PROBLEM SET 2

Due: 8.05.2018

Instructions

Problems marked with (*) will be graded. Solutions may be written up in German or English and should be handed in before the Übung on the due date. For problems without (*), you do not need to write up your solutions, but it is highly recommended that you think through them before the next Tuesday lecture.

Problems

1. Assume (X, \mathcal{T}) is a topological space, and $\mathcal{U} \subset X$ is a subset. Prove the following statement mentioned in lecture: a point $x \in X$ is a cluster point of \mathcal{U} (meaning every neighborhood of x intersects \mathcal{U}) if and only if x is contained in every closed subset $A \subset X$ that contains \mathcal{U}.
Hint: You might find it easier to prove the contrapositive of this statement.
2. Each of the following collections \mathcal{B} of subsets in \mathbb{R} is a subbase of either the standard, discrete, or cofinite topology on \mathbb{R}. For each subbase, say which topology it generates. In which cases is the subbase also a base?
(a) $\mathcal{B}=\{\mathbb{R} \backslash\{x\} \mid x \in \mathbb{R}\}$
(b) $\mathcal{B}=\{(a, b) \mid-\infty \leq a<b \leq \infty\}$
(c) $(*) \mathcal{B}=\{\{x, y\} \mid x, y \in \mathbb{R}$ with $x \neq y\}$
(d) $\mathcal{B}=\{\mathbb{R} \backslash\{x, y\} \mid x, y \in \mathbb{R}$ with $x \neq y\}$
(e) $\mathcal{B}=\{\{x\} \mid x \in \mathbb{R}\}$
3. Suppose \mathcal{B} is a subbase for a topology \mathcal{T} on a set X.
(a) Show that a sequence $x_{n} \in X$ converges to $x \in X$ if and only if for every $\mathcal{U} \in \mathcal{B}$ containing x, $x_{n} \in \mathcal{U}$ for all n sufficiently large.
(b) (*) Given another topological space Y, show that a map $f: Y \rightarrow X$ is continuous if and only if for every $\mathcal{U} \in \mathcal{B}, f^{-1}(\mathcal{U})$ is open in Y.

Now suppose $\left\{\left(X_{\alpha}, \mathcal{T}_{\alpha}\right)\right\}_{\alpha \in I}$ is a (possibly infinite) collection of topological spaces, (X, \mathcal{T}) is $\prod_{\alpha \in I} X_{\alpha}$ with the product topology, and the subbase $\mathcal{B} \subset \mathcal{T}$ is taken to consist of all sets of the form

$$
\mathcal{U}_{\beta} \times \prod_{\alpha \neq \beta} X_{\alpha} \subset \prod_{\alpha} X_{\alpha}
$$

for arbitrary $\beta \in I$ and $\mathcal{U}_{\beta} \in \mathcal{T}_{\beta}$. Use parts (a) and (b) to prove the following two statements mentioned in lecture:
(c) (*) A sequence $\left\{x_{\alpha}^{n}\right\}_{\alpha \in I} \in X$ converges to $\left\{x_{\alpha}\right\}_{\alpha \in I} \in X$ as $n \rightarrow \infty$ if and only if $x_{\alpha}^{n} \rightarrow x_{\alpha}$ for every $\alpha \in I$.
(d) For any other topological space Y, a map $f: Y \rightarrow X$ is continuous if and only if $\pi_{\alpha} \circ f: Y \rightarrow X_{\alpha}$ is continuous for every $\alpha \in I$, where $\pi_{\alpha}: X \rightarrow X_{\alpha}$ denotes the natural projection $\left\{x_{\alpha}\right\}_{\alpha \in I} \mapsto x_{\alpha}$.
4. Let $\mathbb{R}_{\text {std }}$ and $\mathbb{R}_{\text {cof }}$ denote topological spaces consisting of the set \mathbb{R} with the standard or cofinite topology respectively; recall that for the latter, subsets other than \mathbb{R} are closed if and only if they are finite.
(a) Show that a map $f: \mathbb{R}_{\text {cof }} \rightarrow \mathbb{R}_{\text {std }}$ is continuous if and only if it is constant.

Hint: If f is not constant, what can you say about $f^{-1}([n, n+1])$ for each $n \in \mathbb{Z}$?
(b) What does it mean for a sequence $x_{n} \in \mathbb{R}_{\text {cof }}$ to converge to $x \in \mathbb{R}_{\text {cof }}$?
5. Assume I is an infinite set and $\left\{\left(X_{\alpha}, \mathcal{T}_{\alpha}\right)\right\}_{\alpha \in I}$ is a collection of topological spaces. In addition to the usual product topology on $\prod_{\alpha} X_{\alpha}$, one can define the so-called box topology, which has a base of the form

$$
\left\{\prod_{\alpha \in I} \mathcal{U}_{\alpha} \mid \mathcal{U}_{\alpha} \in \mathcal{T}_{\alpha} \text { for all } \alpha \in I\right\}
$$

(a) Compared with the usual product topology, is the box topology stronger, weaker, or neither?
(b) (*) What does it mean for a sequence in $\prod_{\alpha} X_{\alpha}$ to converge in the box topology? In particular, consider the case where all the X_{α} are a fixed space X and $\prod_{\alpha} X$ is identified with the space of all functions $X^{I}=\{f: I \rightarrow X\}$; what does it mean for a sequence of functions $f_{n}: I \rightarrow X$ to converge in the box topology to a function $f: I \rightarrow X$?
6. For any topological space X, a subset $A \subset X$ is called dense if its closure \bar{A} is X. We say that X is separable if it contains a dense subset that is countable.
(a) Show that if X is a metric space and $A \subset X$ is a dense subset, then the balls $B_{1 / n}(x)$ for $n \in \mathbb{N}$ and $x \in A$ form a base for the topology of X.
Hint: If the statement is not true, then there exists an open set $\mathcal{U} \subset X$ containing a point y which is not in any ball of the form $B_{1 / n}(x) \subset \mathcal{U}$ for $n \in \mathbb{N}$ and $x \in A$. Use the fact that since A is dense, $A \cap B_{\epsilon}(y) \neq \emptyset$ for every $\epsilon>0$. Can you find an $\epsilon>0$ such that $B_{2 \epsilon}(y) \subset \mathcal{U}$ and some $x \in A \cap B_{\epsilon}(y)$ must satisfy $y \in B_{1 / n}(x)$ for some $n \in \mathbb{N}$?
(b) Deduce from part (a) that every topological space that is separable and metrizable is also second countable.
Remark: As we've seen in lecture, metrizable spaces are always first countable, but they need not be second countable in general, e.g. any uncountable set with the discrete topology is a counterexample.
7. (*) Here is a statement that is not true.

If X is a topological space in which every open cover has a finite subcover, then every sequence in X has a convergent subsequence.
You learned in analysis that this is true for metric spaces in general, and it will turn out to be true for a somewhat larger class of topological spaces, but not all of them-we will see a counterexample next week. Nonetheless, you will probably agree that the following "proof" looks very plausible at first glance. Find the error in the proof. Can you fix it by adding an extra assumption about X ? (Think of the countability axioms...)
"Proof": Arguing by contradiction, suppose every open cover of X has a finite subcover, but $x_{n} \in X$ is a sequence with no convergent subsequence. In particular, for every $x \in X$, no subsequence of x_{n} converges to x, which means that x is contained in an open neighborhood $\mathcal{U}_{x} \subset X$ containing at most finitely many of the terms in x_{n}. The collection $\left\{\mathcal{U}_{x}\right\}_{x \in X}$ is then an open cover of X, so by assumption, there exists a finite subset $I \subset X$ such that $X=\bigcup_{x \in I} \mathcal{U}_{x}$. But each of these finitely many subsets contains at most finitely many terms of x_{n}, and this is impossible since there are infinitely many terms.

