
18.950 SPRING 2007
PROBLEM SET 3

DUE FRIDAY, MARCH 9, 1:00PM

You can hand in the problem set in class or at my office (2-169) anytime before it’s due. (Slip it through
the slot in the door if I’m not there.)

Reading

Spivak: Chapter 4.

By this point Spivak is using the terminology of vector bundles quite extensively—a serious topic that we
will get to soon, but not quite yet. So in reading Chapter 4, for most purposes you can assume the vector
bundle that Spivak usually denotes by ξ is simply the tangent bundle TM , and its “dual bundle” ξ∗ is the
cotangent bundle T ∗M .

A word on definitions and notation

Spivak’s notation for spaces and types of tensors differs significantly from what we’ve used in lecture, so let’s
quickly codify our notation. If V is a vector space, we define V k

` to be the vector space of tensors on V that
are covariant of rank ` and contravariant of rank k, i.e. multilinear maps

V × . . . × V︸ ︷︷ ︸
`

×V ∗ × . . . × V ∗

︸ ︷︷ ︸
k

→ R

where we denote the dual space V ∗ = Hom(V, R) = V 0
1 . Replacing V with a tangent space TpM , we call

the corresponding tensor space (T k
` M)p and define the tensor bundle T k

` M to be the union of these spaces
for all p ∈ M . A tensor of type (k, `) on TpM is then simply an element of (T k

` M)p, and a tensor field1 of
type (k, `) smoothly assigns to each p ∈ M an element of (T k

` M)p. The space of tensor fields of this type is
denoted Γ(T k

` M), literally, “sections of the bundle T k
` M”. We’ll define precisely what section means when

we discuss bundles in earnest.

Here’s a brief glossary of some notational differences between our discussion and Spivak’s. Each choice has
its own logic, and neither is perfect.

our notation Spivak’s notation

V 0
k , T 0

k M, (T 0
k M)p = T k(V ), T k(TM), T k(Mp)

V k
0 , T k

0 M, (T k
0 M)p = Tk(V ), Tk(TM), Tk(Mp)

V k
` , T k

` M, (T k
` M)p = T `

k (V ), T `
k (TM), T `

k (Mp)

tensor of type (k, `) = tensor of type
(`
k

)

Yes, that’s right, the k and ` are flipped—I swear it’s not my fault. My logic (and I’m not the only one)
is that the covariant tensors, i.e. those which act on vectors but not on dual vectors, should be indicated
by a lower index because their components have lower indices. Similarly it makes sense to say TM = T 1

0 M

instead of T 0
1 M because the components of tangent vectors have upper indices. Thankfully, Spivak uses

the words covariant and contravariant the same way we do (though we will not use them often), and his
notation for indices of components is completely consistent with ours.

1One often omits the word “field” from “tensor field” when there’s no danger of confusion.
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Problems [52 pts total]

1. [5 points] Let V and W be vector spaces, and for k ∈ N denote by Homk(V, W ) the vector space of
k-multilinear maps V × . . . × V︸ ︷︷ ︸

k

→ W . Find a natural isomorphism Homk(V, V ) → V 1
k , and prove that

it is an isomorphism. Note: there are multiple isomorphisms that one could write down, but only one
that is truly natural. To prove it’s an isomorphism, remember it suffices to show that the map is linear
and injective, and that dim Homk(V, V ) = V 1

k . What are these dimensions actually? If it simplifies
things, you may as well assume V = R

n.

2. Let M be an n-dimensional manifold with an open set U ⊂ M and coordinate chart x = (x1, . . . , xn) :
U → R

n. Recall that the coordinate functions xj : U → R define derivations ∂j := ∂
∂xj and differentials

dxj , which give bases of TpM and T ∗

p M respectively at every point p ∈ U . With these, an arbitrary

tensor field T ∈ Γ(T k
` M) can be expressed over U via its nk+` component functions T i1...ik

j1...j`
: U →

R, defined by
T i1...ik

j1...j`
= T (∂j1 , . . . , ∂j`

, dxi1 , . . . , dxik ).

We then have
T = T i1...ik

j1...j`
dxj1 ⊗ . . . ⊗ dxj` ⊗ ∂i1 ⊗ . . . ⊗ ∂ik

,

using the Einstein summation convention: recall that since this expression contains k + ` pairs of
matching upper and lower indices, there’s an implied summation over each one. Literally then (we’ll
write it out just this once), this means

T =

n∑

i1=1

. . .

n∑

ik=1

n∑

j1=1

. . .

n∑

j`=1

T i1...ik

j1...j`
dxj1 ⊗ . . . ⊗ dxj` ⊗ ∂i1 ⊗ . . . ⊗ ∂ik

.

That’s why we usually don’t write it out literally.

(a) [5 points] Consider a tensor field S of type (3, 2) and another T of type (2, 1), and recall that the
tensor product S ⊗ T is then a tensor field of type (5, 3) defined by

(S ⊗ T )(X, Y, Z, α, β, γ, θ, ω) = S(X, Y, α, β, γ) · T (Z, θ, ω)

for any tangent vectors X, Y, Z ∈ TpM and cotangent vectors α, β, γ, θ, ω ∈ T ∗

p M . Find a formula

for the component functions (S ⊗ T )ijk`m
pqr : U → R in terms of Sijk

pq and T `m
r . The answer

is quite simple—and though we’ve chosen tensors of relatively low rank to simplify the notation,
you can see what the answer for tensors of general type would be.

Now suppose x̂ = (x̂1, . . . , x̂n) : Û → R
n is another coordinate chart on some open subset Û ⊂ M

such that U ∩ Û 6= ∅. Denote by T̂ i1...ik

j1...j`
: Û → R the component functions for a tensor field

T ∈ Γ(T k
` M) in the new chart. As we mentioned in Problem Set 2, the basis vectors ∂

∂xj and ∂
∂x̂j in

TpM for any point p ∈ U ∩ Û are related to each other by

∂

∂xj
=

∂x̂i

∂xj

∂

∂x̂i
, (1)

where this time we’re using the summation convention to imply a summation over the repeated index i

(it’s considered a lower index in ∂
∂x̂i because it appears in the denominator). The partial derivatives

∂x̂i

∂xj for each i and j should best be understood as smooth functions U ∩ Û → R, though of course we’d

have to use the coordinates and express them as functions on the open set x(U ∩ Û) ⊂ R
n in order

to compute them. Let us be more explicit: denote by ∂
∂xj

∣∣
p

the actual vector in TpM which is the

value of the coordinate vector field ∂
∂xj ∈ Vec(U) at p ∈ U , and define ∂

∂x̂j

∣∣
p

similarly for p ∈ Û . Then

Equation (1) says that for all p ∈ U ∩ Û ,

∂

∂xj

∣∣∣∣
p

=
∂x̂i

∂xj
(p)

∂

∂x̂i

∣∣∣∣
p

.
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(b) [3 points] Derive a similar expression for the coordinate 1-forms dxj in terms of dx̂j and ∂xj

∂x̂i at

points in U ∩ Û . This is quite easy: just remember dxj is the differential of a smooth function!

(c) [5 points] For a 1-form λ ∈ Γ(T 0
1 ) and a covariant rank 2 tensor field T ∈ Γ(T 0

2 M), use the above
relations between dxj and dx̂j to derive the transformation formulas

λ̂i = λj

∂xj

∂x̂i
and T̂ij = Tk`

∂xk

∂x̂i

∂x`

∂x̂j
,

relating the distinct sets of component functions over U ∩ Û .

(d) [5 points] For a contravariant rank 2 tensor field T ∈ Γ(T 2
0 M), derive

T̂ ij =
∂x̂i

∂xk

∂x̂j

∂x`
T k`.

(e) [5 points] Finally, for a tensor field A ∈ Γ(T 1
1 M) of “mixed” type (1, 1), show that

Âi
j =

∂x̂i

∂xk

Ak
`

∂x`

∂x̂j
.

This formula has a nice interpretation using matrices: define the smooth matrix-valued function

A : U → R
n×n by setting the entry at the ith row and jth column of A(p) to Ai

j(p), and define

Â : Û → R
n×n similarly. We can also define the partial derivative matrix S : U ∩ Û → R

n×n

with entries Si
j = ∂x̂i

∂xj , and observe that by the inverse function theorem, S−1 is the matrix with

entries ∂xi

∂x̂j . Then the transformation formula above becomes

Â = SAS−1.

3. Recall that in lecture we used the concept of C∞-linearity to prove that for any 1-form λ, the bilinear
map T : Vec(M) × Vec(M) → R defined by

T (X, Y ) = LX(λ(Y )) − LY (λ(X)) − λ([X, Y ])

defines a tensor. Let’s be clear on the meaning of this expression: X and Y are vector fields, thus λ(X)
is the smooth real valued function p 7→ λ(X(p)), and its Lie derivative with respect to Y is another
smooth real valued function, as is λ([X, Y ]). Thus the entire expression defines a real valued function,
and when we say it defines a tensor, we mean that the value of this function at p depends only on
X(p) and Y (p), not on any extra information about X and Y as vector fields (e.g. their derivatives).
This statement is nontrivial because, e.g. it’s not true for any of the individual terms on the right hand
side—but somehow their dependence on derivatives of X and Y cancels out in the sum. Clearly any
bilinear map with these properties satisfies

T (fX, Y ) = f · T (X, Y ) = T (X, fY )

for all C∞ functions f : M → R, and we mentioned in lecture the important lemma (Spivak p. 118,
Theorem 2), that the converse is also true: a multilinear map T : Vec(M)× · · · ×Vec(M) → R defines
a tensor if it is C∞-linear in each variable.

(a) [5 points] The one detail we left out of our computation in lecture was the proof of the formula

[fX, Y ] = f [X, Y ] − (LY f) · X (2)

for any X, Y ∈ Vec(M) and f ∈ C∞(M). Prove this.

Now take a moment to remind yourself how this is used to prove that T defines a tensor. Observe

also that as a consequence of Equation (2), the bracket itself [ , ] : Vec(M) × Vec(M) → R does

not define a tensor.
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(b) [5 points] Choosing local coordinates (x1, . . . , xn) near some point p ∈ M , show that the compo-
nent functions λi and Tij are related by

Tij = ∂iλj − ∂jλi.

You may find it helpful to recall that brackets of coordinate vector fields always vanish, that is,
[∂i, ∂j ] ≡ 0.

(c) [5 points] Show that the expression Sij = ∂iλj does not define a tensor, i.e. there is no tensor S

of type (0, 2) whose component functions in local coordinates equal Sij .

There are two ways you could go about this. One is to consider another coordinate chart x̂ that
overlaps with x, use the formulas of Problem (2c) to write down the transformed component

functions Ŝij and λ̂i and show that Ŝij = ∂
∂x̂i λ̂j does not hold in general.

But if you want to be more clever about it, you could find a bilinear map S : Vec(M)×Vec(M) → R

such that S(∂i, ∂j) = ∂iλj , and show that this map is not C∞-linear. There is such a map, staring
you in the face.

4. In this problem, denote the entries of an n-by-n matrix A by Ai
j . Thus multiplication of two n-by-n

matrices can be expressed using the summation convention as

(AB)i
j = Ai

kB
k
j .

The trace of a matrix is the scalar tr(A) obtained by summing the diagonal entries: using the summa-
tion convention,

tr(A) = Ai
i.

(a) [3 points] Show that tr(AB) = tr(BA) for any pair of n-by-n matrices.

(b) [2 points] Use the above to show that tr(A) = tr(BAB−1).

(c) [4 points] If A ∈ Γ(T 1
1 M) is a tensor field of type (1, 1), we define the contraction of A to be the

smooth real valued function tr A : M → R which equals

tr A = Ai
i,

where Ai
j are the components of A in any local coordinate system. In other words, to compute

tr A(p) for p ∈ M , we pick a coordinate chart on a neighborhood U of p, write down the corre-
sponding component functions Ai

j : U → R and compute the above expression at p. Explain why
the result is independent of the choice of chart. (See the discussion at the end of Problem 2.)

For mixed tensors of higher rank there are more general contractions that can be defined: e.g. from a

tensor field of type (4, 2) with components T ijk`
pr , one can define one of type (3, 1) whose components

are

Sijk
p := T

ijk`
p` .

By a slight extension of the argument for tensors of type (1, 1), such operations give well defined

homomorphisms

T k
` M → T k−1

`−1
M.
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