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Notes on nets and convergence in topology

Nets generalize the notion of sequences so that certain familiar results relating continuity and compact-
ness to sequences in metric spaces can be proved in arbitrary topological spaces. Such a generalization is
necessary because, unless one imposes extra conditions on a topological space such as the countability ax-
ioms, constructing sequences or subsequences is not always possible the way one would like. The solution is
to expand our notion of a “sequence” xn to something for which the index n need not be a natural number,
but can instead take values in a (possibly uncountable) partially ordered set.

1 Nets and sequences

Definition 1.1. A directed set (gerichtete Menge) (I,≺) consists of a set I with a partial order1 ≺ such
that for every pair α, β ∈ I, there exists an element γ ∈ I with γ ≻ α and γ ≻ β.

Example 1.2. The natural numbers N = {1, 2, 3, . . . , } with the relation ≤ define a directed set (I,≺) :=
(N,≤).

Example 1.3. If X is a topological space and x ∈ X , one can define a directed set (I,≺) where I is the set
of all neighborhoods of x in X , and U ≺ V for U ,V ∈ I means V ⊂ U . This is a directed set because given
any pair of neighborhoods U ,V ⊂ X of x, the intersection U ∩V is also a neighborhood of x and thus defines
an element of I with U ∩ V ⊂ U and U ∩ V ⊂ V . Note that neither of U and V need be contained in the
other, so they might not satisfy either U ≺ V or V ≺ U , hence ≺ is only a partial order, not a total order
(Totalordnung). Moreover, for most of the topological spaces we are likely to consider, I is uncountably
infinite.

Most directed sets that arise in these notes will be variations on one of the above examples, though we
will see a third type of example in the proof of Theorem 4.1.

Definition 1.4. Given a topological space X , a net (Netz) {xα}α∈I in X is a function I → X : α 7→ xα,
where (I,≺) is a directed set.

Definition 1.5. We say that a net {xα}α∈I in X converges to x ∈ X if for every neighborhood U ⊂ X
of x, there exists an element α0 ∈ I such that xα ∈ U for every α ≻ α0.

Convergence of nets is also sometimes referred to in the literature as Moore-Smith convergence, see
e.g. [Kel75].

Example 1.6. A net {xα}α∈I with (I,≺) = (N,≤) is simply a sequence, and convergence of this net to x
means the same thing as convergence of the sequence.

Definition 1.7. A net {xα}α∈I has a cluster point (also known as accumulation point, Häufungspunkt)
at x ∈ X if for every neighborhood U ⊂ X of x and for every α0 ∈ I, there exists α ≻ α0 with xα ∈ U .

Definition 1.8. A net {yβ}β∈J is a subnet (Teilnetz) of the net {xα}α∈I if yβ = xφ(β) for some function
φ : J → I such that for every α0 ∈ I, there exists an element β0 ∈ J for which β ≻ β0 implies φ(β) ≻ α0.

Example 1.9. If xn is a sequence, any subsequence xkn becomes a subnet {yβ}β∈J of the net {xn}n∈N by
setting J := N and φ : N → N : n 7→ kn. Note that this remains true if we slightly relax our notion of
subsequences so that kn need not be a monotone increasing sequence in N but satisfies kn → ∞ as n → ∞.
Conversely, any subnet {yβ}β∈J of a sequence {xn}n∈N with (J,≺) = (N,≤) is also a subsequence in this
slightly relaxed sense, and can then be reduced to a subsequence in the usual sense by skipping some terms
(so that the function n 7→ kn becomes strictly increasing). Note however that a subnet of a sequence need

1Recall that a binary relation ≺ defined on a subset of the set of all pairs of elements in I is called a partial order

(Halbordnung or Teilordung) if it satisfies (i) x ≺ x for all x, (ii) x ≺ y and y ≺ x implies x = y, and (iii) x ≺ y and y ≺ z

implies x ≺ z. We write “x ≻ y” as a synonym for “y ≺ x”.
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not be a subsequence in general, e.g. it is possible to define a subnet {yβ}β∈J of a sequence {xn}n∈N such
that J is uncountable, and one can derive concrete examples of such objects from the proof of Theorem 4.1
below.

Remark 1.10. If {xα}α∈I is a net converging to x, then every subnet {xφ(β)}β∈J also converges to x. This
follows directly from Definitions 1.5 and 1.8.

It is not true in arbitrary topological spaces that a point is a cluster point of a sequence if and only if it
is the limit of a convergent subsequence. But it is true for nets:

Proposition 1.11. A point x ∈ X is a cluster point of a net {xα}α∈I in X if and only if there exists a

subnet {xφ(β)}β∈J that converges to x.

Proof. If {xφ(β)}β∈J is a subnet of {xα}α∈I converging to x, then for every neighborhood U ⊂ X of x, there
exists β0 ∈ J such that xφ(β) ∈ U for every β ≻ β0. Then for any α0 ∈ I, the definition of a subnet implies
that we can find β1 ∈ J with φ(β) ≻ α0 for all β ≻ β1, and since J is a directed set, there exists β2 ∈ J with
β2 ≻ β0 and β2 ≻ β1. It follows that for α := φ(β2), α ≻ α0 and xα = xφ(β2) ∈ U , thus x is a cluster point
of {xα}α∈I .

Conversely, if x is a cluster point of {xα}α∈I , we can define a convergent subnet as follows. Define a new
directed set

J = I × {neighborhoods of x in X},

with the partial order (α,U) ≺ (β,V) defined to mean both α ≺ β and V ⊂ U . Then for each (β,U) ∈ J ,
the fact that x is a cluster point implies that we can choose φ(β,U) ∈ I to be any α ∈ I such that α ≻ β
and xα ∈ U . This defines a function φ : J → I such that for any α0 ∈ I and any neighborhood U0 ⊂ X
of x, every (β,U) ∈ J with (β,U) ≻ (α0,U0) satisfies φ(β,U) ≻ β ≻ α0, hence {xφ(β,U)}β∈J is a subnet of
{xα}α∈I . Moreover, for any neighborhood U ⊂ X of x, we can choose an arbitrary α0 ∈ I and observe that

(β,V) ≻ (α0,U) ⇒ xφ(β,V) ∈ V ⊂ U ,

thus {xφ(β,U)}(β,U)∈J converges to x.

2 The countability axioms

Statements about nets in a topological space can typically be simplified into statements about sequences
only if the space satisfies one or both of the countability axioms.

Definition 2.1. Given a point x in a topological space X , a collection of subsets {Uα ⊂ X}α∈I is called a
neighborhood base for x if every Uα is a neighborhood of x and every neighborhood of x contains Uα for
some α ∈ I.

Definition 2.2. A topological space X is called first countable (erfüllt das erste Abzählbarkeitsaxiom) if
every point in X admits a countable neighborhood base.

Example 2.3. All metric (or pseudometric) spaces (X, d) are first countable, as for each x ∈ X , the balls
B1/n(x) = {y ∈ X | d(y, x) < 1/n} for n ∈ N form a countable neighborhood base.

Lemma 2.4. If x ∈ X admits a countable neighborhood base, then it also admits a neighborhood base of the

form U1,U2,U3, . . . such that

X ⊃ U1 ⊃ U2 ⊃ U3 ⊃ . . . ∋ x.

Proof. Suppose V1,V2,V3, . . . is a neighborhood base for x. Set U1 = V1, and then define Un recursively for
each n ≥ 2 by

Un = Vn ∩ Un−1.

This is an intersection of two neighborhoods of x and is thus also a neighborhood of x, which satisfies
Un ⊂ Un−1 and Un ⊂ Vn by construction. Then for any other neighborhood U ⊂ X of x, the fact that
V1,V2, . . . is a neighborhood base means that U ⊃ Vn for some n ∈ N, in which case we also have U ⊃ Un,
proving that U1,U2, . . . is also a neighborhood base.
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The first countability axiom becomes important in discussions of nets and sequences due to the following
result.

Proposition 2.5. Suppose x ∈ X has a countable neighborhood base. Then for every net {xα}α∈I in X
with a cluster point at x, there exists a sequence α1, α2, α3, . . . ∈ I such that the sequence xαn

converges to x,
and if {xα}α∈I itself is a sequence, we can take xαn

to be a subsequence.

Proof. Take a neighborhood base U1,U2,U3, . . . consisting of nested neighborhoods as in Lemma 2.4. Then
for each n ∈ N, the fact that x is a cluster point of {xα}α∈I allows us to choose αn ∈ I such that xαn

∈ Un.
The sequence xαn

converges to x since every neighborhood V ⊂ X of x contains UN for some N ∈ N,
implying that xn ∈ Un ⊂ UN ⊂ V for every n ≥ N . Additionally, if {xα}α∈I is a sequence, meaning the
directed set (I,≺) is (N,≤), then we can choose the sequence αn ∈ N without loss of generality to be strictly
increasing, so that xαn

is a subsequence.

Definition 2.6. A topological spaceX is called second countable (erfüllt das zweite Abzählbarkeitsaxiom)
if it admits a countable base.

Example 2.7. We proved on Problem Set 2 #6 that a metric space is second countable whenever it is also
separable, meaning it admits a countable dense subset. This is true of most of the metric spaces that we
commonly think about, e.g. Rn with its standard Euclidean metric, and many popular function spaces such
as the spaces of Ck-smooth functions for k ≥ 0 and the Lp spaces in measure theory (for 1 ≤ p < ∞). It is
also easy to show that finite products and countable disjoint unions of second countable spaces are always
second countable. The condition does not hold however for all metric spaces, as one can take for instance
the discrete metric on any set X : this will be second countable if and only if X itself is countable. (Note
however that such a space is only compact if it is finite, so this example is irrelevant for Theorem 4.5 below.)

Proposition 2.8. Every second countable space is also first countable.

Proof. If U1,U2,U3, . . . is a countable base for the topology of X , then every neighborhood of each point
x ∈ X contains an open neighborhood which is a union of some (necessarily countable) subcollection of
U1,U2,U3, . . .. At least one set Un in this subcollection is a neighborhood of x, thus one can take the
collection of all Un which contain x as a countable neighborhood base for x.

Lemma 2.9. If X is a second countable space, then every open cover of X has a countable subcover, i.e. given

any collection {Uα}α∈I of open subsets with X =
⋃

α∈I Uα, there exists a countable subset {α1, α2, α3, . . .} ⊂ I
such that X =

⋃∞

i=n Uαn
.

Proof. Assume {Uα}α∈I is an open cover of X and B is a countable neighborhood base. Then each Uα is a
union of sets in B, and the collection of sets in B that arise in this way is a countable subcollection B′ ⊂ B.
Let us denote B′ = {V1,V2,V3, . . .}, and observe that since {Uα}α∈I covers X , we also have

X =

∞
⋃

n=1

Vn.

We can now choose for each Vn ∈ B′ an element αn ∈ I such that Vn ⊂ Uαn
, and {Uαn

}n∈N is then a
countable subcover of {Uα}α∈I .

3 Continuity

A map f : X → Y is called sequentially continuous (folgenstetig) if for every sequence xn ∈ X converging
to a point x ∈ X , the sequence f(xn) ∈ Y converges to f(x). In metric spaces, a standard theorem states
that sequential continuity is equivalent to continuity. In arbitrary topological spaces this is no longer true,
but we have the following generalization.

Theorem 3.1. For any two topological spaces X and Y , a map f : X → Y is continuous if and only if for

every net {xα}α∈I in X converging to a point x ∈ X, the net {f(xα)}α∈I in Y converges to f(x).
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Proof. Assume f : X → Y is continuous and {xα}α∈I is a net in X converging to x ∈ X . Given a
neighborhood U ⊂ Y of f(x), its preimage f−1(U) ⊂ X is a neighborhood of x, so convergence implies that
there exists α0 ∈ I such that xα ∈ f−1(U) for every α ≻ α0. This implies f(xα) ∈ U for every α ≻ α0 and
thus proves that {f(xα)}α∈I converges to f(x).

Conversely, suppose that f : X → Y is not continuous, so there exists an open set U ⊂ Y for which
f−1(U) is not open. The latter means f−1(U) contains a point x for which every neighborhood V ⊂ X
of x contains a point xV 6∈ f−1(U). Define a directed set (I,≺) as in Example 1.3, i.e. I is the set of all
neighborhoods of x, and for two such neighborhoods V and V ′, we write V ≺ V ′ whenever V ′ ⊂ V . The
points xV chosen above then define a net {xV}V∈I , which converges to x since for every neighborhood V ⊂ X
of x,

V ′ ≻ V ⇒ xV′ ∈ V ′ ⊂ V .

If the corresponding net {f(xV)}V∈I in Y converges to f(x), then since U ⊂ Y is an open neighborhood
of f(x), we find V0 ∈ I such that f(xV) ∈ U for all V ≻ V0. But this means xV ∈ f−1(U) and is thus a
contradiction.

Since sequences are also nets, Theorem 3.1 has the following immediate consequence:

Corollary 3.2. For any two topological spaces X and Y , all continuous maps X → Y are also sequentially

continuous.

The converse of this corollary is false, as shown by the following counterexample borrowed from [Jän05,
§6.3].

Example 3.3. LetX = {f ∈ [−1, 1][0,1] | f is continuous}, i.e.X is the space of continuous functions [0, 1] →
[−1, 1], endowed with the subspace topology as a subset of [−1, 1][0,1] =

∏

x∈[0,1][−1, 1], so convergence in X
means pointwise convergence. We then define

Y =
{

f : [0, 1] → R
∣

∣ f is continuous
}

with a metrizable topology determined by the so-called L2-metric,

dL2(f, g) =

(
∫ 1

0

|f(t)− g(t)|2 dt

)1/2

.

Since every continuous function on [0, 1] is also square-integrable, we obtain a well-defined map2

Φ : X → Y : f 7→ f.

We claim that Φ is sequentially continuous. Indeed, if fn → f in X , then the functions fn converge pointwise,
but they also satisfy the uniform bound |f | ≤ 1, so appealing to a standard result of measure theory (the
Lebesgue dominated convergence theorem), we also have dL2(fn, f) → 0 as n → ∞. However, Φ is not
continuous. Continuity would imply for instance that the preimage of an ǫ-ball around 0 in the L2-metric
for arbitrarily small ǫ > 0 is an open neighborhood of 0 in X . The topology of X ⊂ [−1, 1][0,1] has a base
consisting of sets of the form

U =
{

f ∈ X
∣

∣ f(x1) ∈ U1, . . . , f(xN ) ∈ UN
}

for finite sets x1, . . . , xN ∈ [0, 1] and collections of open subsets U1, . . . ,UN ⊂ [−1, 1]. In particular, any
neighborhood of 0 in X must contain a set of this form, consisting of continuous functions that are only
constrained at finitely many points. One can therefore always find such a function f for which dL2(f, 0) is
as close to 1 as desired, so Φ cannot map such neighborhoods into arbitrarily small balls in the L2-metric.

2There is no real good reason to require the functions in either X or Y to be continuous, except that this is the simplest
way to ensure that all functions we consider are measurable and have finite L2-norm. Otherwise the continuity of functions f

in X or Y plays no significant role in this discussion.
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The trouble with the converse of Corollary 3.2 is that in the last paragraph of our proof of Theorem 3.1,
we were able to construct a net {xV}V∈I whose index set is the (usually uncountable) collection of all
neighborhoods of a fixed point x, and in general there is no obvious way to convert this net into a sequence.
On the other hand, Proposition 2.5 provides such a sequence whenever x has a countable neighborhood
base, and the same argument then works: if f is sequentially continuous then f(xn) must converge to f(x),
implying that f(xn) belongs to U for large n even though by construction, xn never belongs to f−1(U). This
gives the same contradiction and thus proves:

Corollary 3.4. For any two topological spaces X and Y such that X is first countable, all sequentially

continuous maps X → Y are continuous.

4 Compactness

For metric spaces, the Bolzano-Weierstrass theorem gives an equivalence between compactness (in the sense
of open covers having finite subcovers) and sequential compactness (Folgenkompaktheit), the property
that every sequence has a convergent subsequence. Once again the notions of nets and convergent subnets
provide the proper language for this discussion in general topological spaces, and we can sometimes deduce
additional results about sequential compactness with some assistance from the countability axioms. We first
prove the natural generalization of the Bolzano-Weierstrass theorem.

Theorem 4.1. A topological space X is compact if and only if every net in X has a convergent subnet.

Proof. Suppose X is compact but there exists a net {xα}α∈I in X with no cluster point; recall that by
Prop. 1.11, having a cluster point is equivalent to having a convergent subnet. The fact that every x ∈ X is
not a cluster point of {xα}α∈I then means that we can find for each x ∈ X an open neighborhood Ux ⊂ X
of x and an index αx ∈ I such that xα 6∈ Ux for all α ≻ αx. But {Ux}x∈X is then an open cover of X and

therefore has a finite subcover, meaning there is a finite subset x1, . . . , xN ∈ X such that X =
⋃N
n=1 Uxn

.
Since (I,≺) is a directed set, there also exists an element β ∈ I such that

β ≻ αxn
for each n = 1, . . . , N.

Then xβ 6∈ Uxn
for every n = 1, . . . , N , but since the sets Uxn

cover X , this is a contradiction.
Conversely, suppose that every net in X has a cluster point, but that X has a collection O of open sets

that coverX such that no finite subcollection in O covers X . Define a directed set (I,≺) where I is the set of
all finite subcollections of O, with the ordering relation defined by inclusion, i.e. for A,B ∈ I, A ≺ B means
A ⊂ B. Note that (I,≺) is a directed set since for any two A,B ∈ I, we have A∪B ∈ I with A∪B ⊃ A and
A ∪ B ⊃ B. By assumption, none of the unions

⋃

U∈A
U for A ∈ I cover X , so we can choose a point

xA ∈ X \
⋃

U∈A

U (4.1)

for each A ∈ I, thus defining a net {xA}A∈I . Then {xA}A∈I has a cluster point x ∈ X . Since the sets
in O cover X , we have x ∈ V for some V ∈ O, and the collection {V} is an element of I, hence there
exists A ≻ {V} such that xA ∈ V . But this means A is a finite subcollection of O that includes V , thus
contradicting (4.1).

The next two examples show that neither direction of Theorem 4.1 holds in general for sequences, at
least not without further conditions on the space X .

Example 4.2 (cf. Problem Set 3 # 1). The space [0, 1]R of arbitrary functions R → [0, 1] with the topology
of pointwise convergence is compact according to Tychonoff’s theorem, as it has a natural identification with
the infinite product

∏

x∈R
[0, 1], and [0, 1] is compact. But one can define a sequence fn ∈ [0, 1]R with no

convergent subsequence as follows. For x ∈ R and n ∈ N, let x(n) ∈ {0, . . . , 9} denote the nth digit to the
right of the decimal point in the decimal expansion of x. Then defining fn(x) = x(n)/10 gives a sequence

fn ∈ [0, 1]R, and for every subsequence fkn there exists a point x ∈ R at which fkn(x) does not converge as
n → ∞.
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Example 4.3 (cf. Problem Set 3 # 2). In the space [0, 1]R from Example 4.2, consider the subset

X =
{

f ∈ [0, 1]R
∣

∣ f(x) 6= 0 for at most countably many points x ∈ R
}

,

with the subspace topology. For any sequence fn ∈ X , the set
⋃

n∈N
{x ∈ R | fn(x) 6= 0} is a countable union

of countable sets and is thus also countable; denote its elements by t1, t2, t3, . . .. Since [0, 1] is compact, we

can recursively define a sequence of subsequences as follows: choose f
(1)
n to be any subsequence of fn such

that f
(1)
n (t1) converges, and for each integer m ≥ 2, choose f

(m)
n to be a subsequence of f

(m−1)
n such that

f
(m)
n (tm) converges—this construction ensures that in fact f

(m)
n (tj) converges for each j = 1, . . . ,m. Then

the diagonal sequence f
(n)
n is a subsequence of fn that converges at all of the points t1, t2, t3, . . . and vanishes

everywhere else, thus it is a pointwise convergent subsequence.
On the other hand, it is easy to see that X is not compact: since every function in X vanishes somewhere,

the collection {Ux ⊂ X | x ∈ R} where Ux := {f ∈ X | f(x) = 0} forms an open cover of X , but it has
no finite subcover since there exists no finite subset of R on which every f ∈ X is guaranteed to vanish
somewhere.

As in the previous section, converting Theorem 4.1 into a statement about sequential compactness requires
the countability axioms. In one direction, the result follows immediately by combining the theorem with
Proposition 2.5: if X is compact, then the theorem guarantees that every sequence xn has a cluster point
x ∈ X , so if x is also known to have a countable neighborhood base, Proposition 2.5 extracts from xn a
subsequence converging to x. We’ve proved:

Corollary 4.4. Every compact topological space that is first countable is also sequentially compact.

For the other direction, we can repeat more or less the same argument as in Theorem 4.1, but using the
axiom of second countability to replace nets with sequences.

Theorem 4.5. If X is a second countable topological space that is sequentially compact, then it is compact.

Proof. We need to show that every open cover of X has a finite subcover. Since X is second countable, we
can first use Lemma 2.9 to reduce the given open cover to a countable subcover U1,U2,U3, . . . ⊂ X . Now
arguing by contradiction, suppose that X is sequentially compact but the sets U1, . . . ,Un do not cover X for
any n ∈ N, hence there exists a sequence xn ∈ X such that

xn ∈ X \ (U1 ∪ . . . ∪ Un) (4.2)

for every n ∈ N. Some subsequence xkn then converges to a point x ∈ X , which necessarily lies in UN for
some N ∈ N. It follows that xkn also lies in UN for all n sufficiently large, but this contradicts (4.2) as soon
as kn ≥ N .

5 Epilogue: Products of compact spaces

We can now use Theorem 4.1 to provide a very quick proof of the “finite” case of Tychonoff’s theorem.3

Theorem 5.1. If X and Y are compact topological spaces, then so is X × Y .

Proof. Suppose {(xα, yα)}α∈I is a net in X × Y . Then the compactness of X implies that the net {xα}α∈I
has a convergent subnet {xφ(β)}β∈J , and the compactness of Y implies in turn that the net {yφ(β)}β∈J in Y
has a convergent subnet {yφ◦ψ(γ)}γ∈K . We conclude that

{(xφ◦ψ(γ), yφ◦ψ(γ)}γ∈K

is a convergent subnet of the original net in X × Y .

If you followed that argument and are familiar with Zorn’s lemma (a statement about existence of
maximal elements in partially ordered sets which is equivalent to the axiom of choice), then you might now
be interested in reading Chernoff’s proof [Che92] of Tychonoff’s theorem for infinite products. The paper
is quite short and readable if you’re in the right mood. Zorn’s lemma itself is discussed e.g. in [Kel75] and
[Jän05], both of which also include alternative proofs of Tychonoff’s theorem.

3It is also possible to prove this result directly in terms of open covers and finite subcovers, and that argument can be found
in many of the standard books on point-set topology, but I find it a bit tedious.
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