
18.950 SPRING 2007
TAKEHOME MIDTERM 2

DUE FRIDAY, MAY 11, 11:59PM

Reading

Lecture notes, Chapters 5 and 6.

The problems below include topics covered in Chapter 5 but not Chapter 6. The latter will however be fair
game for the final.

Problems [150 pts total]

1. We’ve often discussed flows of vector fields but avoided the question of whether these exist globally.
An exception was Problem 3 on Problem Set 2, where we saw an example of a vector field on R for
which most solutions go to infinity in finite time. An even simpler example is the manifold M = (0, 1)
with vector field X(x) = ∂

∂x
: then the solutions x(t) = t + c run out the edge of M in finite time. One

thing both of these examples have in common is that the manifolds are noncompact, and in fact there
is a useful general theorem about differential equations which can be stated thus:

Theorem 1. For any smooth vector field X on a compact manifold M (without boundary), the flow
ϕt

X is globally well defined and smooth for all t ∈ R.

One can of course ask the same question about geodesics on a Riemannian manifold; these are a slightly
different animal since the differential equation is second order. Clearly there is a danger: e.g. if (M, g)
is any proper open subset of R

n with the standard Euclidean metric, one can easily find a geodesic
that runs out of the subset in finite time. We say that a Riemannian manifold is geodesically complete
if this never happens, i.e. every geodesic γ(t) ∈ M has domain R, rather than just an open subinterval
of R. Observing that our example above is once again a noncompact manifold, we’d like to prove the
following:

Theorem 2. Every compact Riemannian manifold is geodesically complete.

One approach to this uses the idea of Problem (2c) on Problem Set 6 to change the geodesic equation on
M into the flow of a Hamiltonian vector field XH on TM . The drawback you may notice immediately
is that TM is never compact, even if M is; indeed, the tangent spaces TpM are all noncompact. This
is however an easily surmountable obstacle.

(a) [10 pts] Use Theorem 1 to prove Theorem 2 by viewing geodesics as orbits of a Hamiltonian vector
field on TM as in Problem Set 6. Hint: you may assume that if E → M is any fiber bundle with
M and the standard fiber both compact, then the total space E is also compact. With this in
mind, see Problem Set 4, Problem (4d).

(b) [5 pts] It is perfectly possible for a noncompact manifold also to be geodesically complete, e.g. this
is true for R

n with the standard Euclidean metric. However, find a Riemannian metric g on R
n

such that (Rn, g) is not geodesically complete. Hint: R
n is diffeomorphic to an open ball.

2. Recall that the Poincaré half plane (H, h) is the 2-manifold

H = {(x, y) ∈ R
2 | y > 0}

with Riemannian metric

h =
1

y2
gE ,
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where gE is the standard Euclidean metric on R
2. We showed in lecture that the geodesic equation on

(H, h) takes the form

ẍ −
2

y
ẋẏ = 0

ÿ +
1

y

(

ẋ2 − ẏ2
)

= 0.

(1)

(a) [10 pts] Show that for any constants x0 ∈ R and r > 0, Equations (1) admit solutions of the form

(x(t), y(t)) = (x0, y(t))

for some function y(t) > 0, as well as

(x(t), y(t)) = (x0 + r cos θ(t), r sin θ(t)) .

for some function θ(t) ∈ (0, π).

(b) [10 pts] Prove that the solutions of part (a) give all geodesics on (H, h), and that any two points
in H can be joined by a unique geodesic. Note: you can prove this mostly with pictures.

(c) [10 pts] Compute the length of the geodesic segment joining (x0, y0) and (x0, y1) for any 0 <
y0 < y1. Compute also the length of the geodesic segment joining (x0 + r cos θ0, r sin θ0) and
(x0+r cos θ1, r sin θ1) for any 0 < θ0 < θ1 < π. Use these results to show that (H, h) is geodesically
complete.

3. An isometry of a Riemannian manifold (M, g) is a diffeomorphism ϕ : M → M such that ϕ∗g = g.
The isometries of (M, g) form a topological group Isom(M, g). It’s structure in a neighborhood of the
identity map can be understood by considering smooth 1-parameter families ϕt ∈ Isom(M, g) with
ϕ0 = Id. In particular, differentiating this with respect to t at t = 0 gives a vector field

X(p) =
d

dt
ϕt(p)

∣

∣

∣

∣

t=0

,

which must satisfy LXg ≡ 0 due to the condition ϕ∗

t g = g. A vector field satisfying this condition is
called a Killing vector field. Intuitively, we think of it as an “infinitessimal isometry”.

(a) [10 pts] Show that if ∇ is any symmetric connection on TM → M , X ∈ Vec(M), λ ∈ Ω1(M) and
Y ∈ TM , then (LXλ)(Y ) = (∇Xλ)(Y ) + λ(∇Y X). Hint: construct a smooth map α(s, t) ∈ M
defined for (s, t) ∈ R

2 near the origin such that ∂sα(s, t) = X(α(s, t)) and ∂tα(0, 0) = Y . It will
be crucial that the connection is symmetric, so ∇s∂tα = ∇t∂sα.

(b) [5 pts] Generalize the above result to the formula

(LXT )(Y1, . . . , Yk) = (∇XT )(Y1, . . . , Yk) + T (∇Y1
X, Y2, . . . , Yk)

+ T (Y1,∇Y2
X, . . . , Yk) + . . . + T (Y1, . . . , Yk−1,∇Yk

X),

valid for any covariant tensor field T ∈ Γ(T 0
k M).

(c) [10 pts] Applying the formula above with the Levi-Civita connection so that ∇g ≡ 0, we find
LXg ≡ 0 if and only if

g(∇Y X, Z) + g(Y,∇ZX) = 0

for all p ∈ M and Y, Z ∈ TpM . This is called the Killing equation.

The bundle metric on TM → M defines for each p ∈ M a so-called musical isomorphism

[ : TpM →T ∗

p M : Y 7→ Y [

Y [(Z) := g(Y, Z).
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Thus a vector field X ∈ Vec(M) gives rise to a 1-form X [ ∈ Ω1(M), and this is a one-to-one
correspondence. Show that for any X ∈ Vec(M) and Y ∈ TM ,

(∇Y X)[ = ∇Y (X[).

Then show that X satisfies the Killing equation if and only if the tensor field ∇X [ ∈ Γ(T 0
2 M)

defined by ∇X[(Y, Z) := (∇Y X[)(Z) is antisymmetric.

(d) [20 pts] By the above result, solving the Killing equation is equivalent to finding a 1-form λ ∈
Ω1(M) such that

∇λ(Y, Z) + ∇λ(Z, Y ) = 0. (2)

Suppose γ(s) ∈ M is a geodesic through γ(0) = p ∈ M . Show that if λ ∈ Ω1(M) satisfies
Equation (2), then as a section of T ∗M along γ, it also satisfies the second order linear differential
equation

∇2
sλ = λ(R(γ̇, ·)γ̇), (3)

or to be more precise, for any Y ∈ Tγ(s)M , (∇s∇sλ)(Y ) = λ(R(γ̇(s), Y )γ̇(s)). Here R(X, Y )Z
denotes the the curvature tensor R : TM⊕TM⊕TM → TM defined by the Levi-Civita connection
on TM → M .

Hint: this is tricky, but here are some tips to get you started. If Y (s) ∈ Tγ(s)M is a parallel
vector field along γ, then show that (∇2

sλ)(Y ) = ∂2
s (λ(Y )). One can extend γ(s) to a smooth

map α(s, t) with α(s, 0) = γ(s) so that ∂tα(s, 0) = Y (s). Then in terms of covariant partial
derivatives, Equation (2) says

(∇sλ)(∂tα(s, t)) + (∇tλ)(∂sα(s, t)) = 0.

The rest follows from intelligent use of commuting (or non-commuting) partial derivatives, in-
cluding the symmetry of the connection and the definition of the curvature tensor.

(e) [8 pts] We now appeal to a general fact about second order linear differential equations: if x(t) ∈
R

n satisfies an equation of the form
ẍ(t) = A(t)x(t)

for some smooth family of linear maps A(t) ∈ R
n×n, then x(t) is uniquely determined by its

initial position x(0) and velocity ẋ(0). Use this and Equation (3) to show that if λ satisfies (2)
and there is a point p ∈ M at which λp = 0 and ∇λp = 0, then λ ≡ 0.

(f) [7 pts] The previous conclusion together with the linearity of the Killing equation imply a unique-
ness statement for the Killing equation: in particular, there is an upper bound (in terms of
dim M = n) on the possible dimension of the space of Killing vector fields. What is this bound?

Caution: this is a uniqueness result but says nothing about existence—there are cases where

the Killing equation has no nontrivial solutions. The trouble is that while the theory of ODEs

guarantees local existence of 1-forms λ that satisfy Equation (3) along a geodesic γ, these need

not generally extend to 1-forms on an open set that satisfy (2).

(g) [5 pts] Let us apply the uniqueness result to the case M = R
n with the standard Euclidean metric

〈 , 〉 on TpR
n ∼= R

n. In this case there is a well known family of isometries called the Euclidean
group E(n), which consists of all diffeomorphisms ϕ : R

n → R
n of the form

ϕ(x) = Ax + b

for A ∈ O(n) and b ∈ R
n. Differentiating any smooth 1-parameter family ϕt ∈ E(n) with ϕ0 = Id

gives a Killing vector field

X(x) =
d

dt
ϕt(x)

∣

∣

∣

∣

t=0

.

Show that all Killing vector fields on Euclidean n-space are of this form.

Note: one can go slightly further and prove that the Euclidean group contains all isometries of

Euclidean space—thus R
n does not admit any nonlinear isometries.
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4. Suppose M is an oriented 3-manifold and λ ∈ Ω1(M) is nowhere zero, i.e. for all p ∈ M there exist
vectors X ∈ TpM with λ(X) 6= 0. Then at every p ∈ M , the kernel kerλp = {X ∈ TpM | λ(X) = 0}
is a 2-dimensional subspace of TpM , and the union of these for all p defines a smooth 2-dimensional
distribution

ξ := kerλ ⊂ TM.

(a) [20 pts] Show that the following conditions are equivalent:

i. λ ∧ dλ ≡ 0

ii. For all p ∈ M there exists X ∈ ξp such that dλ(X, Y ) = 0 for all Y ∈ ξp, i.e. the restriction
dλ|ξ is degenerate.

iii. ξ is integrable.

The 1-form λ is called a contact form if λ ∧ dλ is a volume form; the distribution ξ (called the contact
structure) is then “as non-integrable as possible.” An example on R

3 is shown in the figure above. Such
examples can be constructed by the following trick: choosing cylindrical polar coordinates (ρ, φ, z) on
R

3, choose smooth real-valued functions f(ρ), g(ρ) and define λ at (ρ, φ, z) by

λ = f(ρ) dz + g(ρ) dφ. (4)

(b) [10 pts] Since the coordinates (ρ, φ, z) are not well defined at ρ = 0, there is of course some danger
that the 1-form defined in Equation (4) might be singular at the z-axis. Show that λ is in fact
smooth on all of R

3 and satisfies λ ∧ dλ 6= 0 near the z-axis if we assume f(ρ) = 1 and g(ρ) = ρ2

for ρ sufficiently close to 0. Hint: convert to Cartesian coordinates.

(c) [10 pts] Assuming f and g take the form desribed above for ρ near 0, show that λ is a contact
form if and only if

f(ρ)g′(ρ) − f ′(ρ)g(ρ) 6= 0

for all ρ > 0. What does this mean geometrically about the curve ρ 7→ (f(ρ), g(ρ)) ∈ R
2? Interpret

this in terms of “twisting” of the planes ξp as p ∈ R
3 moves along radial paths away from the

z-axis.
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