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Notation:
For the first two problems, assume V is an n-dimensional vector space equipped with a
nondegenerate symmetric bilinear form x , y, which is used in the definition of the Clif-
ford algebra ClpV q and spin group SpinpV q � ClpV q. We denote by SOpV q the group
of orientation-preserving linear maps A : V Ñ V that satisfy xAv,Awy � xv, wy for all
v, w P V .

Problem 1
For any codimension 1 subspace H � V on which the restriction of x , y is nondegenerate,
one can define the reflection about H as the unique linear map V Ñ V that fixes every
point in H but sends v ÞÑ �v for all v P HK. (Note that this definition does not make
sense if x , y|H is degenerate, because HK is then contained in H; see Lemma 24.7 in the
notes from the first semester.)

(a) For x P V with xx, xy � �1, show that the reflection V Ñ V about xK � V is given
by v ÞÑ �xvx�1.

(b) Deduce that for each x P SpinpV q, the transformation Adx : ClpV q Ñ ClpV q : y ÞÑ
xyx�1 preserves the subspace V � ClpV q and acts on it by orientation-preserving
orthogonal transformations, defining a group homomorphism Φ : SpinpV q Ñ SOpV q.

Problem 2
Given an orthonormal basis e1, . . . , en P V , let spinpV q � ClpV q denote the vector space
spanned by all products of the form eiej for i � j. Prove:

(a) spinpV q � ClpV q does not depend on the choice of orthonormal basis e1, . . . , en P V .

(b) spinpV q is a Lie algebra with respect to the commutator bracket rx, ys :� xy � yx.

(c) For any v, w P V satisfying xv, vy � �1, xw,wy � �1 and xv, wy � 0, we have

vw P spinpV q and e
1
2
tvw P SpinpV q for all t P R, where for x P ClpV q, we define

ex :�
°8

k�0
xk

k! P ClpV q.

In the following, Φ : SpinpV q Ñ SOpV q is the homomorphism from Problem 1(b).

(d) Under the assumptions of part (c), can you give a geometric interpretation to the

family of transformations Φpe
1
2
tvwq P SOpV q?

Hint: Evaluate Φpe
1
2
vwq on v and w and on an arbitrary vector orthogonal to both.

(e) Construct a smooth map φ : spinpV q Ñ ClpV q whose derivative at 0 P spinpV q is the
inclusion spinpV q ãÑ ClpV q, such that the image of φ is in SpinpV q and the derivative
of Φ � φ : spinpV q Ñ SOpV q at 0 is a Lie algebra isomorphism spinpV q Ñ sopV q.
Hint: Using the orthonormal basis e1, . . . , en P V , first define φpteiejq for each t P R
and i � j, then extend it to the rest of spinpV q in whatever way is convenient.

Comment: If you find this problem intimidating, try attacking a special case such as
V � R2 or R3 with the Euclidean inner product. As outlined in the notes, one can combi-
ne the result with an algebraic computation of kerΦ to prove that SpinpV q is a Lie group
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and Φ : SpinpV q Ñ SOpV q is a covering map of degree 2.

Problem 3
Let σi P C2�2 for i � 1, 2, 3 denote the Pauli matrices defined in §39.2 of the lecture notes,
and let σ0 � 1. These four matrices form a basis of the real 4-dimensional vector space
H � C2�2 consisting of all Hermitian 2-by-2 matrices. Show that if R4 is identified with
H in this way, then the SLp2,Cq-action on R4 defined by

A �B :� ABA: for A P SLp2,Cq and B P H

defines a Lie group homomorphism Φ : SLp2,Cq Ñ Op1, 3q � GLp4,Rq with kerΦ � t�1u.
What does this tell you about the relationship between the groups SLp2,Cq and Spinp1, 3q?
(Caution: SOp1, 3q is not connected!)
Hint: What is the determinant of a real-linear combination of the σµ for µ � 0, . . . , 3?

Problem 4
Since Up1q and SOp2q are naturally isomorphic, the tautological complex line bundle
E Ñ CPn with its standard bundle metric can also be viewed as an SOp2q-bundle, meaning
an oriented Euclidean vector bundle of rank 2. Show that this bundle does not admit a
spin structure. You may use as a black box the following standard fact from covering space
theory: if M is simply connected, then every covering map �M ÑM is a homeomorphism.

Problem 5
For n ¥ 2, CPn is a simply connected 2n-manifold that is not homeomorphic to S2n or R2n,
so by a theorem proved in lecture, it cannot admit any Riemannian metric with constant
sectional curvature. Prove however that it does admit a metric that is homogeneous and
isotropic.

Problem 6
A Riemannian symmetric space is a Riemannian manifold pM, gq such that for every point
p PM , there exists an isometry ψ P IsompM, gq with ψppq � p and Tpψ � �1. (Note that
unlike the notion of locally symmetric Riemannian manifolds we defined in lecture, the
isometry ψ is required to be defined globally.) Prove that every Riemannian symmetric
space is homogeneous.

Problem 7
Find an explicit example of a closed Riemannian manifold that is homogeneous but not
isotropic.

Problem 8
In lecture we proved that every simply connected and complete Riemannian manifold
pM, gq with constant positive sectional curvature KS � 1{R2 is isometric to the sphere Sn

R

of radius R in Euclidean space Rn�1. Prove that the same conclusion holds if instead of
assuming pM, gq is complete, we assume there exists a point p PM at which the exponenti-
al map expp is well defined on a ball Brp0q � TpM of some radius r ¡ πR about the origin.

Problem 9
Suppose pM, gq is a connected Riemannian manifold of dimension n ¥ 3 and f : M Ñ R
is a smooth function such that the sectional curvature satisfies KSpP q � fppq for all
P � TpM , p PM . Prove that KS is then constant. (Is this true for n � 2?)
Hint: Prove that g is an Einstein metric.
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