
18.01 SPRING 2005

MIDTERM 2 SOLUTIONS

1. [20 pts] For each of the following, set up but do not evaluate a definite integral for computing the
requested quantity.

(a) The area enclosed by the curves y = ex, y = − tanx, x = 0 and x = π/4.

Dividing the region into narrow rectangles with thickness ∆x (figure below, left) produces the
integral

∫ π/4

0

(ex + tan x) dx .

(b) The volume of the solid obtained by rotating the region of part (a) about the y-axis.

We divide the solid into cylindrical shells of thickness ∆x (figure below, right), starting from radius
x = 0 and extend out to radius x = π/4. Each shell then has volume ∆V = 2πx∆x · (ex + tan x),
giving the integral

∫ π/4

0

2πx(ex + tan x) dx .

x = π / 4

ex

tan x−

2. [20 pts] Compute each integral:

(a)

∫

dx

x2 + 2x − 3
. Partial fractions: we can find constants A and B such that

1

x2 + 2x − 3
=

1

(x + 3)(x − 1)
=

A

x + 3
+

B

x − 1

for all x. Multiplying both sides by (x + 3)(x − 1), we have

1 = A(x − 1) + B(x + 3).

Now plugging in x = 1 gives 1 = 4B and plugging in x = −3 gives 1 = −4A, thus B = 1/4 and
A = −1/4. Therefore,

∫

dx

x2 + 2x − 3
=

∫
(−1/4

x + 3
+

1/4

x − 1

)

dx =
1

4
ln |x − 1| − 1

4
ln |x + 3| =

1

4
ln

∣

∣

∣

∣

x − 1

x + 3

∣

∣

∣

∣

+ C .



Note that you could also do this by completing the square and using trigonometric substitution,
but it’s harder.

(b)

∫ eπ

1

sin(ln x) dx

x
. Substitute u = ln x, so du = 1

xdx and

∫ eπ

1

sin(ln x)

x
dx =

∫ ln(eπ)

ln(1)

sin u du =

∫ π

0

sinu du = − cosu|π0 = −(−1− 1) = 2 .

3. (a) [10 pts] Compute

∫

sec θ dθ

tan2 θ
. Hint: Write everything in terms of sin θ and cos θ.

∫

sec θ

tan2 θ
dθ =

∫

1

cos θ

cos2 θ

sin2 θ
dθ =

∫

cos θ dθ

sin2 θ
=

∫

du

u2
= − 1

u
= − 1

sin θ
= − csc θ + C

using the substitution u = sin θ.

(b) [20 pts] Compute

∫

dx

(x + 1)2
√

x2 + 2x + 5
. For full credit, you should write an answer that doesn’t

involve any trigonometric functions.

We need to complete the square and then use a trigonometric substitution: first,
∫

dx

(x + 1)2
√

x2 + 2x + 5
=

∫

dx

(x + 1)2
√

x2 + 2x + 1 + 4
=

∫

dx

(x + 1)2
√

(x + 1)2 + 4
.

Now substitute x + 1 = 2 tan θ, so x = 2 tan θ − 1, dx = 2 sec2 θ dθ and
√

(x + 1)2 + 4 =√
4 tan2 θ + 4 = 2

√
tan2 θ + 1 = 2 sec θ, thus

∫

dx

(x + 1)2
√

(x + 1)2 + 4
=

∫

2 sec2 θ dθ

4 tan2 θ · 2 sec θ
=

1

4

∫

sec θ dθ

tan2 θ
= −1

4
csc θ

by the result of part (a). We could rewrite this in terms of x as

−1

4
csc

[

tan−1

(

x + 1

2

)]

,

which is correct, but not pretty enough for full credit. It can be rewritten in a nicer form by
constructing a right triangle with θ as one of its acute angles (figure below). Since tan θ =
x+1
2 , we can assume the far side has length x + 1 and the near side has length 2. Then the

Pythagorean theorem gives
√

(x + 1)2 + 4 (or
√

x2 + 2x + 5) for the length of the hypotenuse, so

csc θ =
√

x2+2x+5
x+1 . We conclude

∫

dx

(x + 1)2
√

x2 + 2x + 5
= −1

4

√
x2 + 2x + 5

x + 1
+ C .

θ
x +1

2

4. [10 pts] Let F (x) =

∫ 2

cos x

et2 dt. What is F ′(x)?

The integral can’t be computed exactly, but we can still use the fundamental theorem of calculus to
compute F ′(x), i.e. using

d

dx

∫ x

a

f(t) dt = f(x).

To apply this, reverse the order of the limits, substitute u = cosx and use the chain rule:

F ′(x) =
d

dx

∫ 2

cos x

et2 dt = − d

dx

∫ u

2

et2 dt = −
(

d

du

∫ u

2

et2 dt

)

du

dx
= −eu2

(− sin x) = ecos2 x sin x .



5. [20 pts] Find the unique function x(t) that satisfies the differential equation

dx

dt
=

√

(t − 1)(x − 4)

and the initial condition x(5) = 8.

Separating x and t terms in the differential equation gives

dx√
x − 4

=
√

t − 1 dt =⇒
∫

dx√
x − 4

=

∫ √
t − 1 dt =⇒ 2

√
x − 4 =

2

3
(t − 1)3/2 + C

for some constant C. At this stage we can determine the constant by plugging in the initial condition
x(5) = 8:

2
√

8 − 4 =
2

3
(5 − 1)3/2 + C =⇒ 4 =

16

3
+ C =⇒ C = −4

3
.

Now solving for x gives the function

x(t) =

[

1

3
(t − 1)3/2 − 2

3

]2

+ 4 .

As an alternative way to do things, one could first determine the general solution and then plug in the
initial condition. Solving for x before determining C gives the function

x(t) =

[

1

3
(t − 1)3/2 + c

]2

+ 4,

where c is another constant (not the same one as before). This method gets a little bit tricky when we
now solve for c: plugging in x(5) = 8 leads to the result c = − 8

3 ± 2. This is not one answer but two,
only one of which matches the one we obtained above. In fact, that one is right, and the other choice
c = − 14

3 is wrong, though this is not so easy to see at first. The reason is that if we plug our general
solution back into the differential equation, we find

dx

dt
=

[

1

3
(t − 1)3/2 + c

]√
t − 1,

which needs to match
√

x − 4
√

t − 1. It does—but only if the expression
[

1
3 (t − 1)3/2 + c

]

is greater

than or equal to zero, since
√

x − 4 is always assumed to be the positive square root. Thus our general
solution only technically satisfies the equation for a given range of t when c is chosen so that the
quantity in brackets is nonnegative; in the present case this is true at and near t = 5 for c = −2/3, but
not for c = −14/3.


