
18.950 SPRING 2007
PROBLEM SET 4

DUE WEDNESDAY, APRIL 11, 1:00PM

It’s not as long as it looks. Still, don’t leave it all for the last moment.

You can hand in the problem set in class or at my office (2-169) anytime before it’s due. (Slip it through
the slot in the door if I’m not there.)

Reading

Lecture notes Chapter 1, §2.1 and 2.2.

Problems [65 pts total]

1. Let’s have some fun with Leibnitz rules (and tie up a loose end regarding differential forms while we’re
at it). Recall that the exterior derivative d : Ωk(M) → Ωk+1(M) satisfies the “graded Leibnitz rule”

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ

if α ∈ Ωk(M) and β ∈ Ω`(M). Such a formula is also satisfied by the interior product : recall
that for a vector field X ∈ Vec(M) and k-form ω, we define a (k − 1)-form ιXω(Y1, . . . , Yk−1) :=
ω(X,Y1, . . . , Yk−1). Extend this definition to 0-forms f ∈ Ω0(M) = C∞(M) by setting ιXf := 0. Now
a (sadly) not very illuminating computation in Spivak (p. 227, Problem 4) proves that ιX satisfies
another graded Leibnitz rule,

ιX (α ∧ β) = ιXα ∧ β + (−1)kα ∧ ιXβ

for α ∈ Ωk(M) and β ∈ Ω`(M).

Recall from Midterm 1 that the Lie derivative of a form ω ∈ Ωk(M) with respect to X ∈ Vec(M) is
defined by

LXω =
d

dt
(ϕt

X )∗ω

∣
∣
∣
∣
t=0

,

where ϕt
X is the flow of X , and for diffeomorphisms ψ : M → M in general the pullback ψ∗ω is the

form in Ωk(M) defined by

ψ∗ω(Y1, . . . , Yk) = ω(Tψ(Y ), . . . , Tψ(Y )).

It’s not too hard to show that both the wedge product and the exterior derivative are well behaved
with respect to pullbacks: i.e.

ψ∗(α ∧ β) = ψ∗α ∧ ψ∗β and ψ∗(dω) = d(ψ∗ω). (1)

These are also valid for 0-forms f ∈ Ω0(M) = C∞(M), where by definition ψ∗f := f ◦ψ. The relations
are proven in Spivak; take them on faith for now if you feel skepticle. Using the first in particular,
along with the ordinary product rule from single variable calculus, we obtain a Leibnitz rule for the
Lie derivative:

LX(α ∧ β) = LXα ∧ β + α ∧ LXβ.

Notice the lack of any irritating sign: this has something to do with the fact that LX is an operator
“of degree 0”, i.e. it takes forms of degree k to forms of degree k, whereas d and ιX each map to forms
of one degree higher or lower. In this sense, LX is an “even” operator, where d and ιX are both “odd”:
the sign in the Leibnitz formula can be thought of as appearing whenever we exchange the order of an
odd operator and a form of odd degree.
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(a) [5 pts] Given X ∈ Vec(M), define another operator PX : Ωk(M) → Ωk(M) by

PX = d ◦ ιX + ιX ◦ d.

Use the two graded Leibnitz rules above to show that PX also satisfies

PX(α ∧ β) = PXα ∧ β + α ∧ PXβ.

(b) [4 pts] Show that for all f ∈ Ω0(M), LXf = PXf .

(c) [10 pts] Show that for all f ∈ Ω0(M), LXdf = PXdf . Hint: this is a little tricky, but straightfor-
ward if you keep in mind that every tangent vector on M is also a velocity vector of some smooth
path. And of course, ∂

∂s
∂
∂t

= ∂
∂t

∂
∂s

.

(d) [4 pts] It follows from all these results that

LX = d ◦ ιX + ιX ◦ d (2)

on all differential forms. Why?

2. (a) [5 pts] For the 2-dimensional torus T 2 = S1×S1 ∼= R2/Z2, show that its tangent bundle TT 2 → T 2

is (globally) trivializable.

(b) [5 pts] Let S1 be the unit circle in C and define a real line bundle `→ S1 by

` =
⋃

θ∈R

{eiθ} × `θ

where `θ is the real 1-dimensional subspace

`θ = R

(
cos(kθ/2)
sin(kθ/2)

)

⊂ R
2

for some k ∈ Z. If k is even, find explicitly a global trivialization of `.

We saw in class that ` is not trivializable if k = 1, and in fact this is true for any k odd. Don’t

prove this, but think about it. See also Example 2.12 in the notes.

3. [10 pts] Show that the projective plane RP 2 = S2/Z2 is not orientable. Do this by finding a continuous
path γ : [0, 1] → RP 2 with γ(0) = γ(1) and a continuous family of bases of the tangent spaces Tγ(t)RP

2,
such that the bases at γ(0) and γ(1) cannot be deformed into one another. Hint: recall that RP 2 can
be visualized as

D/ ∼

where D is the closed unit disk in R2 and we identify opposite points on the boundary by an equivalence
relation: x ∼ −x for all x ∈ ∂D. You need not write everything down in explicit formulas—for the
most part, some pictures and a little explanation will suffice.

4. Never mind the bundles, let’s talk about forms again. Now that we’ve proved the formula (2), it would
be a shame not to use it for something. Here is a beautiful application to Hamiltonian dynamics.

We begin with a little motivation. In the classical mechanics of Newton, the motion of a system with n
degrees of freedom is described by n time-dependent position variables q1(t), . . . , qn(t) with associated
masses m1, . . . ,mn ≥ 0, and their accelerations q̈j(t) satisfy Fj = mj q̈j .

1 Write q = (q1, . . . , qn) ∈ Rn

and F = (F1, . . . , Fn) ∈ Rn. The force vector often depends on the n position variables and is given as
minus the gradient of a smooth potential function V : R

n → R:

F = −∇V (q).

1Just this once, we’re ignoring the usual superscript/subscript index conventions; it’s more trouble than it’s worth.
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Then q(t) satisfies the system of n second order differential equations

q̈j = −
1

mj

∂V

∂qj
(q).

The motion of q(t) is uniquely determined by these equations together with the initial positions q(0)
and velocities q̇(0).

Hamiltonian mechanics reformulates this as follows. The total energy of the system at any given time
is obtained by adding to V (q) a kinetic energy term, thus

E =
∑

j

1

2
mj q̇

2
j + V (q).

Now, each coordinate qj has a corresponding momentum pj = mj q̇j which gives another time-dependent
path p(t) = (p1(t), . . . , pn(t)) ∈ Rn, and the energy can be expressed as a function of q and p: we call
this expression the Hamiltonian function

H(q,p) =
∑

j

p2
j

2mj

+ V (q).

Now it’s easy to check that the path (q(t),p(t)) ∈ R2n satisfies the system of 2n first order differential
equations

q̇j =
∂H

∂pj

(q,p), ṗj = −
∂H

∂qj
(q,p). (3)

These are called Hamilton’s equations, and in this context the space R
2n in which q(t) and p(t) move

together is called phase space. In this way the system of second order differential equations described
by Newton can be reduced to first order equations, at the cost of having twice as many. Since the
equations of motion in phase space are first order, the path (q(t),p(t)) ∈ R2n is uniquely determined
by its initial condition (q(0),p(0)), a point in phase space.

We shall now prove Liouville’s theorem:

Theorem. For any smooth function H : R2n → R, the motion of the system (3) in R2n is volume

preserving.

This means the following: if Ω ⊂ R2n has volume Vol(Ω), T is a real number and ΩT ⊂ R2n is the set
of all points of the form (q(T ),p(T )) such that the path (q(t),p(t)) satisfies (3) and (q(0),p(0)) ∈ Ω,
then Vol(ΩT ) = Vol(Ω). In other words, Hamiltonian systems preserve volumes in phase space. Note
that the statement doesn’t assume any knowledge of Newtonian mechanics at all: H(q,p) need not
be the sum of kinetic and potential energies as we originally defined it, rather it could be any smooth
function on R2n.

(a) [4 pts] Define the 2-form

ω =

n∑

j=1

dpj ∧ dqj ,

which is called the standard symplectic form on R2n. Show that

ωn := ω ∧ . . . ∧ ω
︸ ︷︷ ︸

n

is a constant multiple of the volume form

dq1 ∧ dp1 ∧ . . . ∧ dqn ∧ dpn.

Hint: recall that for α ∈ Ωk(M) and β ∈ Ω`(M), α∧ β = (−1)k`β ∧ α; the sign is negative if and
only if both k and ` are odd. This implies in particular that λ ∧ λ = 0 for any 1-form λ, but this
is not generally true for 2-forms.
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(b) [4 pts] A diffeomorphism ψ : R2n → R2n is called symplectic if ψ∗ω = ω. Show that all such maps
are volume preserving. Hint: this is easy if you recall some of what you learned about volume
preserving maps on the midterm, and use (1).

(c) [5 pts] Define the Hamiltonian vector field XH ∈ Vec(R2n) by

XH(q,p) =
∑

j

∂H

∂pj

(q,p)
∂

∂qj
−

∑

j

∂H

∂qj
(q,p)

∂

∂pj

,

so if x(t) = (q(t),p(t)) ∈ R2n, Hamilton’s equations (3) become ẋ = XH(x). Liouville’s theorem
is now equivalent to the statement that the flow ϕt

XH
: R2n → R2n is volume preserving for all t.

It turns out that XH is the unique vector field on R2n satisfying the relation

dH = −ιXH
ω. (4)

Prove this in the case n = 1. Hint: recall that the wedge product of two 1-forms α and β satisfies
α ∧ β(X,Y ) = α(X)β(Y ) − α(Y )β(X).

(d) [4 pts] Relation (4) makes it strikingly easy to prove some rather nontrivial things. For instance,
energy is conserved : show that for any solution x(t) of ẋ = XH(x), H(x(t)) is constant.

(e) [5 pts] Show that LXH
ω = 0, and therefore that the flow ϕt

XH
is symplectic for all t. By our

previous remarks, this implies Liouville’s theorem.

The preceding discussion is the beginning of the rather large subject of symplectic geometry, in which

the phase space R2n is replaced by a more general 2n-dimensional manifold M with a so-called sym-
plectic 2-form ω. A smooth function H : M → R then defines a Hamiltonian vector field XH via (4),
and the same argument shows that the flow of XH is symplectic for all t, and therefore also volume

preserving. A lovely introduction to this subject may be found in V. I. Arnold’s Mathematical Methods
of Classical Mechanics.
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