
18.950 SPRING 2007
PROBLEM SET 5

DUE FRIDAY, APRIL 20, 1:00PM

You can hand in the problem set in class or at my office (2-169) anytime before it’s due. (Slip it through
the slot in the door if I’m not there.)

Reading

Lecture notes §2.3, 2.4.2, 2.4.3, 2.4.6, 2.6–2.8, Appendix B (especially B.1–B.3).

Problems [60 pts total]

1. In this problem we clarify the characterization of the Lie group SO(3) as a group of “rotations” on
R3. Recall that for vectors v,w ∈ R3, the cross product v ×w ∈ R3 is defined to be 0 if v and w are
linearly dependent, and is otherwise the unique vector in R3 with the following properties:

(i) v ×w is orthogonal to both v and w,

(ii) |v ×w| = |v||w| sin θ where θ is the angle between v and w,

(iii) (v,w,v ×w) is a positively oriented basis of R3.

The operation (v,w) 7→ v×w is bilinear, and satisfies the anticommutativity relation v×w = −w×v
and the Jacobi identity

u× (v ×w) + v × (w × u) + w × (u× v) = 0.

This makes R3 with the “bracket” operation [v,w] := v × w into a Lie algebra (see Lecture Notes
§B.2). Note that the cross product is not associative: u× (v ×w) 6= (u × v) ×w in general.

(a) [5 pts] Show that all linear transformations A ∈ SO(3) preserve the cross product, i.e. A(v×w) =
Av ×Aw. Note: this is not true in general for A ∈ O(3)!

(b) [4 pts] Show that any matrix A ∈ R
3×3 that preserves lengths also preserves angles, in other

words if |Av| = |v| for all v ∈ R3, then A ∈ O(3). Hint: consider the dot product of A(v + w)
with itself.

Now define a linear map Φ : R
3 → R

3×3, which associates to any v ∈ R
3 the matrix of the linear

transformation
Φ(v) : R

3 → R
3 : w 7→ v ×w.

(c) [8 pts] Show that for any u ∈ R3 and t ∈ R, etΦ(u) ∈ SO(3). Hint: for v0 ∈ R3, the path of vectors
v(t) = etΦ(u)v0 can be characterized as the unique solution to a certain differential equation with
initial condition v(0) = v0. Use this to show that Φ(u) preserves lengths and apply part (b).

(d) [8 pts] Conclude from part (c) that Φ(u) ∈ so(3) for all u ∈ R
3. In fact, show that Φ is a Lie

algebra isomorphism R3 → so(3): this means it is a vector space isomorphism and also preserves
the bracket operations, so in this case, Φ(v ×w) = [Φ(v), Φ(w)] = Φ(v)Φ(w) − Φ(w)Φ(v).

(e) [5 pts] Let Aut(so(3)) denote the group of invertible linear transformations from so(3) to itself; this
is an open subset of the vector space End(so(3)) and thus a Lie group. The adjoint representation

of SO(3) is the group homomorphism

SO(3) → Aut(so(3)) : A 7→ AdA
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defined by AdA(B) = ABA−1. Take a moment to convince yourself that this does define a group
homomorphism, i.e. AdAB = AdA ◦AdB (no need to write it down). Then show that for all
A ∈ SO(3) and v ∈ R3,

Φ(Av) = AdA(Φ(v)).

In other words, the natural action of SO(3) on R3 becomes the adjoint representation on so(3)
under the isomorphism Φ : R3 → so(3).

(f) [5 pts] Show that for any v ∈ R3, etΦ(v)v = v. Hint: you might find useful the fact that any
matrix A commutes with eA, though you don’t necessarily have to do it this way.

The above leads to the conclusion that for v 6= 0, etΦ(v) is a rotation about the axis spanned by

v, with rotation angle proportional to t and |v|. Since so(3) → SO(3) : A 7→ eA is an immersion

and SO(3) is connected, a simple topological argument shows that every transformation in SO(3)
can be written in this way. We also deduce from this a new interpretation of the cross product:

in some sense v × w measures the degree to which rotations about v and rotations about w fail

to commute. In particular, two rotations commute if and only if they rotate about the same axis.

2. [10 pts] Recall that every n-dimensional complex vector space can also be considered a real vector
space of dimension 2n. Similarly a complex vector bundle E → M of rank m is also a real bundle of
rank 2m. Show that every real vector bundle obtained in this way is orientable. You may assume the
following fact: every complex basis of Cm is continuously deformable into every other complex basis.

3. Define S2n−1 as the unit sphere in Cn and observe that unitary linear transformations A ∈ U(n) map
S2n−1 to itself. Then if e1 = (1, 0, . . . , 0) ∈ Cn, define the map

π : U(n) → S2n−1 : A 7→ Ae1.

(a) [5 pts] Given a matrix B ∈ U(n − 1) identify this with the slightly larger matrix

(

1
B

)

∈ U(n),

and show that the map
U(n) × U(n − 1) → U(n) : (A,B) 7→ AB

defines a right action of U(n − 1) on U(n) which preserves the level sets π−1(v) for v ∈ S2n−1.

(b) [5 pts] Show that π is surjective and for each v ∈ S2n−1, π−1(v) is a smooth manifold diffeomorphic
to U(n − 1).

(c) [5 pts] From the above considerations, it’s not hard to believe that π : U(n) → S2n−1 is a principal
U(n − 1)-bundle: to prove this one must construct appropriate local trivializations. In light of
the group action, it suffices in fact to construct local sections near each point, which isn’t hard.
Let’s bypass this detail and ask instead the following question: given that π : U(n) → S2n−1 is a
principal U(n− 1)-bundle, is it the frame bundle of some Hermitian vector bundle of rank n− 1?
The answer is yes—identify the vector bundle in question, and explain.
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