PROBLEM SET 1

Due: 26.04.2017

Instructions

Problems marked with (*) will be graded. Solutions may be written up in German or English and should be handed in before the Übung on the due date. For problems without (*), you do not need to write up your solutions, but it is highly recommended that you think through them before the next Wednesday lecture.

Problems

1. Suppose $\left(X, d_{X}\right)$ is a metric space and \sim is an equivalence relation on X, with the resulting set of equivalence classes denoted by X / \sim. For equivalence classes $[x],[y] \in X / \sim$, define

$$
\begin{equation*}
d([x],[y]):=\inf \left\{d_{X}(x, y) \mid x \in[x], y \in[y]\right\} \tag{1}
\end{equation*}
$$

(a) (*) Show that d is a metric on X / \sim if the following assumption is added: for every triple $[x],[y],[z] \in X / \sim$, there exist representatives $x \in[x], y \in[y]$ and $z \in[z]$ such that

$$
d_{X}(x, y)=d([x],[y]) \quad \text { and } \quad d_{X}(y, z)=d([y],[z])
$$

Comment: The hard part is proving the triangle inequality.
(b) Consider the real projective plane

$$
\mathbb{R} \mathbb{P}^{2}:=S^{2} / \sim,
$$

where $S^{2}:=\left\{\mathbf{x} \in \mathbb{R}^{3}| | \mathbf{x} \mid=1\right\}$ and the equivalence relation identifies antipodal points, i.e. $\mathbf{x} \sim$ $-\mathbf{x}$. If d_{X} is the metric on S^{2} induced by the standard Euclidean metric on \mathbb{R}^{3}, show that the extra assumption in part (a) is satisfied, so that (1) defines a metric on $\mathbb{R} \mathbb{P}^{2}$.
(c) For the metric defined on $\mathbb{R P}^{2}$ in part (b), show that the natural quotient projection $\pi: S^{2} \rightarrow \mathbb{R}^{2}$ sending each $\mathbf{x} \in S^{2}$ to its equivalence class $[\mathbf{x}] \in \mathbb{R P}^{2}$ is continuous, and a subset $\mathcal{U} \subset \mathbb{R P}^{2}$ is open if and only if $\pi^{-1}(\mathcal{U}) \subset S^{2}$ is open (with respect to the metric d_{X}).
(d) $(*)$ Here is a very different example of a quotient space. Define

$$
X=(-1,1)^{2} \backslash\{(0,0)\} \subset \mathbb{R}^{2}
$$

with the metric d_{X} induced by the Euclidean metric on \mathbb{R}^{2}. Now fix the function $f: X \rightarrow \mathbb{R}$: $(x, y) \mapsto x y$ and define the relation $p_{0} \sim p_{1}$ for $p_{0}, p_{1} \in X$ to mean that there exists a continuous curve $\gamma:[0,1] \rightarrow X$ with $\gamma(0)=p_{0}$ and $\gamma(1)=p_{1}$ such that $f \circ \gamma$ is constant. Show that for this equivalence relation, the extra assumption of part (a) is not satisfied, and the distance function defined in (11) does not satisfy the triangle inequality.
(e) (*) Despite our failure to define X / \sim as a metric space in part (d), it is natural to consider the following notion: define a subset $\mathcal{U} \subset X / \sim$ to be open if and only if $\pi^{-1}(\mathcal{U})$ is an open subset of $\left(X, d_{X}\right)$, where $\pi: X \rightarrow X / \sim$ denotes the natural quotient projection. We can then define a sequence $\left[x_{n}\right] \in X / \sim$ to be convergent to an element $[x] \in X / \sim$ if for every open subset $\mathcal{U} \subset X / \sim$ containing $[x],\left[x_{n}\right] \in \mathcal{U}$ for all n sufficiently large. Find a sequence $\left[x_{n}\right] \in X / \sim$ and two elements $[x],[y] \in X / \sim$ such that

$$
\left[x_{n}\right] \rightarrow[x] \quad \text { and } \quad\left[x_{n}\right] \rightarrow[y], \quad \text { but } \quad[x] \neq[y]
$$

This could not happen if we'd defined convergence on X / \sim in terms of a metric. (Why not?)
2. Suppose d_{1} and d_{2} are two metrics on the same set X. Show that the identity map defines a homeomorphism $\left(X, d_{1}\right) \rightarrow\left(X, d_{2}\right)$ if and only if the following condition is satisfied: for every sequence $x_{n} \in X$ and $x \in X$,

$$
x_{n} \rightarrow x \text { in }\left(X, d_{1}\right) \quad \Longleftrightarrow \quad x_{n} \rightarrow x \text { in }\left(X, d_{2}\right)
$$

One says in this case that the metrics d_{1} and d_{2} are equivalent.
3. (a) Show that for any metric space (X, d),

$$
d^{\prime}(x, y):=\min \{1, d(x, y)\}
$$

defines another metric on X which is equivalent to d (see Problem 2). In particular, this means that every metric is equivalent to one that is bounded.
(b) Suppose (X, d_{X}) and (Y, d_{Y}) are metric spaces satisfying

$$
d_{X}\left(x, x^{\prime}\right) \leq 1 \text { for all } x, x^{\prime} \in X, \quad d_{Y}\left(y, y^{\prime}\right) \leq 1 \text { for all } y, y^{\prime} \in Y
$$

Now let $Z=X \cup Y$, and for $z, z^{\prime} \in Z$ define

$$
d_{Z}\left(z, z^{\prime}\right)= \begin{cases}d_{X}\left(z, z^{\prime}\right) & \text { if } z, z^{\prime} \in X \\ d_{Y}\left(z, z^{\prime}\right) & \text { if } z, z^{\prime} \in Y, \\ 2 & \text { if }\left(z, z^{\prime}\right) \text { is in } X \times Y \text { or } Y \times X\end{cases}
$$

Show that d_{Z} is a metric on Z with the following property: a subset $\mathcal{U} \subset Z$ is open in $\left(Z, d_{Z}\right)$ if and only if it is the union of two (possibly empty) open subsets of (X, d_{X}) and $\left(Y, d_{Y}\right)$. In particular, X and Y are each both open and closed subsets of Z. (Recall that subsets of metric spaces are closed if and only if their complements are open.)
(c) (*) Suppose (Z, d) is a metric space containing two disjoint subsets $X, Y \subset Z$ that are each both open and closed. Show that there exists no continuous map $\gamma:[0,1] \rightarrow Z$ with $\gamma(0) \in X$ and $\gamma(1) \in Y$.
(d) Suppose X is any set with the so-called discrete metric, defined by

$$
d(x, y)= \begin{cases}0 & \text { if } x=y \\ 1 & \text { if } x \neq y\end{cases}
$$

Show that for every point $x \in X$, the subset $\{x\} \subset X$ is both open and closed, and moreover, every continuous map $\gamma:[0,1] \rightarrow X$ is constant.
4. (*) Assume $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ are metric spaces with $A \subset X$ a compact subset and $f: A \rightarrow Y$ a continuous map. Define the set

$$
Z:=X \cup_{f} Y:=(X \cup Y) / \sim,
$$

where the equivalence relation is defined by $a \sim f(a)$ for each $a \in A$. Assume additionally that f is an isometry onto its image, meaning it satisfies

$$
d_{X}(a, b)=d_{Y}(f(a), f(b)) \quad \text { for all } a, b \in A
$$

notice that f must then be injective, so we can regard both X and Y naturally as subsets of Z which intersect along A. We can then define a metric d_{Z} on Z such that $d_{Z}(x, y)=d_{X}(x, y)$ for $x, y \in X$, $d_{Z}(x, y)=d_{Y}(x, y)$ for $x, y \in Y$, and for $(x, y) \in X \times Y$,

$$
d_{Z}(x, y):=\min \left\{d_{X}(x, a)+d_{Y}(f(a), y) \mid a \in A\right\} .
$$

Verify the following case of the triangle inequality for d_{Z} :

$$
d_{Z}(x, z) \leq d_{Z}(x, y)+d_{Z}(y, z) \quad \text { whenever } \quad x \in X, y \in Y \text { and } z \in X
$$

Hint: Notice that in the definition of d_{Z}, it says "min" instead of "inf". The minimum always exists because A is compact!
5. In the first lecture, we discussed the fact that $\mathbb{R P}^{2}$ is homeomorphic to an object constructed by gluing a disk $\mathbb{D}^{2}=\left\{\mathbf{x} \in \mathbb{R}^{2}| | \mathbf{x} \mid \leq 1\right\}$ to a Möbius strip $\mathbb{M}=\left\{(\theta, t \cos (\pi \theta), t \sin (\pi \theta)) \in S^{1} \times \mathbb{R}^{2} \mid \theta \in S^{1}, t \in\right.$ $[-1,1]\}$, where $S^{1}:=\mathbb{R} / \mathbb{Z}$. One can now make this precise using metrics of the types defined in Problems 1 (b) and 4 respectively on $\mathbb{R} \mathbb{P}^{2}$ and the glued object $\mathbb{D}^{2} \cup_{f} \mathbb{M}$ (for a suitable homeomorphism f between the boundaries of \mathbb{D}^{2} and \mathbb{M}). Work out the details until you get bored.

