Problem Set 2

To be discussed: 11.05.2022

Problem 1

For paths $\gamma : [a, b] \to M$ between distinct points $\gamma(a) = p$ and $\gamma(b) = q$ in a Riemannian manifold (M, g), we consider the *length* and *energy* functionals

$$\ell(\gamma) := \int_a^b |\dot{\gamma}(t)| \, dt, \qquad E(\gamma) := \frac{1}{2} \int_a^b |\dot{\gamma}(t)|^2 \, dt,$$

where by definition $|X| := \sqrt{g(X, X)}$. Suppose $\{\gamma_s : [a, b] \to M\}_{s \in (-\epsilon, \epsilon)}$ is a smooth family of paths from p to q, and write $\gamma := \gamma_0$.

- (a) Show that γ satisfies the geodesic equation if and only if $\frac{d}{ds}E(\gamma_s)|_{s=0} = 0$ for all possible smooth families of paths $\{\gamma_s\}$ with $\gamma_0 = \gamma$ as described above.
- (b) Prove that if γ has constant speed $|\dot{\gamma}(t)|$ and $\frac{d}{ds}\ell(\gamma_s)|_{s=0} = 0$, then $\frac{d}{ds}E(\gamma_s)|_{s=0}$ also vanishes, and conclude that length-minimizing paths with constant speed are always geodesics.
- (c) Show that if $\gamma : [a, b] \to M$ is not assumed to have constant speed but has minimal length among all smooth paths from p to q, then γ has the same image as an *embedded* path. Hint: If $\gamma : [a, b] \to M$ is a path with $\dot{\gamma} = 0$ on some compact subinterval $[t_0, t_1] \subset [a, b]$, what can you say about the shortest path from $\gamma(t_0 - \epsilon)$ to $\gamma(t_1 + \epsilon)$ for $\epsilon > 0$ small?

Problem 2

Let's review some first-year analysis. Suppose $K \subset \mathbb{R}^k$ is a compact set, $f_j : \mathcal{U}_j \to \mathbb{R}^n$ is a sequence of C^1 -smooth maps defined on open neighborhoods $\mathcal{U}_j \subset \mathbb{R}^k$ of K, and $f : \mathcal{U} \to \mathbb{R}^n$ is another such map such that f_j and their first partial derivatives all converge uniformly on K to f and its respective first derivatives.

(a) Prove that if $f|_K : K \to \mathbb{R}^n$ is an injective immersion, then the same is true of $f_j|_K : K \to \mathbb{R}^n$ for all j sufficiently large. Hint: Show that if $f_j(p_j) = f_j(q_j)$ for some sequences of distinct points $p_j, q_j \in K$, then the derivative $Df(p) : \mathbb{R}^k \to \mathbb{R}^n$ must have nontrivial kernel for some $p \in K$. Use the definition of the derivative.

For smooth manifolds M and N, let us say that a sequence of continuously differentiable maps $f_j \in C^1(M, N)$ is C^1_{loc} -convergent to a map $f \in C^1(M, N)$ if for all charts (\mathcal{U}, x) on M and (\mathcal{V}, y) on N, the maps $y \circ f_j \circ x^{-1}$ and their first derivatives converge uniformly to $y \circ f_j \circ x^{-1}$ and its respective first derivatives on all compact subsets of their domains.

(b) Deduce from part (a) that under this condition, if f is an embedding and M is compact, then f_j is also an embedding for all j sufficiently large.

In other words: for a compact manifold M, embeddedness of maps $M \to N$ is a "C¹-open condition".

Problem 3

Find an example of a surface $\Sigma \subset \mathbb{R}^3$ such that, if Σ is endowed with the Riemannian metric g determined by the Euclidean inner product, then (Σ, g) is geodesically complete but its injectivity radius is 0. Prove it with a picture.

Problem 4

Let us say that a subset K of a Riemannian n-manifold (M, g) is small if for every pair of points $p, q \in K$, p is contained in a geodesic ball about q of some radius r < inj(q). Prove:

- (a) The intersection of any two small subsets is also small.
- (b) The intersection of any two geodesically convex subsets is also geodesically convex.
- (c) Any small geodesically convex open subset is diffeomorphic to an *n*-dimensional starshaped domain, i.e. a set of the form $\{r\mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \in S^{n-1}, -f(\mathbf{x}) < r < f(\mathbf{x})\}$ for some (not necessarily continuous) function $f: S^{n-1} \to (0, \infty]$.
- (d) Every *n*-dimensional star shaped domain is smoothly contractible.
- (e) Every smooth *n*-manifold admits a so-called *good cover*, i.e. a covering by open subsets whose nonempty finite intersections are all smoothly contractible.

Problem 5

A Riemannian manifold (M, g) is called *homogeneous* if for every pair of points $p, q \in M$, there exists a diffeomorphism $\varphi : M \to M$ satisfying $\varphi^*g = g$ and $\varphi(p) = q$.¹ Show that every homogeneous Riemannian manifold is complete.

Hint: Can the injectivity radius inj(p) for $p \in M$ get arbitrarily small?

Problem 6

Show that any flat connection on a vector bundle $E \to M$ determines a natural flat structure (see Definition 32.16 in the notes) on $E \to M$, for which the flat sections on open subsets of M are precisely the parallel sections. Conversely, show that any flat vector bundle over a smooth manifold carries a natural flat connection with the same property.

Problem 7

Recall that on any pseudo-Riemannian manifold (M, g), the fully covariant version Riem $\in \Gamma(T_4^0 M)$ of the Riemann curvature tensor satisfies the four symmetry relations

- (i) $\operatorname{Riem}(V, X, Y, Z) + \operatorname{Riem}(V, Y, X, Z) = 0$
- (ii) $\operatorname{Riem}(V, X, Y, Z) + \operatorname{Riem}(Z, X, Y, V) = 0$
- (iii) $\operatorname{Riem}(V, X, Y, Z) + \operatorname{Riem}(V, Y, Z, X) + \operatorname{Riem}(V, Z, X, Y) = 0$ (first Bianchi identity)
- (iv) $\operatorname{Riem}(V, X, Y, Z) = \operatorname{Riem}(Y, Z, V, X)$ (interchange symmetry)

Show that in the case dim M = 2, the relations (iii) and (iv) are implied by (i) and (ii). Hint: If (i) and (ii) are satisfied and dim M = 2, how many of the components $R_{ijk\ell}$ in local coordinates can be nonzero, and how many are actually independent of each other?

¹The condition $\varphi^* g = g$ means that φ is an *isometry*, thus it preserves all structures determined by the metric, e.g. geodesics.