TOPOLOGY I C. Wendl

PROBLEM SET 8 Due: 3.07.2018

Instructions

Problems marked with (*) will be graded. Solutions may be written up in German or English and should be handed in before the Übung on the due date. For problems without (*), you do not need to write up your solutions, but it is highly recommended that you think through them before the next Tuesday lecture.

Problems

- 1. Prove each of the following, assuming $p: Y \to X$ is a covering map with X and Y both path-connected.
 - (a) If $\mathcal{U} \subset X$ is evenly covered, then so is every subset of \mathcal{U} .
 - (b) The map $p: Y \to X$ is open, i.e. it sends open subsets of Y to open subsets of X.
 - (c) For every $x \in X$, $f^{-1}(x)$ is a discrete subset of Y.¹
 - (d) If Y is compact, then X is also compact and $\deg(p) < \infty$.
 - (e) (*) The map $p: Y \to X$ is proper² if and only if $\deg(p) < \infty$.
 - Hint: Showing that properness implies finite degree is easy. For the converse, given a compact set $K \subset X$ and an open cover $f^{-1}(K) \subset \bigcup_{\alpha} \mathcal{U}_{\alpha}$, it suffices to find a finite cover of $f^{-1}(K)$ by open sets such that each is contained in some \mathcal{U}_{α} . (Why?) Start by showing that K can be covered by a finite collection of open neighborhoods which are evenly covered and small enough so that their (finitely many!) lifts to Y are each contained in some \mathcal{U}_{α} .
 - (f) Deduce from the above that the converse of part (d) also holds: if $\deg(p) < \infty$ and X is compact, then Y is also compact.
- 2. Assume $p: Y \to X$ is a covering map and X is path-connected.
 - (a) (*) Use the lifting theorem to show that for any two points $x, y \in X$, lifting paths from x to y associates to each such path γ a bijection $\rho_{\gamma} : p^{-1}(x) \to p^{-1}(y)$, which depends only on the homotopy class of γ (with fixed end points).
 - (b) Writing $J := p^{-1}(x)$ and applying part (a) in the case x = y gives a map

$$\rho: \pi_1(X, x) \to S(J): [\gamma] \mapsto \rho_\gamma$$

where S(J) is the group of all bijections $J \to J^{3}$. Show that this map is a group homomorphism.

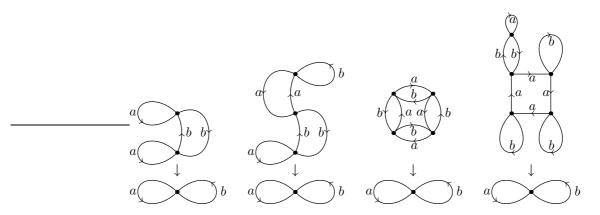
- (c) (*) Write down the homomorphism $\rho : \pi_1(X, x) \to S(J)$ explicitly for the space $(X, x) = (\mathbb{C}^* : = \mathbb{C} \setminus \{0\}, 1)$ with covering map $p : \mathbb{C} \to \mathbb{C}^* : z \mapsto e^z$.
- 3. (a) Show that every covering map of degree 2 is regular.
 Hint: There is an algebraic way to solve this problem, but a more direct approach is also possible.
 - (b) Prove that every covering map of the torus $\mathbb{T}^2 = S^1 \times S^1$ is regular.
 - (c) Find all subgroups of \mathbb{Z}^2 with index 2. Hint: Given such a subgroup $H \subset \mathbb{Z}^2$, consider the images of the two generators $e_1 := (1,0)$ and $e_2 := (0,1)$ of \mathbb{Z}^2 under the quotient homomorphism $\mathbb{Z}^2 \to \mathbb{Z}^2/H \cong \mathbb{Z}_2$. Show that there are exactly three possibilities, depending on whether each of e_1 or e_2 represents the trivial or nontrivial element in the quotient.

¹We say that a subset A in a space X is *discrete* if the subspace topology induced by X on A is the same as the discrete topology.

²A map $f: X \to Y$ is said to be proper (eigentlich) if for every compact subset $K \subset Y$, $f^{-1}(K) \subset X$ is also compact.

³Notice that if J is a set of n elements, S(J) is isomorphic to the symmetric group S_n .

- (d) (*) Deduce from part (c) that up to isomorphism of covers, T² admits exactly three distinct covering maps with degree 2, and write them down explicitly.
 Hint: You may have to take an educated guess as to what the covering spaces should be, but notice that part (c) tells you what their fundamental groups are.
- 4. Convince yourself that the maps depicted in the figure below are covers, and determine their deck transformation groups. Which ones are regular?



- 5. (*) Prove that for every path-connected topological group G, $\pi_1(G)$ is abelian. Hint: Fix the identity element $e \in G$ as a base point, and let e also denote the constant path at e. Given loops α, β in G based at e, it is easy to construct a homotopy from $\alpha \cdot e$ to $e \cdot \alpha$ and also a homotopy from $e \cdot \beta$ to $\beta \cdot e$. Can you use the group structure to turn these into a homotopy between $\alpha \cdot \beta$ and $\beta \cdot \alpha$?
- 6. The *Prüfer surface* is an example of a space that would be a connected 2-dimensional manifold if we did not require manifolds to be second countable. It is defined as follows: let $\mathbb{H} = \{(x, y) \in \mathbb{R}^2 \mid y > 0\}$, and associate to each $a \in \mathbb{R}$ a copy of the plane $X_a := \mathbb{R}^2$. The Prüfer surface is then

where the equivalence relation identifies each point $(x, y) \in X_a$ for y > 0 with the point $(a + yx, y) \in \mathbb{H}$. Notice that \mathbb{H} and X_a for each $a \in \mathbb{R}$ can be regarded naturally as subspaces of Σ .

- (a) Prove that Σ is Hausdorff.
- (b) Prove that Σ is path-connected.
- (c) Prove that every point in Σ has a neighborhood homeomorphic to \mathbb{R}^2 .
- (d) Prove that a second countable space can never contain an uncountable discrete subset. Then find an uncountable discrete subset of Σ .