TOPOLOGY I C. WENDL / F. SCHMÄSCHKE Humboldt-Universität zu Berlin Summer Semester 2017

PROBLEM SET 11 Due: 19.07.2017

Instructions

Problems marked with (*) will be graded. Solutions may be written up in German or English and should be handed in before the Übung on the due date. For problems without (*), you do not need to write up your solutions, but it is highly recommended that you think through them before the next Wednesday lecture.

- 1. For each of the following, you may use without proof the theorem (to be proved next semester) that the singular homology $H_*(X)$ of any finite cell complex X matches its cellular homology $H_*^{CW}(X)$.
 - (a) (*) Compute $H_n(\mathbb{RP}^3)$, $H_n(\mathbb{RP}^3; \mathbb{Q})$ and $H_n(\mathbb{RP}^3; \mathbb{Z}_2)$ for each n = 0, 1, 2, 3, and prove $\chi(\mathbb{RP}^3) = 0$. Hint: To find a nice cell decomposition of \mathbb{RP}^3 , start with a \mathbb{Z}_2 -invariant cell decomposition of S^3 . Remark: You should find that $H_2(\mathbb{RP}^3) = H_2(\mathbb{RP}^3; \mathbb{Q}) = 0$ but $H_2(\mathbb{RP}^3; \mathbb{Z}_2) \neq 0$. This has to do with the fact that \mathbb{RP}^3 contains a submanifold homeomorphic to \mathbb{RP}^2 , which is not orientable.
 - (b) (*) Let Σ_g denote the closed orientable surface of genus $g \ge 0$ and, for $k \ge 0$, let $\Sigma_{g,k} := \Sigma_g \setminus \{k \text{ points}\}$. Show that $\Sigma_{g,k}$ has Euler characteristic $\chi(\Sigma_{g,k}) = 2 2g k$. Hint: You only need a cell decomposition of something homotopy equivalent to $\Sigma_{g,k}$. (Why?)
- 2. (*) Show that for the 1-point space $\{pt\}$ and any coefficient group G, singular homology satisfies¹

$$H_n(\{\mathrm{pt}\};G) \cong \begin{cases} G & \text{ for } n=0, \\ 0 & \text{ for } n\neq 0. \end{cases}$$

Hint: For each integer $n \ge 0$, there is exactly one singular *n*-simplex $\Delta^n \to \{\text{pt}\}$, so the chain groups $C_n(\{\text{pt}\}) \otimes G$ are all naturally isomorphic to G. What is $\partial : C_n(\{\text{pt}\}) \otimes G \to C_{n-1}(\{\text{pt}\}) \otimes G$?

3. In this problem, we prove that $H_1(X)$ for a path-connected space X is isomorphic to the abelianization of its fundamental group. Fix a base point $x_0 \in X$ and abbreviate $\pi_1(X) := \pi_1(X, x_0)$, so elements of $\pi_1(X)$ are represented by paths $\gamma : I \to X$ with $\gamma(0) = \gamma(1) = x_0$. Identifying the standard 1-simplex

$$\Delta^1 := \{ (t_0, t_1) \in \mathbb{R}^2 \mid t_0 + t_1 = 1, \ t_0, t_1 \ge 0 \}$$

with I := [0,1] via the homeomorphism $\Delta^1 \to I : (t_0, t_1) \mapsto t_0$, every path $\gamma : I \to X$ corresponds to a singular 1-simplex $\Delta^1 \to X$, which we shall denote by $\tilde{h}(\gamma)$ and regard as an element of the singular 1-chain group $C_1(X)$. Show that \tilde{h} has each of the following properties:

- (a) If $\gamma: I \to X$ satisfies $\gamma(0) = \gamma(1)$, then $\partial \tilde{h}(\gamma) = 0$.
- (b) For any constant path $e: I \to X$, $\tilde{h}(e) = \partial \langle \sigma \rangle$ for some singular 2-simplex $\sigma: \Delta^2 \to X$.
- (c) (*) For any paths $\alpha, \beta : I \to X$ with $\alpha(1) = \beta(0)$, the concatenated path $\alpha \cdot \beta : I \to X$ satisfies $\tilde{h}(\alpha) + \tilde{h}(\beta) \tilde{h}(\alpha \cdot \beta) = \partial \langle \sigma \rangle$ for some singular 2-simplex $\sigma : \Delta^2 \to X$. Hint: Imagine a triangle whose three edges are mapped to X via the paths α, β and $\alpha \cdot \beta$. Can you extend this map continuously over the rest of the triangle?
- (d) If α, β : I → X are two paths that are homotopic with fixed end points, then h
 (α) h
 (β) = ∂f for some singular 2-chain f ∈ C₂(X).
 Hint: If you draw a square representing a homotopy between α and β, you can decompose this square into two triangles.
- (e) Applying \tilde{h} to paths that begin and end at the base point x_0 , deduce that \tilde{h} determines a group homomorphism $h: \pi_1(X) \to H_1(X): [\gamma] \mapsto [\tilde{h}(\gamma)].$

 $^{^{1}}$ This is one of the Eilenberg-Steenrod axioms for homology theories, which we will discuss next semester. It is called the *dimension axiom*.

We call $h : \pi_1(X) \to H_1(X)$ the **Hurewicz homomorphism**. Notice that since $H_1(X)$ is abelian, ker *h* automatically contains the commutator subgroup $[\pi_1(X), \pi_1(X)] \subset \pi(X)$ (see Problem Set 6 #2), thus *h* descends to a homomorphism on the abelianization of $\pi_1(X)$,

$$\Phi: \pi_1(X) / [\pi_1(X), \pi_1(X)] \to H_1(X).$$

We will now show that this is an isomorphism by writing down its inverse. For each point $p \in X$, choose arbitrarily a path $\omega_p : I \to X$ from x_0 to p, and choose ω_{x_0} in particular to be the constant path. Regarding singular 1-simplices $\sigma : \Delta^1 \to X$ as paths $\sigma : I \to X$ under the usual identification of I with Δ^1 , we can then associate to every singular 1-simplex $\sigma \in C_1(X)$ a concatenated path

$$\widetilde{\Psi}(\sigma) := \omega_{\sigma(0)} \cdot \sigma \cdot \omega_{\sigma(1)}^{-1} : I \to X$$

which begins and ends at the base point x_0 , hence $\tilde{\Psi}(\sigma)$ represents an element of $\pi_1(X)$. Let $\Psi(\sigma)$ denote the equivalence class represented by $\tilde{\Psi}(\sigma)$ in the abelianization $\pi_1(X)/[\pi_1(X), \pi_1(X)]$, and observe that by Problem Set 10 #1(f), this uniquely determines a homomorphism

$$\Psi: C_1(X) \to \pi_1(X) / [\pi_1(X), \pi_1(X)].$$

- (f) (*) Show that $\Psi(\partial \langle \sigma \rangle) = 0$ for every singular 2-simplex $\sigma : \Delta^2 \to X$, and deduce that Ψ descends to a homomorphism $\Psi : H_1(X) \to \pi_1(X) / [\pi_1(X), \pi_1(X)].$
- (g) Show that $\Psi \circ \Phi$ and $\Phi \circ \Psi$ are both the identity map.
- (h) For a closed surface Σ_g of genus $g \ge 1$, find an example of a nontrivial element in the kernel of the Hurewicz homomorphism $\pi_1(\Sigma_g) \to H_1(\Sigma_g)$. Hint: See Problem Set 7 #3.
- 4. Suppose (C_*, ∂) is a chain complex such that C_n is a free abelian group for every $n \in \mathbb{Z}$, and \mathbb{K} is a field with characteristic zero. The goal is to prove that the natural maps

$$H_n(C_*,\partial) \otimes \mathbb{K} \to H_n(C_* \otimes \mathbb{K},\partial) : ([x] \otimes k) \mapsto [x \otimes k]$$
(1)

are isomorphisms for every n. It follows via Problem 1 from last week that for any space X whose singular homology $H_n(X)$ is finitely generated, rank $H_n(X) = \dim_{\mathbb{K}} H_n(X;\mathbb{K})$, thus one can compute rank $H_n(X)$ by looking at e.g. the rational vector space $H_n(X;\mathbb{Q})$ and using linear algebra.

- (a) Show by example that $H_n(C_*, \partial) \otimes \mathbb{K}$ and $H_n(C_* \otimes \mathbb{K}, \partial)$ need not be isomorphic when $\mathbb{K} = \mathbb{Z}_2$. Hint: See for instance Problem Set 10 #2(b).
- (b) Show that if \mathbb{K} has characteristic zero and G is any free abelian group, then $G \to G \otimes \mathbb{K} : g \mapsto g \otimes 1$ defines an injective group homomorphism.
- (c) Let us distinguish the boundary maps on (C_*, ∂) and $(C_* \otimes \mathbb{K}, \partial)$ by writing $\partial_n : C_n \to C_{n+1}$ for the former and $\partial_n^{\mathbb{K}} : C_n \otimes \mathbb{K} \to C_{n-1} \otimes \mathbb{K}$ for the latter. Using the injective homomorphism in part (b), we can regard C_n as a subgroup of $C_n \otimes \mathbb{K}$. Show that

$$\ker \partial_n^{\mathbb{Q}} = \left\{ x \in C_n \otimes \mathbb{Q} \mid mx \in \ker \partial_n \subset C_n \text{ for some } m \in \mathbb{N} \right\}$$
$$\operatorname{im} \partial_{n+1}^{\mathbb{Q}} = \left\{ x \in C_n \otimes \mathbb{Q} \mid mx \in \operatorname{im} \partial_{n+1} \subset C_n \text{ for some } m \in \mathbb{N} \right\}.$$

- (d) Deduce that there are natural isomorphisms $\ker \partial_n \otimes \mathbb{Q} \to \ker \partial_n^{\mathbb{Q}}$ and $\operatorname{im} \partial_{n+1} \otimes \mathbb{Q} \to \operatorname{im} \partial_{n+1}^{\mathbb{Q}}$. Hint: The maps are trivial to define, but you need part (c) in order to write down their inverses.
- (e) Show that for any abelian groups $H \subset G$ and K, there is a natural isomorphism $(G/H) \otimes K \to (G \otimes K)/i(H \otimes K)$, where $i : H \otimes K \to G \otimes K$ is naturally induced by the inclusion $H \hookrightarrow G$.
- (f) Deduce that (1) is an isomorphism in the case $\mathbb{K} = \mathbb{Q}$.

One can use linear algebra to extend this result to any field \mathbb{K} that contains \mathbb{Q} , i.e. any field of characteristic zero. This starts with the observation that $\mathbb{Q} \otimes \mathbb{K}$ is naturally isomorphic to \mathbb{K} , so one can view the complex $(C_* \otimes \mathbb{K}, \partial)$ as the tensor product (in the sense of rational vector spaces) of \mathbb{K} with $(C_* \otimes \mathbb{Q}, \partial)$, and then repeat the above steps in a vector space context. Alternatively, the general result can be viewed as a corollary of the universal coefficient theorem, which we'll discuss next semester.