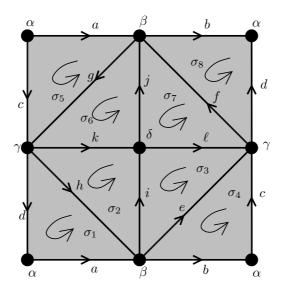
PROBLEM SET 10 Due: 17.07.2018

Instructions

Problems marked with (*) will be graded. Solutions may be written up in German or English and should be handed in before the Übung on the due date. For problems without (*), you do not need to write up your solutions, but it is highly recommended that you think through them before the next Tuesday lecture.

Problems

1. The following picture shows a simplicial complex K = (V, S) whose associated polyhedron |K| is homeomorphic to the Klein bottle.



There are four vertices $V = \{\alpha, \beta, \gamma, \delta\}$, twelve 1-simplices labeled by letters a, \ldots, ℓ , and eight 2-simplices labeled σ_i for $i = 1, \ldots, 8$. The picture also shows a choice of orientation for each of the 2-simplices¹ (circular arrows represent a cyclic ordering of the vertices) and 1-simplices (arrows point from the first vertex to the last).

- (a) Write down $\partial \sigma_i$ explicitly for each $i = 1, \dots, 8$.
- (b) (*) Prove that $H_2^{\Delta}(K; \mathbb{Z}_2) \cong \mathbb{Z}_2$, and write down a specific 2-cycle that generates it. Hint: If this were an oriented triangulation, there would be an obvious way to find a 2-cycle with integer coefficients (we did it for \mathbb{T}^2 in lecture). The use of \mathbb{Z}_2 coefficients is meant to make up for the fact that the triangulation is not oriented.
- (c) (*) Prove that $H_2^{\Delta}(K; \mathbb{Z}) = 0$. Hint: Consider how the coefficients of individual 1-simplices in $\partial \sum_{i=1}^8 c_i \sigma_i \in C_1(K; \mathbb{Z})$ are determined. Show that if $\sum_{i=1}^8 c_i \sigma_i$ is a cycle, then $c_1 = c_2$, $c_2 = c_3$ and so forth, but also $c_1 + c_8 = 0$.
- (d) Show that the 1-cycle c+d represents a nontrivial homology class [c+d] in both $H_1^{\Delta}(K;\mathbb{Z})$ and $H_1^{\Delta}(K;\mathbb{Z}_2)$, but satisfies $2[c+d]=0\in H_1^{\Delta}(K;\mathbb{Z})$ and $[c+d]=0\in H_1^{\Delta}(K;\mathbb{Q})$.

¹Notice however that this does not define an oriented triangulation, as the chosen orientations of neighboring 2-simplices are not always compatible with each other. The Klein bottle does not admit an oriented triangulation.

²In any abelian group G, there is an obvious definition of mg for any $m \in \mathbb{Z}$ and $g \in G$, so e.g. 2[c+d] := [c+d] + [c+d].

2. (*) Show that for the 1-point space $\{pt\}$ and any coefficient group G, singular homology satisfies

$$H_n(\{\text{pt}\};G) \cong \begin{cases} G & \text{for } n=0, \\ 0 & \text{for } n \neq 0. \end{cases}$$

Hint: For each integer $n \ge 0$, there is exactly one singular n-simplex $\Delta^n \to \{\text{pt}\}$, so the chain groups $C_n(\{\text{pt}\};G)$ are all naturally isomorphic to G. What is $\partial: C_n(\{\text{pt}\};G) \to C_{n-1}(\{\text{pt}\};G)$?

3. In this problem, we prove that $H_1(X;\mathbb{Z})$ for a path-connected space X is isomorphic to the abelianization of its fundamental group. Fix a base point $x_0 \in X$ and abbreviate $\pi_1(X) := \pi_1(X, x_0)$, so elements of $\pi_1(X)$ are represented by paths $\gamma: I \to X$ with $\gamma(0) = \gamma(1) = x_0$. Identifying the standard 1-simplex

$$\Delta^1 := \left\{ (t_0, t_1) \in \mathbb{R}^2 \mid t_0 + t_1 = 1, \ t_0, t_1 \geqslant 0 \right\}$$

with I := [0,1] via the homeomorphism $\Delta^1 \to I : (t_0, t_1) \mapsto t_0$, every path $\gamma : I \to X$ corresponds to a singular 1-simplex $\Delta^1 \to X$, which we shall denote by $\tilde{h}(\gamma)$ and regard as an element of the singular 1-chain group $C_1(X; \mathbb{Z})$. Show that \tilde{h} has each of the following properties:

- (a) If $\gamma: I \to X$ satisfies $\gamma(0) = \gamma(1)$, then $\partial \tilde{h}(\gamma) = 0$.
- (b) For any constant path $e: I \to X$, $\tilde{h}(e) = \partial \sigma$ for some singular 2-simplex $\sigma: \Delta^2 \to X$.
- (c) (*) For any paths $\alpha, \beta: I \to X$ with $\alpha(1) = \beta(0)$, the concatenated path $\alpha \cdot \beta: I \to X$ satisfies $\tilde{h}(\alpha) + \tilde{h}(\beta) \tilde{h}(\alpha \cdot \beta) = \partial \sigma$ for some singular 2-simplex $\sigma: \Delta^2 \to X$. Hint: Imagine a triangle whose three edges are mapped to X via the paths α , β and $\alpha \cdot \beta$. Can you extend this map continuously over the rest of the triangle?
- (d) If $\alpha, \beta: I \to X$ are two paths that are homotopic with fixed end points, then $\tilde{h}(\alpha) \tilde{h}(\beta) = \partial f$ for some singular 2-chain $f \in C_2(X; \mathbb{Z})$. Hint: If you draw a square representing a homotopy between α and β , you can decompose this square into two triangles.
- (e) Applying \tilde{h} to paths that begin and end at the base point x_0 , deduce that \tilde{h} determines a group homomorphism $h: \pi_1(X) \to H_1(X; \mathbb{Z}): [\gamma] \mapsto [\tilde{h}(\gamma)].$

We call $h: \pi_1(X) \to H_1(X; \mathbb{Z})$ the **Hurewicz homomorphism**. Notice that since $H_1(X; \mathbb{Z})$ is abelian, ker h automatically contains the commutator subgroup $[\pi_1(X), \pi_1(X)] \subset \pi(X)$ (see Problem Set 6 #2), thus h descends to a homomorphism on the abelianization of $\pi_1(X)$,

$$\Phi: \pi_1(X) / [\pi_1(X), \pi_1(X)] \to H_1(X; \mathbb{Z}).$$

We will now show that this is an isomorphism by writing down its inverse. For each point $p \in X$, choose arbitrarily a path $\omega_p : I \to X$ from x_0 to p, and choose ω_{x_0} in particular to be the constant path. Regarding singular 1-simplices $\sigma : \Delta^1 \to X$ as paths $\sigma : I \to X$ under the usual identification of I with Δ^1 , we can then associate to every singular 1-simplex $\sigma \in C_1(X; \mathbb{Z})$ a concatenated path

$$\widetilde{\Psi}(\sigma) := \omega_{\sigma(0)} \cdot \sigma \cdot \omega_{\sigma(1)}^{-1} : I \to X$$

which begins and ends at the base point x_0 , hence $\widetilde{\Psi}(\sigma)$ represents an element of $\pi_1(X)$. Let $\Psi(\sigma)$ denote the equivalence class represented by $\widetilde{\Psi}(\sigma)$ in the abelianization $\pi_1(X)/[\pi_1(X),\pi_1(X)]$. This uniquely determines a homomorphism³

$$\Psi: C_1(X; \mathbb{Z}) \to \pi_1(X)/[\pi_1(X), \pi_1(X)]: \sum_i m_i \sigma_i \mapsto \sum_i m_i \Psi(\sigma_i).$$

- (f) (*) Show that $\Psi(\partial \sigma) = 0$ for every singular 2-simplex $\sigma : \Delta^2 \to X$, and deduce that Ψ descends to a homomorphism $\Psi : H_1(X; \mathbb{Z}) \to \pi_1(X)/[\pi_1(X), \pi_1(X)]$.
- (g) Show that $\Psi \circ \Phi$ and $\Phi \circ \Psi$ are both the identity map.
- (h) For a closed surface Σ_g of genus $g \ge 2$, find an example of a nontrivial element in the kernel of the Hurewicz homomorphism $\pi_1(\Sigma_g) \to H_1(\Sigma_g)$. Hint: See Problem Set 7 #3.

³Since $\pi_1(X)/[\pi_1(X), \pi_1(X)]$ is abelian, we are adopting the convention of writing its group operation as addition, so the multiplication of an integer $m \in \mathbb{Z}$ by an element $\Psi(\sigma) \in \pi_1(X)/[\pi_1(X), \pi_1(X)]$ is defined accordingly.