
Topology I Humboldt-Universität zu Berlin
C. Wendl, D. Gutwein, F. Schmäschke Summer Semester 2023

PROBLEM SET 1
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Instructions

Problems marked with (∗) will be graded.1 Solutions may be written up in German or English and should
be handed in before the Übung on the due date. For problems without (∗), you do not need to write up your
solutions, but it is highly recommended that you think through them before the next Thursday lecture.

Problems

1. Suppose (X, dX) is a metric space and ∼ is an equivalence relation on X, with the resulting set of
equivalence classes denoted by X/∼. For the equivalence classes [x], [y] ∈ X/∼ represented by elements
x, y ∈ X, define

d([x], [y]) := inf
{
dX(x, y)

∣∣ x ∈ [x], y ∈ [y]
}
. (1)

(a) (∗) Show that d is a metric on X/∼ if the following assumption is added: for every triple
[x], [y], [z] ∈ X/∼, there exist representatives x ∈ [x], y ∈ [y] and z ∈ [z] such that

dX(x, y) = d([x], [y]) and dX(y, z) = d([y], [z]).

Comment: The hard part is proving the triangle inequality.

(b) Consider the real projective plane RP2 := S2/∼, where S2 := {x ∈ R3 | |x| = 1} and the
equivalence relation identifies antipodal points, i.e. x ∼ −x. If dX is the metric on S2 induced by
the standard Euclidean metric on R3, show that the extra assumption in part (a) is satisfied, so
that (1) defines a metric on RP2.

(c) For the metric defined on RP2 in part (b), show that the natural quotient projection π : S2 → RP2

sending each x ∈ S2 to its equivalence class [x] ∈ RP2 is continuous, and a subset U ⊂ RP2 is
open if and only if π−1(U) ⊂ S2 is open (with respect to the metric dX).

(d) (∗) Here is a very different example of a quotient space. Define X := (−1, 1)2 \ {(0, 0)} ⊂ R2

with the metric dX induced by the Euclidean metric on R2. Now fix the function f : X → R :
(x, y) 7→ xy and define the relation p0 ∼ p1 for p0, p1 ∈ X to mean that there exists a continuous
curve γ : [0, 1] → X with γ(0) = p0 and γ(1) = p1 such that f ◦ γ is constant. Show that for this
equivalence relation, the extra assumption of part (a) is not satisfied, and the distance function
defined in (1) does not satisfy the triangle inequality.

(e) (∗) Despite our failure to define X/∼ as a metric space in part (d), it is natural to consider the
following notion: define a subset U ⊂ X/∼ to be open if and only if π−1(U) is an open subset
of (X, dX), where π : X → X/∼ denotes the natural quotient projection. We can then define a
sequence [xn] ∈ X/∼ to be convergent to an element [x] ∈ X/∼ if for every open subset U ⊂ X/∼
containing [x], [xn] ∈ U for all n sufficiently large. Find a sequence [xn] ∈ X/∼ and two elements
[x], [y] ∈ X/∼ such that

[xn] → [x] and [xn] → [y], but [x] ̸= [y].

This could not happen if we’d defined convergence on X/∼ in terms of a metric. (Why not?)

2. Show that for two metrics d1, d2 on the same set X, the following conditions are equivalent:

(i) The identity map defines a homeomorphism (X, d1) → (X, d2).

(ii) For every subset U ⊂ X, U is open in (X, d1) if and only it is open in (X, d2).

1For the first few problem sets in this semester we do not yet have a grader, so for each starred problem you will be given a
pass/fail mark based on whether an obvious effort has been made.
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(iii) For every sequence xn ∈ X and point x ∈ X, xn → x in (X, d1) if and only if xn → x in (X, d2).

One calls the two metrics equivalent if these conditions are satisfied.

3. (a) Show that for any metric space (X, d), d′(x, y) := min{1, d(x, y)} defines another metric on X
which is equivalent to d (see Problem 2). In particular, this means that every metric is equivalent
to one that is bounded.

(b) Suppose (X, dX) and (Y, dY ) are metric spaces satisfying

dX(x, x′) ≤ 1 for all x, x′ ∈ X, dY (y, y
′) ≤ 1 for all y, y′ ∈ Y .

Now let Z = X ∪ Y , and for z, z′ ∈ Z define

dZ(z, z
′) =


dX(z, z′) if z, z′ ∈ X,

dY (z, z
′) if z, z′ ∈ Y ,

2 if (z, z′) is in X × Y or Y ×X.

Show that dZ is a metric on Z with the following property: a subset U ⊂ Z is open in (Z, dZ)
if and only if it is the union of two (possibly empty) open subsets of (X, dX) and (Y, dY ). In
particular, X and Y are each both open and closed subsets of Z. (Recall that subsets of metric
spaces are closed if and only if their complements are open.)

(c) (∗) Suppose (Z, d) is a metric space containing two disjoint subsets X,Y ⊂ Z that are each both
open and closed. Show that there exists no continuous map γ : [0, 1] → Z with γ(0) ∈ X and
γ(1) ∈ Y .

(d) Suppose X is any set with the so-called discrete metric, defined by

d(x, y) =

{
0 if x = y,

1 if x ̸= y.

Show that for every point x ∈ X, the subset {x} ⊂ X is both open and closed, and moreover,
every continuous map γ : [0, 1] → X is constant.

4. (∗) Assume (X, dX) and (Y, dY ) are metric spaces with A ⊂ X a compact subset and f : A → Y a
continuous map. Define the set

Z := X ∪f Y := (X ∪ Y )
/
∼,

where the equivalence relation is determined by a ∼ f(a) for each a ∈ A. Assume additionally that f
is an isometry onto its image, meaning it satisfies

dX(a, b) = dY (f(a), f(b)) for all a, b ∈ A;

notice that f must then be injective, so we can regard both X and Y naturally as subsets of Z which
intersect along A. We can then define a metric dZ on Z such that dZ(x, y) = dX(x, y) for x, y ∈ X,
dZ(x, y) = dY (x, y) for x, y ∈ Y , and for (x, y) ∈ X × Y ,

dZ(x, y) := min
{
dX(x, a) + dY (f(a), y)

∣∣ a ∈ A
}
.

Verify the following case of the triangle inequality for dZ :

dZ(x, z) ≤ dZ(x, y) + dZ(y, z) whenever x ∈ X, y ∈ Y and z ∈ X.

Hint: Notice that in the definition of dZ , it says “min” instead of “inf”. The minimum always exists
because A is compact!
Advice: If you want something to visualize for intuition, a concrete example of this construction is
mentioned below in Problem 5.

5. In the first lecture, we discussed the fact that RP2 is homeomorphic to an object constructed by gluing
a disk D2 = {x ∈ R2 | |x| ≤ 1} to a Möbius strip M = {(θ, t cos(πθ), t sin(πθ)) ∈ S1 ×R2 | θ ∈ S1, t ∈
[−1, 1]}, where S1 := R/Z. One can now make this precise using metrics of the types defined in
Problems 1(b) and 4 respectively on RP2 and the glued object D2∪f M (for a suitable homeomorphism
f between the boundaries of D2 and M). Work out the details until you get bored.
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