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1 Introduction

In this talk we show further properties of the Euler Class e(E) ∈ Hn(M) of an oriented

rank n vector bundle E → B. Recall that it is de�ned as the image of the Thom class

u ∈ Hn(E,E0) under the composition Hn(E,E0)→ Hn(E)→ Hn(B) i.e.

e(E) := π−1
∗
(u|E) ∈ Hn(B)

where ·|E : Hn(E,E0)→ Hn(E) is the restriction map.

Theorem 1.1. Let E → M a smooth oriented rank n real vector bundle over a closed

oriented manifold M . Let ψ be a section which intersects the zero section transversely

and let Z = ψ(M) ∩M where M is identi�ed with the zero section of E. Then its Euler

class is the Poincare Dual of the fundamental class of Z:

e(E) = [Z]∗ ∈ Hn(M ;Z)

Theorem 1.2. Let M be a compact oriented n-manifold. Then its Euler characteristic

is

χ(M) = 〈e(M), [M ]〉

To give proofs for these results we will make a quick digression into intersection theory.

2 Intersection Theory

Let X a closed oriented smooth manifold of dimension n and A and B oriented smooth

submanifolds of X of dimension n − i and n − j respectively. Assume that A and B
intersect transversely so that for every p ∈ X the map TpA ⊕ TpB → TpX induced by

the inclusions is surjective. Then A ∩B is a submanifold of dimension n− (i+ j).
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We give an orientation of TpA ∩ B by the following convention: Choose an oriented

basis u1, . . . , un−i−j , v1, . . . , vj , w1, . . . , wi of TpX such that u1, . . . , un−i−j , v1, . . . , vj is

an oriented basis of TpA and u1, . . . , un−i−j , w1, . . . , wi is an oriented basis of TpB. Then
the orientation of TpA ∩B is given by u1, . . . , un−i−j . In particular, if i+ j = n so that

A∩B is a �nite set of points, then p is positively oriented if the map TpA⊕TpB → TpX
preserves orientation. In these notes we denote this sign by I(A,B, p).

Recall that ifM is compact and oriented then the Poincaré duality isomorphism Hi(M,Z) ∼=
Hn−i(M,Z) is given by α 7→ [M ]_α with inverse β∗ ←[ β.

Theorem 2.1. The cup product is Poincaré dual to intersection:

[A]∗^ [B]∗ = [A ∩B]∗ ∈ Hi+j(X;Z)

Remark. Note that not all homology classes of a closed oriented manifold can be rep-

resented as the fundamental class of an oriented submanifold.

De�nition 2.2. For a closed oriented manifold X of dimension n we de�ne the inter-

section pairing

· : Hn−i(X)⊗Hn−j(X)→ Hn−i−j(X)

α · β := [X]_ (α∗^β∗) = α_ β∗.

For cohomology classes of complementary dimension, i.e. i+ j = n, we will often under-

stand α · β ∈ H0(X,Z) as an element of Z by replacing it with 〈1, α · β〉.
We require a lemma to prove the theorem. Let E → B be a vector bundle with a bundle

metric, letD be its unit disk bundle and ∂D its unit sphere bundle. Note H∗(D0, ∂D) = 0
so we have an isomorphism H∗(D, ∂D) ∼= H∗(D,D0) and we can interpret the Thom class

as an element u ∈ Hn(D, ∂D) ∼= Hn(D,D0) ∼= H(E,E0) where the latter isomorphism is

given by excision.

Lemma 2.3. Let B be a closed oriented smooth k-manifold and let E be a rank n oriented

real vector bundle over B with unit disk bundle D. Then

(iDB )∗[B] = [D]_u ∈ Hk(D)

where [B] ∈ Hk(M) and [D] ∈ Hn+k(D, ∂D) are the fundamental classes of the manifolds

and iDB is the zero section of D.

Here we give E any metric. The orientation of D is determined by the orientation of the

�ber and the base, in that order.

Proof (Sketch). Let B connected, then we have isomorphisms

Z = H0(B;Z)
π∗(·)^u−−−−−→ Hn(D, ∂D;Z)

[D]_·−−−−→ Hk(D)
π∗−→ Hk(B) = Z
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The generator 1 ∈ H0(B,Z) maps to [D] _ u ∈ Hk(D) and to a generator of Hk(B) so

we obtain [D] _ u = ±(iDB )∗[B], however there might be a sign depending on n or k.
We do not show explicitly how the sign can be nailed down. Using the de�ning property

of the fundamental class [B] one can reduce to the case where B is trivial. Then the

equation can be veri�ed explicitly singular chains and cochains associated to oriented

bases. Alternatively one can use real coe�cients and use de Rham cohomology, so the

sign is easily understood in terms of the orientations.

Now in the setting of the main theorem let NX
A = N be a tubular neighborhood of A, so

that the normal bundle of A is isomorphic to NX
A by a di�eomorphism which maps the

zero section to A. We can interpret the Thom class as an element uA ∈ Hi(N,N \A;Z)
and by the lemma, (iNA )∗[A] = [N ]_uA. Consider the maps

Hi(N,N \A;Z)→ Hi(X,X \A;Z)→ Hi(X;Z)

where the �rst map is given by excision and the second is given by restriction. Denote

the image of uA by uXA ∈ Hi(X;Z).

Lemma 2.4.Ä
(iXA )∗[A]

ä∗
= uXA

or equivalently

(iXA )∗[A] = [X]_uXA ∈ Hn−1(X)

Now we can prove the theorem

Proof of 2.1. We are given an orientation of X, A, B and A ∩ B. Thus we can de�ne

orientations of the normal bundlesNX
A , N

X
B , N

X
A∩B andNA

A∩B according to the ��ber �rst�

convention so that we can use Lemma 2.4 without any sign. Note there is a canonical

isomorphism of vector bundles

NA
A∩B = (NX

B )|A∩B

which preserves orientations. Thus

uAA∩B = (iXA )∗uXB

By the lemma it su�ces to show that uXA ^uXB = uXA∩B or equivalently

[X]_uXA∩B = [X]_
Ä
uXA ^uXB

ä
We compute

[X]_uXA∩B =
Ä
iXA∩B

ä
∗ [A ∩B]

=
Ä
iXA
ä
∗

Ä
iAA∩B

ä
∗ [A ∩B]
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=
Ä
iXA
ä
∗

Ä
[A]_uAA∩B

ä
=
Ä
iXA
ä
∗

Ä
[A]_ (iXA )∗uXB

ä
=
ÄÄ
iXA
ä
∗ [A]

ä
_uXB

=
Ä
[X]_uXA

ä
_uXB

= [X]_
Ä
uXA ^uXB

ä
3 The Euler Class

Recall that the Euler Class e(E) of an oriented rank n vector bundle E is de�ned as

e(E) :=
Ä
π−1
ä∗

(u|E) ∈ Hn(B)

where ·|E : Hn(E,E0)→ Hn(E) is the restriction map.

Proposition 3.1 (Properties of the Euler Class). Let E → B,E1 → B1, E2 → B2 be

oriented vector bundles.

1. If E admits a nonvanishing section, then e(E) = 0.

2. If f : B1 → B2 is covered by a bundle map f̃ : E1 → E2 which is �berwise an

orientation preserving isomorphism, then

e(E1) = f∗e(E2)

3. For the product bundle E1 × E2 → B1 ×B2,

e(E1 × E2) = e(E1)× e(E2)

Let E1, E2 be two oriented vector bundles over B. Then

e(E1 ⊕ E2) = e(E1)^ e(E2)

where the orientation of (E1)p⊕(E2)p is given by an oriented basis of (E1)p followed
by an oriented basis of (E2)p.

4. e(E−) = −e(E) where E− is E with reversed orientation.

5. If n is odd, then e(E) + e(E) = 0.

Theorem 3.2. Let E → M a smooth oriented rank n real vector bundle over a closed

oriented manifold M . Let ψ a section which intersects the zero section transversely and

let Z = ψ(M)∩M where M is identi�ed with the zero section of E. Then the Euler class

of E is the Poincare dual of the fundamental class of Z:

e(E) = [Z]∗ = [ψ(B) ∩B]∗ ∈ Hn(B;Z)
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Given a section ψ which intersects the zero section transversely, the zero set Z = ψ−1(0) is
a submanifold of B and the derivative of ψ along the zero section de�nes an isomorphism

of vector bundles

NB
Z
∼= E|Z (3.1)

This gives us an orientation of NB
Z and thus an orientation of Z.

Proof. Let u ∈ Hn(E,E \ B;Z) the Thom class of E. Identify the normal bundle NB
Z

with an open tubular neighborhood N of Z in B. Let uZ ∈ Hn(N,N \ Z;Z) be the

Thom class of NB
Z . The map ψ|N : (N,N \Z)→ (E,E \B) is homotopic through maps

of pairs to the map (N,N \Z)→ (E|Z , E|Z \Z) given by the isomorphism 3.1. Thus by

naturality of the Thom class,

(ψ|N )∗u = uZ ∈ Hn(N,N \ Z;Z)

We apply the composition Hn(N,N \ Z;Z) → Hn(B,B \ Z;Z) → Hn(B;Z) where the

�rst is an excision isomorphism.

ψ∗(u|E) = uBZ ∈ Hn(B;Z).

The left hand side is e(E) by de�nition, the right hand side is [Z]∗ by lemma 2.4.

Theorem 3.3. Let M be a compact oriented n-manifold and e(M) the Euler class of its

tangent bundle. Then the Euler characteristic of M is

χ(M) = 〈e(M), [M ]〉

Proof (Sketch). Let V be a vector �eld which intersects the zero section transversely. By

the identity [M ]_ e(M) = [Z], we have

〈e(M), [M ]〉 = 〈1, [M ]_ e(M)〉 = 〈1, [Z]〉

= 〈1, [V (B) ∩B] =
∑
p

I(V,M, p)

where the sum is over all p with V (p) = 0 and I(V,M, p) is the sign of intersection of V
and the zero section at p.

We give two more characterizations of the intersection sign. The transversality condition

is equivalent to the nonvanishing of the determinant of the map ∇Vp : TpX → TpX (one

can choose any connection here). Such a zero p of V is called nondegenerate. One can

check that I(V,M, p) = deg(V, p) := sgn(det(∇Vp)).
Using local coordinates around a zero p of V we can regard V as a map from Rn to Rn
with V (0) = 0. Thus V gives a map Sn−1 → Rn \{0} ∼= Sn−1. One checks that deg(V, p)
is equal to the degree of this map if p is nondegenerate so we can take this as a general

de�nition of deg(V, p). The theorem then follows from the following theorem.
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Theorem 3.4 (Poincaré-Hopf). If X is a closed smooth manifold and V a smooth vector

�eld with isolated zeros, then∑
V (p)=0

deg(V, p) = χ(X)

We will sketch the proof of the theorem in the case that all zeros of V are nondegenerate

and X is oriented, using the Lefschetz �xed point theorem.

Let f : X → X with only isolated �xed points, we de�ne the Lefschetz sign ε(p) of a

�xed point p of f as follows. Choosing local coordinates around p, we can regard f as

a map Sn−1 → Rn \ {0} ∼= Sn−1 and we take ε(p) to be the degree of that map. If f
is smooth, we call a �xed point nondegenerate if the derivative Id − dfp is invertible.

Note that this is equivalent to the condition that the intersection of the graph Γ(f) of

f and the diagonal ∆ ⊆ M ×M is transverse in M ×M . In this case the intersection

degree of Γ(f) and ∆ at p is I(Γ(f),∆, p) = sgn(det(1 − dfp)) and one can check that

ε(p) = sgn(det(1− dfp)). Note that by these de�nitions, [Γ(f)] · [∆] =
∑
f(p)=p ε(p). The

Lefschetz �xed point theorem states

Theorem 3.5 (Lefschetz �xed point theorem). If X is a closed oriented smooth manifold

and f : X → X, then

L(f) := [Γ(f)] · [∆] =
k∑
i=1

(−1)i tr (f∗ : Hi(X,Q)→ Hi(X,Q))

In the case that f is homotopic to the identity, we obtain

[Γ(f)] · [∆] =
k∑
i=1

(−1)k dim(Hi(X,Q)) = χ(X) = [∆] · [∆]

Proof of 3.4(Sketch). Assume X is oriented and all �xed points of V are nondegenerate.

In this case for small t, the map f = exp(tV ) is a di�eomorphism of M and all nonde-

generate �xed points of f correspond to nondegenerate zeroes of V . One can check that

deg(V, p) = ε(p). Thus since f is homotopic to the identity,

∑
V (p)=0

deg(V, p) =
∑

f(p)=p

ε(p) =
k∑
i=1

dim Hi(M ;Q) = χ(M)

One can get rid of the nondegeneracy assumption by showing that the left hand side of

the equation does not depend on V .

Proof of 3.5 (Sketch). We will use the following rules of calculation without proof: If

α, β, γ, δ ∈ H∗(X) with |α|+ |β| = |γ|+ |δ| = dimX

(α× β) · (γ × δ) =

{
(−1)|β|(α · γ)(β · δ) if|β| = |γ|
0 otherwise
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[Γ(f)] · (α× β) = (−1)|α|f∗α · β ∈ Z

Note that since the cup product is a perfect pairing on a closed connected orientable

manifold, the intersection product is also a perfect pairing. Fix a basis ek ∈ H∗(X;Q)
and take the dual basis e′k ∈ H∗(X;Q) with respect to the intersection product, i.e. such

that ei · e′j = δij .

The homology cross product is an isomorphism H∗(X × X;Q) ∼= H(X;Q) ⊗ H(X;Q).
Thus {ei×e′j} is a basis of H∗(X×X;Q). We will �rst prove the equation [∆] =

∑
k ek×e′k

by verifying that the identity holds if we take its intersection product the basis elements

e′i × ej when |e′i| + |ej | = n. Taking f = idX in the computation rule above we can

compute(∑
k

ek × e′k

)
·
(
e′i × ej

)
=

∑
k:|ek|=|e′i|

(−1)|e
′
i|(ek · e′i)(e′k · ej)

= (−1)|e
′
i|e′i · ej

= [∆](e′i × ej)

Now we can prove the theorem.

[Γ(f)] · [∆] = [Γ(f)] ·
∑
k

ek × e′k

=
∑
k

(−1)|ek|f∗ek · e′k

=
∑
i

(−1)i tr (f∗ : Hi(X;Q)→ Hi(X;Q))
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