SoSe 2022

Problem Set 5

To be discussed: 1.06.2022

Problem 1

For the smooth \mathbb{Z}_2 -action on \mathbb{R}^n defined via the antipodal map, prove:

- (a) $\mathbb{R}^2/\mathbb{Z}_2$ is homeomorphic to \mathbb{R}^2 .
- (b) The quotient of R³\{0} by Z₂ can be endowed with a smooth manifold structure for which the quotient projection is smooth, but R³/Z₂ cannot. *Hint*: [0] ∈ R³/Z₂ has a neighborhood bounded by a surface diffeomorphic to RP². Deduce that if R³/Z₂ is a manifold, then RP² must be orientable.

Problem 2

Show that for any smooth and proper action of a Lie group G on a manifold M:

- (a) The quotient M/G is Hausdorff.
- (b) The stabilizer $G_p \subset G$ is compact for every $p \in M$.

Problem 3

A smooth free group action $G \times M \to M$ is called *properly discontinuous* if every $p \in M$ has a neighborhood $\mathcal{U} \subset M$ such that $g\mathcal{U} \cap \mathcal{U} = \emptyset$ for all $g \in G \setminus \{e\}$. Show that this condition holds if and only the action is proper and the group G is discrete. Note: We are also assuming the action is free.¹

Problem 4

Recall that for any smooth, free and proper group action $G \times M \to M$, the slice theorem endows M/G with a smooth manifold structure for which the quotient projection $\pi : M \to M/G$ is a smooth submersion. One of the important consequences of this problem will be that you rarely need to know precisely how this smooth structure is constructed, because the condition of π being a smooth submersion determines it uniquely. Prove:

(a) A map $f: M/G \to N$ to another smooth manifold N is smooth if and only if the composition $f \circ \pi: M \to N$ is smooth.

Hint: Do you remember what submersions look like in cleverly chosen coordinates?

(b) The derivative at $p \in M$ of $\pi: M \to M/G$ descends to a vector space isomorphism

$$T_pM/T_p(Gp) \xrightarrow{\cong} T_{[p]}(M/G).$$

Assume next that $H \times N \to N$ is another smooth, free and proper group action. A map $F: M \to N$ is said to descend to the quotient if there exists a map $f: M/G \to N/H$ such that f([p]) = [F(p)] for every $p \in M$. Prove:

- (c) If G = H and the map $F: M \to N$ is G-equivariant, then it descends to the quotient.
- (d) If $F: M \to N$ is smooth and descends to the quotient, then the induced map $f: M/G \to N/H$ is also smooth.

 $^{^{1}}$ There does not seem to be a unanimous consensus on what the term "properly discontinuous" should mean for an action that is not free.

Problem 5

The multiplicative group $\mathbb{C}^* := \mathbb{C} \setminus \{0\}$ acts smoothly on $\mathbb{C}^{n+1} \setminus \{0\}$ via scalar multiplication, and the quotient $(\mathbb{C}^{n+1} \setminus \{0\})/\mathbb{C}^*$ is by definition \mathbb{CP}^n . Prove that this action is free and proper, and that the resulting smooth structure on \mathbb{CP}^n is the same as the one you constructed via an explicit atlas in Problem Set 1 #3.

Problem 6

Given smooth, free and proper group actions $G \times M \to M$ and $H \times N \to N$, prove:

- (a) The Lie group $G \times H$ acts smoothly, freely and properly on $M \times N$ by $(g, h) \cdot (p, q) := (gp, hq)$.
- (b) The map $(M \times N)/(G \times H) \to (M/G) \times (N/H) : [(p,q)] \mapsto ([p], [q])$ is well defined and gives a diffeomorphism.

Problem 7

Assume that G is a Lie group with a Lie subgroup $H \subset G$, and let G/H denote the set of left cosets $\{gH \subset G \mid g \in G\}$. Prove:

- (a) The right action of H on G defined by $G \times H \to G : (g, h) \mapsto gh$ is smooth, free and proper.
- (b) For the smooth structure defined on G/H via the slice theorem, the map $G \times (G/H) \to G/H : (g, aH) \mapsto gaH$ defines a smooth left action of G on G/H. Hint: Problem 6 makes $G \times (G/H)$ diffeomorphic to the quotient of $G \times G$ by a free and proper action of some product subgroup. You can therefore use Problem 4 to check the smoothness of a map defined on $G \times (G/H)$.
- (c) If the subgroup $H \subset G$ is normal, then G/H has a natural Lie group structure for which the quotient projection $G \to G/H$ is a Lie group homomorphism.

Problem 8

Assume $G \times M \to M$ is a smooth proper group action such that the isotropy subgroup $G_p \subset G$ is finite for every $p \in M$. The goal of this problem is to show, via a mild generalization of the slice theorem, that G/H is then an *orbifold* of dimension dim M – dim G, a notion generalizing the concept of a manifold. In an *n*-dimensional orbifold, every point has a neighborhood homeomorphic to the quotient of an open subset of \mathbb{R}^n by a finite group action.

- (a) Show that for each $p \in M$, the orbit $Gp \subset M$ is a smooth submanifold. Unlike the case of a free action, Gp will not generally be diffeomorphic to G. What instead?
- (b) Show that p admits a G_p -invariant neighborhood $\mathcal{U} \subset M$ with a G_p -invariant Riemannian metric, i.e. each $g \in G_p$ acts on \mathcal{U} via an isometry. Hint: Start with any metric, then act on it with G_p and take an average.
- (c) Construct a submanifold $\Sigma \subset M$ that satisfies $\Sigma \cap Gp = \{p\}$ and $T_p \Sigma \oplus T_p(Gp) = T_p M$ and, additionally, is invariant under the action of G_p . *Hint: Use geodesics.*
- (d) Show that after possibly shrinking Σ to a smaller neighborhood of p, the map Φ : $G \times \Sigma \to M : (g,q) \mapsto gq$ can be assumed to be a local diffeomorphism satisfying $g(\Sigma) \cap \Sigma = \emptyset$ for all $g \in G \setminus G_p$.
- (e) Conclude that the map $\Sigma \to M/G : p \mapsto [p]$ descends to the quotient Σ/G_p as a homeomorphism onto a neighborhood of [p] in M/G.
- (f) Deduce that for every $p \in M$, sufficiently nearby points $q \in M$ satisfy $|G_q| \leq |G_p|$.