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PROBLEM SET 10

SOLUTIONS

Graded problems, Part A

See attached photocopies.

Graded problems, Part B

1. (a) With L = r2 dθ
dt and r = a

1+ε cos θ we have

dθ

dt
=

L

r2
=

L

a2
(1 + ε cos θ)2.

(b) Differentiating the expression t = t(θ(t)) with respect to t yields

1 =
d

dt
t(θ(t)) =

dt

dθ

dθ

dt

by the chain rule, showing that these two derivatives are reciprocals of each other. The notation
here is admittedly a little confusing because the symbol t is being used in two roles: both as a
variable and as the inverse function. To avoid this confusion we could denote by F (θ) function
which is inverse to θ(t), thus by definition

θ(t) = c ⇐⇒ F (c) = t,

and thus F (θ(t)) = t for all t. So what we’re really doing is differentiating this expression with
respect to t:

1 =
d

dt
F (θ(t)) = F ′(θ(t))

dθ

dt
.

This shows that the reciprocal of dθ
dt at time t is F ′(θ) when θ = θ(t); this F ′(θ) is exactly what

we previously referred to as dt
dθ .

Note that this argument didn’t use any specifics of the problem at hand: it is a general property
of inverse functions in any context that their derivatives are reciprocals.

(c) Taking the reciprocal of the expression from part (a) gives

dt

dθ
=

1

dθ/dt
=

a2

L(1 + ε cos θ)2
.

If θ(0) = θ0 then t(θ0) = 0, so given θ0 we now seek the unique function t(θ) such that t(θ0) = 0
and dt

dθ is the function above. The answer is

t(θ) =

∫ θ

θ0

a2

L(1 + ε cosϕ)2
dϕ

as is easy to check: clearly t(θ0) = 0 since the integral of anything from θ0 to θ0 is zero, and the
fundamental theorem of calculus implies

t′(θ) =
a2

L(1 + ε cos θ)2
.

Note the importance of using a dummy variable (ϕ) inside the integral rather than θ, which now
appears only in the upper limit of integration.
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As for the question “when will Mars get to position θ = π/4”, let’s say we set our clock so that
right now t = 0, and we simultaneously observe the current angular position of Mars to be θ0.
Then the answer to the question is the value of the integral

∫ π/4

θ0

a2

L(1 + ε cosϕ)2
dϕ,

which we can’t compute exactly, but we can approximate it by adding up areas of thin rectangles,
or better, having a computer (or graphing calculator) do this for us, to any desired accuracy.
That’s more or less what they do at NASA.

(d) The question is: how long does it take Mars to get from position θ0 to position θ0 + 2π? The
answer is ∫ θ0+2π

θ0

a2

L(1 + ε cosϕ)2
dϕ ,

and you should take a moment to convince yourself that this answer does not actually depend on
θ0 (because cosϕ is periodic). Indeed, the year lasts the same amount of time whether you start
counting on January 1 or April 19.

2. We use two important formulas from Problem 1:

r =
a

1 + ε cos θ
, and

dθ

dt
=

L

a2
(1 + ε cos θ)2.

The idea then is to think of r(t) as a composite function r(θ(t)) =
a

1 + ε cos[θ(t)]
, so

ravg =
1

T

∫ T

0

a

1 + ε cos[θ(t)]
dt.

We now treat θ(t) as a substitution, with

dθ =
dθ

dt
dt =

L

a2
(1 + ε cos θ)2 dt =⇒ dt =

a2

L(1 + ε cos θ)2
dθ,

thus

1

T

∫ T

0

a

1 + ε cos[θ(t)]
dt =

1

T

∫ θ(T )

θ(0)

a

1 + ε cos θ

a2 dθ

L(1 + ε cos θ)2
=

a3

LT

∫ 2π

0

dθ

(1 + ε cos θ)3
,

where we’ve assumed θ(0) = 0. This assumption is harmless, as we can always reset our clocks so that
it’s true.
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