Differentialgeometrie II
SoSe 2022

Problem Set 3

To be discussed: 18.05.2022

Problem 1

Prove the following formulas stated in lecture for the Ricci curvature Ric $\in \Gamma\left(T_{2}^{0} M\right)$ and scalar curvature Scal $\in C^{\infty}(M)$ of a pseudo-Riemannian manifold (M, g) : for any orthonorma ${ }^{1}$ basis $e_{1}, \ldots, e_{n} \in T_{p} M$ at a point $p \in M$ and any $X, Y \in T_{p} M$,

$$
\begin{aligned}
\operatorname{Ric}(X, Y) & =\sum_{j=1}^{n}\left\langle e_{j}, e_{j}\right\rangle \cdot \operatorname{Riem}\left(e_{j}, e_{j}, X, Y\right) \\
\operatorname{Scal}(p) & =\sum_{i=1}^{n} \sum_{j=1}^{n}\left\langle e_{i}, e_{i}\right\rangle \cdot\left\langle e_{j}, e_{j}\right\rangle \cdot \operatorname{Riem}\left(e_{i}, e_{i}, e_{j}, e_{j}\right)
\end{aligned}
$$

In the case $\operatorname{dim} M=2$, deduce from this the formula $\mathrm{Scal}=2 K_{G}$ relating the scalar and Gaussian curvatures.

Problem 2

Show that on any pseudo-Riemannian 2-manifold (Σ, g), the Ricci curvature is determined by the Gaussian curvature and the metric via the formula $\mathrm{Ric}=K_{G} \cdot g$.

Problem 3

On S^{2} with its standard metric, how many points is a given point p conjugate to? Suggestion: Prove it by drawing a picture and mumbling something about $T\left(\exp _{p}\right)$.

Problem 4

On a pseudo-Riemannian manifold (M, g) with a geodesic segment $\gamma:[a, b] \rightarrow M$ from $\gamma(a)=p$ to $\gamma(b)=q$, prove that the following conditions are equivalent:
(i) p and q are not conjugate along γ;
(ii) For all $X \in T_{p} M$ and $Y \in T_{q} M$, there exists a unique Jacobi vector field $\eta \in \Gamma\left(\gamma^{*} T M\right)$ satisfying $\eta(a)=X$ and $\eta(b)=Y$.

Problem 5

By a corollary of the Cartan-Hadamard theorem discussed in lecture, there exists a unique geodesic in any given homotopy class of paths between two given points $p, q \in M$ in a complete Riemannian manifold (M, g) with nonpositive sectional curvature $K_{S} \leqslant 0$. Prove that in this situation, the geodesic in question is also strictly shorter than all other paths (excepting its own reparametrizations) from p to q in the same homotopy class.
Hint: If $\pi: \widetilde{M} \rightarrow M$ denotes the universal cover, $\widetilde{g}:=\pi^{*} g$ defines a metric on \widetilde{M} such that paths in (M, g) have the same lengths as their lifts in $(\widetilde{M}, \widetilde{g})$, and geodesics lift to geodesics.

Problem 6

Suppose G is a Lie group with identity element $e \in G$ and Lie algebra $\mathfrak{g}=T_{e} G$, and $i: G \rightarrow G$ denotes the inversion map $g \mapsto g^{-1}$. Prove:

[^0](a) The derivative $T_{e} i: \mathfrak{g} \rightarrow \mathfrak{g}$ of i at e is multiplication by -1 .

Suggestion: There is an easy proof using some knowledge of the exponential map, but try to find a more basic proof that does not require such knowledge.
(b) G is parallelizable, i.e. the tangent bundle $T G \rightarrow G$ is trivial.
(c) A tensor field $S \in \Gamma\left(T_{\ell}^{k} G\right)$ is left-invariant if and only if $i^{*} S \in \Gamma\left(T_{\ell}^{k} M\right)$ is rightinvariant.
(d) $X^{R}=-i^{*} X^{L}$ for any $X \in \mathfrak{g}$, where $X^{L}, X^{R} \in \mathfrak{X}(G)$ denote the unique left- and right-invariant vector fields respectively that satisfy $X^{L}(e)=X^{R}(e)=X$.
(e) For $X, Y \in \mathfrak{g}$ and the corresponding right-invariant vector fields $X^{R}, Y^{R} \in \mathfrak{X}(G)$, $\left[X^{R}, Y^{R}\right](e)=-[X, Y]$.
(f) Every left- or right-invariant vector field on G has a global flow.
(g) For any $X \in \mathfrak{g}$, the flows of the corresponding left- and right-invariant vector fields $X^{L}, X^{R} \in \mathfrak{X}(G)$ are given by

$$
\varphi_{X^{L}}^{t}(g)=g \exp (t X), \quad \varphi_{X^{R}}^{t}(g)=\exp (t X) g .
$$

Hint: For each $g \in G$, the left-translation diffeomorphism $L_{g}: G \rightarrow G$ sends flow lines of X^{L} to other flow lines of X^{L}.

Problem 7

On a Lie group G with Lie algebra \mathfrak{g}, prove that if $X, Y \in \mathfrak{g}$ satisfy $[X, Y]=0$, then $\exp (X+Y)=\exp (X) \exp (Y)=\exp (Y) \exp (X)$.
Hint: Use the flows of the left-invariant vector fields $X^{L}, Y^{L} \in \mathfrak{X}(G)$ to prove $\exp (s X) \exp (t Y)=$ $\exp (t Y) \exp (s X)$ for all $s, t \in \mathbb{R}$. Then show that $t \mapsto \exp (t X) \exp (t Y)$ is a flow line of $(X+Y)^{L}$.

Problem 8

Determine the dimensions and the Lie algebras of each of the following matrix groups: $\mathrm{GL}_{+}(n, \mathbb{R}), \mathrm{SL}(n, \mathbb{R}), \mathrm{O}(n), \mathrm{SO}(n), \mathrm{O}(k, \ell), \mathrm{SL}(n, \mathbb{C}), \mathrm{U}(n), \mathrm{SU}(n)$.

Problem 9

Give an explicit description of the Lie algebra of the group $\operatorname{Aff}\left(\mathbb{R}^{n}\right)$ of affine transformations $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, e.g. write down a basis and compute the Lie brackets of the basis elements.

[^0]: ${ }^{1}$ Since g might not be positive-definite, "orthonormal" in this case means $g\left(e_{i}, e_{j}\right)= \pm \delta_{i j}$, where the signs may vary depending on the signature of g.

