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1 Introduction

In this talk we show further properties of the Euler Class e(E) € H"(M) of an oriented
rank n vector bundle ¥ — B. Recall that it is defined as the image of the Thom class
u € H"(E, Ey) under the composition H"(E, Ey) — H"(E) — H"(B) i.e.

e(E) :=n " (ulp) € H'(B)
where -|g: H"(E, Ey) — H"(E) is the restriction map.

Theorem 1.1. Let E — M a smooth oriented rank n real vector bundle over a closed
oriented manifold M. Let 1 be a section which intersects the zero section transversely
and let Z = (M) N M where M is identified with the zero section of E. Then its Euler
class is the Poincare Dual of the fundamental class of Z:

e(E) = [Z]* € H'(M;Z)

Theorem 1.2. Let M be a compact oriented n-manifold. Then its Euler characteristic
18

To give proofs for these results we will make a quick digression into intersection theory.

2 Intersection Theory

Let X a closed oriented smooth manifold of dimension n and A and B oriented smooth
submanifolds of X of dimension n — ¢ and n — j respectively. Assume that A and B
intersect transversely so that for every p € X the map T,A ® T,B — T, X induced by
the inclusions is surjective. Then A N B is a submanifold of dimension n — (i + 7).



We give an orientation of T,A N B by the following convention: Choose an oriented
basis ULy vy Un—i—75,V15---, V5, W1,...,W; of TpX such that ULy vy Un—i—75,V15---, 05 18
an oriented basis of T,A and uq, ..., up—i—j, w1, ..., w; is an oriented basis of T,,B. Then
the orientation of T,A N B is given by w1, ..., up—;—;. In particular, if i + j = n so that
AN B is a finite set of points, then p is positively oriented if the map T,A®T,B — T, X
preserves orientation. In these notes we denote this sign by I(A, B, p).

Recall that if M is compact and oriented then the Poincaré duality isomorphism H!(M, Z) =2
H,,—i(M,Z) is given by a — [M] ~ a with inverse 5* <= 3.
Theorem 2.1. The cup product s Poincaré dual to intersection:

A" — [B)" = [AN BI" € B (X;2)

Remark. Note that not all homology classes of a closed oriented manifold can be rep-
resented as the fundamental class of an oriented submanifold.

Definition 2.2. For a closed oriented manifold X of dimension n we define the inter-
section pairing

-+ Hpi(X) @ Hp(X) = Hpi 5 (X)
a fi=[X]~(a"—p)=a~p"

For cohomology classes of complementary dimension, i.e. ¢+ j = n, we will often under-
stand a - § € Ho(X,Z) as an element of Z by replacing it with (1, « - ).

We require a lemma to prove the theorem. Let E — B be a vector bundle with a bundle
metric, let D be its unit disk bundle and 9D its unit sphere bundle. Note H.(Dgy,0D) = 0
so we have an isomorphism H, (D, 0D) = H,(D, Dy) and we can interpret the Thom class
as an element u € H"(D,0D) = H"(D, Dy) = H(E, Ey) where the latter isomorphism is
given by excision.

Lemma 2.3. Let B be a closed oriented smooth k-manifold and let E be a rank n oriented
real vector bundle over B with unit disk bundle D. Then

(i3)«[B] = [D] ~ u € Hy(D)

where [B] € Hi(M) and [D] € H,, (D, 0D) are the fundamental classes of the manifolds
and i8 is the zero section of D.

Here we give E any metric. The orientation of D is determined by the orientation of the
fiber and the base, in that order.

Proof (Sketch). Let B connected, then we have isomorphisms

7 =H(B;z) V"% uvD,oD; 7) 27 By (D) ™5 HL(B) = Z



The generator 1 € HY(B,Z) maps to [D] ~u € Hy(D) and to a generator of Hy(B) so
we obtain [D] ~ u = £(i8).[B], however there might be a sign depending on n or k.
We do not show explicitly how the sign can be nailed down. Using the defining property
of the fundamental class [B] one can reduce to the case where B is trivial. Then the
equation can be verified explicitly singular chains and cochains associated to oriented
bases. Alternatively one can use real coefficients and use de Rham cohomology, so the
sign is easily understood in terms of the orientations. O

Now in the setting of the main theorem let N§¥ = N be a tubular neighborhood of A, so
that the normal bundle of A is isomorphic to N by a diffeomorphism which maps the
zero section to A. We can interpret the Thom class as an element uy € H/(N, N \ 4;7Z)
and by the lemma, (i%Y).[A] = [N] —~ ua. Consider the maps

HI(N,N\ A;Z) - H(X, X \ 4;Z) —» H(X;7Z)

where the first map is given by excision and the second is given by restriction. Denote
the image of us by uj € H(X;Z).

Lemma 2.4.

((X)<[A4])" = u

or equivalently

(i4).[4] = [X] ~u} € Hpo1(X)
Now we can prove the theorem

Proof of [2.1. We are given an orientation of X, A, B and AN B. Thus we can define
orientations of the normal bundles N jf , N g, N ix(m gand N ,1140 g according to the “fiber first”
convention so that we can use Lemma [2.4] without any sign. Note there is a canonical
isomorphism of vector bundles

NfﬂB = (N§)|AmB

which preserves orientations. Thus

A . *
Wing = (%) up
By the lemma it suffices to show that uf — uX = uj.p or equivalently
[(X] ~udng = [X] ~ (u — ui)
We compute
[X] ~ Uil(mB = (iix(mB)* [AN B
= (i%), (). (AN B]



3 The Euler Class

Recall that the Euler Class e(E) of an oriented rank n vector bundle E is defined as
e(E) = (77')" (ulp) € H"(B)
where -|g: H"(E, Ey) — H"(FE) is the restriction map.

Proposition 3.1 (Properties of the Euler Class). Let E — B,E; — By, E2 — By be
oriented vector bundles.

1. If E admits a nonvanishing section, then e(E) = 0.

2. If f: By — By is covered by a bundle map f: E1 — Es which is fiberwise an
orientation preserving isomorphism, then

e(Er) = fTe(Er)
8. For the product bundle E1 X EF5y — By X Bo,
e(E1 x Ey) = e(Ey) X e(E2)
Let E1, Es be two oriented vector bundles over B. Then
e(E1 @ Ey) = e(Eq) — e(FEs)

where the orientation of (E1),®(E2), is given by an oriented basis of (E1), followed
by an oriented basis of (E2)p.

4. e(E7) = —e(F) where E~ is E with reversed orientation.

5. If n is odd, then e(E) + e(E) = 0.
Theorem 3.2. Let E — M a smooth oriented rank n real vector bundle over a closed
oriented manifold M. Let 1 a section which intersects the zero section transversely and

let Z = (M)NM where M is identified with the zero section of E. Then the Euler class
of E is the Poincare dual of the fundamental class of Z:

e(E) = [Z]" = [(B)n B]" € H"(B; Z)



Given a section v which intersects the zero section transversely, the zero set Z = ¢ ~1(0) is
a submanifold of B and the derivative of ¢ along the zero section defines an isomorphism
of vector bundles

N2 = E|, (3.1)
This gives us an orientation of N2 and thus an orientation of Z.

Proof. Let u € H*(E,E \ B;Z) the Thom class of E. Identify the normal bundle N2
with an open tubular neighborhood N of Z in B. Let uz € H*(N,N \ Z;Z) be the
Thom class of NZ. The map ¢|n: (N, N\ Z) — (E, E\ B) is homotopic through maps
of pairs to the map (N, N\ Z) — (E|z, E|z \ Z) given by the isomorphism [3.1} Thus by
naturality of the Thom class,

(Y|N)'u=uz € H*(N,N \ Z;2)

We apply the composition H*(N,N \ Z;Z) — H*(B,B \ Z;Z) — H"(B;Z) where the
first is an excision isomorphism.

V*(ulp) = uf € HY(B;Z).
The left hand side is e(E) by definition, the right hand side is [Z]* by lemma [2.4] O

Theorem 3.3. Let M be a compact oriented n-manifold and e(M) the Euler class of its
tangent bundle. Then the Fuler characteristic of M is

Proof (Sketch). Let V be a vector field which intersects the zero section transversely. By
the identity [M] —~ e(M) = [Z], we have

(e(M), [M]) = (1, [M] ~ e(M)) = (L,[Z])

= (L [V(B)nB] =Y I(V,M,p)

where the sum is over all p with V(p) = 0 and I(V, M, p) is the sign of intersection of V'
and the zero section at p.

We give two more characterizations of the intersection sign. The transversality condition
is equivalent to the nonvanishing of the determinant of the map VV,: T, X — T, X (one
can choose any connection here). Such a zero p of V is called nondegenerate. One can
check that I(V, M, p) = deg(V,p) := sgn(det(VV})).

Using local coordinates around a zero p of V we can regard V as a map from R" to R™
with V(0) = 0. Thus V gives a map S"~! — R"\ {0} = S"~1. One checks that deg(V,p)
is equal to the degree of this map if p is nondegenerate so we can take this as a general
definition of deg(V,p). The theorem then follows from the following theorem. O



Theorem 3.4 (Poincaré-Hopf). If X is a closed smooth manifold and V' a smooth vector
field with isolated zeros, then

> deg(V,p) = x(X)
V(p)=0

We will sketch the proof of the theorem in the case that all zeros of V' are nondegenerate
and X is oriented, using the Lefschetz fixed point theorem.

Let f: X — X with only isolated fixed points, we define the Lefschetz sign e(p) of a
fixed point p of f as follows. Choosing local coordinates around p, we can regard f as
amap St — R?\ {0} = S"! and we take €(p) to be the degree of that map. If f
is smooth, we call a fixed point nondegenerate if the derivative Id — df, is invertible.
Note that this is equivalent to the condition that the intersection of the graph I'(f) of
f and the diagonal A C M x M is transverse in M x M. In this case the intersection
degree of I'(f) and A at p is I(I'(f), A, p) = sgn(det(1 — df,)) and one can check that
€(p) = sgn(det(1 —df,)). Note that by these definitions, [['(f)] - [A] = Y fp)=p €(p). The
Lefschetz fixed point theorem states

Theorem 3.5 (Lefschetz fixed point theorem). If X is a closed oriented smooth manifold
and f: X — X, then
k

L(f) = 0] [A] = > (=1)"tr (fu: Hi(X, Q) — Hi(X, Q)
i=1
In the case that f is homotopic to the identity, we obtain
k

L] -[A] =D (-1)F dim(H;(X, Q) = x(X) = [A] - [A]

i=1

Proof of [3.4|(Sketch). Assume X is oriented and all fixed points of V are nondegenerate.
In this case for small ¢, the map f = exp(tV) is a diffeomorphism of M and all nonde-
generate fixed points of f correspond to nondegenerate zeroes of V. One can check that
deg(V,p) = €(p). Thus since f is homotopic to the identity,

k
> deg(Vip) = Y e(p) =) dimH,;(M;Q) = x(M)

V(p)=0 fp)=p i=1
O

One can get rid of the nondegeneracy assumption by showing that the left hand side of
the equation does not depend on V.

Proof of (Sketch). We will use the following rules of calculation without proof: If
a, 3,7, € Ho(X) with |a] + 8] = || + || = dim X

(—D)lPl(a-7)(5-0) iflB] = |yl

0 otherwise

(axm-(’yxé)—{



D)) (axB) = (-1 foa-pez

Note that since the cup product is a perfect pairing on a closed connected orientable
manifold, the intersection product is also a perfect pairing. Fix a basis e; € Hy(X;Q)
and take the dual basis e}, € H*(X; Q) with respect to the intersection product, i.e. such
that €; 6;’ = 5”

The homology cross product is an isomorphism H,(X x X;Q) = H(X;Q) ® H(X; Q).
Thus {e; x ¢} } is a basis of H. (X x X; Q). We will first prove the equation [A] = Y, ex x e},
by verifying that the identity holds if we take its intersection product the basis elements

¢ x ej when |€}| + |e;| = n. Taking f = idx in the computation rule above we can
compute
(Z e X ek) (e x ej) = Z (—1>|e;‘(€k ce;) (e - )
k kiler|=lej]
= (~1)le] -
= [A)(e; x €5)

Now we can prove the theorem.

(] [A] = [D(f)] - Y en x €
k
_ Z(_l)\eklf*ek -eh,
k
- Z(—l)itr(f*: H;(X;Q) = H;(X;Q))
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