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Some questions about symplectic manifolds:

1. Hamiltonian dynamics: H : M — R ~»
" <8H 0 OH 8)

2. Are there symplectic embeddings

(M,w) — (M, )7

3. Is there a symplectomorphism

(M, w) = (M, )7
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A somewhat general example
F2 < M* T 32 fibration: closed, oriented

Theorem (Thurston)
If [fiber] # 0 € Hy(M;Q), then M admits a
symplectic form w such that

w|fibres > O,

and the space of such symplectic forms is
connected.

(M,w) = X is then a symplectic fibration.

If F = S2, (M,w) is called a symplectic ruled
surface.
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A more general example

M 5 ¥ is a Lefschetz fibration if it has
finitely many critical points Mt ¢ M of the
form

.2 2
W(Zla ZQ) — <] _I_ )
in local complex coordinates.

Theorem (Gompf)
Thurston’'s theorem generalises to Lefschetz
fibrations.

We call (M,w) = X a symplectic Lefschetz
fibration.
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Observation: C2\ {0} = L\ CP!

For p € M* with neighbourhood N (p) C M,
M := (M \ N (p)) UN(CP')

&~ M#CP°
This replaces p with an exceptional sphere
S22 Fc M, [E]-[E] = —1.

Fact (see e.g. McDuff-Salamon):

If (M,w) is symplectic, then the symplectic
blowup (]T/[\,@) is canonical up to symplectic
deformation, and the exceptional sphere E C
(M,3) is a symplectic submanifold.

Definition

(M, w) is minimal if it contains no symplectic
exceptional spheres

(< it is not a symplectic blowup).
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Theorem (McDuff)

Any closed symplectic 4-manifold (M, w) with
a maximal collection of pairwise disjoint ex-
ceptional spheres E1,...,Ex C (M,w) becomes
minimal after “blowing down" along Fq,..., Ey.

Theorem (Donaldson)

Any closed symplectic manifold, after blow-
ing up finitely many times, admits a symplec-
tic Lefschetz fibration over S<.

T he main subject for today

Theorem (McDuff)
Assume (M?% w) closed, connected, with a
symplectic embedding

S22~ Gy (M,w) suchthat [S]-[S]=0.

Then S is a fibre of a symplectic Lefschetz
fibration M = >, which is a smooth symplec-
tic fibration if (M \ S,w) is minimal.

Corollary
(M, w) is symplectomorphic to (a blowup of)
a ruled surface.
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The tools we will need

An almost complex structure J : T'TM — T M
(J2 = —1) is compatible with w if

(X)) = w(X,JY)
defines a Riemannian metric.
Gromov:

{J | compatible with w} is always nonempty
and contractible.

Amapu: (Z2,5) — (M?2", ) is a J-holomorphic
curve if

Tuoj=JoTu
In local coordinates s+t on (X, 7) with j = :
Osu + J(U) atu =0

For A€ H>(M) and g > 0O, define the moduli
space

M‘g‘l(M, J) = {(X, 7, u)}/parametrization,

where (X, j) is a Riemann surface of genus g,
u:(X,7) - (M,J) is J-holomorphic, and

[u] == u«[XZ] = A.
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(1) Every u € /\/lg‘(M, J) is either simple or
multiply covered

wu=voyp, :X—=X v:¥X M

where deg(yp) > 1. If u is simple, then it has
at most finitely many double points

u(z) = u(Q), 2 # G,

and critical points, du(z) = 0.

(2) For generic J, the open subset

{u e MA(M,J) | uis simple}

IS @ manifold with dimension equal to its
virtual dimension

vir-dim M (M, J) = (n—3)(2—2g) +2¢1(A),
also called the index of u € M‘g4(M, J):
ind(u) := vir-dim MZ{(M, J)

Corollary: J generic, u simple = ind(u) > 0.
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(3) /\/lfq“(M, J) is not compact, but it has a
natural compactification

ﬂ’;(]\/[, J) = {“nodal” curves of arithmetic

genus g, homologous to A}
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Proof of McDuff’s theorem (sketch)

Inclusion ug : S — (M%,w) is symplectic =

ug : (5,75) = (M, J)

is J-holomorphic for suitable (w-compatiblel!)

data, thus ug € M([)S](M, J).

Since [S]-[S] = 0, S has trivial normal bundle,
so uiTM = TS? @ Ng implies

c1([S]) = e1(u§TM) = ¢1(T'S?) 4 ¢1(Ng)
=x(S?) +0=2.
Thus

vir-dim M (M, ) = —2 + 2¢1([9]) = 2,

= the simple curves in M([)S](M, J) form a

smooth 2-parameter family.



Lemma 1 (standard 2n-dimensional stuff)

There exists a finite set A of simple curves
v e Mo(M,J) with c¢1([v]) > 0 such that any
noncompact sequence wuy € M[OS](M, J) has
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with exactly two components vy ,v_ € #.
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Lemma 1 (standard 2n-dimensional stuff)

There exists a finite set A of simple curves
v e Mo(M,J) with c¢1([v]) > 0 such that any
noncompact sequence wuy € M[OS](M, J) has
a subsequence convergent to a nodal curve

with exactly two components vy ,v_ € #.

Lemma 2 (unique to dimension four!)
For the nodal curves {vy,v_} in Lemma 1,
v4 and v_ are each embedded, satisfy

[v4] - [v4] = -1,

and intersect each other exactly once, trans-
versely.

Moreover, all curves in M%S](M, J) are em-
bedded and disjoint from the nodal curves,
and they foliate an open subset of M.

10



Conclusion of the proof

Lemmas 1 and 2 imply that the set

{p e M | peim(u) for some u € W%S](M, J)},

is both open and closed.

11



Conclusion of the proof

Lemmas 1 and 2 imply that the set

{p e M | peim(u) for some u € M[S](M, J)},

is both open and closed.

= every p € M is in the image of a (unique!)
curve uy € M[S](M, J).

11



Conclusion of the proof

Lemmas 1 and 2 imply that the set

{p e M | peim(u) for some u € M[S](M, J)},

is both open and closed.

= every p € M is in the image of a (unique!)
curve uy € M[S](M, J).

= Lefschetz fibration

T M—)M[S](M,J) LD Up.

11



Conclusion of the proof

Lemmas 1 and 2 imply that the set

{p e M | peim(u) for some u € M[S](M, J)},

is both open and closed.

= every p € M is in the image of a (unique!)
curve uy € M[S](M, J).
= Lefschetz fibration

T M—)M[S](M,J) LD Up.

Singular fibres = nodal curves =
two transversely intersecting exceptional spheres
disjoint from S

= all fibres are regular if (M\S,w) is minimal.
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