TOPOLOGY I C. Wendl / F. Schmäschke Humboldt-Universität zu Berlin Summer Semester 2017

PROBLEM SET 8 Due: 14.06.2017

Organizational note

For the next two weeks after this, the usual weekly problem sets will be replaced by a take-home midterm, which will be distributed on June 14 and due June 28.

Instructions

Problems marked with (*) will be graded. Solutions may be written up in German or English and should be handed in before the Ubung on the due date. For problems without (*), you do not need to write up your solutions, but it is highly recommended that you think through them before the next Wednesday lecture.

- 1. This problem involves the following four notions for continuous maps $f: X \to Y$:
 - f is a covering map if every point $y \in Y$ has a neighborhood $\mathcal{U} \subset Y$ that is evenly covered: the latter means that $f^{-1}(\mathcal{U}) = \bigcup_{\alpha \in I} \mathcal{V}_{\alpha}$ for some collection $\{\mathcal{V}_{\alpha} \subset X\}_{\alpha \in I}$ of disjoint sets such that $f|_{\mathcal{V}_{\alpha}}: \mathcal{V}_{\alpha} \to \mathcal{U}$ is a homeomorphism for each $\alpha \in I^{1}$.
 - f is a local homeomorphism if for every $x \in X$, there exist neighborhoods $\mathcal{V} \subset X$ of x and $\mathcal{U} \subset Y$ of f(x) such that $f|_{\mathcal{V}}: \mathcal{V} \to \mathcal{U}$ is a homoemorphism.
 - f is open if for every open subset $\mathcal{U} \subset X$, $f(\mathcal{U}) \subset Y$ is also open.
 - f is proper² if for every compact subset $K \subset Y$, $f^{-1}(K) \subset X$ is also compact.

Prove each statement:

- (a) If $p: \widetilde{X} \to X$ is a covering map and $\mathcal{U} \subset X$ is evenly covered, then every subset of \mathcal{U} is also evenly covered.
- (b) For any covering map $p: \widetilde{X} \to X$ and subspace $A \subset X$, the restriction $p|_{p^{-1}(A)}: p^{-1}(A) \to A$ is also a covering map.
- (c) For any covering map $p: \widetilde{X} \to X, f^{-1}(x)$ is a discrete subset of \widetilde{X} for every $x \in X$.³
- (d) Every covering map is a local homeomorphism.
- (e) Every local homeomorphism is an open map.
- (f) (*) The map $p: (0, 3\pi) \to S^1: \theta \mapsto e^{i\theta}$ is a local homeomorphism but not a covering map. (Show this using the definitions directly, not using any theorems proved in lecture.)
- (g) For any covering map $p: \widetilde{X} \to X$, if \widetilde{X} is compact, then X is also compact and $p^{-1}(x)$ is finite for all $x \in X$.
- (h) (*) The converse of part (g).⁴ Hint: Given an open cover $\widetilde{X} = \bigcup_{\alpha} \mathcal{U}_{\alpha}$, it suffices to find a finite cover of \widetilde{X} by open sets such that each is contained in some \mathcal{U}_{α} . (Why?) Start by showing that X can be covered by a finite collection of open neighborhoods which are evenly covered and small enough so that their (finitely many!) lifts to \widetilde{X} are each contained in some \mathcal{U}_{α}
- (i) If $f: X \to Y$ is a local homoemorphism and is proper, then $f^{-1}(y)$ is finite for every $y \in Y$.
- (i) A covering map $p: \widetilde{X} \to X$ is proper if and only if $p^{-1}(x)$ is finite for every $x \in X$.

¹The notion of being evenly covered makes sense for arbitrary subsets $\mathcal{U} \subset X$, i.e. \mathcal{U} need not be open. When we say that $f|_{\mathcal{V}_{\alpha}}: \mathcal{V}_{\alpha} \to \mathcal{U}$ is a homeomorphism, we mean with respect to the subspace topologies on $\mathcal{V}_{\alpha} \subset \widetilde{X}$ and $\mathcal{U} \subset X$. ²The German for "proper map" is "eigentliche Abbildung".

³We say that a subset A in a space X is *discrete* if the subspace topology induced by X on A is the same as the discrete topology.

⁴This is a corrected version of the problem sheet; the original version had a typo in #1(h) referring to "the converse of part (f)" instead of part (g).

2. (*) Prove that $f: \mathbb{C} \to \mathbb{C}^* := \mathbb{C} \setminus \{0\}$ defined by $f(z) = e^z$ is a covering map.

Advice: This map is easiest to understand using Cartesian coordinates on the domain and polar coordinates on the target, i.e. $f(x+iy) = e^x(\cos y + i \sin y)$. Since f is continuously differentiable, you could for instance use the inverse function theorem from analysis to show that it is a local homeomorphism.

- 3. Assume $p: \widetilde{X} \to X$ is a covering map and X is path-connected.
 - (a) (*) Use the lifting theorem to show that for any two points $x, y \in X$, lifting paths from x to y associates to each such path γ a bijection $\rho_{\gamma} : p^{-1}(x) \to p^{-1}(y)$, which depends only on the homotopy class of γ (with fixed end points).
 - (b) Writing $I := p^{-1}(x)$ and applying part (a) in the case x = y gives a map

$$\rho: \pi_1(X, x) \to S(I): [\gamma] \mapsto \rho_{\gamma}$$

where S(I) is the group of all bijections $I \to I$. Show that this map is a group homomorphism.

- (c) (*) Write down the homomorphism $\rho : \pi_1(X, x) \to S(I)$ explicitly for the cover of \mathbb{C}^* in Problem 2, with base point $1 \in \mathbb{C}^*$.
- 4. Convince yourself that the maps depicted in the figure below are covers, and determine their deck transformation groups. Which ones are regular?

