρhρ
−1
h = Adρh φh − Adρh ∂tηh = Adρh (φh − Xh). (5.9)

In particular, the gauged sequence (ρh · φh) is contained in W 1,2(S1, g) as Ad is smooth
and φh − Xh is constant. Moreover, we have the pointwise estimate

|ρh · φh | = |Adρhφh − ∂tρhρ
−1
h | = |φh − ∂tηh | = |φh − Xh | = O(1).

This shows that the gauged sequence is uniformly bounded in L∞ and hence also in L2.
To check that (ρh)h is admissible, we observe that, by Lemma 5.7,

〈φh, Z〉 =
∫ 1

0
〈φh(t), Z〉 dt = O(Th)= O(1),

and thus by (5.4) and (5.8),

|1ρh | = |〈Xh, Z〉| ≤ |Xh − φh | + |〈φh, Z〉| = O(1).

Step 2. By the first step, after gauging and passing to a subsequence, if necessary, we
can assume that (γh, φh, Th) is a Palais–Smale sequence for Sk with (φh)⊆W 1,2(S1, g)

uniformly bounded in L∞. We now repeat the gauge procedure as in Step 1, taking Xh = 0,
and observe that the gauged sequence (ρh · φh) is contained in W 2,2(S1, g). Therefore, we
can compute the derivative with respect to t of ρh · φh and, using (5.9), we obtain

∂t (ρh · φh)= Adρh (ad∂tηh (φh)).

In particular, we obtain the pointwise estimate

|∂t (ρh · φh)| = | ad∂tηh φh | ≤ |∂tηh ||φh | ≤ (|φh | + |φh |)|φh | = O(1),

which shows that (ρh · φh)h is uniformly bounded in W 1,∞ and hence in W 1,2. The claim
follows using the compactness of the embedding W 1,2 ↪→ L2. �

Remark 5.9. As shown in the proof, the admissible sequence (ρh)⊆ G can be chosen in
such a way that the gauged sequence (ρh · φh) is uniformly bounded in W 1,2(S1, g) and
hence, in particular, admits a weakly (in W 1,2) converging subsequence.

COROLLARY 5.10. Suppose that (γh, φh, Th) is a Palais–Smale sequence for Sk such that
0< T∗ ≤ Th ≤ T ∗ for all h ∈N. Then there exists an admissible sequence (ρh)⊂ G such
that (ρh · (γh, φh, Th)) contains a strongly converging subsequence.

Proof. By Lemma 5.8, up to taking a subsequence and applying a gauge transformation,
we can assume that φh converges weakly in W 1,2 (and strongly in L2) to some φ ∈
W 1,2(S1, g) and that Th→ T ∈ [T∗, T ∗] as h→∞. Using the inequality (a + b)2 ≤
2a2
+ 2b2 and Lemma 5.7, we obtain∫ 1

0
|γ̇h |

2 dt ≤ 2
∫ 1

0
|γ̇h + φh(γh)|

2 dt + 2
∫ 1

0
|φh |

2 dt = O(1). (5.10)

This shows that ‖γ̇h‖2 is uniformly bounded and hence that the sequence (γh)h is 1
2 -Hölder

equicontinuous. Up to taking a subsequence, the theorem of Arzela–Ascoli yields the
existence of γ ∈ C0(S1, E) such that γh→ γ uniformly as h→∞. The fact that the
convergence of γh to γ is actually strong in W 1,2 follows now by standard arguments (see,
e.g., [1, Lemma 5.3]). �
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5.3. A complete gradient vector field for Sk . Consider the bounded vector field

Xk :=
−grad Sk√

1+ |grad Sk |2
(5.11)

conformally equivalent to −grad Sk , where the gradient of Sk is defined with respect to
the Riemannian metric gM. Since Sk is smooth, the vector field Xk is locally Lipschitz
continuous and hence its flow 8k is well defined. However, 8k is not complete since
there are flow-lines on which the variable T approaches zero in finite time. On the other
hand, the only source of non-completeness for 8k is represented by such flow-lines; and
hence, ‘stopping them’ in a suitable fashion yields a complete flow. However, while doing
this, we should be careful not to lose any geometric property of the functional Sk . To this
purpose, we need to know more about the behavior of the functional Sk in a neighborhood
of elements that are approached by finite maximal flow-lines on which T → 0.

We call an element (γ, φ, T ) ∈M vertical if γ̇ + φ(γ )= 0 almost everywhere. We
see that if (γ, φ, T ) is vertical, then necessarily the vector γ̇ (t) is vertical for almost every
t ∈ S1 and γ projects to a constant loop in the quotient M . Moreover, by (5.2), we see
immediately that

Sk(γ, φ, T )=
∫ 1

0
〈φ, Z〉 dt + kT . (5.12)

We now examine neighborhoods of vertical elements in M. For δ > 0, define

Vδ :=
{
(γ, φ, T ) ∈M

∣∣∣∣ ∫ 1

0
|γ̇ + φ(γ )|2 dt < δ

}
.

Our first goal is to show that, for δ > 0 sufficiently small, the space Vδ is a disjoint union
of neighborhoods of ‘local minima’ of Sk . To this purpose, we need some notation: we
set Z(G) := {g ∈ G | gh = hg, ∀ h ∈ G} to be the center of G, z to be its Lie algebra and
pz : g→ z to be the orthogonal projection. Note that z is non-trivial because Z ∈ z is non-
trivial by Proposition 3.4. Further, we denote with 3z := {X ∈ z | exp(X)= e} the unit
lattice in z, where e ∈ G is the neutral element of G. Finally, for every φ ∈ L2(S1, g),
we define

φ :=

∫ 1

0
φ(t) dt ∈ g. (5.13)

LEMMA 5.11. There exists N ∈N such that the following property holds. For all
(γ, φ, T ) ∈ Vδ , there exists X ∈ (1/N )3z such that

|X − pzφ|<
√
δ.

Proof. Define the path ν : [0, 1] → Q, ν(t) := ρ(t)γ (t), where

ρ : [0, 1] → G, ρ(t)= exp
(∫ t

0
φ(s) ds

)
for all t ∈ [0, 1].

Since ν̇ = dρ(γ̇ + φ(γ )), ∫ 1

0
|ν̇|2 dt =

∫ 1

0
|γ̇ + φ(γ )| dt < δ.
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This shows, in particular, that

dist(γ (0), exp(φ)γ (0))= dist(ν(0), ν(1)) <
√
δ.

If 0γ (0) ⊂ G denotes the stabilizer at γ (0), then the previous inequality yields

dist(g, h) <
√
δ, h = exp(φ),

for some g ∈ 0γ (0). Since Q is compact, there exists—up to conjugation—only finitely
many different subgroups that appear as stabilizer groups. Let N be the product of their
orders. It follows that gN

= e. Using the triangle inequality combined with the invariance
of the distance on G with respect to right and left multiplication, we then obtain

dist(e, hN ) < N
√
δ, hN

= exp(Nφ). (5.14)

Now let T ⊂ G be a maximal torus with Lie algebra t and integer lattice 3= {X ∈ t |
exp(X)= e}. By [15, Theorem 6.4], there exists ` ∈ G such that Ad` φ ∈ t. Since exp :
t→ T is a local isometry, we deduce from (5.14) that there exists X ∈3 such that

|Ad`Nφ − X |< N
√
δ.

Moreover, since the splitting g= z⊕ ker pz is left invariant by the adjoint action, we have
pz Ad` φ = pzφ and hence

|N pzφ − pzX | = |pz(N Ad` φ − X)| ≤ |Ad`Nφ − X |< N
√
δ.

The claim follows from the fact that pz(3)=3z. �

By the previous lemma, we see that for all δ > 0 small enough,

Vδ =
⊔

X∈(1/N )3z

Vδ,X , Vδ,X := {(γ, φ, T ) ∈ Vδ | |pzφ − X |<
√
δ}.

Observe that Vδ,X might be empty. However, if there exists p ∈ Q such that exp(X) ∈ 0p,
where 0p ⊂ G denotes the stabilizer subgroup at p, then Vδ,X is non-empty and contains
the vertical element (γX , φX , T ) given by φX (t)= X and γX (t)= exp(t X)p, for all t ∈
[0, 1]. For such a vertical element,

Sk(γX , φX , T )=−〈X, Z〉 + kT .

LEMMA 5.12. For δ > 0 small enough, there exists ε > 0 such that for all X ∈ (1/N )3z

with Vδ,X 6= ∅ we have

inf
Vδ,X

Sk =−〈X, Z〉, inf
∂Vδ,X

Sk >−〈X, Z〉 + ε.

Proof. For every (γ, φ, T ) ∈ ∂Vδ,X we compute

Sk(γ, φ, T )=
δ

2T
− 〈φ, Z〉 + kT ≥

√
2δk − 〈φ, Z〉 ≥

√
2δk −

√
δ − 〈X, Z〉,

where the first inequality is obtained by minimizing in T and the last is given by
Lemma 5.11. Indeed, notice that, by construction, Z ∈ z and hence

〈φ, Z〉 = 〈pzφ, Z〉.

The second assertion follows, as (
√

2k − 1)
√
δ > 0. The first assertion follows as well,

since any (γ, φ, T ) ∈ Vδ,X is contained ∂Vδ′,X for δ′ :=
∫ 1

0 |γ̇ + φ(γ )|
2. �
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COROLLARY 5.13. Let (γh, φh, Th) be a Palais–Smale sequence for Sk such that Th→ 0.
Then after gauging and taking a subsequence, if necessary, we have that

Sk(γh, φh, Th)→−〈X, Z〉

for some X ∈ (1/N )3z and, for any δ > 0, the sequence (γh, φh, Th) eventually enters the
set Vδ,X .

Proof. Fix δ > 0. By the first equation of (5.7), we see that∫ 1

0
|γ̇h + φh(γh)|

2 dt = 2T 2
h (k + o(1))= 2T 2

h k + o(T 2
h ).

In particular, (γh, Th, Zh) ∈ Vδ for h large enough. By Step 1 in the proof of Lemma 5.8,
we can find an admissible sequence (ρh)h ⊆ G such that the gauged sequence (ρh · φh) is
uniformly bounded in L2. We pick one such admissible sequence and consider the gauged
sequence (ρh · (γh, φh, Th)). For sake of simplicity, we will denote the gauged sequence
again by (γh, φh, Th).

By Lemma 5.11, for every h ∈N there exists Xh ∈ (1/N )3z such that

|pzφh − Xh |<
√

2(k + o(1))Th =
√

2kTh + o(Th). (5.15)

It follows that

Sk(γh, φh, Th)=
1

2Th

∫ 1

0
|γ̇h + φh(γh)|

2 dt − 〈φh, Z〉 + kTh

≤ 2kTh − 〈Xh, Z〉 +
√

2kTh + o(Th)

<−〈Xh, Z〉 + o(1)

for h large enough. On the other hand,

Sk(γh, φh, Th)≥ 2kTh − 〈Xh, Z〉 −
√

2kTh + o(Th)≥−〈Xh, Z〉

for h large enough, as k > 1/2. Since φh is uniformly bounded in L2, |φh | is uniformly
bounded as well. Therefore, the set

{〈Xh, Z〉 | h ∈N} ⊆R

is discrete (actually finite). We conclude that there exists X ∈ (1/N )3z such that Xh = X
for every h large enough. In particular, Sk(γh, φh, Th)→−〈X, Z〉 and, in virtue of (5.15),
(γh, φh, Th) ∈ Vδ,X for h large enough, as we wished to prove. �

The next lemma shows that maximal flow-lines of Xk that are defined on a finite interval
have to approach vertical elements. The proof is analogous to that of [11, Lemma 4.9] and
will be omitted.

LEMMA 5.14. Suppose u : [0, R)→M is a maximal flow-line of Xk . Then there exist
X ∈ (1/N )3z and a sequence rh ↑ R such that u(rh) ∈ Vδ,X for all h large enough, and
with (γh, φh, Th) := u(rh), we have∫ 1

0
|γ̇h + φh(γh)|

2 dt→ 0, Sk(u(rh))→−〈X, Z〉.
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Using Lemma 5.14, it is now easy to get from8k a complete flow by stopping flow-lines
that enter the sets

{Sk <−〈X, Z〉 + ε} ∩ Vδ,X for all X ∈
1
N
3z.

With slight abuse of notation, we denote the complete flow also by 8k .

6. Proof of Theorems 1.2 and 1.4
In this section, building on the results of the previous ones, we prove Theorems 1.2
and 1.4. In order to show the existence of critical points of Sk , we will use the topological
assumption on M to find a suitable (non-trivial) minimax class on the Hilbert manifold M
and a corresponding minimax function. We will then show that such a minimax function
yields critical points of Sk for almost every k > 1

2 .
The proof for Theorem 1.2 follows closely [11]; however, some extra care is needed in

the whole line of argument. Indeed, on the one hand, the functional Sk satisfies the Palais–
Smale condition on M[T∗,T ∗] only up to gauge transformations and, on the other hand,
the construction of the minimax class requires techniques coming from rational homotopy
theory and orbifold theoretical homotopy theory.

6.1. The minimax class for Theorem 1.2. We call M rationally aspherical if πorb
` (M)

⊗Q is trivial for all `≥ 2, where by πorb
` (M) we denote the orbifold-theoretic homotopy

group as defined in [5, Definition 1.50]. Recall that, with the notation from Proposition 3.4
and [5, Proposition 1.51], the orbifold homotopy groups of M are the (classical) homotopy
groups of the Borel quotient B M := Q ×G EG, where EG denotes the universal G-
bundle. For every k ≥ 1, we obtain a homomorphism

τk : πk(Q)→ πorb
k (M), (6.1)

which is induced by the quotient map Q × EG→ B M .

LEMMA 6.1. Assume that πorb
k (M)⊗Q 6= 0 for some k ≥ 2. Then there exists a class

a ∈ π`(Q) for some `≥ 2 such that τ`(a) has infinite order.

Proof. The fibration G ↪→ Q × EG→ B M induces an exact homotopy sequence

· · ·
τk+1
−→ πorb

k+1(M)−→ πk(G)−→ πk(Q)
τk
−→ πorb

k (M)−→ · · · . (6.2)

If τk ⊗Q is trivial for all k ≥ 2, then the sequence splits into short exact sequences

0→ πorb
k+1(M)⊗Q→ πk(G)⊗Q→ πk(Q)⊗Q→ 0 for all k ≥ 1.

In particular,
dim πorb

k+1(M)⊗Q≤ dim πk(G)⊗Q for all k ≥ 1.

Let B̃ M be the (classical) universal cover of B M . Since πorb
k (M)= πk(B M)∼= πk(B̃ M)

for all k ≥ 2, we obtain

dim πk+1(B̃ M)⊗Q≤ dim πk(G)⊗Q for all k ≥ 1.

Furthermore, since π2 j (G)⊗Q is trivial for all j ≥ 1 (cf. [21, §15(f)]), we see that
π2 j+1(B̃ M)⊗Q is trivial for all j ≥ 0. By the same inequality, we conclude that
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π∗(B̃ M)⊗Q has finite type and thus H∗(B̃ M,Q) has as well, following the remark
after [21, Theorem 15.11]. By [21, Theorem 15.11], we see that the minimal model
(V, d) of B̃ M has only even generators, which implies that the differential d is trivial.
The same theorem implies that V k is non-trivial for some k ≥ 2 since, by assumption,
πorb

k (M)⊗Q∼= πk(B̃ M)⊗Q 6= 0. Let x ∈ V k be a non-trivial element. Since V is a free
algebra, its powers x j

∈ V jk are non-trivial for all j ≥ 1. By the property of a minimal
model and the vanishing of the differential of V , we have that V ∗ ∼= H∗(B̃ M,Q) and, in
particular, that H jk(B̃ M,Q) is non-trivial for all j ≥ 1.

Now let M̃ be the universal orbifold cover of M in the sense of [5, Definition 2.16]. By
[5, Proposition 2.17], the Borel quotient corresponding to M̃ is B̃ M . The Vietoris–Begle
theorem yields an isomorphism H∗(B̃ M,Q)∼= H∗(M̃,Q), where the right-hand denotes
the singular cohomology of the underlying topological space (cf. [5, Proposition 2.12]). It
follows that H∗(M̃,Q) is non-trivial in arbitrary large degree, which is impossible for the
finite-dimensional orbifold M̃ . �

For ` ∈N, let B` ⊂R` be the standard ball with boundary S`−1. We identify the space
Q with the subspace of constant loops in W 1,2(S1, Q). Further, we set QT0 := Q × {0} ×
(0, T0] ⊂M for T0 > 0 fixed. By equation (5.12),

max
QT0

Sk = kT0 ≤ ε/2

if T0 > 0 is chosen small enough, where ε > 0 is the constant from Lemma 5.12. It is well
known that with any continuous map u : (B`−1, S`−2)→ (M, QT0) we can associate a
continuous map v = vu : S`→ Q × g× (0,∞) and, conversely, with every smooth map
v : S`→ Q × g× (0, T0] we can associate a continuous map of pairs of spaces u = uv :
(B`−1, S`−2)→ (M, QT0) such that vuv is homotopic to v. Moreover, a homotopy of
u induces a homotopy of uv and vice versa (cf. [28, Proof of Theorem 2.4.20] for more
details). By abuse of notation, we denote by [u] ∈ π`(Q) the homotopy class associated to
vu , where we have additionally identified π`(Q × g× (0,∞))∼= π`(Q) canonically.

LEMMA 6.2. There exists δ > 0 such that, for any u : (B`−1, S`−2)→ (M, QT0)

satisfying u(x) ∈ Vδ for all x ∈ B`−1, we have that τ`([u])= 0 in πorb
` (M).

Proof. Let T ⊂ G be a maximal torus with Lie algebra t and unit lattice 3⊂ t. For x ∈
B`−1, write u(x)= (γx , φx , Tx ) and let φx ∈ g be as defined in (5.13). As explained in the
proof of Lemma 5.11, for any x ∈ B`−1 we find g = gx ∈ G and X = Xx ∈ (1/N )3 such
that |Adgφx − X |<

√
δ. Hence, either |φx |<

√
δ or

|φx |>1−
√
δ, 1 := min

X∈(1/N )3\{0}
|X |> 0.

For δ small enough, the statements are mutually exclusive and, since x 7→ |φx | is
continuous and vanishes for all x ∈ S`−2, we conclude that |φx |<

√
δ for all x ∈ B`−1.

Now set (γ ρx
x , φ

ρx
x , Tx ) := ρx · (γx , φx , Tx ), where

ρx : S1
→ G, t 7→ exp

(∫ t

0
φx (t ′) dt ′ − φx t ′

)
.
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As in the proof of Lemma 5.8, we see that |φρx
x | ≤ |φx |<

√
δ and hence, using (5.10),∫ 1

0
|γ̇ ρx

x |
2 dt < 4δ.

In particular, for δ > 0 small enough, the map x 7→ γ
ρx
x defines the trivial homotopy class

in π`(Q) (cf. [27, Theorem 1.4.15]). We conclude that [u] is in the image of π`(G)→
π`(Q) and, in particular, is mapped to the trivial class to πorb

` (M). �

Given the homotopy class a ∈ π`(Q) as in Lemma 6.1, we now define

P := {u : (B`−1, S`−2)→ (M, QT0) | [u] = a}.

We readily see that P 6= ∅ since uv ∈ P for any v : S`→ Q × {0} × (0, T0] smooth such
that [v] = a. Obviously, P is invariant under the complete flow defined in §5.3, provided
that T0 > 0 is small enough. The last property of P that we need is that every element
u ∈ P has to intersect ∂Vδ (more precisely, ∂Vδ,0). This follows trivially from Lemma 6.2.

6.2. The minimax class for Theorem 1.4. We adapt the argument in [26] to our setting.
Consider a tube G ×0 U , where 0 ⊂ G is a stabilizer group and U ⊂ Q is a contractible
slice (i.e., a submanifold which is 0 invariant). From the G-equivariant embedding G ×0
U ↪→ Q, we obtain an embedding

U ×0 EG ∼= (G ×0 U )×G EG ↪→ Q ×G EG = B M,

which induces a group homomorphism

ρ : 0 ∼= π1(U ×0 EG)→ π1(B M)∼= πorb
1 (M). (6.3)

Such a homomorphism is precisely the homomorphism defined in [5, Lemma 2.22]. We
deduce that, if M is not developable, we can find a tube U ×0 EG and a non-trivial
element [γ̄ ] in πorb

1 (U ) that is trivial in πorb
1 (M). Consider the diagram with exact rows

π1(G) //

=

��

π1(G ×0 U )

��

// πorb
1 (U )

��

// π0(G)

=

��
π1(G) // π1(Q) // πorb

1 (M) // π0(G)

A simple diagram chase shows that there exists also a class [γ ] in π1(G ×0 U ) that is
trivial in π1(Q). Without loss of generality, we assume that the representative γ is vertical
and X = θ(γ̇ ) constant in t . Using the homotopy of γ to a constant loop in Q, we now
define a non-trivial minimax class for the functional Sk . More precisely, consider the space
of continuous maps

P := {u : [0, 1] →M | u(0)= (γ,−X, T0), u(1) ∈ QT0}.

Clearly, P is non-empty and invariant under the flow 8k defined in §5.3, provided
that T0 > 0 is chosen small enough. The last thing we need to check is that every
u ∈ P has to intersect ∂Vδ for all δ > 0 sufficiently small. For any x ∈ [0, 1], we write
u(x)= (γx , φx , Tx ), set φx as in (5.13) and assume by contradiction that u(x) ∈ Vδ for all
x ∈ [0, 1]. Exactly as in the proof of Lemma 6.2, we see that, for all x ∈ [0, 1], we have
either |φx |<

√
δ or |φx |>1−

√
δ. Since |φ0| = |X |>1−

√
δ, |φ1| = 0, and the two

conditions above are mutually exclusive if δ is small enough, we obtain a contraction to
the continuity of the map x 7→ |φx |.
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6.3. End of proofs. We define the minimax function

c : (1/2,+∞)→ (0,+∞), c(k) := inf
u∈P

max Sk ◦ u,

where P is the minimax class defined in §§6.1 and 6.2. By Lemma 5.12, we have c(k)≥ ε
for all k > 1/2, for every u ∈ P has to intersect ∂Vδ . However, this is not enough to exclude
that Th converges to zero as h→+∞ for some Palais–Smale sequence (γh, 8h, Th) for
Sk at level c(k), as it might be that c(k)= 〈X, Z〉 for some X ∈ (1/N )3z. For that, we
will need the piece of additional information given by the following lemma. For the proof
we refer to [11, Lemma 5.3].

LEMMA 6.3. Let u be any element of P . Suppose that x∗ ∈ B`−1 (respectively, [0, 1]) is
such that

Sk(u(x∗))≥max Sk ◦ u − ε/2. (6.4)

Then u(x∗) /∈
⋃

X∈(1/N )3z
{Sk <−〈X, Z〉 + ε/2} ∩ Vδ,X .

The function c(·) is monotonically increasing in k and hence almost everywhere differe-
ntiable. The next proposition shows there exist Palais–Smale sequences (γh, φh, Th)⊆M
for Sk with the Th bounded away from zero and uniformly bounded, provided k is a point
of differentiability for c(·).

PROPOSITION 6.4. Let k∗ be a point of differentiability for c(·). Then there exists a Palais–
Smale sequence (γh, φh, Th)⊆M for Sk∗ such that the Th are uniformly bounded and
bounded away from zero.

The proof relies on the celebrated Struwe monotonicity argument [36] and will be
omitted since it is a plain adaptation of the proof of [11, Proposition 5.4] (see also [1,
Lemma 8.1], [17, Proposition 7.1] and [8, Proposition 4.1]), taking into account the fact
that Sk satisfies the Palais–Smale condition on M[T∗,T ∗] only up to gauge transformations.

Proof of Theorems 1.2 and 1.4. Combine Proposition 6.4 with Lemma 5.10. �

Proof of Corollary 1.3. We prove (i). Up to passing to the compact orbifold universal
cover, we can assume that πorb

1 (M)= 0. Notice that, in this case, M must be orientable.
Clearly, it suffices to show that M is not rationally aspherical. Suppose, by contradiction,
that π∗(B M)⊗Q is trivial for all ∗ ≥ 2, where B M is the classifying space of M . By
assumption, π1(B M)= 0. In particular, B M is simply connected and its minimal model
is trivial (cf. [21, Theorem 15.11]). This implies that H∗(B M;Q)∼= 0 for all ∗ ≥ 1.
By [5, Proposition 2.12], we have Hn(M;Q)∼= Hn(B M;Q)∼= 0 with n = dim M , which
is impossible by Poincaré duality.

Now we prove (ii). Assume, by contradiction, that the universal orbicover M̃ is
rationally aspherical. As in the proof of Lemma 6.1, we see it must have a minimal model
(V ∗, d) with vanishing differential. Further, by assumption, V 2 ∼= H2(M̃,Q) is non-
trivial, because the pull-back of σ to M̃ yields a non-trivial cohomology class. This shows
that V ∗ ∼= H∗(M̃,Q) is infinite dimensional, which is in contradiction to the assumption
that M is a finite-dimensional orbifold. �
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7. Proof of Theorem 1.5
Let (M, gM ) be a closed Riemannian orbifold. By Proposition 2.6, there exists a smooth
manifold Q equipped with a locally free action of a compact group G such that Q/G ∼= M
as orbifolds. Without loss of generality, we assume that G is connected. Indeed, if G0 ⊂ G
denotes the connected component of the neutral element, the quotient Q/G0 is a finite
cover of Q/G and a closed geodesic in the former yields one in the latter. Now consider
the metric gQ on Q associated with g, as explained in §2, and define the functional

E :W 1,2(S1, Q)× L2(S1, g)→R, E(γ, φ) :=
∫ 1

0
|γ̇ + φ(γ )|2 dt,

where g denotes the Lie algebra of G and | · | denotes the norm on T Q induced by gQ .
From the discussion in §5, it follows immediately that the functional E is smooth and
bounded from below (by zero). Moreover, it is invariant under gauge transformations,
satisfies the Palais–Smale condition up to gauge transformations and its critical points
project to a closed geodesic in (M, gM ). In particular, critical points contained in E−1(0)
project to point curves.

Proof of Theorem 1.5. If M is not developable, then we obtain a non-constant closed
geodesic on M by literally repeating the proof of Theorem 1.4. Indeed, consider a non-
zero class [γ ] in π1(G ×0 U ) that is trivial in π1(Q). We assume that the representative γ
is vertical and that X = θ(γ̇ ) constant in t and we define the following minimax class for
the functional E.

P0 := {u : [0, 1] →W 1,2(S1, Q)× L2(S1, g) | u(0)= (γ,−X), u(1)= (q0, 0)}.

Clearly, P0 is non-empty and invariant under the negative gradient flow of E. Moreover,
every u ∈ P0 has to intersect ∂Vδ for all δ > 0 sufficiently small, where

Vδ := {(γ, φ) ∈W 1,2(S1, Q)× L2(S1, g) | E(γ, φ) < δ}.

Therefore, the minimax value

c := inf
u∈P0

max
x∈[0,1]

E(u(x))

is strictly larger than δ. This yields the existence of a critical point for E at level c, and
thus of a non-constant closed geodesic in M , as the functional E satisfies the Palais–Smale
condition up to gauge transformations.

If πorb
1 (M) is finite, then up to passing to the orbifold universal cover, we see that M

is not rationally aspherical and hence the proof follows by the same argument used for
Theorem 1.2. Indeed, consider a ∈ π`(Q)⊗Q such that τ`(a) 6= 0 ∈ πorb

` (M)⊗Q for
some `≥ 2. Denote by P the space of continuous maps

u : (B`−1, S`−2)→ (W 1,2(S1, Q)× L2(S1, g), Q × {0})

representing the homotopy class a. Since every u ∈ P has to intersect the boundary of
the set Vδ for δ > 0 sufficiently small, the existence of the desired non-constant closed
geodesic follows by minimax over the class P .
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Finally, assume that πorb
1 (M) contains an element of infinite order, say, ã. Consider the

exact homotopy sequence

· · · → π1(G)→ π1(Q)→ πorb
1 (M)→ π0(G)= 1. (7.1)

From the surjectivity of the map τ1 : π1(Q)→ πorb
1 (M), we deduce that there is an element

a ∈ π1(Q) such that τ1(a)= ã. In particular, a has infinite order. Now consider the
connected component Ca of W 1,2(S1, Q)× L2(S1, g) associated to a. We claim that there
exists δ > 0 sufficiently small such that

E(γ, φ)≥ δ for all (γ, φ) ∈ Ca .

Indeed, assume by contradiction that we can find a sequence (γh, φh)⊂ Ca such that
E(γh, φh)→ 0; then γ = γh lies in some tube G ×0 U , with U contractible, for some
h large enough. But this shows that, up to conjugation, a lies in the image of π1(G ×0
U )→ π1(Q). This shows, in particular, that, up to conjugation, ã lies in the image of
0 ∼= πorb

1 (U )→ πorb
1 (M) and hence must have finite order, which is in contradiction with

our assumption. The existence of the required closed geodesic in M follows now by
minimizing the functional E over the connected component Ca . �
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