SoSe 2022

Problem Set 8

To be discussed: 22.06.2022

Problem 1

On any Lie group G, the Maurer-Cartan form is defined as the unique \mathfrak{g} -valued left-invariant 1-form $\theta \in \Omega^1(G, \mathfrak{g})$ such that $\theta_e = \mathbb{1}_{\mathfrak{g}}$.

(a) Prove that θ satisfies the so-called Maurer-Cartan equation:

$$d\theta + \frac{1}{2}[\theta, \theta] = 0.$$

Hint: The expression on the left is a \mathfrak{g} -valued 2-form on G, and it suffices to evaluate it on an arbitrary pair of left-invariant vector fields.

(b) Prove that θ transforms under right translations $R_g: G \to G: h \mapsto hg$ by

$$R_a^*\theta = \operatorname{Ad}_{q^{-1}} \circ \theta \qquad \text{for } g \in G$$

(c) Can you interpret the Maurer-Cartan equation in terms of connections?

Problem 2

Assume $\pi : E := F^G(TM) \to M$ is the *G*-frame bundle of the tangent bundle of an *n*-manifold *M*, where $TM \to M$ has been equipped with a *G*-structure for some matrix group $G \subset \operatorname{GL}(n, \mathbb{R})$. Let $\rho : G \to \operatorname{GL}(n, \mathbb{R})$ denote the inclusion, which defines a linear left *G*-action on \mathbb{R}^n for which *TM* is isomorphic to the associated vector bundle $E^{\rho} := (E \times \mathbb{R}^n)/G$. There is a *tautological* 1-form

$$\theta \in \Omega^1(E, \mathbb{R}^n)$$

defined by $\theta_{\phi}(\xi) := \phi^{-1}(\pi_*\xi)$ for $\xi \in T_{\phi}E$, where we regard frames $\phi \in E_p$ at points $p \in M$ as vector space isomorphisms $\phi : \mathbb{R}^n \to T_p M$. Given a connection ∇ on TM induced by a choice of principal connection $A \in \Omega^1(E, \mathfrak{g})$ on E, the torsion tensor $T \in \Gamma(T_2^1M)$ can be interpreted as a bundle-valued 2-form $T \in \Omega^2(M, TM) = \Omega^2(M, E^{\rho})$, thus it is naturally equivalent to some ρ -equivariant horizontal 2-form $\tau \in \Omega^2_{\rho}(E, \mathbb{R}^n)$. The first structural equation of Cartan is the relation

$$\tau = d\theta + A \wedge \theta,$$

where the wedge product of $A \in \Omega^1(E, \mathfrak{g})$ with $\theta \in \Omega^1(E, \mathbb{R}^n)$ is defined in terms of the bilinear map $\mathfrak{g} \times \mathbb{R}^n \to \mathbb{R}^n : (X, v) \mapsto \rho_*(X) v$. Prove the equation.

Hint: You can use the same approach that we used to prove the second structural equation in lecture, but there is also a much quicker way. Notice that θ is horizontal and ρ -equivariant. What bundle-valued 1-form on M is it equivalent to?

Problem 3

In many older or more elementary treatments, connections and curvature on vector bundles are described mainly in terms of locally-defined objects that depend on choices of trivializations, without ever mentioning a principal bundle. This exercise is meant to help you translate between the local picture and the more global perspective that we've adopted in our lectures.

Assume $\pi : E \to M$ is a principal *G*-bundle, with a connection 1-form $A \in \Omega^1(E, \mathfrak{g})$ and curvature 2-form $F \in \Omega^2(E, \mathfrak{g})$, and $\{s_\alpha \in \Gamma(E|_{\mathcal{U}_\alpha})\}_{\alpha \in I}$ is a collection of local sections on open sets \mathcal{U}_α that cover *M*. For any vector space *V* and $\omega \in \Omega^k(E, V)$ with $k \ge 0$, we can pull back ω via the maps $s_\alpha : \mathcal{U}_\alpha \to E$ to define local *V*-valued *k*-forms on *M*,

$$\omega_{\alpha} := s_{\alpha}^* \omega \in \Omega^k(\mathcal{U}_{\alpha}, V), \qquad \alpha \in I$$

The 1-forms $\{A_{\alpha} \in \Omega^1(\mathcal{U}_{\alpha}, \mathfrak{g})\}_{\alpha \in I}$ and 2-forms $\{F_{\alpha} \in \Omega^2(\mathcal{U}_{\alpha}, \mathfrak{g})\}_{\alpha \in I}$ are called the *local* connection and curvature forms respectively. Prove:

- (a) The connection on $\pi : E \to M$ is uniquely determined by the collection of local connection forms $\{A_{\alpha} \in \Omega^{1}(\mathcal{U}_{\alpha}, \mathfrak{g})\}_{\alpha \in I}$, and its curvature 2-form is similarly determined by the local curvature forms $\{F_{\alpha} \in \Omega^{2}(\mathcal{U}_{\alpha}, \mathfrak{g})\}_{\alpha \in I}$. (Are analogous statements true for all forms in $\Omega^{*}(E, \mathfrak{g})$?)
- (b) $F_{\alpha} = dA_{\alpha} + \frac{1}{2}[A_{\alpha}, A_{\alpha}]$ and $dF_{\alpha} = [F_{\alpha}, A_{\alpha}]$ for each $\alpha \in I$.

Now suppose $\rho: G \to \operatorname{GL}(V)$ is a representation of G on some finite-dimensional vector space V, with induced Lie algebra representation $\rho_*: \mathfrak{g} \to \mathfrak{gl}(V)$, and let $E^{\rho} = (E \times V)/G \to M$ denote the associated vector bundle, which carries a connection ∇ determined by $A \in \Omega^1(E, \mathfrak{g})$. As shown in lecture, the local sections $\{s_\alpha \in \Gamma(E|_{\mathcal{U}_\alpha})\}_{\alpha \in I}$ determine a G-bundle atlas $\{\Phi_\alpha: E^{\rho}|_{\mathcal{U}_\alpha} \to \mathcal{U}_\alpha \times V\}_{\alpha \in I}$ for E^{ρ} , where $\Phi_\alpha^{-1}(p, v) = [s_\alpha(p), v] \in E_p^{\rho}$ for $p \in \mathcal{U}_\alpha$ and $v \in V$, and the corresponding system of transition functions $g_{\beta\alpha}: \mathcal{U}_\alpha \cap \mathcal{U}_\beta \to G$ is determined by

$$s_{\alpha} = s_{\beta}g_{\beta\alpha} \qquad \text{on } \mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}.$$

For each $\omega \in \Omega^k(M, E^{\rho}), k \ge 0$, let $\hat{\omega} \in \Omega^k_{\rho}(E, V)$ denote the ρ -equivariant horizontal form that corresponds to it under the natural isomorphism $\Omega^k(M, E^{\rho}) \cong \Omega^k_{\rho}(E, V)$, and denote $\omega_{\alpha} := \hat{\omega}_{\alpha} = s^*_{\alpha} \hat{\omega} \in \Omega^k(\mathcal{U}_{\alpha}, V)$ for each $\alpha \in I$. Given $\omega \in \Omega^k(M, E^{\rho})$ and $\alpha, \beta \in I$, prove:

(c) $\omega_{\alpha} \in \Omega^{k}(\mathcal{U}_{\alpha}, V)$ is the local representation of ω with respect to the trivialization Φ_{α} , meaning

$$\Phi_{\alpha}(\omega(X_1,\ldots,X_k)) = (p,\omega_{\alpha}(X_1,\ldots,X_k)) \quad \text{for } X_1,\ldots,X_k \in T_pM, \ p \in \mathcal{U}_{\alpha}.$$

(d) $\omega_{\beta} = \rho(g_{\beta\alpha}) \circ \omega_{\alpha}$ on $\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}$.

(e) $(d_{\nabla}\omega)_{\alpha} = d\omega_{\alpha} + A_{\alpha} \wedge \omega_{\alpha}$, where the wedge product of $A_{\alpha} \in \Omega^{1}(\mathcal{U}_{\alpha}, \mathfrak{g})$ with $\omega_{\alpha} \in \Omega^{k}(\mathcal{U}_{\alpha}, V)$ is defined in terms of the bilinear map $\mathfrak{g} \times V \to V : (X, v) \mapsto \rho_{*}(X)v$. In particular, for a section $\eta \in \Gamma(E^{\rho}) = \Omega^{0}(M, E^{\rho})$ and $X \in \mathfrak{X}(\mathcal{U}_{\alpha})$, one obtains

$$(\nabla_X \eta)_\alpha = d\eta_\alpha(X) + \rho_*(A_\alpha(X))\eta_\alpha.$$

Finally, prove the following transformation formulas for the local connection and curvature forms: given $p \in \mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}$ and $X, Y \in T_pM$,

- (f) $F_{\beta}(X,Y) = \operatorname{Ad}_{g_{\beta\alpha}(p)} \circ F_{\alpha}(X,Y)$
- (g) $A_{\beta}(X) = \operatorname{Ad}_{g_{\beta\alpha}(p)} \circ A_{\alpha}(X) + TL_{g_{\beta\alpha}(p)} \circ Tg_{\alpha\beta}(X)$, where $L_g : G \to G$ denotes left translation $h \mapsto gh$.

In the special case where $G \subset GL(m, \mathbb{F})$ is a matrix group acting in the obvious way on $V = \mathbb{F}^m$, the transformation formulas of parts (f) and (g) can be written in the simplified form

$$F_{\beta} = gF_{\alpha}g^{-1}, \qquad A_{\beta} = gA_{\alpha}g^{-1} + g\,dg^{-1},$$

where we abbreviate $g := g_{\beta\alpha} : \mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta} \to G$. The second formula is known to physicists as a *gauge transformation*.