Differentialgeometrie II
SoSe 2022

Problem Set 8

To be discussed: 22.06.2022

Problem 1

On any Lie group G, the Maurer-Cartan form is defined as the unique \mathfrak{g}-valued leftinvariant 1-form $\theta \in \Omega^{1}(G, \mathfrak{g})$ such that $\theta_{e}=\mathbb{1}_{\mathfrak{g}}$.
(a) Prove that θ satisfies the so-called Maurer-Cartan equation:

$$
d \theta+\frac{1}{2}[\theta, \theta]=0
$$

Hint: The expression on the left is a \mathfrak{g}-valued 2 -form on G, and it suffices to evaluate it on an arbitrary pair of left-invariant vector fields.
(b) Prove that θ transforms under right translations $R_{g}: G \rightarrow G: h \mapsto h g$ by

$$
R_{g}^{*} \theta=\operatorname{Ad}_{g^{-1}} \circ \theta \quad \text { for } g \in G .
$$

(c) Can you interpret the Maurer-Cartan equation in terms of connections?

Problem 2

Assume $\pi: E:=F^{G}(T M) \rightarrow M$ is the G-frame bundle of the tangent bundle of an n-manifold M, where $T M \rightarrow M$ has been equipped with a G-structure for some matrix group $G \subset \mathrm{GL}(n, \mathbb{R})$. Let $\rho: G \rightarrow \mathrm{GL}(n, \mathbb{R})$ denote the inclusion, which defines a linear left G-action on \mathbb{R}^{n} for which $T M$ is isomorphic to the associated vector bundle $E^{\rho}:=$ $\left(E \times \mathbb{R}^{n}\right) / G$. There is a tautological 1-form

$$
\theta \in \Omega^{1}\left(E, \mathbb{R}^{n}\right)
$$

defined by $\theta_{\phi}(\xi):=\phi^{-1}\left(\pi_{*} \xi\right)$ for $\xi \in T_{\phi} E$, where we regard frames $\phi \in E_{p}$ at points $p \in M$ as vector space isomorphisms $\phi: \mathbb{R}^{n} \rightarrow T_{p} M$. Given a connection ∇ on $T M$ induced by a choice of principal connection $A \in \Omega^{1}(E, \mathfrak{g})$ on E, the torsion tensor $T \in \Gamma\left(T_{2}^{1} M\right)$ can be interpreted as a bundle-valued 2-form $T \in \Omega^{2}(M, T M)=\Omega^{2}\left(M, E^{\rho}\right)$, thus it is naturally equivalent to some ρ-equivariant horizontal 2-form $\tau \in \Omega_{\rho}^{2}\left(E, \mathbb{R}^{n}\right)$. The first structural equation of Cartan is the relation

$$
\tau=d \theta+A \wedge \theta
$$

where the wedge product of $A \in \Omega^{1}(E, \mathfrak{g})$ with $\theta \in \Omega^{1}\left(E, \mathbb{R}^{n}\right)$ is defined in terms of the bilinear map $\mathfrak{g} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}:(X, v) \mapsto \rho_{*}(X) v$. Prove the equation.
Hint: You can use the same approach that we used to prove the second structural equation in lecture, but there is also a much quicker way. Notice that θ is horizontal and ρ-equivariant. What bundle-valued 1 -form on M is it equivalent to?

Problem 3

In many older or more elementary treatments, connections and curvature on vector bundles are described mainly in terms of locally-defined objects that depend on choices of trivializations, without ever mentioning a principal bundle. This exercise is meant to help you
translate between the local picture and the more global perspective that we've adopted in our lectures.
Assume $\pi: E \rightarrow M$ is a principal G-bundle, with a connection 1-form $A \in \Omega^{1}(E, \mathfrak{g})$ and curvature 2-form $F \in \Omega^{2}(E, \mathfrak{g})$, and $\left\{s_{\alpha} \in \Gamma\left(\left.E\right|_{\mathcal{U}_{\alpha}}\right)\right\}_{\alpha \in I}$ is a collection of local sections on open sets \mathcal{U}_{α} that cover M. For any vector space V and $\omega \in \Omega^{k}(E, V)$ with $k \geqslant 0$, we can pull back ω via the maps $s_{\alpha}: \mathcal{U}_{\alpha} \rightarrow E$ to define local V-valued k-forms on M,

$$
\omega_{\alpha}:=s_{\alpha}^{*} \omega \in \Omega^{k}\left(\mathcal{U}_{\alpha}, V\right), \quad \alpha \in I
$$

The 1-forms $\left\{A_{\alpha} \in \Omega^{1}\left(\mathcal{U}_{\alpha}, \mathfrak{g}\right)\right\}_{\alpha \in I}$ and 2-forms $\left\{F_{\alpha} \in \Omega^{2}\left(\mathcal{U}_{\alpha}, \mathfrak{g}\right)\right\}_{\alpha \in I}$ are called the local connection and curvature forms respectively. Prove:
(a) The connection on $\pi: E \rightarrow M$ is uniquely determined by the collection of local connection forms $\left\{A_{\alpha} \in \Omega^{1}\left(\mathcal{U}_{\alpha}, \mathfrak{g}\right)\right\}_{\alpha \in I}$, and its curvature 2-form is similarly determined by the local curvature forms $\left\{F_{\alpha} \in \Omega^{2}\left(\mathcal{U}_{\alpha}, \mathfrak{g}\right)\right\}_{\alpha \in I}$. (Are analogous statements true for all forms in $\Omega^{*}(E, \mathfrak{g})$?)
(b) $F_{\alpha}=d A_{\alpha}+\frac{1}{2}\left[A_{\alpha}, A_{\alpha}\right]$ and $d F_{\alpha}=\left[F_{\alpha}, A_{\alpha}\right]$ for each $\alpha \in I$.

Now suppose $\rho: G \rightarrow \mathrm{GL}(V)$ is a representation of G on some finite-dimensional vector space V, with induced Lie algebra representation $\rho_{*}: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$, and let $E^{\rho}=(E \times$ $V) / G \rightarrow M$ denote the associated vector bundle, which carries a connection ∇ determined by $A \in \Omega^{1}(E, \mathfrak{g})$. As shown in lecture, the local sections $\left\{s_{\alpha} \in \Gamma\left(\left.E\right|_{\mathcal{U}_{\alpha}}\right)\right\}_{\alpha \in I}$ determine a G-bundle atlas $\left\{\Phi_{\alpha}:\left.E^{\rho}\right|_{\mathcal{U}_{\alpha}} \rightarrow \mathcal{U}_{\alpha} \times V\right\}_{\alpha \in I}$ for E^{ρ}, where $\Phi_{\alpha}^{-1}(p, v)=\left[s_{\alpha}(p), v\right] \in E_{p}^{\rho}$ for $p \in \mathcal{U}_{\alpha}$ and $v \in V$, and the corresponding system of transition functions $g_{\beta \alpha}: \mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta} \rightarrow G$ is determined by

$$
s_{\alpha}=s_{\beta} g_{\beta \alpha} \quad \text { on } \mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta} .
$$

For each $\omega \in \Omega^{k}\left(M, E^{\rho}\right), k \geqslant 0$, let $\widehat{\omega} \in \Omega_{\rho}^{k}(E, V)$ denote the ρ-equivariant horizontal form that corresponds to it under the natural isomorphism $\Omega^{k}\left(M, E^{\rho}\right) \cong \Omega_{\rho}^{k}(E, V)$, and denote $\omega_{\alpha}:=\widehat{\omega}_{\alpha}=s_{\alpha}^{*} \widehat{\omega} \in \Omega^{k}\left(\mathcal{U}_{\alpha}, V\right)$ for each $\alpha \in I$. Given $\omega \in \Omega^{k}\left(M, E^{\rho}\right)$ and $\alpha, \beta \in I$, prove:
(c) $\omega_{\alpha} \in \Omega^{k}\left(\mathcal{U}_{\alpha}, V\right)$ is the local representation of ω with respect to the trivialization Φ_{α}, meaning

$$
\Phi_{\alpha}\left(\omega\left(X_{1}, \ldots, X_{k}\right)\right)=\left(p, \omega_{\alpha}\left(X_{1}, \ldots, X_{k}\right)\right) \quad \text { for } X_{1}, \ldots, X_{k} \in T_{p} M, p \in \mathcal{U}_{\alpha} .
$$

(d) $\omega_{\beta}=\rho\left(g_{\beta \alpha}\right) \circ \omega_{\alpha}$ on $\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}$.
(e) $\left(d_{\nabla} \omega\right)_{\alpha}=d \omega_{\alpha}+A_{\alpha} \wedge \omega_{\alpha}$, where the wedge product of $A_{\alpha} \in \Omega^{1}\left(\mathcal{U}_{\alpha}, \mathfrak{g}\right)$ with $\omega_{\alpha} \in$ $\Omega^{k}\left(\mathcal{U}_{\alpha}, V\right)$ is defined in terms of the bilinear map $\mathfrak{g} \times V \rightarrow V:(X, v) \mapsto \rho_{*}(X) v$. In particular, for a section $\eta \in \Gamma\left(E^{\rho}\right)=\Omega^{0}\left(M, E^{\rho}\right)$ and $X \in \mathfrak{X}\left(\mathcal{U}_{\alpha}\right)$, one obtains

$$
\left(\nabla_{X} \eta\right)_{\alpha}=d \eta_{\alpha}(X)+\rho_{*}\left(A_{\alpha}(X)\right) \eta_{\alpha} .
$$

Finally, prove the following transformation formulas for the local connection and curvature forms: given $p \in \mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta}$ and $X, Y \in T_{p} M$,
(f) $F_{\beta}(X, Y)=\operatorname{Ad}_{g_{\beta \alpha}(p)} \circ F_{\alpha}(X, Y)$
(g) $A_{\beta}(X)=\operatorname{Ad}_{g_{\beta \alpha}(p)} \circ A_{\alpha}(X)+T L_{g_{\beta \alpha}(p)} \circ T g_{\alpha \beta}(X)$, where $L_{g}: G \rightarrow G$ denotes left translation $h \mapsto g h$.
In the special case where $G \subset \mathrm{GL}(m, \mathbb{F})$ is a matrix group acting in the obvious way on $V=\mathbb{F}^{m}$, the transformation formulas of parts (f) and (g) can be written in the simplified form

$$
F_{\beta}=g F_{\alpha} g^{-1}, \quad A_{\beta}=g A_{\alpha} g^{-1}+g d g^{-1},
$$

where we abbreviate $g:=g_{\beta \alpha}: \mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta} \rightarrow G$. The second formula is known to physicists as a gauge transformation.

