INTRODUCTION TO SFT C. WENDL

EXERCISE FOR WEEK 3 (6.05.2020)

We will use the moodle forum at

https://moodle.hu-berlin.de/course/view.php?id=95257

for discussion of the exercises. If you write up a solution that you are happy with, feel to post it to the forum (you can upload a PDF file if you click on *Advanced* next to the *Post to forum* and *Cancel* buttons). You may also use the forum to comment on or ask questions about someone else's solution, or post a partial solution with details you are unsure about, or just to ask questions about the exercises.

1. Let $\operatorname{End}(\mathbb{R}^n)$ denote the space of linear transformations $\mathbb{R}^n \to \mathbb{R}^n$, and $\operatorname{End}^{\operatorname{sym}}(\mathbb{R}^n) \subset \operatorname{End}(\mathbb{R}^n)$ the subspace of symmetric linear transformations. By the finite-dimensional versions of results we proved in lecture about Fredholm operators, there are smooth submanifolds

$$\operatorname{End}_k(\mathbb{R}^n) \subset \operatorname{End}(\mathbb{R}^n), \quad \text{and} \quad \operatorname{End}_k^{\operatorname{sym}}(\mathbb{R}^n) \subset \operatorname{End}^{\operatorname{sym}}(\mathbb{R}^n)$$

defined as the sets of transformations with rank k; in particular, $\operatorname{End}_{n-1}(\mathbb{R}^n) \subset \operatorname{End}(\mathbb{R}^n)$ and $\operatorname{End}_{n-1}^{\operatorname{sym}}(\mathbb{R}^n) \subset \operatorname{End}^{\operatorname{sym}}(\mathbb{R}^n)$ are smooth hypersurfaces. Prove:

- (a) If $A : (-\epsilon, \epsilon) \to \operatorname{End}(\mathbb{R}^n)$ is a smooth path with $A(t) \in \operatorname{GL}(n, \mathbb{R})$ for all $t \neq 0$ and rank A(0) = n 1, then the intersection of this path with $\operatorname{End}_{n-1}(\mathbb{R}^n)$ at t = 0 is transverse if and only if $\frac{d}{dt} \det A(t)|_{t=0} \neq 0$.
- (b) $\operatorname{End}_{n-1}(\mathbb{R}^n)$ is co-orientable.
- (c) $\operatorname{End}_{n-1}^{\operatorname{sym}}(\mathbb{R}^n)$ is disconnected.
- (d) $\operatorname{End}_{n-1}(\mathbb{R}^n)$ is connected. (If you prefer, just consider the case n = 2.)
- (e) There exists a smooth path $A : [-1, 1] \to \operatorname{GL}(2, \mathbb{R})$ such that $A_{\pm} := A_{\pm 1}$ are both symmetric and $\mu^{\operatorname{spec}}(A_{-}, A_{+}) \neq 0.$
- (f) If **n** is a normal vector field along $\operatorname{End}_1(\mathbb{R}^2) \subset \operatorname{End}(\mathbb{R}^2)$ that is tangent to $\operatorname{End}^{\operatorname{sym}}(\mathbb{R}^2)$ at points in $\operatorname{End}_1^{\operatorname{sym}}(\mathbb{R}^2)$, then **n** cannot match the canonical co-orientation¹ of $\operatorname{End}_1^{\operatorname{sym}}(\mathbb{R}^2)$ on every connected component.

 $^{^{1}\}mathrm{that}$ is, the co-orientation that is used in defining spectral flow for symmetric operators