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PROBLEM SET 1

Due: 26.04.2017

Instructions

Problems marked with (∗) will be graded. Solutions may be written up in German or English and should be
handed in before the Übung on the due date. For problems without (∗), you do not need to write up your
solutions, but it is highly recommended that you think through them before the next Wednesday lecture.

Problems

1. Suppose (X, dX) is a metric space and ∼ is an equivalence relation on X , with the resulting set of
equivalence classes denoted by X/ ∼. For equivalence classes [x], [y] ∈ X/ ∼, define

d([x], [y]) := inf
{

dX(x, y)
∣

∣ x ∈ [x], y ∈ [y]
}

. (1)

(a) (∗) Show that d is a metric on X/ ∼ if the following assumption is added: for every triple
[x], [y], [z] ∈ X/ ∼, there exist representatives x ∈ [x], y ∈ [y] and z ∈ [z] such that

dX(x, y) = d([x], [y]) and dX(y, z) = d([y], [z]).

Comment: The hard part is proving the triangle inequality.

(b) Consider the real projective plane

RP
2 := S2/ ∼,

where S2 := {x ∈ R
3 | |x| = 1} and the equivalence relation identifies antipodal points, i.e. x ∼

−x. If dX is the metric on S2 induced by the standard Euclidean metric on R
3, show that the

extra assumption in part (a) is satisfied, so that (1) defines a metric on RP
2.

(c) For the metric defined on RP
2 in part (b), show that the natural quotient projection π : S2 → RP

2

sending each x ∈ S2 to its equivalence class [x] ∈ RP
2 is continuous, and a subset U ⊂ RP

2 is
open if and only if π−1(U) ⊂ S2 is open (with respect to the metric dX).

(d) (∗) Here is a very different example of a quotient space. Define

X = (−1, 1)2 \ {(0, 0)} ⊂ R
2

with the metric dX induced by the Euclidean metric on R
2. Now fix the function f : X → R :

(x, y) 7→ xy and define the relation p0 ∼ p1 for p0, p1 ∈ X to mean that there exists a continuous
curve γ : [0, 1] → X with γ(0) = p0 and γ(1) = p1 such that f ◦ γ is constant. Show that for this
equivalence relation, the extra assumption of part (a) is not satisfied, and the distance function
defined in (1) does not satisfy the triangle inequality.

(e) (∗) Despite our failure to define X/ ∼ as a metric space in part (d), it is natural to consider the
following notion: define a subset U ⊂ X/ ∼ to be open if and only if π−1(U) is an open subset
of (X, dX), where π : X → X/ ∼ denotes the natural quotient projection. We can then define
a sequence [xn] ∈ X/ ∼ to be convergent to an element [x] ∈ X/ ∼ if for every open subset
U ⊂ X/ ∼ containing [x], [xn] ∈ U for all n sufficiently large. Find a sequence [xn] ∈ X/ ∼ and
two elements [x], [y] ∈ X/ ∼ such that

[xn] → [x] and [xn] → [y], but [x] 6= [y].

This could not happen if we’d defined convergence on X/ ∼ in terms of a metric. (Why not?)

2. Suppose d1 and d2 are two metrics on the same set X . Show that the identity map defines a home-
omorphism (X, d1) → (X, d2) if and only if the following condition is satisfied: for every sequence
xn ∈ X and x ∈ X ,

xn → x in (X, d1) ⇐⇒ xn → x in (X, d2).

One says in this case that the metrics d1 and d2 are equivalent.
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3. (a) Show that for any metric space (X, d),

d′(x, y) := min{1, d(x, y)}

defines another metric on X which is equivalent to d (see Problem 2). In particular, this means
that every metric is equivalent to one that is bounded.

(b) Suppose (X, dX) and (Y, dY ) are metric spaces satisfying

dX(x, x′) ≤ 1 for all x, x′ ∈ X, dY (y, y
′) ≤ 1 for all y, y′ ∈ Y .

Now let Z = X ∪ Y , and for z, z′ ∈ Z define

dZ(z, z
′) =











dX(z, z′) if z, z′ ∈ X,

dY (z, z
′) if z, z′ ∈ Y ,

2 if (z, z′) is in X × Y or Y ×X.

Show that dZ is a metric on Z with the following property: a subset U ⊂ Z is open in (Z, dZ)
if and only if it is the union of two (possibly empty) open subsets of (X, dX) and (Y, dY ). In
particular, X and Y are each both open and closed subsets of Z. (Recall that subsets of metric
spaces are closed if and only if their complements are open.)

(c) (∗) Suppose (Z, d) is a metric space containing two disjoint subsets X,Y ⊂ Z that are each both
open and closed. Show that there exists no continuous map γ : [0, 1] → Z with γ(0) ∈ X and
γ(1) ∈ Y .

(d) Suppose X is any set with the so-called discrete metric, defined by

d(x, y) =

{

0 if x = y,

1 if x 6= y.

Show that for every point x ∈ X , the subset {x} ⊂ X is both open and closed, and moreover,
every continuous map γ : [0, 1] → X is constant.

4. (∗) Assume (X, dX) and (Y, dY ) are metric spaces with A ⊂ X a compact subset and f : A → Y a
continuous map. Define the set

Z := X ∪f Y := (X ∪ Y )
/

∼,

where the equivalence relation is defined by a ∼ f(a) for each a ∈ A. Assume additionally that f is an
isometry onto its image, meaning it satisfies

dX(a, b) = dY (f(a), f(b)) for all a, b ∈ A;

notice that f must then be injective, so we can regard both X and Y naturally as subsets of Z which
intersect along A. We can then define a metric dZ on Z such that dZ(x, y) = dX(x, y) for x, y ∈ X ,
dZ(x, y) = dY (x, y) for x, y ∈ Y , and for (x, y) ∈ X × Y ,

dZ(x, y) := min
{

dX(x, a) + dY (f(a), y)
∣

∣ a ∈ A
}

.

Verify the following case of the triangle inequality for dZ :

dZ(x, z) ≤ dZ(x, y) + dZ(y, z) whenever x ∈ X, y ∈ Y and z ∈ X.

Hint: Notice that in the definition of dZ , it says “min” instead of “inf”. The minimum always exists

because A is compact!

5. In the first lecture, we discussed the fact that RP2 is homeomorphic to an object constructed by gluing
a disk D

2 = {x ∈ R
2 | |x| ≤ 1} to a Möbius strip M = {(θ, t cos(πθ), t sin(πθ)) ∈ S1 ×R

2 | θ ∈ S1, t ∈
[−1, 1]}, where S1 := R/Z. One can now make this precise using metrics of the types defined in
Problems 1(b) and 4 respectively on RP

2 and the glued object D2∪f M (for a suitable homeomorphism
f between the boundaries of D2 and M). Work out the details until you get bored.
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