18.01 SPRING 2005
MIDTERM 2 SOLUTIONS

1. [20 pts] For each of the following, set up but do not evaluate a definite integral for computing the

requested quantity.

(a) The area enclosed by the curves y = e*, y = —tanz, x =0 and z = 7/4.

Dividing the region into narrow rectangles with thickness Ax (figure below, left) produces the

integral

/4
/ (e* + tanx) dx |
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(b) The volume of the solid obtained by rotating the region of part (a) about the y-axis.
We divide the solid into cylindrical shells of thickness Az (figure below, right), starting from radius
z = 0 and extend out to radius = w/4. Each shell then has volume AV = 271zAx - (e® + tanz),

giving the integral
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2. [20 pts] Compute each integral:
dz . .
(a) PR y— Partial fractions: we can find constants A and B such that
x x —
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24+2x -3 (z+3)(z—1) x+3 z-1

for all z. Multiplying both sides by (z + 3)(x — 1), we have
1=A(x—1)+ B(z +3).

Now plugging in 2z = 1 gives 1 = 4B and plugging in = —3 gives 1 = —4A, thus B = 1/4 and

A = —1/4. Therefore,
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Note that you could also do this by completing the square and using trigonometric substitution,
but it’s harder.

/67r sin(lnx) dx
1

. Substitute u = Inx, so du = %dz and
x
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3. (a) [10 pts] Compute / %. Hint: Write everything in terms of sin§ and cos 6.
an

sec 6 1 cos?6 cos 6 db du 1 1
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sin® 6

using the substitution u = sin 6.
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(b) [20pts] ompue/(Hl)Q ——

involve any trigonometric functions.

. For full credit, you should write an answer that doesn’t

We need to complete the square and then use a trigonometric substitution: first,

/ dz 7/ dz B dz
(x+1)2Va?2 +22+5 (x+1)2Va?2 +22x+14+4 (z+1)2/(z+1)2+4

Now substitute  + 1 = 2tanf, so x = 2tanf — 1, do = 2sec?6 df and /(z+ 1) +4 =
VAtan? 0+ 4 = 2vtan? 60 + 1 = 2sec, thus

/ dx _/ 2sec? 6 db _l/secﬁde__lcsce
(z+1)2/(w+1)2+4 J 4tan®0-2secd 4/ tan’d 4

by the result of part (a). We could rewrite this in terms of x as

1 1
1 csc [tan_l (:v—2|— )} ,

which is correct, but not pretty enough for full credit. It can be rewritten in a nicer form by
constructing a right triangle with 6 as one of its acute angles (figure below). Since tanf =
CET'H, we can assume the far side has length  + 1 and the near side has length 2. Then the
Pythagorean theorem gives \/(z + 1)2 + 4 (or V22 + 2z + 5) for the length of the hypotenuse, so

Vr24+2z+5
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csch = . We conclude
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4. [10 pts] Let F(z) = / e’ dt. What is F'(z)?

The integral can’t be computed exactly, but we can still use the fundamental theorem of calculus to
compute F'(x), i.e. using

-’ / " H(0) dt = fla).

To apply this, reverse the order of the limits, substitute © = cosz and use the chain rule:

2 u u
F'(z) = di/ e’ dt = _di e’ dt=— (di/ et’ dt) % = —¢"’ (—sinw) :.
T Je T Jo U Jo X

os T



5. [20 pts] Find the unique function x(¢) that satisfies the differential equation
dx
Y JE—-D—4
b DD
and the initial condition z(5) = 8.
Separating x and ¢ terms in the differential equation gives

dz =Vi—-1dt = / :/\/t—ldt = 2\/3:—4:;@—1)3/2—1-0

Vo —4

for some constant C'. At this stage we can determine the constant by plugging in the initial condition
z(5) =8

dzr
r—4

2 16 4
28-1=36-1"+C = 4=5+0 = CO=-3.
Now solving for x gives the function
1 21°
t)=|=(t-1)73?-2 4.
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As an alternative way to do things, one could first determine the general solution and then plug in the
initial condition. Solving for x before determining C' gives the function

z(t) = [%(t— 1)%/2 +C:|2 + 4,

where ¢ is another constant (not the same one as before). This method gets a little bit tricky when we
now solve for ¢: plugging in z(5) = 8 leads to the result ¢ = —% =+ 2. This is not one answer but two,
only one of which matches the one we obtained above. In fact, that one is right, and the other choice
c= —%4 is wrong, though this is not so easy to see at first. The reason is that if we plug our general

solution back into the differential equation, we find

dzr 1
3

= = |5t 1)%/2 4+ c} Vi—1,
which needs to match vz —4y/f — 1. It does—but only if the expression [%(t —1)*2? +c] is greater
than or equal to zero, since v/x — 4 is always assumed to be the positive square root. Thus our general
solution only technically satisfies the equation for a given range of ¢ when c¢ is chosen so that the

quantity in brackets is nonnegative; in the present case this is true at and near ¢t = 5 for ¢ = —2/3, but
not for ¢ = —14/3.



