
18.950 SPRING 2007
TAKEHOME MIDTERM 1

DUE THURSDAY, MARCH 22, 11:00AM

Important note: The due date for this midterm is strict—late submissions will not be accepted. If preferred
you can also bring it to my office (2-169) before it’s due. If you don’t come to lecture on the 22nd but I find
your midterm in my office afterwards, I will not grade it, but I will laugh at you.

Reading

The following portions of Spivak cover topics on differential forms and integration which we have discussed
in lecture, some of which also appear on this midterm:

Chapter 7, skip pp. 215–217 (middle), casually skim pp. 220–226.
Chapter 8, up to p. 263 (middle).

Problems [200 pts total]

1. (a) [10 pts] Show that the function f : R → R defined by

f(x) =

{

e−1/x2

if x > 0,

0 if x ≤ 0

is smooth.

Note that the existence of a smooth function that vanishes on some open subset but not everywhere

is by no means obvious. Observe that the Taylor series for f(x) about 0 never equals f(x) for

x > 0. If you know a little complex analysis, you may be aware that no such thing ever happens

with analytic functions: if U ⊂ C is a nonempty open subset and f : C → C is analytic with

f |U ≡ 0, then f is zero everywhere. Morally, this means the set of smooth functions is much

larger than the set of analytic functions.

(b) [5 pts] Using the function f above, find another smooth function g : R → R such that g(x) > 0
for all x ∈ (0, 1) but g(x) = 0 for x ≤ 0 and x ≥ 1.

(c) [5 pts] Given g as above, show that h : R → R : x 7→
∫ x

0 g(t) dt is also a smooth function. Now
for any a < b ∈ R, use this to find a smooth function β : R → R with the following properties:

• β(x) ∈ [0, 1] for all x
• β(x) = 0 for all x ≤ a

• β(x) = 1 for all x ≥ b

A function with these properties is often called a bump function.
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(d) [5 pts] For any x0 ∈ Rn and ε > 0, find a smooth function βx0
: Rn → R such that βx0

(x0) = 1
and βx0

(x) = 0 for all x ∈ Rn with |x − x0| ≥ ε. Hint: you might find it useful to note that the
function Rn → R : x 7→ |x|2 is smooth.

(e) [10 pts] Let M be a smooth n-manifold and X ⊂ M a discrete subset; this means that every
p ∈ X is contained in some open set U ⊂ M such that U ∩ X = {p}. Then if g : X → R is an
arbitrary map, construct a smooth function f : M → R such that f(p) = g(p) for all p ∈ X . Put
another way: there exist smooth functions having any desired values on any discrete subset.

2. Given a smooth map f : M → N , a point q ∈ N is called a regular value of f if for every p ∈ f−1(q) ⊂
M , the derivative Tf |TpM : TpM → TqN is surjective. Values q ∈ N that are not regular are called
critical values of f .

(a) [5 pts] Let f : R3 → R : (x, y, z) 7→ x2 + y2 − z2. Which are the regular values of f , and which
values are critical?

(b) [10 pts] Describe (draw) the level sets f−1(−1), f−1(0) and f−1(1). Which of these are sub-
manifolds of R3? Explain what the answer to this question has to do with the implicit function
theorem.

(c) [10 pts] Let ∇f ∈ Vec(R3) denote the gradient vector field

∇f(p) =
∂f

∂x
(p) ∂x +

∂f

∂y
(p) ∂y +

∂f

∂z
(p) ∂z,

and for all points p ∈ R3 with ∇f(p) 6= 0, define

X(p) =
∇f(p)

|∇f(p)|2
∈ TpR

3 = R
3.

Since X(p) is not necessarily well defined everywhere, one must be careful in talking about the
flow ϕtX of X , but ignore this detail for the moment. Assuming it’s well defined, what is

d

dt
f(ϕtX(p))?

What does this tell you about the image of a level set f−1(a) under ϕtX?

(d) [5 pts] Consider any two values a, b ∈ R for which f−1(a) and f−1(b) are both manifolds. Under
what circumstances are these manifolds diffeomorphic? You needn’t prove it, but formulate a
conjecture along the following lines:

Given a smooth map f : M → N , two level sets f−1(p) and f−1(q) are diffeomorphic

submanifolds of M if . . .

In the case f : R3 → R considered above, how could you use the flow ϕtX to prove this? (Again,
there are technicalities to be dealt with regarding the existence of the flow, but I’m only asking
for a heuristic argument.)

Note: the conjecture should not say “if and only if”; that would be asking a bit much.

3. Let M and N be smooth manifolds with a diffeomorphism ϕ : M → N . If X ∈ Vec(M), we define the
push-forward ϕ∗X ∈ Vec(N) according to the formula ϕ∗X(ϕ(p)) = Tϕ(X(p)), or in other words

ϕ∗X(q) = Tϕ(X(ϕ−1(q))).

(a) [10 pts] Show that for any X ∈ Vec(M), f ∈ C∞(N) and q ∈ N ,

(Lϕ∗Xf)(q) = (LX(f ◦ ϕ))(ϕ−1(q)).

(b) [10 pts] Use the result of part (a) to show that for any X,Y ∈ Vec(M),

[ϕ∗X,ϕ∗Y ] = ϕ∗[X,Y ].

In fancy terms, this shows that ϕ∗ : Vec(M) → Vec(N) is a Lie algebra homomorphism.
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4. As we mentioned once in lecture, there is a natural 1-form on S1 which we often denote by dθ, even
though it is not technically the differential of a smooth function θ : S1 → R. We define it as follows.
Regard S1 as the unit circle in R2, and for any p ∈ S1, X ∈ TpS

1, choose a smooth path γ : (−ε, ε) → S1

with γ(0) = p, γ̇(0) = X . Restricting the parameter to a suitably small neighborhood of 0, we can
define the angular coordinate θ(γ(t)) so that it depends smoothly on t ∈ (−ε, ε); any alternative choice
is related to ours by a constant offset of 2πk for some k ∈ Z. Thus the number

dθ(X) :=
d

dt
θ(γ(t))

∣

∣

∣

∣

t=0

doesn’t depend on the choice. The goal of this problem is to compute
∫

S1 dθ.

This integral is defined via a partition of unity, that is, a (possibly infinite or uncountable) collection
of open subsets Ui ⊂ S1 such that

⋃

i Ui = S1, together with smooth functions ψi : S1 → [0, 1] such
that:

• For each p ∈ S1, only finitely many of the numbers ψi(p) are nonzero, and
∑

i ψi(p) = 1. (Note
that the first statement guarantees that the second is well defined.)

• For each Ui, the closure of {p ∈ S1 | ψi(p) 6= 0} is contained in Ui. (Recall that the closure of a
subset A in any metric space X is the set of all points x ∈ X for which there exists a sequence
xj ∈ A with xj → x. It is necessarily a closed subset of X .)

(a) [10 pts] Show that such a collection {(Ui, ψi)} exists on S1. In fact, find such a collection which
is finite and such that each Ui is contained in the image of some orientation preserving 1-chain
ci : [0, 1] → S1. (Assume S1 is oriented so that the “positive” direction is counterclockwise.) You
might find the bump function of Problem 1 useful.

(b) [10 pts] Recall that every 1-form on [0, 1] can be written as f dt for some smooth function
f : [0, 1] → R, and the integral of this form is defined by

∫

[0,1]

f dt :=

∫ 1

0

f(t) dt,

where the right hand side is the standard Riemann integral of single variable calculus. Then
for any 1-form λ on S1 that is zero outside the image of some orientation preserving 1-chain
c : [0, 1] → S1, one defines

∫

S1

λ :=

∫

[0,1]

c∗λ.

Now, given the choices {(Ui, ψi, ci)} above, we have 1-forms ψi dθ on S1 that are each zero outside
of ci([0, 1]), and by construction

∑

i ψi dθ = dθ. Thus we define

∫

S1

dθ =
∑

i

∫

S1

ψi dθ.

Compute this.

5. [5 pts] Use Stokes’ theorem to show that the 1-form dθ on S1 from Problem 4 is not actually the
differential of any smooth function on S1. (Note: this is stronger than the observation that θ : S1 → R

is not a well defined smooth function—the claim is that there is no smooth function f : S1 → R whose
differential is dθ). Hint: this is easy.

6. Here’s a fact that you may or may not already know: given a set of column vectors v1, . . . ,vn ∈ Rn,
the volume of the parallelopiped spanned by these vectors is

± det
(

v1 · · · vn
)

where the sign is determined according to whether (v1, . . . ,vn) defines a positively or negatively ori-
ented basis of Rn. To see that this formula is correct, recall that the space of antisymmetric k-forms
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on Rn has dimension n!
k!(n−k)! , which is 1 in particular for k = n. Since the determinant itself defines

a nonzero n-form, every other volume form on Rn is a constant multiple of this. We see then that
the determinant is the right volume form, because choosing the standard basis vectors e1, . . . , en ∈ Rn

(these give a positive basis by definition), one gets the volume of the unit cube:

det
(

e1 · · · en
)

= det1 = 1.

Here 1 denotes the n-by-n identity matrix.

Now denote by Rn×n the vector space of real n-by-n matrices, and define the subset

G = {A ∈ R
n×n | det(A) = ±1}.

This set is closed under matrix multiplication and inversion since det(AB) = det(A) · det(B), thus in
algebraic terms, it forms a group.

(a) [5 pts] Describe a geometric interpretation for the group G, i.e. what geometric notion involving
vectors in Rn is preserved by all linear transformations in G, and only by these transformations?

(b) [5 pts] A somewhat more important group is the special linear group

SL(n,R) = {A ∈ R
n×n | det(A) = 1}.

What must you add to the answer to part (a) to give a geometric interpretation of SL(n,R)?

(c) [10 pts] SL(n,R) is a smooth submanifold of Rn×n. Use the implicit function theorem to prove
this in the case n = 2. What would you guess is dim SL(n,R) for general n? Prove the answer
for n = 2.

(d) [15 pts] Suppose A : (−ε, ε) → Rn×n is a smooth path with A(0) = 1. Then show that

d

dt
det(A(t))

∣

∣

∣

∣

t=0

= tr(Ȧ(0)),

where tr denotes the trace, i.e. the sum of the diagonal elements. Hint: think of A(t) as an
n-tuple of smooth paths of column vectors v1(t), . . . ,vn(t) with vj(0) = ej . Then det(A(t))
is an antisymmetric n-form on these vectors and can be written via fixed (i.e. t-independent)
components

det(A(t)) = det
(

v1(t) · · · vn(t)
)

= ωi1...invi11 (t) . . .vinn (t).

(Alert: implied summations!) Use the product rule to differentiate this with respect to t and
rewrite the answer as a sum of determinants, then simplify. If you get stuck, just work out the
n = 2 case.

(e) [10 pts] Show that T1 SL(n,R) = {A ∈ Rn×n | tr(A) = 0}.

(f) [5 pts] Show that if A,B ∈ T1 SL(n,R), then the commutator [A,B] := AB − BA is also
in T1 SL(n,R).

(g) [5 pts] Recall the orthogonal group O(n) = {A ∈ Rn×n | ATA = 1}, for which

T1 O(n) = {A ∈ R
n×n | AT + A = 0}.

Show that T1 O(n) is also preserved by the bracket operation [A,B] = AB−BA.

This means that T1 SL(n,R) and T1 O(n) with the bracket operation [ , ] defined by commutation

are Lie algebras. Both are examples of a more general phenomenon involving Lie groups, that is,

groups that are also manifolds: in general the tangent space to a Lie group at the identity has

a natural Lie algebra structure. There is an infinite dimensional analog of this statement which

we’ve already seen: if Diff(M) is the group of diffeomorphisms M → M , with the “product”

operation defined by composition ϕ ◦ ψ, then in principle, the tangent space to Diff(M) at the

identity is Vec(M), the space of vector fields. The Lie bracket on vector fields is then the natural

Lie algebra structure induced on Vec(M) by the group structure of Diff(M).
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7. Recall that for X ∈ Vec(Rn), the divergence of X is the real valued function

∇ ·X =

n
∑

i=1

∂iX
i.

Unfortunately, this expression turns out not to be invariant under coordinate transformations (if you
want to prove this to yourself see Problem (3c) on Problem Set 3 for inspiration). So there is no well
defined notion of divergence for vector fields on general n-manifolds M . However, we can define it if M
has a little extra structure, namely, a volume form. Assume M is oriented, and it comes equipped with
a nowhere zero n-form µ ∈ Ωn(M). Given X ∈ Vec(M), we can define a function div(X) ∈ C∞(M)
using the Lie derivative of µ with respect to X : this is the n-form

LXµ =
d

dt
(ϕtX )∗µ

∣

∣

∣

∣

t=0

where ϕtX : M → M is the flow of X ; in other words for vectors Y1, . . . , Yn ∈ TpM at p ∈ M , LXµ is
defined by

LXµ(Y1, . . . , Yn) =
d

dt
µ(TϕtX(Y1), . . . , Tϕ

t
X(Yn))

∣

∣

∣

∣

t=0

.

Now since LXµ is an n-form and dim ΛnT ∗
pM = 1, there is a unique smooth function div(X) : M → R

defined by the condition
LXµ = div(X) · µ.

We call div(X) the divergence of X , a term which will be justified below.

(a) [10 pts] Show that the new definition gives div(X) = ∇ · X if X ∈ Vec(Rn) and we use the
standard volume form µ = dx1 ∧ . . . ∧ dxn. (Hint: you might find it very useful that partial
derivatives commute.)

(b) [10 pts] For any n-dimensional submanifold Ω ⊂ M with boundary, define the volume Vol(Ω) :=
∫

Ω
µ. Show that

d

dt
Vol(ϕtX (Ω))

∣

∣

∣

∣

t=0

=

∫

Ω

div(X) µ.

Hint: remember the change of variables formula
∫

ψ(Ω) ω =
∫

Ω ψ
∗ω whenever ω is an n-form and

ψ is an orientation preserving diffeomorphism on to its image ψ(Ω) ⊂ M . The flow of a vector
field is always orientation preserving (give a brief argument as to why).

(c) [10 pts] Here is an exceptionally useful formula (proven in Spivak p. 235, Problem 18): for any
vector field X and k-form ω,

LXω = dιXω + ιXdω,

where ιXω ∈ Ωk−1(M) is the so-called interior product ιXω(Y1, . . . , Yk−1) = ω(X,Y1, . . . , Yk−1),
and d : Ωk(M) → Ωk+1(M) is the exterior derivative. Recall now that for the n-form µ, dµ = 0
since all (n + 1)-forms on an n-manifold are trivial. Use this and Stokes’ theorem to prove the
generalized Gauss divergence theorem:

∫

Ω

div(X) µ =

∫

∂Ω

ιXµ.

As we saw in lecture, when M = Rn the right hand side can be interpreted as the surface integral
∫

∂Ω

X · ν dA,

where ν is the unit outward normal vector to ∂Ω.

(d) [5 pts] A diffeomorphism ψ : M → M is called volume preserving if for every n-dimensional
submanifold Ω with boundary,

Vol(Ω) = Vol(ψ(Ω)).

Under what conditions on a vector field X ∈ Vec(M) is its flow ϕtX volume preserving for all t?
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