
18.950 SPRING 2007
PROBLEM SET 6

DUE FRIDAY, MAY 4, 1:00PM

You can hand in the problem set in class or at my office (2-169) anytime before it’s due. (Slip it through
the slot in the door if I’m not there.)

Reading

Lecture notes §3.1–3.3 (3.3.4 optional), 3.4 (skim), Chapter 4.

Problems [50 pts total]

1. Assume M is an n-dimensional manifold. Recall that if λ ∈ Ω1(M) is a 1-form, then the bilinear map
ω : Vec(M) × Vec(M) → C∞(M),

ω(X, Y ) = LX (λ(Y )) − LY (λ(X)) − λ([X, Y ])

is C∞-linear in both variables and therefore defines a tensor field; in fact it’s clearly antisymmetric,
thus ω ∈ Ω2(M). As you may have suspected or read in a book by this point, ω is dλ. It’s time to
prove this.

(a) [5 pts] Choosing local coordinates (x1, . . . , xn) and writing λ = λi dxi, dλ = (dλ)ij dxi ⊗ dxj ,
show that

(dλ)ij = ∂iλj − ∂jλi.

Use this to verify explicitly that d2f = 0 for any f ∈ C∞(M).

(b) [5 pts] By intelligent choice of vector fields X and Y , show that this coordinate formula implies
the coordinate free formula

dλ(X, Y ) = LX (λ(Y )) − LY (λ(X)) − λ([X, Y ]). (1)

This formula has a generalization for forms of higher degree; see p. 213 in Spivak. Admittedly, I

personally have never found the general version very useful, though the simple case above has saved

my life many times.

Here’s a different kind of generalization which will come in useful when we discuss curvature on bundles.
For a vector bundle E → M of rank m, a bundle-valued differential k-form ω ∈ Ωk(M, E) is a smooth,
antisymmetric multilinear bundle map

ω : TM ⊕ . . . ⊕ TM
︸ ︷︷ ︸

k

→ E,

in other words the same thing as an ordinary differential form, except that for X1, . . . , Xk ∈ TpM ,
ω(X1, . . . , Xk) is not a real number but rather a vector in the fiber Ep. For instance, given an ordinary
differential form α ∈ Ωk(M) and a section v ∈ Γ(E), one can define a bundle-valued form vα ∈
Ωk(M, E) by

vα(X1, . . . , Xk) = α(X1, . . . , Xk) · v(p)

for X1, . . . , Xk ∈ TpM . In local coordinates (x1, . . . , xn), any ω ∈ Ωk(M, E) can be written via
components ωi1...ik

as

ω = ωi1...ik
dxi1 ⊗ . . . ⊗ dxik =

∑

1≤i1<...<ik≤n

ωi1...ik
dxi1 ∧ . . . ∧ dxik ,
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where the ωi1...ik
are now no longer real-valued functions but rather sections of E. (Note that they are

necessarily antisymmetric under interchange of indices.)

Writing Ω0(M) = C∞(M), if we think of the differential d as a linear map Ω0(M) → Ω1(M) : f 7→ df ,
then the natural generalization in this setting is to define Ω0(M, E) = Γ(E) and consider a covariant
derivative operator

∇ : Ω0(M, E) → Ω1(M, E),

which assigns to any section v ∈ Γ(E) the bundle-valued 1-form ∇v(X) := ∇Xv. One can use this to
define a covariant exterior derivative

d∇ : Ωk(M, E) → Ωk+1(M, E)

which matches ∇ on Ω0(M, E) and satisfies

d∇
(
v dxi1 ∧ . . . ∧ dxik

)
= ∇v ∧ dxi1 ∧ . . . ∧ dxik = ∇jv dxj ∧ dxi1 ∧ . . . ∧ dxik

for any section v. Observe that all of this depends on a choice of connection for E.

(c) [5 pts] Show that in local coordinates, bundle-valued 1-forms λ ∈ Ω1(M, E) satisfy

(d∇λ)ij = ∇iλj −∇jλi.

(d) [5 pts] Prove the corresponding coordinate free expression

d∇λ(X, Y ) = ∇X (λ(Y )) −∇Y (λ(X)) − λ([X, Y ]).

Note: part of your task here is to prove that the right hand side gives a well defined bundle-valued
2-form; use C∞-linearity!

(e) [5 pts] Choosing a local frame (e(1), . . . , e(m)) for E, we can write sections v as vie(i) and add an

upper index to bundle-valued forms ω ∈ Ωk(M, E) so that

ω = ωi
j1...jk

e(i) dxj1 ⊗ . . . ⊗ dxjk .

The covariant derivative on Γ(E) now takes the form

(∇jv)i = ∂jv
i + Γi

jkvk,

where the Christoffel symbols Γi
jk are scalar-valued functions with indices i, k ∈ {1, . . . , m} and

j ∈ {1, . . . , n}. Show that for any section v,

(d2
∇v)k

ij =
(
∂iΓ

k
j` − ∂jΓ

k
i` + Γk

imΓm
j` − Γk

jmΓm
i`

)
v`.

This expression is not zero, in general, so d2
∇ 6= 0. Notice however that it doesn’t actually depend

on any derivatives of v. In fact it tells us much less about the section than about the connection

itself: this turns out to be one way of writing the curvature defined by ∇!

2. A symplectic form on a 2n-dimensional manifold M is a 2-form ω which is both closed (dw = 0) and
nondegenerate: the latter means that for all p ∈ M , there is no Y ∈ TpM such that ω(Y, Z) = 0 for all
Z ∈ TpM . In this situation, for each p ∈ M the linear map

Φω : TpM → T ∗
p M

defined by Φω(Y )Z = ω(Y, Z) is injective, and is therefore an isomorphism (both spaces have the same
dimension). Thus for any smooth function H : M → R, there is a unique vector field XH ∈ Vec(M)
such that

dH = −ω(XH , ·) = −ιXH
ω.

We call H ∈ C∞(M) in this context a Hamiltonian and XH the corresponding Hamiltonian vector

field. An example was seen in the last problem on Problem Set 4, where we had M = R
2n with global

coordinates (q1, . . . , qn, p1, . . . , pn) and the “standard” symplectic form

ω0 :=
n∑

j=1

dpj ∧ dqj .
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(a) [5 pts] Show that ω0 is indeed a symplectic form on R
2n.

(b) [10 pts] Assume M is any 2n-dimensional manifold with an exact symplectic form ω = dλ. Given
t0 < t1 ∈ R and two points p0, p1 ∈ M , denote

C∞([t0, t1], M ; p0, p1) = {γ ∈ C∞([t0, t1], M) | γ(t0) = p0 and γ(t1) = p1}.

For a given Hamiltonian H ∈ C∞(M), we define the symplectic action funcational by

AH : C∞([t0, t1], M ; p0, p1) → R : γ 7→

∫

[t0,t1]

[
γ∗λ − H(γ(t)) dt

]
.

Show that a path γ ∈ C∞([t0, t1], M ; p0, p1) is stationary for AH if and only if it is an orbit of
XH , i.e. γ̇(t) = XH(γ(t)). Hint: relation (1) might be useful.

(c) [10 pts] The geodesic equation on an n-manifold M is locally a system of n second order differential
equations, but one can use the following trick to turn it into a system of 2n first order equations.
Observe that the total space of the tangent bundle TM is a 2n-dimensional manifold. We will use
the notation (q, p) ∈ TM , where q ∈ M and p ∈ TqM ; note that since the value of q constrains
p to a particular fiber, we cannot quite think of q and p as independent sets of variables, though
with a little caution this point of view can be helpful. The tangent space T(q,p)(TM) can now
be understood as follows. Given a Riemannian metric 〈 , 〉 on M , denote by ∇ the associated
Levi-Civita connection. In fiber bundle terms, this defines a horizontal-vertical splitting

T(q,p)(TM) = H(q,p)(TM) ⊕ V(q,p)(TM).

Now the bundle projection π : TM → M defines an isomorphism π∗ : H(q,p)(TM) → TqM , and
there is already a natural isomorphism of V(q,p)(TM) to the fiber TqM (the vertical tangent space
is after all just a tangent space to the fiber). In this way our connection defines an isomorphism

T(q,p)(TM) ∼= TqM ⊕ TqM,

which encodes the breaking of a tangent vector to TM into its horizontal and vertical parts
respectively. In particular, if (q(t), p(t)) ∈ TM is a smooth path (so p(t) ∈ Tq(t)M is a vector
field along q(t)), its velocity vector at time 0 can be understood by taking the horizontal part
q̇(0) ∈ TM along with the vertical part: the latter is the projection of ṗ(t) ∈ Tp(TM) to the
vertical subspace, in other words the covariant derivative. We have therefore

d

dt
(q(t), p(t))

∣
∣
∣
∣
t=0

= (q̇(0),∇tp(0)) ∈ Tq(0)M ⊕ Tq(0)M ∼= T(q(0),p(0))(TM).

Now using this identification, the Riemannian metric on M defines a 1-form λ ∈ Ω1(TM) by

λ(ξ, η) = 〈p, ξ〉

for (ξ, η) ∈ T(q,p)(TM). It turns out that dλ is a symplectic form on TM (prove it in your spare
time, if you wish). Define the Hamiltonian function

H : TM → R : (q, p) 7→
1

2
〈p, p〉.

Then for smooth paths (q(t), p(t)) ∈ TM between fixed end points (q0, p0) and (q1, p1), the
symplectic action functional AH : C∞([t0, t1], TM ; (q0, p0), (q1, p1)) → R takes the form

AH(q, p) =

∫ t1

t0

(

〈p(t), q̇(t)〉 −
1

2
〈p(t), p(t)〉

)

dt.

Show that (q(t), p(t)) is an orbit of XH if and only if it satisfies the equations

q̇(t) = p(t)

∇tp(t) = 0.
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Explain why this is equivalent to the geodesic equation for the path q(t) ∈ M .

Note: there are at least two ways you could go about this. Since you have explicit formulas for λ

and H , one way would be to use dH = −ιXH
dλ to derive a formula for XH . It might however be

easier to take the variational approach, and derive conditions for the explicit form of the action

functional above to be stationary. You will need to use the description of tangent spaces to TM

explained above, along with the symmetry of the connection, compatibility with the metric, and

integration by parts.
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