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1. Introduction

Let (M, g) be a closed Riemannian manifold and let σ be a closed 2-form on
M . Up to passing to the orientable double cover of M we can suppose without
loss of generality that M is orientable. Consider the kinetic Hamiltonian

H̄ : T ∗M → R , H̄(q̄, p̄) =
1
2
|p̄|2q̄ ,

whereas usual | · | denotes the (dual) norm on T ∗M induced by the metric g.
Consider also the twisted symplectic form ω̄σ = ω̄ + π̄∗σ, where ω̄ = dp̄ ∧ dq̄
is the canonical symplectic form on T ∗M and π̄ : T ∗M → M the canonical
projection. The pair (H̄, ω̄σ) defines a vector field Xσ

H̄
on T ∗M by

ω̄σ

(
Xσ

H̄ , ·) = −dH̄,

called the Hamiltonian vector field of H̄ with respect to ω̄σ. Its flow Φσ
H̄

:
T ∗M → T ∗M is the magnetic flow of the pair (g, σ). The reason of this
terminology is that it models the motion of a charged particle in M under
the effect of a magnetic field represented by σ. In fact, if x : I → T ∗M is a
flow line of Xσ

H̄
, then the curve μ = π ◦ x satisfies the second-order ordinary

differential equation
∇tμ̇ = Yμ(μ̇) , (1.1)

where ∇t denotes the covariant derivative associated with g and Y : TM →
TM is the linear bundle map (known as Lorentz force) given by

gq(u, Yq̄(v)) = σq̄(u, v), ∀ u, v ∈ Tq̄M, ∀q̄ ∈ M.

Conversely, given a solution μ : I → M of (1.1), the lift x = (μ, pμ) : I →
T ∗M is a flow line of Xσ

H̄
, where pμ is the g-dual of μ̇.

Periodic orbits of such a flow are usually called closed magnetic
geodesics. The magnetic flow preserves H̄, since it is the Hamiltonian of the
system; therefore, it makes sense to look at periodic orbits on a given level
set. In this paper, we will be interested in the following problem: given k̄ > 0,
does there exist a period T > 0 and a curve x : R → T ∗M which satisfies the
following conditions? ⎧

⎨

⎩

ẋ(t) = Xσ
H̄

(x(t)) ;
x(T ) = x(0) ;
H̄(x) = k̄ .

(1.2)

A particular case of magnetic flow is given by the choice σ = 0, in which
case we retrieve the geodesic flow of (M, g). The problem of the existence of
closed geodesics has received in the last century the attention of many out-
standing mathematicians as Birkhoff, Lyusternik, Gromoll and Meyer, just
to mention few of them. The existence of periodic orbits for magnetic flows
represents a natural generalization of the closed geodesic problem. However,
unlike the geodesic case, the dynamics in the magnetic setting turns out to
depend essentially on the kinetic energy of the particle. This is one of the
reasons why existence results for closed geodesics cannot be straightforward
generalized to the magnetic setting. In fact, Hedlund [2] provided an example
of a “critical” energy level without closed magnetic geodesics on any surface
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with genus at least two. On the other hand, almost every energy level contains
at least one closed magnetic geodesic (cf. [1] and references therein).

In the literature, various approaches and techniques, coming for instance
from the classical calculus of variations [3–8], symplectic geometry [9–16],
symplectic homology [17] and contact homology [18], are used to tackle the
problem of existence of closed magnetic geodesics. See also [19–22] for ex-
istence results based on a minimization procedure in case the configuration
space is two dimensional. In particular, for magnetic flows defined by an exact
2-form σ = dθ the existence of closed magnetic geodesics can be shown using
a variational characterization of periodic orbits as critical points of the free-
period Lagrangian action functional (see, e.g., [3,7]). If one tries to generalize
this approach dropping the exactness assumption, then one has to overcome
the difficulty given by the fact that the action functional is not well defined
but rather “multi-valued”. Nevertheless, following ideas contained in [23–25],
progresses in this direction have been recently made in [1,26] by studying the
existence of zeros of the action 1-form.

In this paper, we use another approach to study the existence of solu-
tions to (1.2) based on the following remark: the twisted cotangent bundle
arises naturally via symplectic reduction (cf. [27, Ex. 5.2] or [28, Sect. 6.6]).
If σ represents an integer cohomology class, then this allows to interpret the
magnetic flow as a geodesic flow on the cotangent bundle of a suitable S1-
bundle E over M , at the cost of introducing a symmetry group. In particular,
closed magnetic geodesics with energy k̄ turn out to correspond to the critical
points of a Rabinowitz-type action functional

Ak : C∞(S1, T ∗E) × (0,+∞) × R → R

or equivalently, using the Legendre transform, to the critical points of a
Lagrangian-type action functional

Sk : H1(S1, E) × (0,+∞) × R → R.

Here, k = k̄ + 1
2 and H1(S1, E) denotes the Hilbert manifold of

absolutely continuous loops in E with square-integrable derivative. Notice
that the correspondence between closed magnetic geodesics and critical points
of Ak would allow to use a version of Rabinowitz-Floer homology for con-
tact type (or, at least, stable) coisotropic submanifolds—as developed by
Kang [29]—to infer existence on a given energy level. To this purpose, it is
important to study the stability property of such coisotropic submanifolds,
also in relation with the stability property of the corresponding hypersur-
faces in T ∗M . This will be carried over in Sect. 3, where we also provide
some concrete examples. In the last part of the paper, building on the latter
correspondence, we reprove the main theorem of [1] in the setting of magnetic
flows given by closed 2-forms representing an integer cohomology class.

Theorem 1.1. Let (M, g) be a closed non-aspherical Riemannian manifold,
i.e., π�(M) 	= 0 for some � ≥ 2, and σ be a closed 2-form on M representing
an integer cohomology class. Then for almost every k̄ > 0, there exists a
contractible closed magnetic geodesic with energy k̄.



49 Page 4 of 28 L. Asselle and F. Schmäschke JFPTA

We end this introduction by giving a summary of the contents of this
paper: In Sect. 2, we recall how the magnetic flow can be seen as a projected
geodesic flow and introduce the functional Ak. In Sect. 3, we discuss the
relation between stability and contact property of energy hypersurfaces and
of the corresponding coistropic submanifolds arising via symplectic reduction.
In Sect. 4, we introduce the functional Sk and study its properties. In Sect. 5,
we prove Theorem 1.1.

2. Symplectic reduction

2.1. The magnetic flow as a projected geodesic flow

Let (M, g) be a closed orientable Riemannian manifold and let σ be a closed
2-form on M . We call the pair (T ∗M, ω̄σ := dp̄ ∧ dq̄ + π̄∗σ) the twisted
cotangent bundle. It has been known for a long time that twisted cotangent
bundles arise via symplectic reduction (cf. for example [27, Ex. 5.2]). Here,
we quickly recall this construction.

Throughout this paper, we assume that the deRahm cohomology class
represented by σ is integral, i.e., [σ] ∈ H2(M ;Z). Let S1 = {eit ∈ C | t ∈ R}
be the Lie group of complex numbers of norm one. If σ represents an integral
cohomology class, then there is a principal S1-bundle τ : E → M with Euler
class e(E) = [σ] ∈ H2(M ;Z).

Recall that the Euler class is defined as follows: choose a connection 1-
form θ ∈ Ω1(E), which is an S1-invariant 1-form satisfying θ(Z) = 1, where
Z denotes the fundamental vector field of the S1-action

Zq =
d

dt
eitq

∣
∣
∣
t=0

∈ TqE, ∀q ∈ E .

The form θ induces a splitting of the tangent bundle

TE = ker θ ⊕ R·Z, (2.1)

(vectors in ker θ are called horizontal), and uniquely defines a curvature form
σ̃ ∈ Ω2(M) by

σ̃q̄(u, v) = (dθ)q(uhor, vhor) ,

where u, v ∈ Tq̄M , q̄ ∈ M , q ∈ τ−1(q̄) and uhor, vhor ∈ TqE are horizontal
vectors that project to u, v via dqτ , respectively (called horizontal lift). Obvi-
ously, dσ̃ = 0. The Euler class is defined as the cohomology class represented
by σ̃. To see that [σ̃] does not depend on the choice of θ, one shows that any
another connection form θ′ must satisfy θ′ = θ + τ∗β for some β ∈ Ω1(M).
The curvature of θ′ is, therefore, σ̃ +dβ and hence defines the same cohomol-
ogy class. Notice that this also shows that the map θ �→ σ̃ from the space of
connection 1-forms to the space of closed forms on M representing the coho-
mology class e(E) is surjective. In particular, for a given closed 2-form σ on
M representing an integer cohomology class we can always find a connection
1-form θ such that dθ = τ∗σ.
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By push-forward the S1-action on E lifts canonically to an S1-action
on T ∗E

T ∗E → T ∗E, (q, p) �→ (
eitq, p · (dqe

it)−1
)
.

It is a classical fact (see for instance [30]) that this action on T ∗E is the
Hamiltonian flow with respect to the standard symplectic structure of the
Hamiltonian

A : T ∗E −→ R , (q, p) �−→ 〈p, Zq〉 .

Since the action is free, for every c ∈ R the symplectic quotient is well defined

T ∗E//c S1 := A−1(c)/S1 .

This quotient manifold is naturally endowed with a symplectic form ω̄c, which
is defined as the unique form such that pr∗ω̄c = ı∗ω, where ı : A−1(c) ↪→ T ∗E,
pr : A−1(c) → T ∗E//c S1 and ω denote, respectively, the natural inclusion,
the projection map and the standard symplectic form on T ∗E. Fix a connec-
tion form θ and define a map Πc : A−1(c) → T ∗M implicitly via

〈Πc(q, p), dqτ v〉 = 〈p, v〉 − c θ(v), ∀ v ∈ TqE . (2.2)

Note that Πc is well defined because the kernel of dqτ is spanned precisely by
the fundamental vector field, on which the right-hand side vanishes. Moreover,
it is not hard to see that Πc is a bundle map with fibres consisting of S1-
orbits for the lifted S1-action. We conclude that Πc induces a diffeomorphism
T ∗E//cS

1 ∼= T ∗M .

Proposition 2.1. For all c ∈ R, the map Πc induces a symplectomorphism

(T ∗E//cS
1, ω̄c) ∼= (T ∗M, ω̄ + cπ̄∗σ) .

Proof. We need to show that Π∗
c(ω̄+cπ̄∗σ) = i∗ω. Since we have π̄◦Πc = τ◦π,

we conclude that

Π∗
c π̄

∗σ = π∗τ∗σ = π∗dθ = dπ∗θ .

Hence, it suffices to see that Π∗
c λ̄ + cπ∗θ = i∗λ, where λ̄, λ are the Liouville

forms in T ∗M and T ∗E, respectively. For any v ∈ T(q,p)A
−1(c), we denote

(q̄, p̄) = Πc(q, p) and compute

(Π∗
c λ̄)(q,p)(v) = 〈p̄, dπ̄dΠθv〉 = 〈p̄, dτdπv〉 ,

and using the definition (2.2) we continue the computation

(Π∗
c λ̄)(q,p)(v) = 〈p, dπv〉 − cθ(dπv) = λq,p(v) − c(π∗θ)q,p(v) .

This shows the claim. �

Fix a connection form θ for σ and lift the metric on M to a metric on E
via gθ := τ∗g + θ ⊗ θ. In other words, consider the unique metric on E such
that:

• dqτ : ker θq → TτqM is an isometry for all q ∈ E.
• gθ(X,X) = 1,
• the splitting (2.1) is orthogonal.
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By abuse of notation, we denote again the (dual) norm on T ∗E induced
by gθ with | · | and also the kinetic Hamiltonian with

H : T ∗E −→ R , H(q, p) =
1
2
|p|2q.

Since by construction the metric gθ is S1-invariant, the Hamiltonian flow of
H commutes with the Hamiltonian flow of A. In particular, the flow of H
preserves the levels of A and via Proposition 2.1 projects to a Hamiltonian
flow on (T ∗M, ω̄σ). We show now that this reduced flow is precisely the
magnetic flow.

Lemma 2.2. We have H = H̄ ◦ Π1 + 1
2 and dΠ1XH = Xσ

H̄
. In particular,

a curve x̄ : R → T ∗M that satisfies (1.2) for some T > 0 lifts to a curve
x : R → T ∗E with ⎧

⎪⎪⎨

⎪⎪⎩

ẋ(t) = XH(x(t)) ;
x(T ) = eiϕx(0) ;
H(x) = k̄ + 1

2 ;
A(x) = 1 ,

(2.3)

for some ϕ ∈ R. Conversely, a curve x : R → T ∗E satisfying (2.3) projects
to a closed magnetic geodesic with energy k̄.

Proof. Given any (q, p) ∈ A−1(1) and v ∈ TqE. Set (q̄, p̄) := Π1(q, p) and
v̄ := dqτv. Splitting into horizontal and vertical components, we conclude by
(2.2)

〈p, v〉 = 〈p, vhor〉 + 〈Z, v〉, 〈p, vhor〉 = 〈p̄, v̄〉.
Hence by definition of the dual norm

|p| = max
|v|2=1

〈p, v〉 = max
x∈[−1,1]

max
|vhor|=√

1−x2
〈p, vhor〉 + x = max

x

√
1 − x2|p̄| + x .

By maximization in the x variable we verify |p| =
√|p̄|2 + 1. This shows

H = H̄ ◦ Π1 + 1
2 . The rest follows since by Proposition 2.1 we have Π∗

1ω̄σ =
i∗ω. �

2.2. A Rabinowitz-type action functional

Lemma 2.2 above shows that, in order to find closed magnetic geodesics with
energy k̄, it suffices to look for geodesics in T ∗E with kinetic energy k̄ + 1

2

that are closed up to S1-action and which lie on the level set A−1(1). For our
variational approach, we reformulate (2.3) into a problem of closed curves
with period 1. More precisely, if (x, T, ϕ) is a solution of (2.3), then the curve
y : [0, 1] → T ∗E defined by y(t) := e−itϕx(tT ) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

ẏ(t) = −ϕXA(y(t)) + TXH(y(t)) ;
y(1) = y(0) ;
H(y) = k̄ + 1

2 ;
A(y) = 1 .

(2.4)

Conversely, every solution of (2.4) gives a solution of (2.3) by reversing the
rescaling.
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Lemma 2.3. Set k := k̄ + 1
2 . A triple (y, T, ϕ) satisfies (2.4) if and only if it

is a critical point of the functional Ak : C∞(S1, T ∗E) × (0,+∞) × R → R

given by

Ak(y, T, ϕ) =
∫ 1

0

y∗λ −
∫ 1

0

(
THk(y) − ϕA1(y)

)
dt , (2.5)

where λ is the Liouville 1-form, Hk(q, p) := H(q, p) − k and A1(q, p) :=
A(q, p) − 1.

Proof. Let s �→ us ∈ C∞(S1, T ∗E) be a differentiable curve with u0 = y and

ξ :=
d

ds

∣
∣
∣
s=0

us.

Abbreviate the Hamiltonian Ĥ := THk − ϕA1 and use

ω(∂su, ∂tu) = (dλ)(∂su, ∂tu) = ∂sλ(∂tu) − ∂tλ(∂su)

to conclude that

dAk(y)[ξ] =
∫ 1

0

ω(ξ, ẏ) −
∫ 1

0

dĤ(ξ) dt

=
∫ 1

0

ω(ξ, ẏ) +
∫ 1

0

ω(X
Ĥ

(y), ξ) dt =
∫ 1

0

ω(ξ, ẏ − X
Ĥ

(y)) dt .

If (y, T, ϕ) solves (2.4), then clearly dAk(y)[ξ] = 0 for all ξ. On the other
hand, if dAk(y)[ξ] = 0 for all ξ, then by the fundamental lemma of calculus
of variations and by non-degeneracy of ω the curve y has to solve the first
equation in (2.4). Differentiating Ak in direction T and ϕ shows that

∂Ak

∂T
(y, T, ϕ) = −

∫ 1

0

Hk(y),
∂Ak

∂ϕ
(y, T, ϕ) =

∫ 1

0

A1(y) .

Now it is clear that ∂Ak/∂T (y, T, ϕ) = ∂Ak/∂ϕ(y, T, ϕ) = 0 if (y, T, ϕ)
is a solution of (2.4). On the other hand, if (y, T, ϕ) is a critical point of Ak,
then H and A are constant along y (since they Poisson commute) and hence
H(y) = k and A(y) = 1 as required. �

The functional Ak in (2.5) can be thought of as the classical Rabinowitz
action functional (cf. [31–33]) with two Lagrange multipliers instead of only
one and fits precisely in the setting considered in [29], where Rabinowitz-Floer
homology for contact coisotropic submanifolds is defined. Notice indeed that,
in the setting of the lemma above, Σ := H−1(k) ∩ A−1(1) is a coisotropic
submanifold of T ∗E of codimension 2, for the Hamiltonians H and A Poisson-
commute. Therefore, it is not unreasonable to try to use Rabinowitz-Floer
homology to infer existence results of critical points of the functional Ak.
However, this is very far from being a straightforward application of the re-
sults in [29]. Indeed, the coisotropic submanifold Σ is in general not of contact
type (cf. Sect. 3), even though all energy level sets of H are trivially of contact
type on (T ∗E,ω). Notice that the latter fact is in sharp contrast with what
happens on (T ∗M, ω̄σ), where very little is known about the contact property
for energy level sets of the kinetic Hamiltonian. In fact, low energy levels on
surfaces different from the two-torus are known to be not of contact type, in
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case for instance σ is an exact form (cf. [34, Theorem 1.1]); it is, however, an
open problem to determine whether such energy levels are stable or not. We
refer to [35] for the definition of stability and (for instance) to [3, Corollary
8.4] for the relation between the stability property and the existence of peri-
odic orbits. Analogously, one could ask whether the coisotropic submanifold
Σ is stable or not. This will be done in the next section.

We finish this section noticing that we might not expect the existence
of critical points of Ak for every k, as the example of the horocycle flow [2]
shows.

3. Stability and contact property of coisotropic submanifolds

In the previous section, we showed that, in order to prove the existence of
solutions to (1.2), it suffices to show the existence of 1-periodic orbits for the
Hamiltonian flow defined by the Hamiltonian T ·H−ϕ·A : T ∗E → R, for some
T > 0, ϕ ∈ R, and the standard symplectic form on T ∗E which are contained
in the coisotropic submanifold Σ := H−1(k)∩A−1(1) or, equivalently, to show
the existence of critical points of the Rabinowitz-type action functional Ak

given by (2.5). In order to potentially apply the techniques developed in [29],
we first need to know that Σ is of contact type or, at least, stable.

Let us first recall the notions of contact type, resp. stable coisotropic
submanifold, which were introduced by Bolle [36,37]. For examples of stable
resp. contact type coisotropic submanifolds, we refer to [29]. Other examples
in the setting considered in the present paper will be discussed in the next
subsections.

Definition 3.1. Let (Y 2m, ω) be a symplectic manifold and let H0, . . . , Hk−1 :
Y → R be Poisson-commuting Hamiltonians such that zero is a regular value
for each function and such that the intersection of the zero-energy level sets
of H0, . . . , Hk−1

Σ :=
k−1⋂

j=0

H−1
j (0)

is cut-out transversely. Then, Σ is a (2m−k)-dimensional coisotropic subman-
ifold. The coisotropic submanifold Σ is called stable if there exist one-forms
α0, . . . , αk−1 such that ker ωΣ ⊆ ker dαj , for all j = 0, . . . , k − 1, and

α0 ∧ · · · ∧ αk−1 ∧ ω
2(m−k)
Σ 	= 0

everywhere on Σ, where ωΣ denotes the restriction of ω to Σ. We say that Σ
is of contact type if the stabilizing forms α0, . . . , αk−1 can be chosen within
the set of primitives of ωΣ.

Obviously a necessary condition for Σ to be of contact type is that the
restricted symplectic form ωΣ is exact. Furthermore, being of contact type
for closed coisotropic submanifolds of codimension higher than one is also
topologically obstructed, as the next lemma shows.
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Lemma 3.2. Let Σ be a closed k-codimensional coisotropic submanifold of
(Y 2m, ω). If Σ is of contact type, then dim H1(Σ,R) ≥ k − 1.

Proof. Suppose by contradiction that Σ is contact and dimH1(Σ,R) < k−1.
Let α0, . . . , αk−1 be primitives of ωΣ satisfying the requirements of the def-
inition above. The differences α1 − α0, . . . , αk−1 − α0 are closed one-forms
and the corresponding cohomology classes are, by assumption, linearly de-
pendent. Consequently, there exist coefficients λ1, . . . , λk−1 ∈ R not all equal
to zero such that

λ1(α1 − α0) + · · · + λk−1(αk−1 − α0) = df,

for some function f : Σ → R. Assume without loss of generality that λ1 = 1.
We rewrite the last equation as:

α1 = df + α0 +
k−1∑

j=2

λj(α0 − αj) .

Plugging the last equation into the wedge product yields

α0 ∧ α1 ∧ · · · ∧ αk−1 ∧ ω
2(m−k)
Σ = α0 ∧ df ∧ α2 ∧ · · · ∧ αk−1 ∧ ω

2(m−k)
Σ .

Since Σ is closed, f has at least one critical point and hence

α0 ∧ · · · ∧ αk−1 ∧ ω
2(m−k)
Σ

cannot be a volume form on Σ. �

3.1. Coisotropic submanifolds arising via symplectic reduction

Let us return to the case we are interested in, i.e., when Σk = H−1(k) ∩
A−1(1), for k > 1/2. In Lemma 3.5 below, we relate the stability and contact
type condition for Σk to the corresponding conditions for the hypersurface
Σ̄ = H−1(k̄) ⊂ T ∗M . To this purpose, we first need to verify that Σk is
cut-out transversely.

Lemma 3.3. If k > 1/2, then Σk is cut-out transversely.

Proof. Assume by contradiction that there exist p ∈ Σk where dpHk and
dpA1 are linearly dependent, i.e., λ1dpHk + λ2dpA = 0 for some coefficients
λ1, λ2 ∈ R not both equal to zero. Let π : T ∗E → E be the projection.
Vectors in ker dpπ are canonically identified with T ∗

q E where q = π(p) and
with that identification in mind we conclude that for any vector ξ ∈ ker dpπ
we have dpHk(ξ) = 〈p, ξ〉 and dpA1(ξ) = 〈Zq, ξ〉, where 〈·, ·〉 denotes in the
first equation the duality pairing and in the second equation the dual metric.
Thus, 0 = λ1〈p, ξ〉 + λ2〈Zq, ξ〉 for any vertical vector ξ, which implies that
0 = λ1p + λ2ζ, where ζ is the dual of Zq. Hence

0 = |λ1p + λ2ζ|2 = λ2
1|p|2 + 2λ1λ2〈p, ζ〉 + λ2

2|ζ|2
= λ2

1(2k) + 2λ1λ2 + λ2
2

= (λ1 + λ2)2 + (2k − 1)λ2
1 .

Since 2k − 1 is positive, both summands in the last expression must vanish.
This shows that λ1 +λ2 = λ1 = 0 in contradiction with the assumption. �
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We now fix k > 1/2 and set Σ = Σk for the rest of the section. Recall
that Σ is stable if there exist one-forms α0, α1 on Σ such that ker ωΣ ⊆ ker dαi,
i = 0, 1, and

α0 ∧ α1 ∧ ωn−1
Σ 	= 0 , (3.1)

where n denotes the dimension of M . Moreover, Σ is of contact type if the
stabilizing forms α0 and α1 are additionally primitives of ωΣ. Note that by
Lemma 3.2, if Σ is of contact type then we must have H1(Σ,R) 	= 0.

The next lemma provides a criterion for the contact property of Σ in
terms of the Hamiltonian vector fields of H and A, denoted X0 and X1,
respectively. A similar statement holds clearly also for the stability condition.

Lemma 3.4. The submanifold Σ is contact if and only if there exist primitives
α0, α1 of ωΣ such that the following matrix is non-singular on Σ:

(
α0(X0) α0(X1)

α1(X0) α1(X1)

)

. (3.2)

Proof. The two-form ωΣ has kernel on Σ generated exactly by the Hamilton-
ian vector fields X0 and X1. In particular, the matrix (3.2) is non-singular
everywhere on Σ if and only if the contraction of the form in (3.1) by X0 and
X1 is non-zero on the complement of ker ωΣ. �

We now come the main result of the section. We denote by Σ̄ = H̄−1(k̄)
the sphere bundle in T ∗M .

Lemma 3.5. The following statements hold:
(i) If Σ̄ is of contact type in (T ∗M, ω̄σ), then Σ is of contact type in

(T ∗E,ω).
(ii) The space Σ̄ is stable in (T ∗M, ω̄σ) if and only if Σ is stable in (T ∗E,ω).

Proof. (i) Let ᾱ be a contact form for Σ̄ and consider α1 := π∗ᾱ, α0 = λΣ

restriction to Σ of the Liouville 1-form on T ∗E. By definition, we have

ωΣ = π∗ω̄σ|Σ̄ = π∗dᾱ = dα1 = dα0.

By construction, we have dπX0 = X̄, dπX1 = 0, where X̄ denotes the
Hamiltonian vector field defined by the kinetic Hamiltonian and the
twisted symplectic form on T ∗M . It follows by the contact condition
that

α0(X1) ≡ 1, α1(X0) = ᾱ(X̄) 	= 0, α1(X1) = ᾱ(0) = 0,

and hence the matrix (3.2) is nowhere singular on Σ.

(ii) Suppose now that Σ̄ is stable with stabilizing form ᾱ and consider the
one-forms α0, α1 on Σ as above. It suffices to show that ker ωΣ ⊆ ker dα1.
By the stability property of Σ̄, we know that any vector v ∈ ker ωΣ

projects to a vector in ker dᾱ, since v̄ := dπv ∈ ker ω̄σ|Σ̄ ⊆ ker dᾱ. It
follows that for all w ∈ TΣ we have

(dα1)(v, w) = dπ∗ᾱ(v, w) = π∗dᾱ(v, w) = dᾱ(v̄, w̄) = 0

and hence v ∈ ker dα1. Conversely, suppose that Σ is stable and let
β0, β1 be a stabilizing pair for Σ. Starting from β0, β1, we define a new
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stabilizing pair β′
0, β

′
1 for Σ which is invariant under the flow of X1

(denoted by φt
1) by

β′
i(v) :=

∫ 1

0

(φt
1)

∗βi[v] dt, ∀v ∈ TpΣ, p ∈ Σ, i = 0, 1.

Since

dβ′
i =

∫ 1

0

(φt
1)

∗dβi dt

and φ1 preserves ker ωΣ (since it preserves ωΣ), we have that ker ωΣ ⊆
ker dβ′

i, for i = 0, 1. Moreover, since by assumption β0 ∧ β1 ∧ ωn−2
Σ 	= 0,

we can conclude that β′
0 ∧ β′

1 ∧ ωn−2
Σ 	= 0. By construction, we have

(φt
1)

∗β′
i = β′

i for all t ∈ R, for i = 0, 1. Deriving in t and evaluating at
t = 0 yields

0 =
d

dt
(φt

1)
∗β′

i

∣
∣
∣
t=0

= LX1β
′
i = d(ıX1β

′
i) + ıX1dβ′

i = d(ıX1β
′
i). (3.3)

This shows that the functions β′
0(X1) and β′

1(X1) are constant along
Σ. We set b0 := β′

0(X1), b1 := β′
1(X1), and denote by Π : Σ → Σ̄

the quotient map. Finally, we define a 1-form β̄ implicitly via Π∗β̄ =
b1β

′
0 − b0β

′
1, i.e.,

β̄p̄(v̄) := b1 · (β′
0)p(v) − b0 · (β′

1)p(v),

for all p ∈ Σ in the fibre over p̄ and v ∈ TpΣ such that dpΠv = v̄. Notice
that this is a good definition since β′

0 and β′
1 are φt

1-invariant and by
construction the right-hand side vanishes on the kernel of dΠ, which is
spanned by the vector field X1. Since dΠX0 = X̄ we conclude

β̄(X̄) = b1β
′
0(X0) − b0β

′
1(X0) = det(β′

i(Xj)) 	= 0 ,

which implies that that ker ω̄σ|Σ̄ ⊆ ker dβ̄. �

Remark 3.6. The contact condition for Σ is in general weaker than the con-
tact condition for Σ̄ as the following example shows. Consider the flat torus
(T2, g) and let σ be the area form induced by g. Then, energy levels H̄−1(k̄)
are stable in (T ∗T2, ω̄σ) for every k̄ > 0 with stabilizing form given by the
angular form dθ but never of contact type, for the 2-form π∗σ|H̄−1(k̄) is never
exact (in fact, the map π∗ : H2(T2) → H2(H̄−1(k̄)) is injective). However,
the associated coisotropic submanifold Σ in T ∗E is of contact type with con-
tact forms given by α0 and α1 := α0 + τ∗dθ, where α0 denotes the restriction
of the Liouville 1-form to Σ.

Arguing as in the proof of Statement ii in Lemma 3.5, we see that Σ̄ is
of contact type in (T ∗M, ω̄σ), provided that Σ is of contact type in (T ∗E,ω)
and the constants b0, b1 satisfy b1 − b0 = 1.

3.2. Examples

From Lemma 3.5, we deduce that all examples of stable resp. contact type hy-
persurfaces in (T ∗M, ω̄σ) discussed in [9] give rise to examples of stable, resp.
contact type coisotropic submanifolds in (T ∗E,ω). From [9], we also get ex-
amples of non-stable coisotropic submanifolds. We now explain another class
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of positive examples arising from compact coadjoint orbits. Before stating
the result, we need to recall some basic facts about coadjoint orbits.

Let G be a compact Lie group acting on the dual g∨ of its Lie algebra
g via the coadjoint action. Fix any ζ ∈ g∨ and denote the coadjoint orbit

M := G · ζ := {Ad∗
gζ | g ∈ G} ⊂ g∨ .

The space M is an embedded submanifold diffeomorphic to G/Gζ where
Gζ := {g ∈ G | Ad∗

gζ = ζ} is the isotropy group. Let gζ = {X ∈ g |
ad∗

Xζ = 0} its Lie-algebra. We fix an Ad(G)-invariant positive bilinear form
B on g, which is possible because G is assumed to be compact. Taking the
orthogonal complement with respect to B, we obtain an Ad(Gζ)-invariant
splitting g = gζ ⊕ m which induces the isomorphism

TM ∼= G ×Gζ
m . (3.4)

We identify the tangent bundle via this isomorphism and denote tangent
vectors as their Gζ-equivalence classes [g,X] with g ∈ G and X ∈ m. The
canonical symplectic form on M is defined as:

σ[g]([g,X], [g, Y ]) = 〈ζ, [X,Y ]〉 ,

where [·, ·] and 〈·, ·〉 on the right-hand side denotes the Lie-bracket and the
duality pairing, respectively. The quotient M = G/Gζ is taken with respect
to the action of Gζ on G by right-multiplication. We have a remaining G-
action on M by left-multiplication. The bilinear form B induces a G-invariant
metric � on M via

�[g]([g,X], [g, Y ]) = B(X,Y ) .

We denote the dual metric on T ∗M still by � and the corresponding kinetic
Hamiltonian by H̄. The Levi-Civita connection induces a splitting of the
tangent bundle of T ∗M into horizontal and vertical bundle, both of which
are canonically identified with the right-hand side of (3.4). We identify further
g∨ with g via the bilinear form B and denote by Z the vector corresponding
to ζ under the identification.

Lemma 3.7. In the splitting and identification above, the Hamiltonian vector
field of H̄ at (q, p) ∈ T ∗M with respect to the twisted symplectic form ωσ =
dλ + π∗σ is

X(q,p) = (p,−adZp) .

Proof. Let X = (Xh,Xv) be the Hamiltonian vector field and ξ = (ξh, ξv) be
any vector at (q, p). For convenience, we omit the foot-point in the following
computation. By definition, X solves

−dH̄(ξ) = (dλ + π∗σ)(X, ξ) .

Computing the left-hand side we obtain

−dH̄(ξ) = −〈p, ξv〉 .

The right-hand side reads

(dλ + π∗σ)(X, ξ) = 〈Xv, ξh〉 − 〈Xh, ξv〉 + σ(Xh, ξh) .
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By definition of the symplectic form the last summand is

σ(Xh, ξh) = 〈ζ, [Xh, ξh]〉 = 〈Z, adXh
ξh〉 = −〈adXh

Z, ξh〉 .

The assertion follows. �

Lemma 3.8. Let M = G/Gζ , σ the canonical symplectic form on M and H̄
be the kinetic Hamiltonian with respect to �, then Σ̄k̄ = H̄−1(k̄) ⊂ T ∗M is
stable with respect to ωσ for all k̄ > 0.

Proof. We first note that adZ is invertible on m and define the differential
form α ∈ Ω1(T ∗M) by

α(q,p)(ξh, ξv) = 〈ad−1
Z p, ξv〉 .

It remains to show that α is a stabilizing form. First we need to see that
α(X) 	= 0 restricted to Σ̄k. By Lemma 3.7, we have for (q, p) ∈ Σ̄k

α(X)(q,p) = −〈ad−1
Z p, adZp〉 = |p|2 = 2k̄ 	= 0 .

One checks that the differential of α is given by

dα(q,p)((ξh, ξv), (ξ′
h, ξ′

v)) = 〈ad−1
Z ξv, ξ′

v〉 .

Any vector ξ = (ξh, ξv) at (q, p) tangent to Σ̄k satisfies ξ ∈ ker dH̄ which is
equivalent to 〈p, ξv〉 = 0. We compute

dα(q,p)(X, (ξh, ξv)) = −〈ad−1
Z adZp, ξv〉 = 〈p, ξv〉 = 0 .

This shows that ker ωΣ ⊂ ker dα. �

4. The Lagrangian action functional Sk

Unfortunately, the functional Ak defined in (2.5) is not well suited for finding
critical points using classical Morse theory. In fact, the natural space over
which it is defined—namely H1/2(S1, T ∗E)—does not have a good structure
of an infinite dimensional manifold due to the fact that curves of class H1/2

might have discontinuities. Furthermore, the functional Ak turns out to be
strongly indefinite, meaning that all its critical points have infinite Morse
index and coindex. Therefore, using the Legendre transform L : TE → T ∗E,
we introduce a related Lagrangian action functional Sk defined on the prod-
uct Hilbert manifold H1(S1, E) × (0,+∞) × R, whose critical points cor-
respond to those of Ak. Here, H1(S1, E) denotes the space of absolutely
continuous loops γ : S1 → E with square-integrable first derivative; it
is well known that H1(S1, E) has a natural structure of Hilbert manifold
(cf. [38]) with Riemannian metric gH1 naturally induced by the metric gα.
On M := H1(S1, E) × (0,+∞) × R, we then consider the product metric
gM = gH1 + dT 2 + dϕ2. Observe that (M, gM) is not complete.

In the following, we will prove the existence of critical points of Sk us-
ing variational methods, even though the functional Sk might fail to satisfy a
crucial compactness property (namely the Palais–Smale condition). To over-
come this difficulty, we will use a monotonicity argument, better known as
the Struwe monotonicity argument, which is originally due to Struwe [39]
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and has been already successfully applied [1,3,6,7,19,26] to the existence of
closed magnetic geodesics.

We recall that the connected components of M are in one to one cor-
respondence with the set of conjugacy classes in π1(E), for the canonical
inclusions

C∞(S1, E) ↪→ H1(S1, E) ↪→ C0(S1, E)

are dense homotopy equivalences. Finally, we denote with M0 the connected
component of M given by the contractible loops.

4.1. The variational principle

As in the previous sections we denote with Z the fundamental vector field
of the S1-action on E. For fixed values of T and ϕ the Legendre transform
L : TE → T ∗E of the Tonelli Hamiltonian Ĥ := THk − ϕA1 yields the
following Tonelli Lagrangian

LT,ϕ : TE → R, LT,ϕ(q, v) =
1

2T
|v + ϕZ(q)|2 − ϕ + kT,

where k := k̄+ 1
2 , and an associated Lagrangian action functional H1(S1, E) →

R,

γ �−→ 1
2T

∫ 1

0

|γ̇(t) + ϕZ(γ(t))|2 dt − ϕ + kT.

By letting the values of T and ϕ free, we thus get a functional Sk : M → R,

Sk(γ, T, ϕ) =
1

2T

∫ 1

0

|γ̇(t) + ϕZ(γ(t))|2 dt − ϕ + kT. (4.1)

For sake of completeness, we now verify that critical points of Sk project
to T -periodic magnetic geodesics with energy k̄. In order to do that we need
an auxiliary lemma. In what follows we denote with 〈·, ·〉 the metric gθ on E
as constructed in Sect. 2 and with ∇ the associated Levi-Civita connection.

Lemma 4.1. For all u, v ∈ TE we have

dθ(u, v) = 2〈∇uZ, v〉.
Proof. We denote by Φ the flow of Z. Consider c(s, t) = Φsγ(t) for some path
γ in E with ∂tγ(0) = u. Since by construction Φs is an isometry for each s,
we have

|∂tc(s, t)| = |dΦs∂tγ(t)| = |∂tγ(t)|, ∀s ∈ R.

In particular

0 =
1
2
∂s|∂tc|2 = 〈∇s∂tc, ∂tc〉 = 〈∇t∂sc, ∂tc〉 = 〈∇tZ, ∂tc〉 .

Thus, 〈∇uZ, u〉 = 0, for all u. This shows that the tensor (u, v) �→ 〈∇uZ, v〉
is skewsymmetric. Now let (s, t) �→ c(s, t) be any map such that ∂sc(0) = u
and ∂tc(0) = v. We have θ(∂sc) = 〈∂sc, Z〉. Deriving by ∂t gives

∂tθ(∂sc) = 〈∇t∂sc, Z〉 + 〈∂sc,∇tZ〉 .
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Interchanging the role of ∂s and ∂t gives

∂sθ(∂tc) = 〈∇s∂tc, Z〉 + 〈∂tc,∇sZ〉.
Finally, subtracting the two equations we get by skewsymmetry

dθ(∂sc, ∂tc) = ∂sθ(∂tc) − ∂tθ(∂sc)

= 〈∇s∂tc, Z〉 + 〈∂tc,∇sZ〉 − 〈∇t∂sc, Z〉 − 〈∂sc,∇tZ〉
= 2〈∂tc,∇sZ〉.

�
Proposition 4.2. If (γ, T, ϕ) ∈ M is a critical point of Sk, then the periodic
curve μ : [0, T ] → M defined by

μ(t) := τ ◦ γ(t/T ) , (4.2)

for all t ∈ [0, T ] is a closed magnetic geodesic with energy k̄.

Proof. Consider a variation s �→ γs ∈ H1(S1, E) with γ := γ0 and

ξ :=
d

ds

∣
∣
∣
s=0

γs.

Differentiating Sk in the γ-variable and evaluating at ξ yields

dγSk(γ)[ξ] =
1
T

∫ 1

0

〈γ̇ + ϕZ,∇tξ + ϕ∇ξZ〉dt

=
1
T

∫ 1

0

[
〈γ̇,∇tξ〉 + ϕ〈Z,∇tξ〉 + ϕ〈γ̇,∇ξZ〉 + ϕ2〈Z,∇ξZ〉

]
dt

=
1
T

∫ 1

0

[
− 〈∇tγ̇, ξ〉 + ϕ

(〈γ̇,∇ξZ〉 − 〈∇tZ, ξ〉)
]
dt

=
1
T

∫ 1

0

[
− 〈∇tγ̇, ξ〉 + 2ϕ〈γ̇,∇ξZ〉

]
dt

=
1
T

∫ 1

0

[
− 〈∇tγ̇, ξ〉 + ϕdθ(ξ, γ̇)

]
dt,

where in the third equality we have used integration by parts and the fact
that

〈Z,∇ξZ〉 =
1
2

d

ds

∣
∣
∣
s=0

|Z|2 = 0,

in the penultimate one the skewsymmetry of the tensor 〈∇uZ, v〉 and in the
last one Lemma 4.1. As (γ, T, ϕ) is a critical point of Sk, the above quantity
has to vanish for every choice of ξ and hence we conclude that

〈∇tγ̇, ·〉 = ϕdθ(·, γ̇). (4.3)

Differentiating Sk in the T -direction yields

0 = − 1
2T 2

∫ 1

0

|γ̇ + ϕZ|2 dt + k , ⇒
∫ 1

0

|γ̇ + ϕZ|2 dt = 2T 2k, (4.4)

whilst differentiating Sk in the ϕ-direction gives

0 =
1
T

∫ 1

0

〈γ̇ + ϕZ,Z〉dt − 1 , ⇒
∫ 1

0

〈γ̇, Z〉dt = T − ϕ. (4.5)
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Now observe that by Lemma 4.1 and (4.3)

d

dt
〈γ̇, Z〉 = 〈∇tγ̇, Z〉 + 〈γ̇,∇tZ〉 = 0;

therefore, 〈γ̇, Z〉 is constant and hence by (4.5) we have

〈γ̇, Z〉 = T − ϕ. (4.6)

Similarly using Lemma 4.1 and equation (4.3), we conclude that

d

dt
〈γ̇ + ϕZ, γ̇ + ϕZ〉 = 2〈∇tγ̇, γ̇〉 + 2ϕ〈∇tγ̇, Z〉 + 2ϕ〈γ̇,∇tZ〉 = 0 .

This together with (4.4) shows that

|γ̇ + ϕZ|2 = 2T 2k. (4.7)

Now set μ(t) := τ(γ(t/T )) and use the splitting

γ̇ = ξ + 〈γ̇, Z〉Z = ξ + (T − ϕ)Z,

with ξ ∈ ker θ. By construction, we have dτ(γ̇) = dτ(ξ) = T μ̇; therefore

2T 2k = |γ̇ + ϕZ|2 = |ξ + TZ|2 = T 2|μ̇|2 + T 2

and hence 1
2 |μ̇|2 = k̄ = k − 1

2 . Now, by definition we have ∇tγ̇ = ∇γ̇ γ̇;
inserting the splitting γ̇ = ξ + (T − ϕ)Z in both arguments yields by (4.3)
for any u ∈ TγE

ϕdθ(u, γ̇) = 〈∇tγ̇, u〉 = T 2〈∇μ̇μ̇, ū〉 + 2(T − ϕ)〈∇ξZ, u〉 ,

where ū = dτ(u). Since τ∗σ = dθ by Lemma 4.1, we get

ϕTσ(ū, μ̇) = T 2〈∇tμ̇, ū〉 + T (ϕ − T )σ(ū, μ̇),

for all ū ∈ TμM which implies that

〈∇tμ̇, ū〉 = σ(ū, μ̇) = 〈ū, Yμ(μ̇)〉 ⇒ ∇tμ̇ = Yμ(μ̇),

as we wished to prove. �

Conversely, one shows that every closed magnetic geodesic in M is ob-
tained as a projection of a critical point of Sk via (4.2). Moreover, we want
to emphasize that this correspondence of critical points of Sk to closed mag-
netic geodesics is far from bijective. We do not prove these facts, as they are
irrelevant to our arguments, since we are only interested in the existence of
a single closed magnetic geodesic.

4.2. The Palais–Smale condition for Sk

As already explained in the introduction to this section, we will prove the
existence of critical points for Sk using variational methods. To this purpose,
we will need the following definition.

Definition 4.3. A sequence (γh, Th, ϕh) contained in a given connected com-
ponent of M is called a Palais–Smale sequence at level c for Sk if

lim
h→+∞

Sk(γh, Th, ϕh) = c , lim
h→+∞

|dSk(γh, Th, ϕh)| = 0 .
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In the definition above, | · | denotes, with slight abuse of notation, the
(dual) norm on T ∗M induced by the Riemannian metric gM. Observe that
a limit point of a Palais–Smale sequence for Sk is trivially a critical point of
Sk. Therefore, we need to look for necessary and sufficient conditions for a
Palais–Smale sequence to admit converging subsequences. Before doing that
we need a lemma comparing the behavior of Th and ϕh on a Palais–Smale
sequence. In the following, we will denote with e(γ) :=

∫ 1

0
|γ̇|2 dt the kinetic

energy of a loop γ : S1 → E.

Lemma 4.4. Suppose (γh, Th, ϕh) is a Palais–Smale sequence for Sk at level
c, then:

1. Th → 0 if and only if ϕh → −c.
2. The Th’s are uniformly bounded from above if and only if the ϕh’s are

uniformly bounded.
3. Th → +∞ if and only if ϕh → +∞.

Proof. If (γh, Th, ϕh) is a Palais–Smale sequence, then we have

c + o(1) = Sk(γh, Th, ϕh) =
1

2Th

∫ 1

0

|γ̇h + ϕhZ(γh)|2 dt − ϕh + kTh ;

(4.8)

o(1) =
∂Sk

∂T
(γh, Th, ϕh) = k − 1

2T 2
h

∫ 1

0

|γ̇h + ϕhZ(γh)|2 dt ; (4.9)

o(1) =
∂Sk

∂ϕ
(γh, Th, ϕh) =

1
Th

∫ 1

0

〈γ̇h, Z(γh)〉dt +
ϕh

Th
− 1 . (4.10)

From (4.9), it follows that

1
2Th

∫ 1

0

|γ̇h + ϕhZ(γh)|2 dt = kTh + Tho(1)

and then by replacing in (4.8) we get

kTh + Tho(1) − ϕh + kTh = c + o(1)

from which it follows that

ϕh = 2kTh + Tho(1) − c + o(1) .

This shows at once (1), (2) and (3). �

Lemma 4.5. Suppose (γh, Th, ϕh) is a Palais–Smale sequence for Sk at level
c in a given connected component of M. Then, the following hold:

1. Set μh := τ(γh) for every h ∈ N. If Th → 0, then
∫ 1

0

|γ̇h + ϕhZ(γh)|2 dt → 0, e(μh) → 0.

2. If 0 < T∗ ≤ Th ≤ T ∗ < +∞ for every h ∈ N, then (γh, Th, ϕh) admits a
converging subsequence.
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Proof. We start proving (1). The first assertion follows trivially from (4.9).
We now show that e(μh) → 0. For every h ∈ N, we consider the splitting

γ̇h = ζh + 〈γ̇h, Z(γh)〉Z(γh),

with ζh ∈ ker θ, and using again (4.9) we get

2kT 2
h + o(T 2

h ) =
∫ 1

0

∣
∣
∣ζh +

(〈γ̇h, Z(γh)〉 + ϕh

)
Z(γh)

∣
∣
∣
2

dt

=
∫ 1

0

|ζh|2 dt +
∫ 1

0

(〈γ̇h, Z(γh)〉 + ϕh

)2 dt.

In particular,

e(ζh) =
∫ 1

0

|ζh|2 dt = o(1).

This shows the claim, as by construction dτ is an isometry on ker θ.
We now prove (2). Since the Th’s are uniformly bounded and bounded

away from zero, by Lemma 4.4 we have that also the ϕh’s are uniformly
bounded, i.e., there exists b ∈ R such that |ϕh| ≤ b for every h ∈ N. Therefore,
up to passing to a subsequence, we can assume that Th → T̄ and ϕh → ϕ̄ for
h → +∞. Moreover, using (4.8) and (4.10), we get

c + 1 ≥ 1
2Th

∫ 1

0

|γ̇h + ϕhZ(γh)|2 dt − ϕh + kTh

=
1

2Th

∫ 1

0

|γ̇h|2 dt +
ϕh

Th

∫ 1

0

〈γ̇h, Z(γh)〉dt +
ϕ2

h

2Th
− ϕh + kTh

=
1

2Th

∫ 1

0

|γ̇h|2 dt − ϕ2
h

2Th
+ kTh + o(1),

from which we deduce that, up to neglecting finitely many h ∈ N,
∫ 1

0

|γ̇h|2 dt ≤ 2Th

(
c + 2 +

ϕ2
h

2Th
− kTh

)
≤ 2T ∗

(
c + 2 +

b2

2T∗

)
.

It follows that the family {γh} ⊆ H1(S1, E) is 1
2 -Hölder-equicontinuous

and hence by the Ascoli–Arzelá theorem it converges (up to a subsequence)
uniformly to an element γ ∈ C0(S1, E). Now one argues exactly as in [3,
Lemma 5.3] to conclude that actually γh → γ strongly in H1. �

4.3. Properties of Sk close to fiberwise rotations

In this subsection, we study the properties of the functional Sk close to ro-
tations on the fibers; in particular, we show that fiberwise rotations are in
some sense local minima of Sk. This generalizes to our setting a similar well-
known statement in the classical Lagrangian setting (see for instance [3,7])
saying that constant loops are “local minima” for the free-period Lagrangian
action functional. The contents of this section will be then used in the next
one to associate with the functional Sk a complete negative gradient flow by
truncating gradient flow lines which approach fiberwise rotations.
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Thus, suppose that the loop γf : S1 → E satisfies γ̇f = −ϕZ(γf ).
Clearly, ϕ ∈ 2πZ. Assume that ϕ = 2πa, for some a ∈ Z, and notice that

Sk(γf , T, 2πa) = −2πa + kT > −2πa (4.11)

converges to −2πa for T → 0. For δ > 0, we now define the set

Vδ :=
{

(γ, T, ϕ) ∈ M
∣
∣
∣

∫ 1

0

|γ̇ + ϕZ(γ)|2 dt < δ
}

.

Our first goal is to show that, for δ > 0 sufficiently small, the value of
ϕ has to be close to 2πZ for every element in Vδ.

Lemma 4.6. If (γ, T, ϕ) ∈ Vδ, then ϕ ∈ (2πa−√
δ, 2πa+

√
δ) for some a ∈ Z.

Proof. If (γ, Tϕ) ∈ Vδ, then γ satisfies γ̇ = −ϕZ(γ)+η, for some η such that
(∫ 1

0

|η|dt

)2

≤
∫ 1

0

|η|2 dt =
∫ 1

0

|γ̇ + ϕZ(γ)|2 dt < δ.

We now consider μ(t) := eiϕtγ(t) and compute

μ̇ = ϕZ(μ) + eiϕtγ̇ = ϕZ(μ) + eiϕt
( − ϕZ(γ) + η

)
= eiϕtη.

If we denote with d(·, ·) the distance on E induced by the Riemannian metric
gθ, then from the computation above it follows that

d(μ(1), μ(0)) ≤
∫ 1

0

|eiϕtη|dt <
√

δ;

moreover, μ(0) = γ(0) = γ(1) = e−iϕμ(1). This implies that

d(μ(0), e−iϕμ(0)) = d(e−iϕμ(1), e−iϕμ(0)) = d(μ(1), μ(0)) <
√

δ

and hence trivially ϕ ∈ (2πa − √
δ, 2πa +

√
δ) for some a ∈ Z. �

By the lemma above, we easily get that Vδ is the disjoint union of the
sets Va

δ := Vδ∩{ϕ ∈ (2πa−√
δ, 2πa+

√
δ)}. Furthermore, each set Va

δ contains
only the fiberwise rotations given by (γf , T, 2πa). Our next step will be to
show that the value of Sk on ∂Va

δ is bounded away from −2πa by a positive
constant.

Lemma 4.7. For δ > 0 small enough, there exists ε > 0 such that, for all
a ∈ Z,

inf
Va

δ

Sk = −2πa, inf
∂Va

δ

Sk > −2πa + ε.

Proof. For every (γ, T, ϕ) ∈ ∂Va
δ , we readily compute

Sk(γ, T, ϕ) =
δ

2T
− ϕ + kT ≥

√
2k

√
δ − ϕ ≥

√
2k

√
δ − 2πa −

√
δ,

where in the penultimate inequality we have used minimization in the variable
T , whilst in the last one we have used Lemma 4.6. The thesis follows as
ε := (

√
2k − 1)

√
δ is positive for k > 1/2. �



49 Page 20 of 28 L. Asselle and F. Schmäschke JFPTA

By Equation (4.11), we can easily find T0 such that

Sk(γf , T, 2πa) ∈ (−2πa,−2πa + ε/4) (4.12)

for every T ∈ (0, T0] and every a ∈ Z. Observe that the fibers of E might
be contractible, as the example of the Hopf fibration S3 → S2 shows. How-
ever, fiberwise rotations with different winding number, say (γf , T, 2πa) and
(γ′

f , T ′, 2πa′) with a 	= a′ ∈ Z and T, T ′ ≤ T0, are not contained in the same
connected component of

{
Sk < max{−2πa + ε,−2πa′ + ε}}

as every path from (γf , T, 2πa) to (γ′
f , T ′, 2πa′) has to intersect ∂Vδ, being

the two fiberwise rotations in different connected components of Vδ.
Finally we notice that, combining the discussion above with Lemma

4.5,(i) we obtain the following statement for Palais–Smale sequences with Th

going to zero.

Corollary 4.8. Let (γh, Th, ϕh) be a Palais–Smale sequence for Sk at level c
in a given connected component of M such that Th → 0. Then, c = 2πa for
some a ∈ Z and (γh, Th, ϕh) eventually enters the set {Sk < −2πa+ε/4}∩Va

δ .

Proof. Fix δ > 0. By (4.9), we have that (γh, Th, ϕh) ∈ V2kT 2
h+o(T 2

h) for every
h. In particular (γh, Th, ϕh) ∈ Vδ for h large enough. Furthermore, by Lemma
4.6,

ϕh ∈ (
2πah −

√
2kTh + o(Th), 2πah +

√
2kTh + o(Th)

)
,

for some ah ∈ Z. It follows that

Sk(γh, Th, ϕh) =
1

2Th

∫ 1

0

|γ̇h + ϕhZ(γh)|2 dt − ϕh + kTh

≤ 2kTh − 2πah +
√

2kTh + o(Th) < −2πah + ε/4

for h large enough. On the other hand

Sk(γh, Th, ϕh) ≥ 2kTh − 2πah −
√

2kTh + o(Th) ≥ −2πah

for h large enough, as k > 1/2. Since Sk(γh, Th, ϕh) → c, we conclude that
there exists some a ∈ Z such that ah = a for every h large enough. In
particular c = −2πa, ϕh → 2πa and, combining the estimates above,

(γh, Th, ϕh) ∈ {
Sk ∈ [−2πa,−2πa + ε/4)

} ∩ Va
δ

for every h large enough, as we wished to prove. �

4.4. A truncated negative gradient flow for Sk

Consider the bounded vector field

Xk :=
−∇Sk√

1 + |∇Sk|2 (4.13)

conformally equivalent to −∇Sk, where the gradient of Sk is made with re-
spect to the Riemannian metric gM on M and | · | is the norm induced by
gM.
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Clearly, the only source of non-completeness for the flow Φk induced by
Xk is given by flow lines on which the variable T goes to zero. With the next
lemma, we show that such flow lines have to approach fiberwise rotations.

Lemma 4.9. Suppose u : [0, R) → M, u(r) = (γ(r), T (r), ϕ(r)) is a maximal
flow line of Φk. Then, there exist a ∈ Z and {rh}h∈N such that rh ↑ R and
∫ 1

0

|γ̇(rh) + ϕ(rh)Z(γ(rh))|2 dt → 0, ϕ(rh) → 2πa, Sk(u(rh)) → −2πa.

Proof. Since lim infr→R T (r) = 0, we can find a sequence {rh}h∈N such that
rh ↑ R, T (rh) → 0 and T ′(rh) ≤ 0 for every h ∈ N. Using (4.4), we get that

0 ≥ ρhT ′(rh) = −∂Sk

∂T
(u(rh)) =

1
2T (rh)2

∫ 1

0

| ˙γ(rh) + ϕ(rh)Z(γ(rh))|2 dt − k,

where ρh :=
√

1 + |∇Sk(γh)|2, and hence
∫ 1

0

| ˙γ(rh) + ϕ(rh)Z(γ(rh))|2 dt ≤ 2kT (rh)2. (4.14)

This proves the first assertion. We now use Lemma 4.6 to infer that

ϕ(rh) ∈ (
2πa(rh) −

√
2kT (rh), 2πa(rh) +

√
2kT (rh)

)

for some a(rh) ∈ Z and compute

Sk(u(rh)) =
1

2T (rh)

∫ 1

0

| ˙γ(rh) + ϕ(rh)Z(γ(rh))|2 dt − ϕ(rh) + kT (rh)

≤ 2kT (rh) − 2πa(rh) +
√

2kT (rh)

< −2πa(rh) + ε

for h large enough, where ε is the constant given by Lemma 4.7. On the other
hand

Sk(u(rh)) ≥ −2πa(rh),

for the infimum of Sk on Va(rh)
2kT (rh)2 is −2πa(rh). This shows that

(γ(rh), T (rh), ϕ(rh)) ∈ {
Sk < −2πa(rh) + ε)

} ∩ Va(rh)
2kT (rh)2

for every h large enough. Since r �→ Sk ◦ u(r) is non-increasing, we conclude
that there exist δ > 0, a ∈ Z and h̄ ∈ N such that u(r) ∈ Va

δ for every r ≥ rh̄.
In particular, a(rh) = a for every h large enough and hence ϕ(rh) → 2πa,
Sk(u(rh)) → −2πa, as we wished to show. �

Using Lemma 4.9, it is now easy to get from Φk a complete flow. Namely,
we stop flow lines which enter the connected component of the sublevel set
{Sk < −2πa + ε/2} containing the fiberwise rotations (γf , T, 2πa), T ≤ T0.
With slight abuse of notation, we denote the complete flow also with Φk.
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5. Proof of Theorem 1.1

In this section, building on the results of the previous ones, we prove Theorem
1.1. In order to show the existence of critical points of Sk, we will use the
topological assumption on M to build a suitable (non-trivial) minimax class
on the Hilbert manifold M and a corresponding minimax function. We will
then show that such a minimax function yields critical points of Sk for almost
every k > 1

2 .
The first step in this direction is, therefore, to show that the assumption

on the topology of M is preserved when passing to the S1-bundle. As a
precursor, we recall the relation between the homotopy groups of E and the
ones of M .

Lemma 5.1. The maps π�(τ) : π�(E) → π�(M), � ∈ N, of homotopy groups
induced by the S1-bundle τ : E → M satisfy

• π�(τ) is an isomorphism for � ≥ 3.
• π1(τ) is surjective and its kernel is isomorphic to Z/mZ.
• π2(τ) is injective and π2(M) ∼= mZ ⊕ im π2(τ).

Here, m is defined by the relation {〈e,A〉 | A ∈ HS
2 (M)} = mZ, where

HS
2 (M) ⊂ H2(M ;Z) denotes the image of the Hurewicz map π2(M) →

H2(M ;Z), e ∈ H2(M) the Euler class of E → M and 〈e,A〉 the dual pairing.

Proof. Consider the long exact homotopy sequence

· · · → π�(S1) → π�(E)
π�(τ)−→ π�(M) → π�−1(S1) → · · · ,

This readily shows the first assertion. For � = 2, the connecting homomor-
phism fits into the commuting square

0 �� π2(E) �� π2(M) ��

��

π1(S1)

��

�� π1(E) �� π1(M) �� 0

HS
2 (M ;Z) �� Z

where the vertical arrows are the Hurewicz map and the canonical
isomorphism and the horizontal maps are the connecting homomorphism
and the pairing with the Euler class. This readily implies the other two
statements. �
Lemma 5.2. If M is non-aspherical, then E is non-aspherical.

Proof. Recall that, by Lemma 5.1, π�(M) is isomorphic to π�(E) for every
� ≥ 3. In particular, if π�(M) 	= {0} for some � ≥ 3, then also π�(E) 	= {0}.
Thus, we are left with the case π2(M) 	= {0} and π�(M) = {0}, for every
� ≥ 3. Assume by contradiction that E is aspherical, i.e., π�(E) = 0 for all
� ≥ 2. But then again by Lemma 5.1, we conclude that π2(M) ∼= Z and thus
the universal cover of M satisfies

π2(M̃) ∼= Z, π�(M̃) = {0}, ∀ � 	= 2.

In particular, M̃ is homotopy equivalent (cf. [40,41]) to the Eilenberg–
Maclane space K(Z, 2) ∼= CP∞. This is, however, not possible for a finite-
dimensional manifold, since H2j(CP∞,Z) ∼= Z for every j ∈ N. �
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By the lemma above, there exists a non-zero element u ∈ π�(E) for
some � ≥ 2. Notice that, by Lemma 5.1, π�(τ)(u) 	= 0 ∈ π�(M). Recall that
M0 ⊂ M denotes the connected component of loops which are contractible.
With u, we now associate a suitable class of paths in M0 over which we will
perform the minimax procedure.

We start observing that any continuous map

f : (B�−1, S�−2) → (H1(S1, E), E),

defines a continuous map v(f) : S� → E (cf. for instance [42, Proof of Theo-
rem 2.4.20]); here, with slight abuse of notation, we have denoted with E the
set of constant loops in H1(S1, E). Conversely, every regular map v : S� → E
defines a continuous map

f(v) : (B�−1, S�−2) → (H1(S1, E), E).

Notice furthermore that, by (4.12) we can find a positive constant T0 > 0
such that maxSk|ET0,0 ≤ ε/4, where ε > 0 is the constant given by Lemma
4.7 and

ET0,0 :=
⋃

T≤T0

E × {T} × {0}.

Now set

P :=
{

u = (f, T, ϕ) : (B�−1, S�−2) → (M0, ET0,0)
∣
∣
∣ [v(f)] = u

}
.

We readily see that P 	= ∅, since (f(v), T, ϕ) ∈ P for any smooth map
v : S� → E such that [v] = u and T ≤ T0. Moreover, P is by construction
invariant under the complete flow Φk defined in Sect. 4.4. The last property
of P we will need is that every element u ∈ P has to intersect ∂Vδ (more
precisely, ∂V0

δ ). Indeed, if u(·) ⊆ Vδ, then u(·) would have to be entirely
contained in V0

δ (simply because ϕ(Sl−2) = 0 and Vδ is the disjoint union of
the sets Va

δ , a ∈ 2πZ) and hence, using the splitting

˙f(s) = ζ(s) + 〈 ˙f(s), Z(f(s))〉Z(f(s))

with ζ(s) ∈ ker θ, we would get e(ζ(s)) < δ for every s ∈ [0, 1]. In particular,
since by construction dτ is an isometry on ker θ, we would have that e(τ ◦
f(s)) < δ, for all s ∈ [0, 1]. This would imply that [τ ◦f ] = 0 ∈ π�(M) (see, for
instance [42, Sect. 2.4]), in contradiction with our assumption (recall indeed
that π�(τ)(u) 	= 0).

We now define the minimax function

c :
(

1
2
,+∞

)
→ (0,+∞), c(k) := inf

u∈P
max

ζ∈B�−1
Sk(u(ζ)).

Observe that c(k) ≥ ε, for every u ∈ P has to intersect ∂V0
δ . However,

this is not enough to exclude that the periods of a Palais–Smale sequence for
Sk converge to zero as h → +∞, as it might well be that c(k) = 2πa for some
a ∈ Z. For that we will need the piece of additional information given by the
following lemma.
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Lemma 5.3. Let u be any element of P. Suppose that ζ∗ ∈ B�−1 is such that

Sk(u(ζ∗)) ≥ max
B�−1

Sk ◦ u − ε/2. (5.1)

Then, u(ζ∗) /∈ ∪a∈Z({Sk < −2πa + ε/4} ∩ Va
δ ).

Proof. Suppose by contradiction that there exists a ∈ Z such that u(ζ∗) ∈
{Sk < −2πa + ε/4} ∩ Va

δ . Since u ∈ P, there exists ζ ∈ B�−1 such that
u(ζ) ∈ ∂Va

δ . Using Lemma 4.7, we now readily see that

max
B�−1

Sk ◦ u − Sk(u(ζ∗)) ≥ Sk(u(ζ)) − Sk(u(ζ∗))

> −2πa + ε + 2πa − ε/2 = ε/2,

in contradiction with (5.1). �

Clearly, the function c(·) is monotonically increasing in k and hence al-
most everywhere differentiable. With the next proposition we show that we
can find Palais–Smale sequences (γh, Th, ϕh) ⊆ M0 for Sk with Th’s bounded
away from zero and uniformly bounded, as soon as k is a point of differen-
tiability for c(·). The proof goes along the line of [3, Lemma 8.1] (see also
[7, Proposition 7.1]) and [1, Proposition 4.1] and relies on the celebrated
Struwe monotonicity argument [39]. This concludes the proof of Theorem 1.1
in virtue of Lemma 4.5,(2).

Proposition 5.4. Let k∗ be a point of differentiability for c(·). Then, there
exists a Palais–Smale sequence (γh, Th, ϕh) ⊆ M0 for Sk∗ with Th bounded
and bounded away from zero.

Proof. Let M be a right linear modulus of continuity for c(·) at k∗. This
means that for all k ≥ k∗ sufficiently close to k∗ we have

c(k) − c(k∗) ≤ M(k − k∗). (5.2)

Consider a sequence kn ↓ k∗ and set bn := kn − k∗ ↓ 0. Without loss
of generality, we suppose that (5.2) holds for k = kn and every n ∈ N. For
every n ∈ N pick an element un ∈ P such that

max
ζ∈B�−1

Skn
(un(ζ)) < c(kn) + bn ≤ c(k∗) + (M + 1)bn .

If ζ ∈ B�−1 is such that Sk∗(un(ζ)) ≥ c(k∗) − bn, then using (5.2) we get

Tn(ζ) =
Skn

(un(ζ)) − Sk∗(un(ζ))
bn

≤ M + 2.

It follows that, for all n ∈ N, un is contained in

{Sk∗ ≤ c(k∗) − bn} ∪
{
Sk∗ ∈ (

c(k∗) − bn, c(k∗) + (M + 1)bn

)
, T ≤ M + 2

}
.

For every r ∈ [0, 1] and every n ∈ N we now define ur
n ∈ P by

ur
n(ζ) := Φk∗

r (un(ζ)), ∀ζ ∈ B�−1,

where Φk∗
r is the complete flow defined in Sect. 4.4. Namely, for ζ ∈ B�−1

fixed, r �→ ur
n(ζ) is the flow line of Φk∗

starting at un(ζ). Since Sk∗ is non-
increasing along flow lines of Φk∗

and the vector-field generating Φk∗
has
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norm less than or equal to one we have that, for all r ∈ [0, 1] and every
n ∈ N,

ur
n ∈ {Sk∗ ≤ c(k∗) − bn} ∪

{
Sk∗ ∈ (

c(k∗) − bn, c(k∗) + (M + 1)bn
)
, T ≤ M + 3

}
.

For any ζ ∈ B�−1, we now have two possibilities:
(i) Sk∗(u1

n(ζ)) ≤ c(k∗) − bn.
(ii) Sk∗(ur

n(ζ)) ∈ (c(k∗) − bn, c(k∗) + (M + 1)bn), for every r ∈ [0, 1].
If ζ ∈ B�−1 satisfies the second alternative, then we have

Sk∗(ur
n(ζ)) > c(k∗) − bn > max

B�−1
Sk∗ ◦ ur

n − (M + 2)bn

> max
B�−1

Sk∗ ◦ ur
n − ε/2

for every n ∈ N large enough. Therefore, by Lemma 5.3, ur
n(ζ) /∈ ∪a∈Z({Sk∗ <

−2πa+ ε/2}∩Va
δ ) for every r ∈ [0, 1] and every n ∈ N large enough. In other

words, r �→ ur
n(ζ) is a genuine flow line for the flow of the vector field Xk∗

in (4.13). We now claim that there exists a Palais–Smale sequence for Sk∗

contained in

K := {T ≤ M + 3}\
⋃

a∈Z

({Sk∗ < −2πa + ε/2} ∩ Va
δ ).

Notice that this completes the proof, since such a Palais–Smale sequence has
Th trivially uniformly bounded and bounded away from zero by Corollary
4.8.

Thus, suppose by contradiction that Sk∗ does not have Palais–Smale
sequences contained in K. Set K′ := K ∩ {Sk∗ ∈ (c(k∗) − 1, c(k∗) + M + 1)}.
Assume without loss of generality that bn ≤ 1 for all n ∈ N. Since K′ does
not contain a Palais–Smale sequence as well and Sk∗ is bounded on K′ we
find ρ > 0 such that |Xk∗ | ≥ ρ on K′. If ζ ∈ B�−1 satisfies the alternative ii)
above, then ur

n(ζ) ∈ K′ for all r ∈ [0, 1] and we compute

(M + 2)bn > Sk∗(un(ζ)) − Sk∗(u1
n(ζ)) =

∫ 1

0

|Xk∗ |2dr ≥ ρ2,

which is impossible for n large. It follows that, for n large enough, every
ζ ∈ B�−1 satisfies the alternative i), that is

max
B�−1

Sk∗ ◦ u1
n ≤ c(k∗) − bn,

in contradiction with the definition of c(k∗). �
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and AS 546/1-1 “Morse theoretical methods in Hamiltonian dynamics”.



49 Page 26 of 28 L. Asselle and F. Schmäschke JFPTA
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