Differentialgeometrie II

SoSe 2022

Problem Set 9

To be discussed: 13.07.2022

Notation:

For the first two problems, assume V is an n-dimensional vector space equipped with a nondegenerate symmetric bilinear form \langle , \rangle , which is used in the definition of the Clifford algebra $\operatorname{Cl}(V)$ and spin group $\operatorname{Spin}(V) \subset \operatorname{Cl}(V)$. We denote by $\operatorname{SO}(V)$ the group of orientation-preserving linear maps $A : V \to V$ that satisfy $\langle Av, Aw \rangle = \langle v, w \rangle$ for all $v, w \in V$.

Problem 1

For any codimension 1 subspace $H \subset V$ on which the restriction of \langle , \rangle is nondegenerate, one can define the *reflection about* H as the unique linear map $V \to V$ that fixes every point in H but sends $v \mapsto -v$ for all $v \in H^{\perp}$. (Note that this definition does not make sense if $\langle , \rangle|_H$ is degenerate, because H^{\perp} is then contained in H; see Lemma 24.7 in the notes from the first semester.)

- (a) For $x \in V$ with $\langle x, x \rangle = \pm 1$, show that the reflection $V \to V$ about $x^{\perp} \subset V$ is given by $v \mapsto -xvx^{-1}$.
- (b) Deduce that for each $x \in \text{Spin}(V)$, the transformation $\text{Ad}_x : \text{Cl}(V) \to \text{Cl}(V) : y \mapsto xyx^{-1}$ preserves the subspace $V \subset \text{Cl}(V)$ and acts on it by orientation-preserving orthogonal transformations, defining a group homomorphism $\Phi : \text{Spin}(V) \to \text{SO}(V)$.

Problem 2

Given an orthonormal basis $e_1, \ldots, e_n \in V$, let $\mathfrak{spin}(V) \subset \operatorname{Cl}(V)$ denote the vector space spanned by all products of the form $e_i e_j$ for $i \neq j$. Prove:

- (a) $\mathfrak{spin}(V) \subset \operatorname{Cl}(V)$ does not depend on the choice of orthonormal basis $e_1, \ldots, e_n \in V$.
- (b) $\mathfrak{spin}(V)$ is a Lie algebra with respect to the commutator bracket [x, y] := xy yx.
- (c) For any $v, w \in V$ satisfying $\langle v, v \rangle = \pm 1$, $\langle w, w \rangle = \pm 1$ and $\langle v, w \rangle = 0$, we have $vw \in \mathfrak{spin}(V)$ and $e^{\frac{1}{2}tvw} \in \operatorname{Spin}(V)$ for all $t \in \mathbb{R}$, where for $x \in \operatorname{Cl}(V)$, we define $e^x := \sum_{k=0}^{\infty} \frac{x^k}{k!} \in \operatorname{Cl}(V)$.

In the following, $\Phi : \operatorname{Spin}(V) \to \operatorname{SO}(V)$ is the homomorphism from Problem 1(b).

- (d) Under the assumptions of part (c), can you give a geometric interpretation to the family of transformations $\Phi(e^{\frac{1}{2}tvw}) \in \mathrm{SO}(V)$? Hint: Evaluate $\Phi(e^{\frac{1}{2}vw})$ on v and w and on an arbitrary vector orthogonal to both.
- (e) Construct a smooth map $\varphi : \mathfrak{spin}(V) \to \operatorname{Cl}(V)$ whose derivative at $0 \in \mathfrak{spin}(V)$ is the inclusion $\mathfrak{spin}(V) \hookrightarrow \operatorname{Cl}(V)$, such that the image of φ is in $\operatorname{Spin}(V)$ and the derivative of $\Phi \circ \varphi : \mathfrak{spin}(V) \to \operatorname{SO}(V)$ at 0 is a Lie algebra isomorphism $\mathfrak{spin}(V) \to \mathfrak{so}(V)$. Hint: Using the orthonormal basis $e_1, \ldots, e_n \in V$, first define $\varphi(te_i e_j)$ for each $t \in \mathbb{R}$ and $i \neq j$, then extend it to the rest of $\mathfrak{spin}(V)$ in whatever way is convenient.

Comment: If you find this problem intimidating, try attacking a special case such as $V = \mathbb{R}^2$ or \mathbb{R}^3 with the Euclidean inner product. As outlined in the notes, one can combine the result with an algebraic computation of ker Φ to prove that Spin(V) is a Lie group

and Φ : Spin(V) \rightarrow SO(V) is a covering map of degree 2.

Problem 3

Let $\sigma_i \in \mathbb{C}^{2\times 2}$ for i = 1, 2, 3 denote the Pauli matrices defined in §39.2 of the lecture notes, and let $\sigma_0 = 1$. These four matrices form a basis of the real 4-dimensional vector space $H \subset \mathbb{C}^{2\times 2}$ consisting of all Hermitian 2-by-2 matrices. Show that if \mathbb{R}^4 is identified with H in this way, then the SL(2, \mathbb{C})-action on \mathbb{R}^4 defined by

 $\mathbf{A} \cdot \mathbf{B} := \mathbf{A} \mathbf{B} \mathbf{A}^{\dagger}$ for $\mathbf{A} \in \mathrm{SL}(2, \mathbb{C})$ and $\mathbf{B} \in H$

defines a Lie group homomorphism $\Phi : SL(2, \mathbb{C}) \to O(1,3) \subset GL(4, \mathbb{R})$ with ker $\Phi = \{\pm 1\}$. What does this tell you about the relationship between the groups $SL(2, \mathbb{C})$ and Spin(1,3)? (*Caution:* SO(1,3) is not connected!)

Hint: What is the determinant of a real-linear combination of the σ_{μ} for $\mu = 0, \ldots, 3$?

Problem 4

Since U(1) and SO(2) are naturally isomorphic, the tautological complex line bundle $E \to \mathbb{CP}^n$ with its standard bundle metric can also be viewed as an SO(2)-bundle, meaning an oriented Euclidean vector bundle of rank 2. Show that this bundle does not admit a spin structure. You may use as a black box the following standard fact from covering space theory: if M is simply connected, then every covering map $\widetilde{M} \to M$ is a homeomorphism.

Problem 5

For $n \ge 2$, \mathbb{CP}^n is a simply connected 2n-manifold that is not homeomorphic to S^{2n} or \mathbb{R}^{2n} , so by a theorem proved in lecture, it cannot admit any Riemannian metric with constant sectional curvature. Prove however that it does admit a metric that is homogeneous and isotropic.

Problem 6

A Riemannian symmetric space is a Riemannian manifold (M, g) such that for every point $p \in M$, there exists an isometry $\psi \in \text{Isom}(M, g)$ with $\psi(p) = p$ and $T_p \psi = -\mathbb{1}$. (Note that unlike the notion of *locally* symmetric Riemannian manifolds we defined in lecture, the isometry ψ is required to be defined globally.) Prove that every Riemannian symmetric space is homogeneous.

Problem 7

Find an explicit example of a closed Riemannian manifold that is homogeneous but not isotropic.

Problem 8

In lecture we proved that every simply connected and complete Riemannian manifold (M, g) with constant positive sectional curvature $K_S = 1/R^2$ is isometric to the sphere S_R^n of radius R in Euclidean space \mathbb{R}^{n+1} . Prove that the same conclusion holds if instead of assuming (M, g) is complete, we assume there exists a point $p \in M$ at which the exponential map \exp_p is well defined on a ball $B_r(0) \subset T_p M$ of some radius $r > \pi R$ about the origin.

Problem 9

Suppose (M, g) is a connected Riemannian manifold of dimension $n \ge 3$ and $f: M \to \mathbb{R}$ is a smooth function such that the sectional curvature satisfies $K_S(P) = f(p)$ for all $P \subset T_pM, p \in M$. Prove that K_S is then constant. (Is this true for n = 2?) Hint: Prove that g is an Einstein metric.