TOPOLOGY I C. Wendl

PROBLEM SET 5 Due: 29.05.2018

Instructions

Problems marked with (*) will be graded. Solutions may be written up in German or English and should be handed in before the Übung on the due date. For problems without (*), you do not need to write up your solutions, but it is highly recommended that you think through them before the next Tuesday lecture.

Problems

- 1. (a) (*) Given two pointed spaces (X, x) and (Y, y), prove that $\pi_1(X \times Y, (x, y))$ is isomorphic to the product group $\pi_1(X, x) \times \pi_1(Y, y)$.
 - Hint: Use the projections $p^X : X \times Y \to X$ and $p^Y : X \times Y \to Y$ to define a natural map from π_1 of the product to the product of π_1 's, then prove that it is an isomorphism.
 - (b) Generalize part (a) to the case of an infinite product of pointed spaces (with the product topology).
- 2. For a point $z \in \mathbb{C}$ and a continuous map $\gamma : [0,1] \to \mathbb{C} \setminus \{z\}$ with $\gamma(0) = \gamma(1)$, one defines the winding number of γ about z as

wind
$$(\gamma; z) = \theta(1) - \theta(0) \in \mathbb{Z}$$

where $\theta: [0,1] \to \mathbb{R}$ is any choice of continuous function such that

$$\gamma(t) = z + r(t)e^{2\pi i\theta(t)}$$

for some function $r: [0,1] \to (0,\infty)$. Notice that since $\gamma(t) \neq z$ for all t, the function r(t) is uniquely determined, and requiring $\theta(t)$ to be continuous makes it unique up to the addition of a constant integer, hence $\theta(1) - \theta(0)$ depends only on the path γ on not on any additional choices. One of the fundamental facts about winding numbers is their important role in the computation of $\pi_1(S^1)$: as we saw in lecture, viewing S^1 as $\{z \in \mathbb{C} \mid |z| = 1\}$, the map

$$\pi_1(S^1, 1) \to \mathbb{Z} : [\gamma] \mapsto \operatorname{wind}(\gamma; 0)$$

is an isomorphism to the abelian group $(\mathbb{Z}, +)$. Assume in the following that $\Omega \subset \mathbb{C}$ is an open set and $f: \Omega \to \mathbb{C}$ is a continuous function.

- (a) Suppose f(z) = w and $w \notin f(\mathcal{U} \setminus \{z\})$ for some neighborhood $\mathcal{U} \subset \Omega$ of z. This implies that the loop $f \circ \gamma_{\epsilon}$ for $\gamma_{\epsilon} : [0,1] \to \Omega : t \mapsto z + \epsilon e^{2\pi i t}$ has image in $\mathbb{C} \setminus \{w\}$ for all $\epsilon > 0$ sufficiently small, hence wind $(f \circ \gamma_{\epsilon}; w)$ is well defined. Show that for some $\epsilon_0 > 0$, wind $(f \circ \gamma_{\epsilon}; w)$ does not depend on ϵ as long as $0 < \epsilon \leq \epsilon_0$.
- (b) (*) Show that if the ball $B_r(z_0)$ of radius r > 0 about $z_0 \in \Omega$ has its closure contained in Ω , and the loop $\gamma(t) = z_0 + re^{2\pi i t}$ satisfies wind $(f \circ \gamma; w) \neq 0$ for some $w \in \mathbb{C}$, then there exists $z \in B_r(z_0)$ with f(z) = w. Hint: Recall that if we regard elements of $\pi_1(X, p)$ as pointed homotopy classes of maps $S^1 \to X$,

then such a map represents the identity in $\pi_1(X, p)$ is pointed homotopy classes of maps $S \to YR$, to a map $\mathbb{D}^2 \to X$. Define X in the present case to be $\mathbb{C} \setminus \{w\}$.

- (c) Prove the Fundamental Theorem of Algebra: every nonconstant complex polynomial has a root. Hint: Consider loops $\gamma(t) = Re^{2\pi i t}$ with R > 0 large.
- (d) (*) We call $z_0 \in \Omega$ an isolated zero of $f : \Omega \to \mathbb{C}$ if $f(z_0) = 0$ but $0 \notin f(\mathcal{U} \setminus \{z_0\})$ for some neighborhood $\mathcal{U} \subset \Omega$ of z_0 . Let us say that such a zero has order $k \in \mathbb{Z}$ if wind $(f \circ \gamma_{\epsilon}; 0) = k$ for $\gamma_{\epsilon}(t) = z_0 + \epsilon e^{2\pi i t}$ and $\epsilon > 0$ small (recall from part (a) that this does not depend on the choice of ϵ if it is small enough). Show that if $k \neq 0$, then for any neighborhood $\mathcal{U} \subset \Omega$ of z_0 , there exists $\delta > 0$ such that every continuous function $g : \Omega \to \mathbb{C}$ satisfying $|f - g| < \delta$ everywhere has a zero somewhere in \mathcal{U} .

(e) Find an example of the situation in part (d) with k = 0 such that f admits arbitrarily close perturbations g that have no zeroes in some fixed neighborhood of \mathcal{U} . Hint: Write f as a continuous function of x and y where $x + iy \in \Omega$. You will not be able to find

General advice: Throughout this problem, it is important to remember that $\mathbb{C}\setminus\{w\}$ is homotopy equivalent to S^1 for every $w \in \mathbb{C}$. Thus all questions about $\pi_1(\mathbb{C}\setminus\{w\})$ can be reduced to questions about $\pi_1(S^1)$.

- 3. For each of the following spaces X and subspaces $A \subset X$, determine whether A is a retract or a deformation retract of X, or neither. Justify your answer in each case by either describing a (deformation) retraction or saying something about fundamental groups.
 - (a) $A = S^1$ in $X = \mathbb{D}^2$
 - (b) (*) $A = S^1 \times \{ \text{pt} \}$ in $X = S^1 \times S^1$

an example for which f is analytic—they do not exist!

- (c) $A = \{(x_0, 0)\}$ in $X = ([0, 1] \times \{0\}) \cup (\{0\} \times [0, 1]) \cup (\bigcup_{n \in \mathbb{N}} \{2^{-n}\} \times [0, 1]),$ where $0 < x_0 < 1$
- (d) $A = (S^1 \times \{y\}) \cup (\{x\} \times S^1)$ in $X = (S^1 \times S^1) \setminus \{(x_0, y_0)\}$ with $x_0 \neq x$ and $y_0 \neq y$
- 4. We can regard $\pi_1(X, p)$ as the set of base point preserving homotopy classes of maps $(S^1, \text{pt}) \to (X, p)$. Let $[S^1, X]$ denote the set of homotopy classes of maps $S^1 \to X$, with no conditions on base points. (The elements of $[S^1, X]$ are called *free homotopy classes of loops* in X). There is a natural map

$$F:\pi_1(X,p)\to [S^1,X]$$

defined by ignoring base points. Prove:

- (a) F is surjective if X is path-connected.
- (b) (*) $F([\alpha]) = F([\beta])$ if and only if $[\alpha]$ and $[\beta]$ are conjugate in $\pi_1(X, p)$. Hint: If $H : [0,1] \times [0,1] \to X$ is a homotopy with $H(0, \cdot) = \alpha$ and $H(1, \cdot) = \beta$, and $t_0 \in S^1$ is the base point in S^1 , then $\gamma := H(\cdot, t_0)$ is also a loop based at p. Compare α and $\gamma \cdot \beta \cdot \gamma^{-1}$.

The conclusion is that if X is path-connected, F induces a bijection between $[S^1, X]$ and the set of conjugacy classes in $\pi_1(X)$. In particular, $\pi_1(X) \cong [S^1, X]$ whenever $\pi_1(X)$ is abelian.

- 5. Here is a useful fact from linear algebra known as *polar decomposition*: every invertible real matrix $\mathbf{A} \in \mathrm{GL}(n, \mathbb{R})$ can be written as \mathbf{PR} , where \mathbf{R} is orthogonal and \mathbf{P} is symmetric positive-definite. To see this, notice that \mathbf{AA}^T is always symmetric and positive-definite, thus it can be written as \mathbf{MAM}^T for some orthogonal \mathbf{M} and diagonal $\mathbf{\Lambda}$ with positive entries, making it possible to define powers $(\mathbf{AA}^T)^p = \mathbf{MA}^p \mathbf{M}^T$ for every $p \in \mathbb{R}$. Then defining $\mathbf{P} := (\mathbf{AA}^T)^{1/2}$, it is not hard to verify that $\mathbf{R} := \mathbf{P}^{-1}\mathbf{A}$ is orthogonal.
 - (a) Use polar decomposition to show that the group $\{\mathbf{A} \in \operatorname{GL}(n, \mathbb{R}) \mid \det(\mathbf{A}) > 0\}$ admits a deformation retraction to the special orthogonal group $\operatorname{SO}(n)$ for every $n \in \mathbb{N}$.¹
 - (b) Identifying S^1 with the quotient group \mathbb{R}/\mathbb{Z} , show that every loop $\mathbf{A} : S^1 \to \mathrm{GL}(2,\mathbb{R})$ passing through the identity matrix is homotopic in $\mathrm{GL}(2,\mathbb{R})$ to a loop of rotations

$$\mathbf{A}(t) = \begin{pmatrix} \cos(2\pi kt) & -\sin(2\pi kt) \\ \sin(2\pi kt) & \cos(2\pi kt) \end{pmatrix}$$

for some $k \in \mathbb{Z}$, and k is uniquely determined by $\mathbf{A} : S^1 \to \mathrm{GL}(2, \mathbb{R})$. Hint: What is SO(2) homeomorphic to?

¹Here we assume $GL(n, \mathbb{R})$ carries its natural topology as an open subset of the space of all real *n*-by-*n* matrices (a vector space isomorphic to \mathbb{R}^{n^2}).