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PROBLEM SET 10

Due: 12.07.2017

Instructions

Problems marked with p˚q will be graded. Solutions may be written up in German or English and should be
handed in before the Übung on the due date. For problems without p˚q, you do not need to write up your
solutions, but it is highly recommended that you think through them before the next Wednesday lecture.

1. This problem is to make sure you are comfortable with the basic algebraic notions involving abelian
groups. Since the most popular examples are Zn and Zn :“ Z{nZ for n P N, with addition as the group
operation, it is conventional to denote the group operation in an arbitrary abelian group G by “`”,
with the identity element written as “0 P G” and the inverse of an element g P G denoted by “´g”. We
can then abbreviate g ´ h :“ g ` p´hq for g, h P G and think of G as a Z-module, due to the natural
action of the ring Z on G defined by

ng :“ g ` . . . ` g
looooomooooon

n

for n ą 0, ng :“ ´g ´ . . . ´ g
loooooomoooooon

´n

for n ă 0, 0g :“ 0.

If G is the trivial group, we shall indicate this by writing “G “ 0”.

We say that g P G is a torsion element of G if mg “ 0 for some m P N, so for instance, every element
of Zn for n P N is torsion, while 0 is the only torsion element in Zn. We say that G “has torsion” if it
contains a torsion element other than 0; otherwise we say G is torsion free.

(a) Show that for any abelian group G, the set of torsion elements of G defines a subgroup Gtor Ă G,
called its torsion subgroup, and the quotient G{Gtor is torsion free.1

An abelian group G is finitely generated if it contains a finite subset S Ă G such that every element
of G is a sum of elements of S and their inverses, i.e. G is the smallest subgroup of G that contains S.
A basis of G is a subset B Ă G such that every g P G can be written as

g “
ÿ

bPB

nbb

for a unique set of coefficients nb P Z, at most finitely many of which are nonzero. An abelian group
is called free if it admits a basis.2 The canonical example is Zn, for which the standard basis vectors
in Rn form a basis.

(b) p˚q Show that if G has torsion, then it is not free.
Hint: The trouble is uniqueness.

(c) Show that for an abelian group G, the following conditions are equivalent: (i) G is finitely gener-
ated and free; (ii) G admits a finite basis; (iii) G is isomorphic to Zn for some integer n ě 0.

(d) Show that an abelian group G is finite if and only if it is finitely generated and Gtor “ G.

For any collection of abelian groups tGαuαPI , their direct product is the abelian group
Ś

αPI
Gα

whose elements tgαuαPI are functions assigning to each α P I an element gα P Gα, with the group
operation defined by the obvious formula tgαuαPI ` thαuαPI :“ tgα ` hαuαPI . The direct sum

à

αPI

Gα Ă
ą

αPI

Gα

1Note that since G is abelian, every subgroup H Ă G is normal, hence quotient groups G{H are always well defined.
2Note that with the exception of Z, a “free abelian group” is not a “free group” in the sense that we’ve previously discussed,

e.g. if S is a set with more than one element, then the free group on S (denoted by F pSq) is not abelian.
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is the subgroup consisting of elements tgαuαPI such that gα “ 0 for all but finitely many α P I. This
distinction makes no difference if I is finite, so for instance G ‘ H and G ˆ H are exactly the same
thing, namely the group of ordered pairs with operation pg, hq ` pg1, h1q :“ pg ` g1, h ` h1q.

Here are two facts that are non-obvious but hopefully plausible, and we will assume them henceforth:3

• Every subgroup of a finitely-generated abelian group is finitely generated.

• Every torsion-free finitely-generated abelian group is free.

(e) Show that every finitely-generated abelian group is isomorphic to Zn ‘ T for some integer n ě 0
and a finite group T – Gtor. Hint: The above results imply that G{Gtor – Zn for some n.

Given a set S, the free abelian group on S is defined as a direct sum of copies of Z, one for each
element of S:

F abpSq :“
à

sPS

Z.

Denote by xsy P F abpSq the generator 1 P Z in the copy of Z corresponding to the element s P S. These
elements form a basis of F abpSq.

(f) Show that for any abelian group H , set S, and map f : S Ñ H , there exists a unique homomor-
phism Φ : F abpSq Ñ H such that Φpxsyq “ fpsq for each of the generators s P S.

(g) Show that there is a natural isomorphism between F abpSq and the abelianization of the free
(non-abelian) group F pSq.

Given abelian groups G,H,K, a map Φ : G ‘ H Ñ K is called bilinear if for every fixed g0 P G and
h0 P H , the maps G Ñ K : g ÞÑ Φpg, h0q and H Ñ K : h ÞÑ Φpg0, hq are both homomorphisms.

The tensor product of two abelian groups G and H can be defined as the abelian group

G b H :“ F abpG ˆ Hq
L

N

where N Ă F abpG ˆ Hq is the smallest subgroup containing all elements of the form xpg ` g1, hqy ´
xpg, hqy ´ xpg1, hqy and xpg, h ` h1qy ´ xpg, hqy ´ xpg, h1qy for g, g1 P G and h, h1 P H . We denote the
equivalence class represented by xpg, hqy P F abpG ˆ Hq in the quotient by

g b h P G b H.

(h) Show that the map G ‘ H Ñ G b H : pg, hq ÞÑ g b h is bilinear, and deduce from this that for
any g P G and h P H , 0 b h “ g b 0 “ 0 P G b H .

(i) p˚q Show that for any bilinear map Φ : G ‘ H Ñ K of abelian groups, there exists a unique
homomorphism Ψ : G b H Ñ K such that Φpg, hq “ Ψpg b hq for all pg, hq P G ‘ H .

(j) Show that for any abelian group G, the map G Ñ G b Z : g ÞÑ g b 1 is a group isomorphism.
Write down its inverse.
Hint: Part (i) tells you that in order to specify a homomorphism G bH Ñ K, it suffices to write
down a bilinear map G ‘ H Ñ K.

(k) Find a natural isomorphism from pG ‘ Hq b K to pG b Kq ‘ pH b Kq.

(l) Given two sets S and T , find a natural isomorphism from F abpSq b F abpT q to F abpS ˆ T q.

(m) Let K be a field, regarded as an abelian group with respect to its addition operation. Show that
the abelian group G b K naturally admits the structure of a vector space over K such that scalar
multiplication takes the form

λpg b kq “ g b pλkq

for every λ, k P K and g P G, and every group homomorphism Φ : G Ñ H determines a unique
K-linear map Ψ : G b K Ñ H b K such that Ψpg b kq “ Φpgq b k for g P G, k P K.

3For proofs, see §I.8 of S. Lang, Algebra, revised third edition, Springer GTM, 2002.
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(n) Show that for any free abelian group G with basis B Ă G and any field K, the elements tbb1 | b P
Bu form a basis of the vector space G b K.

(o) p˚q Show that if K is a field of characteristic zero4 and G is an abelian group in which every
element is torsion, then G b K “ 0. Show also that this is not true in the case K :“ Z2 (which
does not have characteristic zero).

(p) Show that if G is isomorphic to Zn ‘ T for some integer n ě 0 and finite group T , then for any
field K with characteristic zero, the K-vector space G b K is isomorphic to Kn. Deduce that G

cannot also be isomorphic to Zm ‘ T 1 for a finite group T 1 and integer m ‰ n.

The main conclusion of this problem is that the following definition makes sense: the rank

rankG P t0, 1, 2, . . . ,8u

of a finitely-generated abelian group G is the unique integer n ě 0 such that G – Zn ‘ T for a finite
group T – Gtor. Equivalently, rankG is the number of elements in any basis of the free abelian group
G{Gtor, or the largest possible number of elements in a linearly independent5 subset of G, or the
dimension over K of the vector space G b K for any field K with characteristic zero. If G{Gtor is not
finitely generated, we say rankG “ 8.

2. The picture at the right shows two spaces that we’ve previously seen are both homeo-
morphic to the Klein bottle (see Problem Set 7 #4). Each also defines a cell complex
X “ X0 YX1 YX2 consisting of one 0-cell, two 1-cells (labeled a and b) and one 2-cell.

(a) p˚q Write down the chain complexes and compute the cellular homology groups
HkpXq for each of the two cell complexes and k “ 0, 1, 2. Write each HkpXq in
the form Zn ‘ T for n ě 0 and a finite group T .

(b) p˚q Do it again with Z2-coefficients, i.e. compute HkpX ;Z2q.

(c) Verify in both cases that
ř

k
p´1qk rankHkpXq “

ř

k
p´1qk dimZ2

HkpX ;Z2q “ 0.

(Congratulations, you’ve just computed the Euler characteristic of the Klein
bottle!)

a

a

a

a

b

b b

b

4K has characteristic zero if for all n P N, the n-fold sum 1 ` . . . ` 1 is not 0. The standard examples are Q, R and C.
5A finite subset S Ă G in an abelian group is called linearly independent if the only choice of coefficients ns P Z satisfying

ř

sPS
nss “ 0 is ns “ 0 for all s.
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