
18.950 SPRING 2007
PROBLEM SET 2

DUE FRIDAY, MARCH 2, 1:00PM

You can hand in the problem set in class or at my office (2-169) anytime before it’s due. (Slip it through
the slot in the door if I’m not there.)

Reading (in Spivak)

Chapter 2 p. 32 to middle of p. 40, casually skim pp. 46–49.
Chapter 3 up to p. 83; read but don’t stress too much over pp. 71–74.
Chapter 5, skipping pp. 139–145 (middle) and the addenda.
Some notes on the reading:

• I heartily recommend the first few pages of Chapter 3 for its discussion of the tangent bundle. On
the other hand, the discussion of general vector bundles on pp. 71–74 is something you should avoid
worrying about just yet; we’ll have much more to say about bundles later in the course.

• Spivak gives three distinct definitions of a tangent space: the second (bottom of p. 77) is the one I gave
in lecture. The first (p. 76) and third (pp. 78–79) are both equivalent to this; the third in particular
is closely related to our discussion of derivations and vector fields in lecture.

• In Chapter 5, try to ignore for now all references to covariant vector fields and tensors—we’ll cover
these topics after vector fields.

• The existence and uniqueness result for differential equations (pp. 139–145) is well worth reading
someday, but probably not now.

Problems [70 pts total]

1. Denote by R
n×n the vector space of all real n-by-n matrices; this is isomorphic to R

n2

. The n-
dimensional orthogonal group O(n) ⊂ R

n×n is the set of all real n-by-n matrices A with the property

AT A = 1,

where 1 is the n-by-n identity matrix and AT denotes the transpose of A, i.e. if A has entries Aij ,
then the corresponding entries of AT are Aji. This is precisely the set of all linear transformations
R

n → R
n which preserve dot products v ·w, which means geometrically that they preserve lengths of

vectors and angles between them. We will show in this problem that O(n) is a smooth submanifold of
R

n×n.

(a) [3 points] Let Σ(n) ⊂ R
n×n denote the set of all real symmetric n-by-n matrices, i.e. those which

satisfy A = AT . Show that Σ(n) is a linear subspace of R
n×n (i.e. it is closed under addition and

scalar multiplication). What is its dimension?

(b) [6 points] Consider the map
f : R

n×n → Σ(n) : A 7→ AT A.

The orthogonal group is then precisely O(n) = f−1(1). The entries of f(A) are quadratic functions
of the entries of A, thus f is clearly a smooth map. Show that its derivative at any A ∈ R

n×n is
the linear map

df(A) : R
n×n → Σ(n) : H 7→ AT H + HT A.

Hint: in theory you can do this by computing all the partial derivatives of f with respect to the
entries of A, but it’s much, much easier to use the definition of the derivative, i.e. regarding R

n×n

and Σ(n) simply as Euclidean spaces, use the definition of df stated in Problem Set 1. One useful
thing you may assume: defining the “length” |A| of a matrix via identification with vectors in

R
n2

, this length satisfies |AB| ≤ |A||B|.
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(c) [4 points] Show that df(A) is surjective if A ∈ O(n). In fact, you won’t even need to assume A ∈
O(n), but it is useful to assume that A is invertible (which is automatically true for orthogonal
matrices). It is also crucial that the target space is Σ(n) rather than the entirety of R

n×n—df(A)
is certainly not surjective onto R

n×n.

(d) [2 points] It follows now from the implict function theorem that O(n) is a smooth submanifold of
R

n×n. What is its dimension? (For a sanity check I will tell you: dim O(2) = 1 and dim O(3) = 3.)

(e) [5 points] Since O(n) is embedded into R
n×n as a smooth submanifold, we can regard the tangent

space T1 O(n) to the identity as a linear subspace of R
n×n, i.e. “tangent vectors” to O(n) are

literally n-by-n matrices. Show that every matrix H ∈ T1 O(n) is antisymmetric, i.e.

HT = −H.

Can you now say precisely which space of matrices T1 O(n) is?

2. For this problem define the circle S1 to be R/Z, i.e. the set of equivalence classes [t] of real numbers
t ∈ R, where s ∼ t if and only if s − t ∈ Z. There is a natural projection map π : R → S1 : t 7→ [t].
The tangent bundle TS1 can then be identified with S1 × R as follows: any tangent vector X ∈ TS1

is a velocity vector γ̇(0) for some smooth path γ : (−ε, ε) → S1, and this path can be lifted (in
multiple ways) to a smooth path γ̃ : (−ε, ε) → R such that π ◦ γ̃ = γ. Now identify the tangent vector
X = γ̇(0) ∈ TS1 with the pair (

γ(0),
dγ̃

dt

∣∣∣∣
t=0

)
∈ S1 × R.

This gives a bijection TS1 ∼= S1 × R. (Take a moment to convince yourself of this.)

Next we define the 2-torus as T 2 = S1 × S1 = R
2/Z

2 and, using the same ideas as above, identify its
tangent bundle with (S1 × S1) × (R × R) = T 2 × R

2. Consider now the smooth map

F : T 2 → S1 : ([s], [t]) 7→ [3s + sin(2πt)].

It’s well defined since equivalent pairs (s, t) ∼ (s′, t′) give rise to equivalent images 3s + sin(2πt) ∼
3s′ + sin(2πt′).

(a) [3 points] Using the identifications described above, write down an explicit expression for TF :
TT 2 → TS1 as a map T 2 × R

2 → S1 × R.

(b) [3 points] Show that F is a submersion. A slight generalization of the implicit function theorem
then implies that for any p ∈ S1, F−1(p) is a smooth submanifold of T 2. Verify this for F−1([0])
in particular, i.e. what precisely is this set? To which well known manifold is it diffeomorphic?

3. (a) [5 points] Denote by x the standard coordinate on R and consider the smooth vector field

X(x) = x2 ∂

∂x
.

Find an expression for the flow ϕt
X as a function of x. Given x ∈ R, what is the largest interval

t ∈ (−t0, t0) for which ϕt
X(x) is defined? Is there any value of t for which ϕt

X is well defined on
all of R?

This illustrates one of the dangerous things about flows: in general ϕt
X is only locally defined.

The trouble here is that our manifold R is not compact; on compact manifolds, ϕt
X is a globally

defined diffeomorphism for all t ∈ R.

(b) [5 points] Consider now a continuous but nonsmooth vector field on R:

X(x) =
√
|x|

∂

∂x
.

Find two distinct solutions to the initial value problem
{

γ̇(t) = X(γ(t)),

γ(0) = 0.
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This shows that flows are not necessarily well defined when X is not smooth. That’s one of a few
reasons why we always assume vector fields are smooth.

4. [5 points] Recall that a derivation on the space of real valued smooth functions C∞(M) is a map
L : C∞(M) → C∞(M) satisfying

• (linearity) L(f + g) = Lf + Lg and L(cf) = c · Lf for all f, g ∈ C∞(M) and c ∈ R.

• (Leibnitz rule) L(fg) = (Lf)g + f(Lg) for all f, g ∈ C∞(M).

Show that for any two vector fields X, Y ∈ Vec(M), the commutator of Lie derivatives LXLY −LY LX

is a derivation on C∞(M).

This completes the argument presented in lecture on Thursday 2/22, that there is a unique vector field
[X, Y ] ∈ Vec(M) such that L[X,Y ]f = (LXLY − LY LX)f for all f ∈ C∞(M).

5. Suppose M is a manifold with two charts x = (x1, . . . , xn) and (x̃1, . . . , x̃n) defined over the same
open set U ⊂ M . We can then think of x̃1, . . . , x̃n as a set of n real-valued smooth functions of the
n variables (x1, . . . , xn), or vice versa; in particular the derivative of x̃ with respect to x at any point

in U is the n-by-n matrix with entries ∂x̃i

∂xj . Regarding the coordinate vector fields ∂
∂xj and ∂

∂x̃j as
derivations, the chain rule then implies

∂

∂xj
=

∑

i

∂x̃i

∂xj

∂

∂x̃i
. (1)

(a) [4 points] The components of a vector X ∈ TpM for p ∈ U with respect to the coordinates
x1, . . . , xn are defined to be the unique real numbers X1, . . . , Xn such that X =

∑
j Xj ∂

∂xj . Show

that these are related to the components X̃j with respect to x̃1, . . . , x̃n by

X̃ i =
∑

j

∂x̃i

∂xj
Xj .

(b) [5 points] If X is a smooth vector field, its components with respect to the coordinates x1, . . . , xn

are the n smooth functions Xj : U → R such that X =
∑

j Xj ∂
∂xj on U . The Lie derivative LX

on functions f ∈ C∞(M) can then be written in coordinates as

LXf =
∑

j

Xj ∂f

∂xj
.

Use this to derive the coordinate expression for the Lie bracket of two vector fields:

[X, Y ]i =
∑

j

(
Xj ∂Y i

∂xj
− Y j ∂X i

∂xj

)
.

At this point one could (and many classical differential geometry books do) use the above ex-
pression to define the Lie bracket, but one then has to use the formula of part (a) to verify that
the resulting definition of [X, Y ] doesn’t depend on the choice of coordinates. That’s rather a
headache and I won’t ask you to do it, though I considered it.

(c) [4 points] The polar coordinates (r, θ) defined by

x = r cos θ, y = r sin θ

define a pair of smooth vector fields ∂
∂r

and ∂
∂θ

on R
2 \ {0}. Show that

∂

∂r
=

1√
x2 + y2

(
x

∂

∂x
+ y

∂

∂y

)
,

and write down ∂
∂θ

similarly in terms of the (x, y)-coordinates.
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(d) [4 points] Use the expressions for ∂
∂r

and ∂
∂θ

in (x, y)-coordinates together with part (b) to show
that [

∂

∂r
,

∂

∂θ

]
= 0.

Then explain why this fact was already practically obvious.

6. This problem deals again with the torus T 2 = S1 × S1 = R
2/Z

2 as defined in Problem 2. To simplify
notation, we shall drop the usual brackets that indicate equivalence classes and denote points on T 2 by
(x, y) for x, y ∈ R: it should be understood that we really mean ([x], [y]) ∈ S1 × S1. In this notation,
there are well defined vector fields ∂

∂x
and ∂

∂y
which span every tangent space of T 2. Consider now the

vector fields

X(x, y) =
∂

∂x
, Y (x, y) = sin(2πx)

∂

∂y
.

(a) [3 points] Compute [X, Y ]. (It is not zero.)

(b) [4 points] Find the diffeomorphisms ϕt
X : T 2 → T 2 and ϕt

Y : T 2 → T 2 for arbitrary t ∈ R.

(c) [5 points] Fix a point (x, y) ∈ T 2 and consider the “parallelogram map”

α(s, t) := ϕ−t
Y ◦ ϕ−s

X ◦ ϕt
Y ◦ ϕs

X(x, y)

for real numbers s and t close to 0. (For the intuition behind this terminology, see Spivak pp. 159–
160.) Show that ∂sα(0, 0) and ∂tα(0, 0) are both 0. Now write ∂sα(0, t) = f1(t) ∂x + f2(t) ∂y and
show that

∂tf1(0) ∂x + ∂tf2(0) ∂y = [X, Y ](x, y).

Informally, what this says is that the bracket [X, Y ] at a given point (x, y) is essentially the
“second derivative” of the composition of flows:

∂t∂s

(
ϕ−t

Y ◦ ϕ−s
X ◦ ϕt

Y ◦ ϕs
X(x, y)

)∣∣
s=t=0

This expression doesn’t quite make sense as written, but one can make sense of it, and the equality
here illustrates a more general theorem which is proved in Spivak pp. 159–163. Observe in any
case that it’s clearly true if the flows commute, for then α(s, t) is constant in s and t.
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