18.950 SPRING 2007 TAKEHOME MIDTERM 2 DUE FRIDAY, MAY 11, 11:59PM

Reading

Lecture notes, Chapters 5 and 6.

The problems below include topics covered in Chapter 5 but not Chapter 6. The latter will however be fair game for the final.

Problems [150 pts total]

1. We've often discussed flows of vector fields but avoided the question of whether these exist globally. An exception was Problem 3 on Problem Set 2, where we saw an example of a vector field on \mathbb{R} for which most solutions go to infinity in finite time. An even simpler example is the manifold M = (0, 1) with vector field $X(x) = \frac{\partial}{\partial x}$: then the solutions x(t) = t + c run out the edge of M in finite time. One thing both of these examples have in common is that the manifolds are noncompact, and in fact there is a useful general theorem about differential equations which can be stated thus:

Theorem 1. For any smooth vector field X on a compact manifold M (without boundary), the flow φ_X^t is globally well defined and smooth for all $t \in \mathbb{R}$.

One can of course ask the same question about geodesics on a Riemannian manifold; these are a slightly different animal since the differential equation is second order. Clearly there is a danger: e.g. if (M, g) is any proper open subset of \mathbb{R}^n with the standard Euclidean metric, one can easily find a geodesic that runs out of the subset in finite time. We say that a Riemannian manifold is *geodesically complete* if this never happens, i.e. every geodesic $\gamma(t) \in M$ has domain \mathbb{R} , rather than just an open subinterval of \mathbb{R} . Observing that our example above is once again a noncompact manifold, we'd like to prove the following:

Theorem 2. Every compact Riemannian manifold is geodesically complete.

One approach to this uses the idea of Problem (2c) on Problem Set 6 to change the geodesic equation on M into the flow of a Hamiltonian vector field X_H on TM. The drawback you may notice immediately is that TM is *never* compact, even if M is; indeed, the tangent spaces T_pM are all noncompact. This is however an easily surmountable obstacle.

- (a) [10 pts] Use Theorem 1 to prove Theorem 2 by viewing geodesics as orbits of a Hamiltonian vector field on TM as in Problem Set 6. *Hint:* you may assume that if $E \to M$ is any fiber bundle with M and the standard fiber both compact, then the total space E is also compact. With this in mind, see Problem Set 4, Problem (4d).
- (b) [5 pts] It is perfectly possible for a noncompact manifold also to be geodesically complete, e.g. this is true for \mathbb{R}^n with the standard Euclidean metric. However, find a Riemannian metric g on \mathbb{R}^n such that (\mathbb{R}^n, g) is not geodesically complete. Hint: \mathbb{R}^n is diffeomorphic to an open ball.
- 2. Recall that the Poincaré half plane (\mathbb{H}, h) is the 2-manifold

$$\mathbb{H} = \{ (x, y) \in \mathbb{R}^2 \mid y > 0 \}$$

with Riemannian metric

$$h = \frac{1}{y^2} g_E,$$

where g_E is the standard Euclidean metric on \mathbb{R}^2 . We showed in lecture that the geodesic equation on (\mathbb{H}, h) takes the form

$$\ddot{x} - \frac{2}{y} \dot{x} \dot{y} = 0$$

$$\ddot{y} + \frac{1}{y} \left(\dot{x}^2 - \dot{y}^2 \right) = 0.$$
(1)

(a) [10 pts] Show that for any constants $x_0 \in \mathbb{R}$ and r > 0, Equations (1) admit solutions of the form

$$(x(t), y(t)) = (x_0, y(t))$$

for some function y(t) > 0, as well as

$$(x(t), y(t)) = (x_0 + r\cos\theta(t), r\sin\theta(t)).$$

for some function $\theta(t) \in (0, \pi)$.

- (b) [10 pts] Prove that the solutions of part (a) give all geodesics on (\mathbb{H}, h) , and that any two points in \mathbb{H} can be joined by a unique geodesic. Note: you can prove this mostly with pictures.
- (c) [10 pts] Compute the length of the geodesic segment joining (x_0, y_0) and (x_0, y_1) for any $0 < y_0 < y_1$. Compute also the length of the geodesic segment joining $(x_0 + r \cos \theta_0, r \sin \theta_0)$ and $(x_0 + r \cos \theta_1, r \sin \theta_1)$ for any $0 < \theta_0 < \theta_1 < \pi$. Use these results to show that (\mathbb{H}, h) is geodesically complete.
- 3. An isometry of a Riemannian manifold (M, g) is a diffeomorphism $\varphi : M \to M$ such that $\varphi^* g = g$. The isometries of (M, g) form a topological group $\operatorname{Isom}(M, g)$. It's structure in a neighborhood of the identity map can be understood by considering smooth 1-parameter families $\varphi_t \in \operatorname{Isom}(M, g)$ with $\varphi_0 = \operatorname{Id}$. In particular, differentiating this with respect to t at t = 0 gives a vector field

$$X(p) = \left. \frac{d}{dt} \varphi_t(p) \right|_{t=0},$$

which must satisfy $L_X g \equiv 0$ due to the condition $\varphi_t^* g = g$. A vector field satisfying this condition is called a *Killing vector field*. Intuitively, we think of it as an "infinitessimal isometry".

- (a) [10 pts] Show that if ∇ is any symmetric connection on $TM \to M$, $X \in \operatorname{Vec}(M)$, $\lambda \in \Omega^1(M)$ and $Y \in TM$, then $(L_X\lambda)(Y) = (\nabla_X\lambda)(Y) + \lambda(\nabla_YX)$. *Hint:* construct a smooth map $\alpha(s,t) \in M$ defined for $(s,t) \in \mathbb{R}^2$ near the origin such that $\partial_s \alpha(s,t) = X(\alpha(s,t))$ and $\partial_t \alpha(0,0) = Y$. It will be crucial that the connection is symmetric, so $\nabla_s \partial_t \alpha = \nabla_t \partial_s \alpha$.
- (b) [5 pts] Generalize the above result to the formula

$$(L_X T)(Y_1, \dots, Y_k) = (\nabla_X T)(Y_1, \dots, Y_k) + T(\nabla_{Y_1} X, Y_2, \dots, Y_k) + T(Y_1, \nabla_{Y_2} X, \dots, Y_k) + \dots + T(Y_1, \dots, Y_{k-1}, \nabla_{Y_k} X),$$

valid for any covariant tensor field $T \in \Gamma(T_k^0 M)$.

(c) [10 pts] Applying the formula above with the Levi-Civita connection so that $\nabla g \equiv 0$, we find $L_X g \equiv 0$ if and only if

$$g(\nabla_Y X, Z) + g(Y, \nabla_Z X) = 0$$

for all $p \in M$ and $Y, Z \in T_p M$. This is called the *Killing equation*. The bundle metric on $TM \to M$ defines for each $p \in M$ a so-called *musical isomorphism*

$$b: T_p M \to T_p^* M : Y \mapsto Y^!$$
$$Y^{\flat}(Z) := g(Y, Z).$$

Thus a vector field $X \in \operatorname{Vec}(M)$ gives rise to a 1-form $X^{\flat} \in \Omega^{1}(M)$, and this is a one-to-one correspondence. Show that for any $X \in \operatorname{Vec}(M)$ and $Y \in TM$,

$$(\nabla_Y X)^\flat = \nabla_Y (X^\flat).$$

Then show that X satisfies the Killing equation if and only if the tensor field $\nabla X^{\flat} \in \Gamma(T_2^0 M)$ defined by $\nabla X^{\flat}(Y, Z) := (\nabla_Y X^{\flat})(Z)$ is antisymmetric.

(d) [20 pts] By the above result, solving the Killing equation is equivalent to finding a 1-form $\lambda \in \Omega^1(M)$ such that

$$\nabla\lambda(Y,Z) + \nabla\lambda(Z,Y) = 0.$$
 (2)

Suppose $\gamma(s) \in M$ is a geodesic through $\gamma(0) = p \in M$. Show that if $\lambda \in \Omega^1(M)$ satisfies Equation (2), then as a section of T^*M along γ , it also satisfies the second order linear differential equation

$$\nabla_s^2 \lambda = \lambda(R(\dot{\gamma}, \cdot)\dot{\gamma}),\tag{3}$$

or to be more precise, for any $Y \in T_{\gamma(s)}M$, $(\nabla_s \nabla_s \lambda)(Y) = \lambda(R(\dot{\gamma}(s), Y)\dot{\gamma}(s))$. Here R(X, Y)Z denotes the the curvature tensor $R: TM \oplus TM \oplus TM \to TM$ defined by the Levi-Civita connection on $TM \to M$.

Hint: this is tricky, but here are some tips to get you started. If $Y(s) \in T_{\gamma(s)}M$ is a *parallel* vector field along γ , then show that $(\nabla_s^2 \lambda)(Y) = \partial_s^2(\lambda(Y))$. One can extend $\gamma(s)$ to a smooth map $\alpha(s,t)$ with $\alpha(s,0) = \gamma(s)$ so that $\partial_t \alpha(s,0) = Y(s)$. Then in terms of covariant partial derivatives, Equation (2) says

$$(\nabla_s \lambda)(\partial_t \alpha(s,t)) + (\nabla_t \lambda)(\partial_s \alpha(s,t)) = 0.$$

The rest follows from intelligent use of commuting (or non-commuting) partial derivatives, including the symmetry of the connection and the definition of the curvature tensor.

(e) [8 pts] We now appeal to a general fact about second order linear differential equations: if $\mathbf{x}(t) \in \mathbb{R}^n$ satisfies an equation of the form

$$\ddot{\mathbf{x}}(t) = \mathbf{A}(t)\mathbf{x}(t)$$

for some smooth family of linear maps $\mathbf{A}(t) \in \mathbb{R}^{n \times n}$, then $\mathbf{x}(t)$ is uniquely determined by its initial position $\mathbf{x}(0)$ and velocity $\dot{\mathbf{x}}(0)$. Use this and Equation (3) to show that if λ satisfies (2) and there is a point $p \in M$ at which $\lambda_p = 0$ and $\nabla \lambda_p = 0$, then $\lambda \equiv 0$.

- (f) [7 pts] The previous conclusion together with the linearity of the Killing equation imply a uniqueness statement for the Killing equation: in particular, there is an upper bound (in terms of dim M = n) on the possible dimension of the space of Killing vector fields. What is this bound? Caution: this is a uniqueness result but says nothing about existence—there are cases where the Killing equation has no nontrivial solutions. The trouble is that while the theory of ODEs guarantees local existence of 1-forms λ that satisfy Equation (3) along a geodesic γ, these need not generally extend to 1-forms on an open set that satisfy (2).
- (g) [5 pts] Let us apply the uniqueness result to the case $M = \mathbb{R}^n$ with the standard Euclidean metric \langle , \rangle on $T_p \mathbb{R}^n \cong \mathbb{R}^n$. In this case there is a well known family of isometries called the *Euclidean* group E(n), which consists of all diffeomorphisms $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ of the form

$$\varphi(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$$

for $\mathbf{A} \in \mathcal{O}(n)$ and $\mathbf{b} \in \mathbb{R}^n$. Differentiating any smooth 1-parameter family $\varphi_t \in \mathcal{E}(n)$ with $\varphi_0 = \mathrm{Id}$ gives a Killing vector field

$$X(\mathbf{x}) = \left. \frac{d}{dt} \varphi_t(\mathbf{x}) \right|_{t=0}$$

Show that *all* Killing vector fields on Euclidean n-space are of this form.

Note: one can go slightly further and prove that the Euclidean group contains all isometries of Euclidean space—thus \mathbb{R}^n does not admit any nonlinear isometries.

4. Suppose M is an oriented 3-manifold and $\lambda \in \Omega^1(M)$ is nowhere zero, i.e. for all $p \in M$ there exist vectors $X \in T_pM$ with $\lambda(X) \neq 0$. Then at every $p \in M$, the kernel ker $\lambda_p = \{X \in T_pM \mid \lambda(X) = 0\}$ is a 2-dimensional subspace of T_pM , and the union of these for all p defines a smooth 2-dimensional distribution

$$\xi := \ker \lambda \subset TM$$

- (a) [20 pts] Show that the following conditions are equivalent:
 - i. $\lambda \wedge d\lambda \equiv 0$
 - ii. For all $p \in M$ there exists $X \in \xi_p$ such that $d\lambda(X, Y) = 0$ for all $Y \in \xi_p$, i.e. the restriction $d\lambda|_{\xi}$ is degenerate.
 - iii. ξ is integrable.

The 1-form λ is called a *contact form* if $\lambda \wedge d\lambda$ is a volume form; the distribution ξ (called the *contact structure*) is then "as non-integrable as possible." An example on \mathbb{R}^3 is shown in the figure above. Such examples can be constructed by the following trick: choosing cylindrical polar coordinates (ρ, ϕ, z) on \mathbb{R}^3 , choose smooth real-valued functions $f(\rho), g(\rho)$ and define λ at (ρ, ϕ, z) by

$$\lambda = f(\rho) \, dz + g(\rho) \, d\phi. \tag{4}$$

- (b) [10 pts] Since the coordinates (ρ, ϕ, z) are not well defined at $\rho = 0$, there is of course some danger that the 1-form defined in Equation (4) might be singular at the z-axis. Show that λ is in fact smooth on all of \mathbb{R}^3 and satisfies $\lambda \wedge d\lambda \neq 0$ near the z-axis if we assume $f(\rho) = 1$ and $g(\rho) = \rho^2$ for ρ sufficiently close to 0. *Hint:* convert to Cartesian coordinates.
- (c) [10 pts] Assuming f and g take the form desribed above for ρ near 0, show that λ is a contact form if and only if

$$f(\rho)g'(\rho) - f'(\rho)g(\rho) \neq 0$$

for all $\rho > 0$. What does this mean geometrically about the curve $\rho \mapsto (f(\rho), g(\rho)) \in \mathbb{R}^2$? Interpret this in terms of "twisting" of the planes ξ_p as $p \in \mathbb{R}^3$ moves along radial paths away from the *z*-axis.