18.950 SPRING 2007
TAKEHOME MIDTERM 2
DUE FRIDAY, MAY 11, 11:59PM

Reading

Lecture notes, Chapters 5 and 6.

The problems below include topics covered in Chapter 5 but not Chapter 6. The latter will however be fair
game for the final.

Problems [150 pts total]

1. We've often discussed flows of vector fields but avoided the question of whether these exist globally.
An exception was Problem 3 on Problem Set 2, where we saw an example of a vector field on R for
which most solutions go to infinity in finite time. An even simpler example is the manifold M = (0,1)
with vector field X (z) = a%: then the solutions z(t) = ¢t + ¢ run out the edge of M in finite time. One
thing both of these examples have in common is that the manifolds are noncompact, and in fact there
is a useful general theorem about differential equations which can be stated thus:

Theorem 1. For any smooth vector field X on a compact manifold M (without boundary), the flow
ol is globally well defined and smooth for all t € R.

One can of course ask the same question about geodesics on a Riemannian manifold; these are a slightly
different animal since the differential equation is second order. Clearly there is a danger: e.g. if (M, g)
is any proper open subset of R™ with the standard Euclidean metric, one can easily find a geodesic
that runs out of the subset in finite time. We say that a Riemannian manifold is geodesically complete
if this never happens, i.e. every geodesic v(t) € M has domain R, rather than just an open subinterval
of R. Observing that our example above is once again a noncompact manifold, we’d like to prove the
following:

Theorem 2. Every compact Riemannian manifold is geodesically complete.

One approach to this uses the idea of Problem (2¢) on Problem Set 6 to change the geodesic equation on
M into the flow of a Hamiltonian vector field Xy on T'M. The drawback you may notice immediately
is that 7'M is never compact, even if M is; indeed, the tangent spaces T}, M are all noncompact. This
is however an easily surmountable obstacle.

(a) [10 pts] Use Theorem 1 to prove Theorem 2 by viewing geodesics as orbits of a Hamiltonian vector
field on TM as in Problem Set 6. Hint: you may assume that if £ — M is any fiber bundle with
M and the standard fiber both compact, then the total space F is also compact. With this in
mind, see Problem Set 4, Problem (4d).

(b) [5 pts] It is perfectly possible for a noncompact manifold also to be geodesically complete, e.g. this
is true for R™ with the standard Euclidean metric. However, find a Riemannian metric g on R”
such that (R™, g) is not geodesically complete. Hint: R™ is diffeomorphic to an open ball.

2. Recall that the Poincaré half plane (H, k) is the 2-manifold
H={(z,y) eR* | y > 0}

with Riemannian metric 1
h=—gg,
Y2



where g is the standard Euclidean metric on R%Z. We showed in lecture that the geodesic equation on
(H, h) takes the form
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[10 pts] Show that for any constants ¢ € R and r > 0, Equations (1) admit solutions of the form
(2(8),y(8)) = (20, (1))
for some function y(t) > 0, as well as
(x(t),y(t)) = (xg + rcosb(t),rsinb(t)) .

for some function 6(t) € (0, 7).

[10 pts] Prove that the solutions of part (a) give all geodesics on (H, h), and that any two points
in H can be joined by a unique geodesic. Note: you can prove this mostly with pictures.

[10 pts] Compute the length of the geodesic segment joining (zo,yo) and (xg,y1) for any 0 <
yo < y1. Compute also the length of the geodesic segment joining (z¢ + r cos by, rsinfy) and
(xo+7cosby,rsindy) for any 0 < 0y < 61 < 7. Use these results to show that (H, &) is geodesically
complete.

3. An isometry of a Riemannian manifold (M, g) is a diffeomorphism ¢ : M — M such that ¢*g = g.
The isometries of (M, g) form a topological group Isom(M, g). It’s structure in a neighborhood of the
identity map can be understood by considering smooth 1-parameter families ¢; € Isom(M,g) with
o = Id. In particular, differentiating this with respect to t at ¢t = 0 gives a vector field

X) = G|

which must satisfy Lxg = 0 due to the condition ¢;g = g. A vector field satisfying this condition is
called a Killing vector field. Intuitively, we think of it as an “infinitessimal isometry”.

(a)

[10 pts] Show that if V is any symmetric connection on TM — M, X € Vec(M), A € QY(M) and
Y € TM, then (LxA\)(Y) = (VxA)(Y) + AM(Vy X). Hint: construct a smooth map «a(s,t) € M
defined for (s,t) € R? near the origin such that dsa(s,t) = X(a(s,t)) and 9,(0,0) = Y. Tt will
be crucial that the connection is symmetric, so V;0;a = V;0sa.

[6 pts] Generalize the above result to the formula

(LxT)(Y1,...,Yy) = (VxT)(Y1,....Ys) + T(Vy, X, Ys,..., Y})
+T(Y1,VY2X,...,Yk) —|—...+T(Y1,...,Yk,1,VYkX),

valid for any covariant tensor field T' € T'(TPM).

[10 pts] Applying the formula above with the Levi-Civita connection so that Vg = 0, we find
Lxg =0 if and only if
9(Vy X, Z)+g(Y,V2zX) =0

forallpe M and Y, Z € T,M. This is called the Killing equation.
The bundle metric on TM — M defines for each p € M a so-called musical isomorphism
b T,M =Ty MY =Y’
Y*(2) = g(Y, 2).
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Thus a vector field X € Vec(M) gives rise to a 1-form X* € Q'(M), and this is a one-to-one
correspondence. Show that for any X € Vec(M) and Y € T M,

(VyX)’ = Vy(X?).

Then show that X satisfies the Killing equation if and only if the tensor field VX € T(T9 M)
defined by VX*(Y, Z) := (Vy X°)(Z) is antisymmetric.

[20 pts] By the above result, solving the Killing equation is equivalent to finding a 1-form A\ €
QY(M) such that
VAY,Z)+ VAZ,Y)=0. (2)

Suppose 7(s) € M is a geodesic through v(0) = p € M. Show that if A € Q!(M) satisfies
Equation (2), then as a section of T*M along v, it also satisfies the second order linear differential
equation

VX = A(R(3,)9), 3)

or to be more precise, for any Y € T, M, (VsVA)(Y) = MR((s),Y)7(s)). Here R(X,Y)Z
denotes the the curvature tensor R : TM T M ST M — T M defined by the Levi-Civita connection
on TM — M.

Hint: this is tricky, but here are some tips to get you started. If Y(s) € Ty M is a parallel
vector field along «y, then show that (VZX)(Y) = 92 (A(Y)). One can extend v(s) to a smooth
map «(s,t) with a(s,0) = ~(s) so that d,a(s,0) = Y(s). Then in terms of covariant partial
derivatives, Equation (2) says

(VAN (@ra(s, 1)) + (Vi) (Dsa(s, ) = 0.

The rest follows from intelligent use of commuting (or non-commuting) partial derivatives, in-
cluding the symmetry of the connection and the definition of the curvature tensor.

[8 pts] We now appeal to a general fact about second order linear differential equations: if x(t) €
R™ satisfies an equation of the form

%(t) = A(t)x(1)

for some smooth family of linear maps A(t) € R™*™, then x(¢) is uniquely determined by its
initial position x(0) and velocity %(0). Use this and Equation (3) to show that if A satisfies (2)
and there is a point p € M at which A\, =0 and VA, =0, then A = 0.

[7 pts] The previous conclusion together with the linearity of the Killing equation imply a unique-
ness statement for the Killing equation: in particular, there is an upper bound (in terms of
dim M = n) on the possible dimension of the space of Killing vector fields. What is this bound?
Caution: this is a uniqueness result but says nothing about existence—there are cases where
the Killing equation has no nontrivial solutions. The trouble is that while the theory of ODEs
guarantees local existence of 1-forms A that satisfy Equation (3) along a geodesic v, these need
not generally extend to 1-forms on an open set that satisty (2).

[5 pts] Let us apply the uniqueness result to the case M = R™ with the standard Euclidean metric
(, ) on T,R™ = R™ In this case there is a well known family of isometries called the Fuclidean
group E(n), which consists of all diffeomorphisms ¢ : R™ — R™ of the form

o(x) =Ax+b

for A € O(n) and b € R™. Differentiating any smooth 1-parameter family p; € E(n) with ¢y = Id

gives a Killing vector field
d
X(x)=—
) = o]

Show that all Killing vector fields on Euclidean n-space are of this form.

Note: one can go slightly further and prove that the Euclidean group contains all isometries of
Euclidean space—thus R™ does not admit any nonlinear isometries.



4. Suppose M is an oriented 3-manifold and A € Q' (M) is nowhere zero, i.e. for all p € M there exist
vectors X € T, M with A(X) # 0. Then at every p € M, the kernel ker A\, = {X € T,M | A(X) =0}
is a 2-dimensional subspace of T,M, and the union of these for all p defines a smooth 2-dimensional
distribution

E:=ker\CTM.

(a) [20 pts] Show that the following conditions are equivalent:

i AANdA=0
ii. For all p € M there exists X € £, such that dA\(X,Y) =0 for all Y € &, i.e. the restriction
dM|¢ is degenerate.
iii. ¢ is integrable.

The 1-form A is called a contact form if A Ad) is a volume form; the distribution ¢ (called the contact
structure) is then “as non-integrable as possible.” An example on R? is shown in the figure above. Such
examples can be constructed by the following trick: choosing cylindrical polar coordinates (p, ¢, z) on
R3, choose smooth real-valued functions f(p), g(p) and define \ at (p, ¢, z) by

A= f(p) dz+g(p) do. (4)

(b) [10 pts] Since the coordinates (p, ¢, z) are not well defined at p = 0, there is of course some danger
that the 1-form defined in Equation (4) might be singular at the z-axis. Show that A is in fact
smooth on all of R? and satisfies A A d\ # 0 near the z-axis if we assume f(p) = 1 and g(p) = p?
for p sufficiently close to 0. Hint: convert to Cartesian coordinates.

(c) [10 pts] Assuming f and g take the form desribed above for p near 0, show that A is a contact
form if and only if

f(p)g' (p) = f'(p)g(p) #0

for all p > 0. What does this mean geometrically about the curve p +— (f(p), g(p)) € R?? Interpret
this in terms of “twisting” of the planes &, as p € R® moves along radial paths away from the
z-axis.



