

Musterlösung Blatt 1

Lösung 2. Teil (i) Bezeichne die Bilinearform $\langle \cdot, \cdot \rangle_k : \Lambda^k V \times \Lambda^k V \to \mathbb{R}$ durch (lineare Fortsetzung von) $\langle v_1 \wedge \cdots \wedge v_k, w_1 \wedge \cdots \wedge w_k \rangle_k := \det (\langle v_i, w_j \rangle)_{i,j}$. Die Bilinearform ist symmetrisch, denn für $v = v_1 \wedge \cdots \wedge v_k$ und $w = w_1 \wedge \cdots \wedge w_k$ gilt

$$\langle v, w \rangle_k = \det \left(\langle v_i, w_j \rangle \right)_{i,j} = \det \left(\langle w_j, v_i \rangle \right)_{i,j} = \det \left(\langle w_i, v_j \rangle \right)_{i,j} = \langle w, v \rangle_k$$
.

Sei $e_1, \ldots, e_n \in V$ eine Basis von V, orthonormal bezüglich $\langle \cdot, \cdot \rangle$, d.h. $\langle e_i, e_j \rangle = \varepsilon_i \delta_{ij}$ wobei $\varepsilon_i \in \{+1, -1\}$. Für $1 \leq i_1 < \cdots < i_k \leq n$ und $1 \leq j_1 < \cdots < j_k \leq n$ gilt

$$\langle e_{i_1} \wedge \cdots \wedge e_{i_k}, e_{j_1} \wedge \cdots \wedge e_{j_k} \rangle_k = \det \left(\langle e_{i_\ell}, e_{j_m} \rangle \right)_{\ell,m} = \varepsilon_{i_1} \dots \varepsilon_{i_k} \delta_{i_1 j_1} \dots \delta_{i_k j_k}.$$

Wir sehen, dass bezüglich der Basis $\{e_{i_1} \wedge \cdots \wedge e_{i_k} \mid 1 \leq i_1 < \cdots < i_j \leq n\}$ von $\Lambda^k V$ hat $\langle \cdot, \cdot \rangle_k$ Diagonalgestalt mit ± 1 auf der Diagonalen. Damit ist $\langle \cdot, \cdot \rangle_k$ nicht ausgeartet.

 $Teil\ (ii)$ Definiere $v\mapsto *v$ durch lineare Fortsetzung von $e_{i_1}\wedge\cdots\wedge e_{i_k}\mapsto \varepsilon_{j_1}\ldots\varepsilon_{j_{n-k}}e_{j_1}\wedge\cdots\wedge e_{j_{n-1}}$ wobei j_1,\ldots,j_{n-k} so gewählt, dass $(e_{i_1},\ldots,e_{i_k},e_{j_1},\ldots,e_{j_{n-k}})$ eine positive Basis bilden. Mit anderen Worten es gilt

$$e_{i_1} \wedge \cdots \wedge e_{i_k} \wedge e_{j_1} \wedge \cdots \wedge e_{j_{n-k}} = e_1 \wedge \cdots \wedge e_n$$
.

Für $v=e_{i_1}\wedge\cdots\wedge e_{i_k}$ und $w=e_{\ell_1}\wedge\cdots\wedge e_{\ell_{n-k}}$ betrachte die Differenz

$$v \wedge w - \langle *v, w \rangle_k e_1 \wedge \cdots \wedge e_n$$
.

Wenn $\{\ell_1, \ldots, \ell_{n-k}\} \cap \{i_1, \ldots, i_k\} \neq \emptyset$ verschwinden beide Terme und im anderen Fall gilt ohne Einschränkung $(\ell_1, \ldots, \ell_{n-k}) = (j_1, \ldots, j_{n-k})$ und somit

$$v \wedge w - \langle *v, w \rangle_k e_1 \wedge \cdots \wedge e_n = e_1 \wedge \cdots \wedge e_n - \varepsilon_{j_1} \dots \varepsilon_{j_{n-k}} \varepsilon_{j_1} \dots \varepsilon_{j_{n-k}} e_1 \wedge \cdots \wedge e_n = 0.$$

Wir haben also in jedem Fall

$$v \wedge w = \langle *v, w \rangle_k e_1 \wedge \dots \wedge e_n, \qquad (1)$$

für alle $v = e_{i_1} \wedge \cdots \wedge e_{i_k}$ und $w = e_{\ell_1} \wedge \cdots \wedge e_{\ell_{n-k}}$. Nach linearer Fortsetzung gilt (1) auch für alle $v, w \in \Lambda^k V$. Wir haben gezeigt, dass es eine Abbildung $v \mapsto *v$ gibt, die (1) erfüllt. Da $\langle \cdot, \cdot \rangle_k$ nicht ausgeartet ist, ist *v wohldefiniert. In der Tat sei $\tilde{v} \in \Lambda^{n-k} V$ ein anderer k-Vektor, der (1) erfüllt für alle $w \in \Lambda^{n-k} V$. Dann gilt

$$\langle \tilde{v}, w \rangle_k e_1 \wedge \cdots \wedge e_n = v \wedge w = \langle *v, w \rangle_k e_1 \wedge \cdots \wedge e_n$$
.

 $\text{Somit } \langle \tilde{v}, w \rangle_k = \langle *v, w \rangle_k \iff \langle \tilde{v} - *v, w \rangle_k = 0 \text{ für alle } w \in \Lambda^{n-k}V. \text{ Damit } \tilde{v} = *v.$

Sei (e'_1, \ldots, e'_n) eine weitere orientierte ON-Basis von V. Die zugehörige Basistransformationsmatrix $A = (a^i_i)$ liegt in SO(p, n - p) und somit

$$e'_1 \wedge \cdots \wedge e'_n = \det Ae_1 \wedge \cdots \wedge e_n = e_1 \wedge \cdots \wedge e_n$$
.

Damit ist (1), also auch die Definition von *, unabhängig der Wahl von (e_1, \ldots, e_n) . Zu Teil (iia) Durch Konstruktion erfüllt * die Formel.

Zu Teil (iib) Es gilt

$$e_1 \wedge \cdots \wedge e_n = e_{i_1} \wedge \cdots \wedge e_{i_k} \wedge e_{j_1} \wedge \cdots \wedge e_{j_{n-k}} = (-1)^{k(n-k)} e_{j_1} \wedge \cdots \wedge e_{j_{n-k}} \wedge e_{i_1} \wedge \cdots \wedge e_{i_k}$$

Somit ist $(e_{j_1}, \ldots, e_{j_{n-k}}, (-1)^{k(n-k)}e_{i_1}, e_{i_2}, \ldots, e_{i_k})$ eine positive Basis. Damit

$$*(e_{j_1} \wedge \cdots \wedge e_{j_{n-k}}) = (-1)^{k(n-k)} \varepsilon_{i_1} \dots \varepsilon_{i_k} e_{i_1} \wedge \cdots \wedge e_{i_k},$$

$$**(e_{i_1} \wedge \cdots \wedge e_{i_k}) = \varepsilon_{j_1} \dots \varepsilon_{j_{n-k}} * (e_{j_1} \wedge \cdots \wedge e_{j_{n-k}}) = (-1)^{p+k(n-k)} e_{i_1} \wedge \cdots \wedge e_{i_k},$$

da $\varepsilon_{j_1} \dots \varepsilon_{j_{n-k}} \varepsilon_{i_1} \dots \varepsilon_{i_k} = (-1)^p$. Durch lineare Fortsetzung gilt $** = (-1)^{p+k(n-k)}$.

Zu Teil (iic) Wähle $1 \le i_1 < \cdots < i_k \le n$ und $1 \le \ell_1 < \cdots < \ell_k \le n$, setze $v = e_{i_1} \wedge \cdots \wedge e_{i_k}$ und $w = e_{\ell_1} \wedge \cdots \wedge e_{\ell_k}$ und betrachte die Differenz

$$w \wedge *v - (-1)^p \langle v, w \rangle_k e_1 \wedge \dots \wedge e_n.$$
 (2)

Wenn $\{i_1, \ldots, i_k\} \neq \{\ell_1, \ldots, \ell_k\}$ dann verschwinden beide Terme nach *Teil (i)*. Im anderen Fall gilt

$$\varepsilon_{j_1} \dots \varepsilon_{j_{n-k}} e_1 \wedge \dots \wedge e_n - (-1)^p \varepsilon_{i_1} \dots \varepsilon_{i_{n-k}} e_1 \wedge \dots e_n = 0$$

da wieder $\varepsilon_{j_1} \dots \varepsilon_{j_{n-k}} \varepsilon_{i_1} \dots \varepsilon_{i_k} = (-1)^p$. Nach linearer Fortsetzung verschwindet (2) für alle Vektoren $v, w \in \Lambda^k V$. Mit (1) gilt $*e_1 \wedge \dots \wedge e_n = 1$, denn in diesem Fall ist $w \in \Lambda^0 V = \mathbb{k}$ und $\cdot \wedge w$ ist die skalare Multiplikation. Wir wenden * auf (2) an und erhalten da die Differenz verschwindet

$$*(w \wedge *v) = (-1)^p \langle v, w \rangle .$$

Genauso zeigen wir $*(v \wedge *w) = (-1)^p \langle v, w \rangle$.

Lösung 3. Zu Teil (i) Betrachte zunächst $\alpha = f \in \Omega^0(M) = C^{\infty}(M)$. Dann gilt $i_X(\alpha \wedge \beta) = i_X(f\beta) = fi_X\beta$ wegen $C^{\infty}(M)$ -linearität von i_X . Dannit haben wir die Gleichung gezeigt für k = 0. Sei nun $\alpha \in \Omega^1(M)$. Setze $X = X_1$. Dann gilt für $X_2, \ldots X_m \in \mathcal{X}(M)$ mit $m = 1 + \ell$

$$i_X(\alpha \wedge \beta)(X_2, \dots, X_m) = (\alpha \wedge \beta)(X_1, X_2, \dots, X_m)$$

$$= \frac{1}{\ell!} \sum_{\pi} \operatorname{sign} \pi \alpha(X_{\pi(1)}) \beta(X_{\pi(2)}, \dots, X_{\pi(m)})$$

$$= \alpha(X_1) \beta(X_2, \dots, X_m) - \sum_{j=2}^m (-1)^j \alpha(X_j) \beta(X_1, X_2, \dots, \hat{X}_j, \dots, X_m)$$

$$= (i_{X_1} \alpha \wedge \beta)(X_2, \dots, X_m) - (\alpha \wedge (i_{X_1} \beta))(X_2, \dots, X_m).$$

Damit haben wir die Gleichung gezeigt für k=1. Per Induktion nach k, nehmen wir an die Gleichung gelte für alle $\alpha' \in \Omega^k(M)$ und $\beta \in \Omega^\ell(M)$. Sei $\alpha'' \in \Omega^1(M)$. Wegen Assoziativität von \wedge und der Induktionsvorrausetzung gilt für $\alpha = \alpha' \wedge \alpha'' \in \Omega^{k+1}(M)$

$$i_X(\alpha \wedge \beta) = i_X(\alpha') \wedge (\alpha'' \wedge \beta) + (-1)^k \alpha' \wedge i_X(\alpha'' \wedge \beta)$$

= $i_X(\alpha') \wedge (\alpha'' \wedge \beta) + (-1)^k \alpha' \wedge i_X(\alpha'') \wedge \beta + (-1)^{k+1} \alpha' \wedge \alpha'' \wedge i_X(\beta)$
= $i_X(\alpha) \wedge \beta + (-1)^{k+1} \alpha \wedge i_X(\beta)$.

Damit gilt die Gleichung auch für alle $\alpha \in \Omega^{k+1}(M)$ da sich (punktweise) jedes beliebige α als Linearkombination von k+1-Formen vom Typ $\alpha' \wedge \alpha''$ schreiben lässt.

zu Teil (ii) Sei $\phi_t : M \to M$ der Fluss von X. Schreibe $\alpha_t = \phi_t^* \alpha$ und $\beta_t = \phi_t^* \beta$. Es gilt für $X_1, \ldots, X_m \in \mathcal{X}(M)$ mit $m = \ell + k$

$$\phi_t^*(\alpha \wedge \beta)(X_1, \dots, X_m) = \frac{1}{k!\ell!} \sum_{\pi} \operatorname{sign} \pi \alpha_t^*(X_{\pi(1)}, \dots, X_{\pi(k)}) \beta_t^*(X_{\pi(k+1)}, \dots, X_{\pi(m)})$$

Wir leiten nach t ab und setzen t = 0, unter Verwendung der Produktregel gilt

$$(\mathcal{L}_X(\alpha \wedge \beta))(X_1, \dots, X_m) = \frac{1}{k!\ell!} \sum_{\pi} \operatorname{sign} \pi \Big((\mathcal{L}_X \alpha)(X_{\pi(1)}, \dots, X_{\pi(k)}) \beta^* (X_{\pi(k+1)}, \dots, X_{\pi(m)}) + \alpha (X_{\pi(1)}, \dots, X_{\pi(k)}) (\mathcal{L}_X \beta)^* (X_{\pi(k+1)}, \dots, X_{\pi(m)}) \Big)$$

$$= \Big((\mathcal{L}_X \alpha) \wedge \beta + \alpha \wedge (\mathcal{L}_X \beta) \Big) (X_1, \dots, X_m).$$

zu Teil (iii) Es gilt $d\phi_t^*\alpha = \phi_t^*d\alpha$ für alle t. Wir rechnen

$$\mathcal{L}_X d\alpha = \partial_t \phi_t^* d\alpha \big|_{t=0} = \partial_t d\phi_t^* \alpha \big|_{t=0} \stackrel{*}{=} d\partial_t \phi_t^* \alpha \big|_{t=0} = d\mathcal{L}_X \alpha.$$

Um Gleichung * zu sehen, rechne in lokalen Koordinaten $\phi_t^* \alpha |_U = \sum_I f_t dx^I$, wobei hier $d_x x^I = d_x x^{i_1} \wedge \cdots \wedge d_x x^{i_k}$ die kanonische Basis von $\Lambda^k T_x^* M$ darstellt, für alle $x \in U$. Insbesondere hängt diese *nicht* von t ab! Wir rechnen mit Satz von Schwarz

$$\partial_t d\sum_I f_t dx^I = \sum_I \sum_{j=1}^n \partial_t \partial_{x_j} f_t dx^j \wedge dx^I = \sum_I \sum_{j=1}^n \partial_{x_j} \partial_t f_t dx^j \wedge dx^I = d\partial_t \sum_I f_t dx^I.$$

zu Teil (iv) Wir behaupten, dass sowohl \mathcal{L}_X als auch $i_X d + di_X$ Derivationen sind, d.h. die Gleichung $\psi(\alpha \wedge \beta) = \psi(\alpha) \wedge \beta + \alpha \wedge \psi(\beta)$ erfüllen für $\psi = \mathcal{L}_X$ bzw. $\psi = (i_X d + di_X)$. Das gilt wegen Teil (ii) für \mathcal{L}_X und für $i_X d + di_X$ da mit Verwendung von Teil (i)

$$(i_X d + di_X)(\alpha \wedge \beta) = i_X (d\alpha \wedge \beta + (-1)^k \alpha \wedge d\beta) + d(i_X \alpha \wedge \beta + (-1)^k \alpha \wedge i_X \beta)$$

$$= i_X d\alpha \wedge \beta + (-1)^{k+1} d\alpha \wedge i_X \beta + (-1)^k i_X \alpha \wedge d\beta + (-1)^{2k} \alpha \wedge i_X d\beta +$$

$$+ di_X \alpha \wedge \beta + (-1)^{k-1} i_X \alpha \wedge d\beta + (-1)^k d\alpha \wedge i_X \beta + (-1)^{2k} \alpha \wedge di_X \beta$$

$$= (i_X d + di_X) \alpha \wedge \beta + \alpha \wedge (i_X d + di_X) \beta.$$

Wegen Linearität ist die Differenz $\Delta := \mathcal{L}_X - (i_X d + di_X)$ auch eine Derivation. Ähnlich zur Induktion von Teil (i) reicht es zu zeigen, dass Δ auf Funktionen f und 1-Formen α verschwindet. Es gilt

$$\Delta f = \mathcal{L}_X f - i_X df = X(f) - X(f) = 0.$$

Sei zunächst $\alpha = dg$ mit $g \in \Omega^0(M)$. Mit Teil (iii)

$$\Delta dg = \mathcal{L}_X dg - di_X dg = d\mathcal{L}_X g - dX(g) = dX(g) - dX(g) = 0.$$

In einer Karte gilt $\alpha|_U = \sum_i f_i dx^i$ mit Funktionen $f_i \in C^{\infty}(U)$. Damit

$$(\Delta \alpha)|_{U} = \Delta(\alpha|_{U}) = \sum_{i} \Delta(f_{i}dx^{i}) = \sum_{i} \Delta(f_{i})dx^{i} + f_{i}\Delta(dx^{i}) = 0.$$

Lösung 4. $Zu\ Teil\ (i)\ Sei\ \mathcal{U}=\{(U_\alpha,\varphi_\alpha)\}\ ein\ Atlas\ von\ M.$ Wir müssen drei Dinge nachweisen. Erstens eine Topologie auf \tilde{M} definieren, welche Hausdorff ist und eine abzählbare Basis hat, zweitens eine Überdeckung von offenen Mengen finden, die jeweils Homöomorph zu Teilmengen aus dem \mathbb{R}^n sind und drittens zeigen, dass die Kartenwechsel glatt sind. Zunächst stellen wir fest, dass über jedem $x \in M$ genau zwei Elemente in $\pi^{-1}(x) \in \text{or}(T_x^*M)$ liegen.

(a) Wir definieren auf \widetilde{M} die Topologie

$$V \subset \widetilde{M}$$
 ist offen \iff $\pi(V \cap U_{-})$ und $\pi(V \cap U_{+})$ ist offen $\forall (U, \varphi) \in \mathcal{U}$.

Diese Topologie ist Hausdorf, denn gegeben $x, y \in \widetilde{M}$ mit $x \neq y$, dann gibt es folgende trennende Umgebungen: Wenn $\pi(x) = \pi(y) \in U$, dann gilt zwangsläufig entweder $x \in U_-$ und $y \in U_+$ oder $x \in U_+$ und $y \in U_-$. Die trennenden Umgebungen sind dann U_- und U_+ . Wenn $\pi(x) \neq \pi(y)$, dann gibt es trennende Umgebungen V_x und V_y von $\pi(x)$ bzw. $\pi(y)$. Wir erhalten trennende Umgebungen von x und y durch $\pi^{-1}(V_x)$ und $\pi^{-1}(V_y)$. Die Topologie auf \widetilde{M} hat auch eine abzählbare Basis, denn für jedes Basiselement der Topologie von M gibt es zwei Basiselemente der Topologie von \widetilde{M} .

- (b) Die offenen Überdeckung ist gegeben durch $\bigcup_{(U,\varphi)\in\mathcal{U}} \left(U_-\cup U_+\right) = \widetilde{M}$. Wie bereits im Tipp angegeben, sind die Karten $\varphi_- = \varphi \circ \pi : U_- \to \varphi(U) \subset \mathbb{R}^n$ und $\varphi_+ = \varphi \circ \pi : U_+ \to \varphi(U) \subset \mathbb{R}^n$. Da $\varphi: U \to \varphi(U)$ und $\pi|_{U_\pm}: U_\pm \to U$ Homöomorphismen sind, ist auch φ_\pm ein Homöomorphismus.
- (c) Seien $(U_{\alpha,\pm}, \varphi_{\alpha,\pm})$ und $(U_{\beta,\pm}, \varphi_{\beta,\pm})$ zwei Karten mit $U_{\alpha,\pm} \cap U_{\beta,\pm} \neq \emptyset$. Der Kartenwechsel ist $\varphi_{\beta,\pm} \circ \varphi_{\alpha,\pm}^{-1} = \varphi_{\beta} \circ \varphi_{\alpha}^{-1}$ eingeschränkt auf $\varphi_{\alpha,\pm}(U_{\alpha,\pm}) = \varphi_{\alpha}(U_{\alpha}) \subset \mathbb{R}^n$; ist also glatt da er mit einem Kartenwechsel für M übereinstimmt.

zu Teil (ii) Wenn M orientierbar ist, gibt es eine Volumenform $\omega \in \Omega^n(M)$. Wir Definieren die Abbildung $s: M \to \widetilde{M}, x \mapsto [\omega_x]$. Sei (U, φ) eine Karte von M und (U_{\pm}, φ_{\pm}) die zugehörige Karte von \widetilde{M} . Es gilt $\varphi_{\pm} \circ s \circ \varphi^{-1} : \varphi(U) \to \varphi(U)$ ist die Identität, insbesondere glatt. Also ist s eine glatte Abbildung. Ausserdem gilt $\pi \circ s = \mathrm{id}_M$.