Problem Set 10

To be discussed: 20.07.2022

Problem 1

Recall that on an oriented manifold M with a fixed volume form $dvol \in \Omega^n(M)$, the divergence of a vector field $X \in \mathfrak{X}(M)$ is defined as the unique function $\operatorname{div}(X) : M \to \mathbb{R}$ such that $\mathcal{L}_X(dvol) = \operatorname{div}(X) \cdot dvol$.

- (a) Prove that if dvol is the canonical volume form on an oriented Riemannian manifold (M,g) and ∇ is the Levi-Cività connection, the divergence of a vector field X is given by $div(X) = tr(\nabla X)$.
- (b) Prove that for $X \in \mathfrak{X}(M)$ and $f \in C^{\infty}(M)$, the divergence satisfies the Leibniz rule

$$\operatorname{div}(fX) = f \operatorname{div}(X) + df(X).$$

Problem 2

Prove that on an *n*-dimensional oriented Riemannian manifold (M, g), the Hodge star operator $*: \Lambda^k T^*M \to \Lambda^{n-k}T^*M$ satisfies $*^2 = (-1)^{k(n-k)}$ for each $k = 0, \ldots, n$.

Problem 3

Suppose $E, F \to M$ are vector bundles equipped with positive bundle metrics \langle , \rangle_E and \langle , \rangle_F respectively, and M is equipped with a volume form dvol $\in \Omega^n(M)$.

(a) Show that every linear differential operator $D: \Gamma(E) \to \Gamma(F)$ of order $m \in \mathbb{N}$, has a unique *formal adjoint*, meaning a differential operator $D^*: \Gamma(F) \to \Gamma(E)$ such that

$$\int_M \langle \xi, D\eta \rangle_F \, d\text{vol} = \int_M \langle D^*\xi, \eta \rangle_E \, d\text{vol}$$

for all $\xi \in \Gamma(F)$ and $\eta \in \Gamma(E)$ with compact support in $M \setminus \partial M$. Moreover, D^* has order m.

(b) Show that, in general, the formal adjoint D^* depends on the choice of volume form dvol $\in \Omega^n(M)$, but its highest-order term does not, i.e. if D_1^* and D_2^* are formal adjoints of D defined via two choices of volume form for M, then $D_1^* - D_2^*$: $\Gamma(F) \to \Gamma(E)$ is a differential operator of order strictly less than m.

Problem 4

Here is a quick review of a definition from the lecture: for vector bundles $E, F \to M$ and a linear differential operator $D: \Gamma(E) \to \Gamma(F)$ of order $m \in \mathbb{N}$, the *principal symbol* of D is the unique smooth (but not necessarily linear) fiber-preserving map $\sigma_D: T^*M \to$ $\operatorname{Hom}(E, F)$ such that for all $p \in M$, $\lambda \in T_p^*M$, $v \in E_p$, $\eta \in \Gamma(E)$ with $\eta(p) = v$ and $f \in C^{\infty}(M)$ with f(p) = 0 and $d_p f = \lambda$,

$$\sigma_D(\lambda)v = \frac{1}{m!}D(f^m\eta)(p) \in F_p.$$

(a) Prove: for $D_1 : \Gamma(E) \to \Gamma(F)$ and $D_2 : \Gamma(F) \to \Gamma(G)$ differential operators of orders m_1 and m_2 respectively, $D_2 \circ D_1 : \Gamma(E) \to \Gamma(G)$ is a differential operator of order at most $m_1 + m_2$, and if the order is exactly $m_1 + m_2$, its principal symbol is

$$\sigma_{D_2D_1}(\lambda) = \sigma_{D_2}(\lambda)\sigma_{D_1}(\lambda) \neq 0 \in \operatorname{Hom}(E_p, G_p)$$
(1)

for $\lambda \in T_p^*M$, $p \in M$. (Can you think of an example where the order is $\langle m_1 + m_2 \rangle$)

(b) Assuming bundle metrics on E, F and a volume form on M have been chosen, show that the principal symbols of an operator $D: \Gamma(E) \to \Gamma(F)$ of order $m \in \mathbb{N}$ and its formal adjoint $D^*: \Gamma(F) \to \Gamma(E)$ are related by

$$\sigma_{D^*}(\lambda) = (-1)^m \sigma_D(\lambda)^{\dagger} \in \operatorname{Hom}(F_p, E_p)$$

for $\lambda \in T_p^*M$ and $p \in M$, where \dagger denotes the adjoint for linear maps $E_p \to F_p$ with respect to the bundle metrics on E and F.

Problem 5

As shown in lecture (with some details furnished by Problem 4 above), the Laplace-Beltrami operator $\Delta : \Omega^*(M) \to \Omega^*(M)$ on an oriented Riemannian manifold (M, g) has principal symbol $\sigma_\Delta : T^*M \to \operatorname{End}(\Lambda^*T^*M)$ given by $\sigma_\Delta(\lambda)\omega = -|\lambda|^2 \omega$. Deduce from this the following local coordinate expression for the second-order term in Δ : choosing a chart (x^1, \ldots, x^n) over $\mathcal{U} \subset M$ and writing $g = g_{ij} dx^i dx^j$ and $\omega = \omega_{i_1 \ldots i_k} dx^{i_1} \wedge \ldots \wedge dx^{i_k} \in \Omega^k(M)$ on \mathcal{U} ,

$$(\Delta\omega)_{i_1\dots i_k} = -g^{ab}\partial_a\partial_b\omega_{i_1\dots i_k} + \dots,$$

where the dots indicate further terms that involve only zeroth and first derivatives of the components of ω .

Problem 6

- (a) A connection on a vector bundle $E \to M$ can be regarded as a first-order linear differential operator $\nabla : \Gamma(E) \to \Gamma(\text{Hom}(TM, E))$. What is the principal symbol σ_{∇} ? Is ∇ ever elliptic?
- (b) Assume M is a complex *n*-manifold, so its tangent spaces are naturally complex vector spaces. We can associate to any complex vector bundle $E \to M$ another complex vector bundle $F := \overline{\text{Hom}}(TM, E)$ whose fiber over a point $p \in M$ is the space of complex-antilinear maps $T_pM \to E_p$. A Cauchy-Riemann type operator on $E \to M$ is a first-order linear differential operator $D : \Gamma(E) \to \Gamma(F)$ that satisfies the Leibniz rule

$$D(f\eta) = f D\eta + \bar{\partial} f(\cdot)\eta \quad \text{for all} \quad \eta \in \Gamma(E), \ f \in C^{\infty}(M, \mathbb{C}),$$

where we define $\overline{\partial} f \in \Omega^1(M, \mathbb{C})$ by $\overline{\partial} f(X) := df(X) + i df(iX)$. Show that all Cauchy-Riemann type operators on $E \to M$ have the same principal symbol. What is it? Are they ever elliptic?

Problem 7

Write down the principal symbol of the Dirac operator $D : \Gamma(E) \to \Gamma(E)$ on a spinor bundle $E \to M$ over a pseudo-Riemannian manifold (M, g) with a spin structure. Under what conditions is D elliptic?

Problem 8

Prove (without appealing to de Rham's theorem or other topics not covered in this course) that on a closed oriented and connected *n*-manifold M, an *n*-form $\omega \in \Omega^n(M)$ is exact if and only if $\int_M \omega = 0$.

Problem 9

It was proved in lecture that for any elliptic differential operator $D : C^{\infty}(\mathbb{R}^n, \mathbb{F}^k) \to C^{\infty}(\mathbb{R}^n, \mathbb{F}^\ell)$ of order $m \in \mathbb{N}$ with constant coefficients, any solution to the equation $D\eta = 0$ that belongs to the Sobolev space $H^m(\mathbb{R}^n)$ must be smooth. Can you find a weaker condition than ellipticity that still implies this result?