PROBLEM SET 5

Due: 29.05.2018

Instructions

Problems marked with (*) will be graded. Solutions may be written up in German or English and should be handed in before the Übung on the due date. For problems without (*), you do not need to write up your solutions, but it is highly recommended that you think through them before the next Tuesday lecture.

Problems

1. (a) (*) Given two pointed spaces (X, x) and (Y, y), prove that $\pi_{1}(X \times Y,(x, y))$ is isomorphic to the product group $\pi_{1}(X, x) \times \pi_{1}(Y, y)$.
Hint: Use the projections $p^{X}: X \times Y \rightarrow X$ and $p^{Y}: X \times Y \rightarrow Y$ to define a natural map from π_{1} of the product to the product of π_{1} 's, then prove that it is an isomorphism.
(b) Generalize part (a) to the case of an infinite product of pointed spaces (with the product topology).
2. For a point $z \in \mathbb{C}$ and a continuous map $\gamma:[0,1] \rightarrow \mathbb{C} \backslash\{z\}$ with $\gamma(0)=\gamma(1)$, one defines the winding number of γ about z as

$$
\operatorname{wind}(\gamma ; z)=\theta(1)-\theta(0) \in \mathbb{Z}
$$

where $\theta:[0,1] \rightarrow \mathbb{R}$ is any choice of continuous function such that

$$
\gamma(t)=z+r(t) e^{2 \pi i \theta(t)}
$$

for some function $r:[0,1] \rightarrow(0, \infty)$. Notice that since $\gamma(t) \neq z$ for all t, the function $r(t)$ is uniquely determined, and requiring $\theta(t)$ to be continuous makes it unique up to the addition of a constant integer, hence $\theta(1)-\theta(0)$ depends only on the path γ on not on any additional choices. One of the fundamental facts about winding numbers is their important role in the computation of $\pi_{1}\left(S^{1}\right)$: as we saw in lecture, viewing S^{1} as $\{z \in \mathbb{C}||z|=1\}$, the map

$$
\pi_{1}\left(S^{1}, 1\right) \rightarrow \mathbb{Z}:[\gamma] \mapsto \operatorname{wind}(\gamma ; 0)
$$

is an isomorphism to the abelian group $(\mathbb{Z},+)$. Assume in the following that $\Omega \subset \mathbb{C}$ is an open set and $f: \Omega \rightarrow \mathbb{C}$ is a continuous function.
(a) Suppose $f(z)=w$ and $w \notin f(\mathcal{U} \backslash\{z\})$ for some neighborhood $\mathcal{U} \subset \Omega$ of z. This implies that the loop $f \circ \gamma_{\epsilon}$ for $\gamma_{\epsilon}:[0,1] \rightarrow \Omega: t \mapsto z+\epsilon e^{2 \pi i t}$ has image in $\mathbb{C} \backslash\{w\}$ for all $\epsilon>0$ sufficiently small, hence $\operatorname{wind}\left(f \circ \gamma_{\epsilon} ; w\right)$ is well defined. Show that for some $\epsilon_{0}>0$, $\operatorname{wind}\left(f \circ \gamma_{\epsilon} ; w\right)$ does not depend on ϵ as long as $0<\epsilon \leqslant \epsilon_{0}$.
(b) (*) Show that if the ball $B_{r}\left(z_{0}\right)$ of radius $r>0$ about $z_{0} \in \Omega$ has its closure contained in Ω, and the loop $\gamma(t)=z_{0}+r e^{2 \pi i t}$ satisfies $\operatorname{wind}(f \circ \gamma ; w) \neq 0$ for some $w \in \mathbb{C}$, then there exists $z \in B_{r}\left(z_{0}\right)$ with $f(z)=w$.
Hint: Recall that if we regard elements of $\pi_{1}(X, p)$ as pointed homotopy classes of maps $S^{1} \rightarrow X$, then such a map represents the identity in $\pi_{1}(X, p)$ if and only if it admits a continuous extension to a map $\mathbb{D}^{2} \rightarrow X$. Define X in the present case to be $\mathbb{C} \backslash\{w\}$.
(c) Prove the Fundamental Theorem of Algebra: every nonconstant complex polynomial has a root. Hint: Consider loops $\gamma(t)=R e^{2 \pi i t}$ with $R>0$ large.
(d) (*) We call $z_{0} \in \Omega$ an isolated zero of $f: \Omega \rightarrow \mathbb{C}$ if $f\left(z_{0}\right)=0$ but $0 \notin f\left(\mathcal{U} \backslash\left\{z_{0}\right\}\right)$ for some neighborhood $\mathcal{U} \subset \Omega$ of z_{0}. Let us say that such a zero has order $k \in \mathbb{Z}$ if $\operatorname{wind}\left(f \circ \gamma_{\epsilon} ; 0\right)=k$ for $\gamma_{\epsilon}(t)=z_{0}+\epsilon e^{2 \pi i t}$ and $\epsilon>0$ small (recall from part (a) that this does not depend on the choice of ϵ if it is small enough). Show that if $k \neq 0$, then for any neighborhood $\mathcal{U} \subset \Omega$ of z_{0}, there exists $\delta>0$ such that every continuous function $g: \Omega \rightarrow \mathbb{C}$ satisfying $|f-g|<\delta$ everywhere has a zero somewhere in \mathcal{U}.
(e) Find an example of the situation in part (d) with $k=0$ such that f admits arbitrarily close perturbations g that have no zeroes in some fixed neighborhood of \mathcal{U}.
Hint: Write f as a continuous function of x and y where $x+i y \in \Omega$. You will not be able to find an example for which f is analytic - they do not exist!

General advice: Throughout this problem, it is important to remember that $\mathbb{C} \backslash\{w\}$ is homotopy equivalent to S^{1} for every $w \in \mathbb{C}$. Thus all questions about $\pi_{1}(\mathbb{C} \backslash\{w\})$ can be reduced to questions about $\pi_{1}\left(S^{1}\right)$.
3. For each of the following spaces X and subspaces $A \subset X$, determine whether A is a retract or a deformation retract of X, or neither. Justify your answer in each case by either describing a (deformation) retraction or saying something about fundamental groups.
(a) $A=S^{1}$ in $X=\mathbb{D}^{2}$
(b) (*) $A=S^{1} \times\{\mathrm{pt}\}$ in $X=S^{1} \times S^{1}$
(c) $A=\left\{\left(x_{0}, 0\right)\right\}$ in $X=([0,1] \times\{0\}) \cup(\{0\} \times[0,1]) \cup\left(\bigcup_{n \in \mathbb{N}}\left\{2^{-n}\right\} \times[0,1]\right)$, where $0<x_{0}<1$
(d) $A=\left(S^{1} \times\{y\}\right) \cup\left(\{x\} \times S^{1}\right)$ in $X=\left(S^{1} \times S^{1}\right) \backslash\left\{\left(x_{0}, y_{0}\right)\right\}$ with $x_{0} \neq x$ and $y_{0} \neq y$
4. We can regard $\pi_{1}(X, p)$ as the set of base point preserving homotopy classes of maps $\left(S^{1}, \mathrm{pt}\right) \rightarrow(X, p)$. Let $\left[S^{1}, X\right]$ denote the set of homotopy classes of maps $S^{1} \rightarrow X$, with no conditions on base points. (The elements of $\left[S^{1}, X\right]$ are called free homotopy classes of loops in X). There is a natural map

$$
F: \pi_{1}(X, p) \rightarrow\left[S^{1}, X\right]
$$

defined by ignoring base points. Prove:
(a) F is surjective if X is path-connected.
(b) $(*) F([\alpha])=F([\beta])$ if and only if $[\alpha]$ and $[\beta]$ are conjugate in $\pi_{1}(X, p)$.

Hint: If $H:[0,1] \times[0,1] \rightarrow X$ is a homotopy with $H(0, \cdot)=\alpha$ and $H(1, \cdot)=\beta$, and $t_{0} \in S^{1}$ is the base point in S^{1}, then $\gamma:=H\left(\cdot, t_{0}\right)$ is also a loop based at p. Compare α and $\gamma \cdot \beta \cdot \gamma^{-1}$.

The conclusion is that if X is path-connected, F induces a bijection between [S^{1}, X] and the set of conjugacy classes in $\pi_{1}(X)$. In particular, $\pi_{1}(X) \cong\left[S^{1}, X\right]$ whenever $\pi_{1}(X)$ is abelian.
5. Here is a useful fact from linear algebra known as polar decomposition: every invertible real matrix $\mathbf{A} \in \mathrm{GL}(n, \mathbb{R})$ can be written as $\mathbf{P R}$, where \mathbf{R} is orthogonal and \mathbf{P} is symmetric positive-definite. To see this, notice that $\mathbf{A} \mathbf{A}^{T}$ is always symmetric and positive-definite, thus it can be written as $\mathbf{M} \mathbf{\Lambda} \mathbf{M}^{T}$ for some orthogonal \mathbf{M} and diagonal $\boldsymbol{\Lambda}$ with positive entries, making it possible to define powers $\left(\mathbf{A} \mathbf{A}^{T}\right)^{p}=\mathbf{M} \boldsymbol{\Lambda}^{p} \mathbf{M}^{T}$ for every $p \in \mathbb{R}$. Then defining $\mathbf{P}:=\left(\mathbf{A} \mathbf{A}^{T}\right)^{1 / 2}$, it is not hard to verify that $\mathbf{R}:=\mathbf{P}^{-1} \mathbf{A}$ is orthogonal.
(a) Use polar decomposition to show that the $\operatorname{group}\{\mathbf{A} \in \mathrm{GL}(n, \mathbb{R}) \mid \operatorname{det}(\mathbf{A})>0\}$ admits a deformation retraction to the special orthogonal group $\operatorname{SO}(n)$ for every $n \in \mathbb{N} \mathbb{1}^{1}$
(b) Identifying S^{1} with the quotient group \mathbb{R} / \mathbb{Z}, show that every loop $\mathbf{A}: S^{1} \rightarrow \mathrm{GL}(2, \mathbb{R})$ passing through the identity matrix is homotopic in $\operatorname{GL}(2, \mathbb{R})$ to a loop of rotations

$$
\mathbf{A}(t)=\left(\begin{array}{cc}
\cos (2 \pi k t) & -\sin (2 \pi k t) \\
\sin (2 \pi k t) & \cos (2 \pi k t)
\end{array}\right)
$$

for some $k \in \mathbb{Z}$, and k is uniquely determined by $\mathbf{A}: S^{1} \rightarrow \mathrm{GL}(2, \mathbb{R})$.
Hint: What is $\mathrm{SO}(2)$ homeomorphic to?

[^0]
[^0]: ${ }^{1}$ Here we assume $\operatorname{GL}(n, \mathbb{R})$ carries its natural topology as an open subset of the space of all real n-by- n matrices (a vector space isomorphic to $\mathbb{R}^{n^{2}}$).

