Differentialgeometrie II
SoSe 2022

Problem Set 9

To be discussed: 13.07.2022

Notation:

For the first two problems, assume V is an n-dimensional vector space equipped with a nondegenerate symmetric bilinear form \langle,$\rangle , which is used in the definition of the Clif-$ ford algebra $\mathrm{Cl}(V)$ and spin group $\operatorname{Spin}(V) \subset \mathrm{Cl}(V)$. We denote by $\mathrm{SO}(V)$ the group of orientation-preserving linear maps $A: V \rightarrow V$ that satisfy $\langle A v, A w\rangle=\langle v, w\rangle$ for all $v, w \in V$.

Problem 1

For any codimension 1 subspace $H \subset V$ on which the restriction of \langle,$\rangle is nondegenerate,$ one can define the reflection about H as the unique linear map $V \rightarrow V$ that fixes every point in H but sends $v \mapsto-v$ for all $v \in H^{\perp}$. (Note that this definition does not make sense if $\left.\langle\rangle\right|_{H$,$} is degenerate, because H^{\perp}$ is then contained in H; see Lemma 24.7 in the notes from the first semester.)
(a) For $x \in V$ with $\langle x, x\rangle= \pm 1$, show that the reflection $V \rightarrow V$ about $x^{\perp} \subset V$ is given by $v \mapsto-x v x^{-1}$.
(b) Deduce that for each $x \in \operatorname{Spin}(V)$, the transformation $\operatorname{Ad}_{x}: \mathrm{Cl}(V) \rightarrow \mathrm{Cl}(V): y \mapsto$ $x y x^{-1}$ preserves the subspace $V \subset \mathrm{Cl}(V)$ and acts on it by orientation-preserving orthogonal transformations, defining a group homomorphism $\Phi: \operatorname{Spin}(V) \rightarrow \mathrm{SO}(V)$.

Problem 2

Given an orthonormal basis $e_{1}, \ldots, e_{n} \in V$, let $\mathfrak{s p i n}(V) \subset \mathrm{Cl}(V)$ denote the vector space spanned by all products of the form $e_{i} e_{j}$ for $i \neq j$. Prove:
(a) $\mathfrak{s p i n}(V) \subset \mathrm{Cl}(V)$ does not depend on the choice of orthonormal basis $e_{1}, \ldots, e_{n} \in V$.
(b) $\mathfrak{s p i n}(V)$ is a Lie algebra with respect to the commutator bracket $[x, y]:=x y-y x$.
(c) For any $v, w \in V$ satisfying $\langle v, v\rangle= \pm 1,\langle w, w\rangle= \pm 1$ and $\langle v, w\rangle=0$, we have $v w \in \mathfrak{s p i n}(V)$ and $e^{\frac{1}{2} t v w} \in \operatorname{Spin}(V)$ for all $t \in \mathbb{R}$, where for $x \in \operatorname{Cl}(V)$, we define $e^{x}:=\sum_{k=0}^{\infty} \frac{x^{k}}{k!} \in \mathrm{Cl}(V)$.
In the following, $\Phi: \operatorname{Spin}(V) \rightarrow \mathrm{SO}(V)$ is the homomorphism from Problem 1(b).
(d) Under the assumptions of part (c), can you give a geometric interpretation to the family of transformations $\Phi\left(e^{\frac{1}{2} t v w}\right) \in \mathrm{SO}(V)$?
Hint: Evaluate $\Phi\left(e^{\frac{1}{2} v w}\right)$ on v and w and on an arbitrary vector orthogonal to both.
(e) Construct a smooth $\operatorname{map} \varphi: \mathfrak{s p i n}(V) \rightarrow \mathrm{Cl}(V)$ whose derivative at $0 \in \mathfrak{s p i n}(V)$ is the inclusion $\mathfrak{s p i n}(V) \hookrightarrow \mathrm{Cl}(V)$, such that the image of φ is in $\operatorname{Spin}(V)$ and the derivative of $\Phi \circ \varphi: \mathfrak{s p i n}(V) \rightarrow \mathrm{SO}(V)$ at 0 is a Lie algebra isomorphism $\mathfrak{s p i n}(V) \rightarrow \mathfrak{s o}(V)$.
Hint: Using the orthonormal basis $e_{1}, \ldots, e_{n} \in V$, first define $\varphi\left(t e_{i} e_{j}\right)$ for each $t \in \mathbb{R}$ and $i \neq j$, then extend it to the rest of $\mathfrak{s p i n}(V)$ in whatever way is convenient.

Comment: If you find this problem intimidating, try attacking a special case such as $V=\mathbb{R}^{2}$ or \mathbb{R}^{3} with the Euclidean inner product. As outlined in the notes, one can combine the result with an algebraic computation of $\operatorname{ker} \Phi$ to prove that $\operatorname{Spin}(V)$ is a Lie group
and $\Phi: \operatorname{Spin}(V) \rightarrow \mathrm{SO}(V)$ is a covering map of degree 2 .

Problem 3

Let $\boldsymbol{\sigma}_{i} \in \mathbb{C}^{2 \times 2}$ for $i=1,2,3$ denote the Pauli matrices defined in $\S 39.2$ of the lecture notes, and let $\sigma_{0}=\mathbb{1}$. These four matrices form a basis of the real 4 -dimensional vector space $H \subset \mathbb{C}^{2 \times 2}$ consisting of all Hermitian 2-by-2 matrices. Show that if \mathbb{R}^{4} is identified with H in this way, then the $\mathrm{SL}(2, \mathbb{C})$-action on \mathbb{R}^{4} defined by

$$
\mathbf{A} \cdot \mathbf{B}:=\mathbf{A B A}^{\dagger} \quad \text { for } \mathbf{A} \in \mathrm{SL}(2, \mathbb{C}) \text { and } \mathbf{B} \in H
$$

defines a Lie group homomorphism $\Phi: \operatorname{SL}(2, \mathbb{C}) \rightarrow \mathrm{O}(1,3) \subset \mathrm{GL}(4, \mathbb{R})$ with $\operatorname{ker} \Phi=\{ \pm \mathbb{1}\}$. What does this tell you about the relationship between the groups $\operatorname{SL}(2, \mathbb{C})$ and $\operatorname{Spin}(1,3)$? (Caution: $\mathrm{SO}(1,3)$ is not connected!)
Hint: What is the determinant of a real-linear combination of the $\boldsymbol{\sigma}_{\mu}$ for $\mu=0, \ldots, 3$?

Problem 4

Since $\mathrm{U}(1)$ and $\mathrm{SO}(2)$ are naturally isomorphic, the tautological complex line bundle $E \rightarrow \mathbb{C P}^{n}$ with its standard bundle metric can also be viewed as an $\mathrm{SO}(2)$-bundle, meaning an oriented Euclidean vector bundle of rank 2. Show that this bundle does not admit a spin structure. You may use as a black box the following standard fact from covering space theory: if M is simply connected, then every covering map $\widetilde{M} \rightarrow M$ is a homeomorphism.

Problem 5

For $n \geqslant 2, \mathbb{C P}^{n}$ is a simply connected $2 n$-manifold that is not homeomorphic to $S^{2 n}$ or $\mathbb{R}^{2 n}$, so by a theorem proved in lecture, it cannot admit any Riemannian metric with constant sectional curvature. Prove however that it does admit a metric that is homogeneous and isotropic.

Problem 6

A Riemannian symmetric space is a Riemannian manifold (M, g) such that for every point $p \in M$, there exists an isometry $\psi \in \operatorname{Isom}(M, g)$ with $\psi(p)=p$ and $T_{p} \psi=-\mathbb{1}$. (Note that unlike the notion of locally symmetric Riemannian manifolds we defined in lecture, the isometry ψ is required to be defined globally.) Prove that every Riemannian symmetric space is homogeneous.

Problem 7

Find an explicit example of a closed Riemannian manifold that is homogeneous but not isotropic.

Problem 8

In lecture we proved that every simply connected and complete Riemannian manifold (M, g) with constant positive sectional curvature $K_{S}=1 / R^{2}$ is isometric to the sphere S_{R}^{n} of radius R in Euclidean space \mathbb{R}^{n+1}. Prove that the same conclusion holds if instead of assuming (M, g) is complete, we assume there exists a point $p \in M$ at which the exponential map $\exp _{p}$ is well defined on a ball $B_{r}(0) \subset T_{p} M$ of some radius $r>\pi R$ about the origin.

Problem 9

Suppose (M, g) is a connected Riemannian manifold of dimension $n \geqslant 3$ and $f: M \rightarrow \mathbb{R}$ is a smooth function such that the sectional curvature satisfies $K_{S}(P)=f(p)$ for all $P \subset T_{p} M, p \in M$. Prove that K_{S} is then constant. (Is this true for $n=2$?)
Hint: Prove that g is an Einstein metric.

