TOPOLOGY I C. Wendl, D. Gutwein, F. Schmäschke

PROBLEM SET 4 Due: 25.05.2023

Instructions

Problems marked with (*) will be graded. Solutions may be written up in German or English and should be handed in before the Übung on the due date. For problems without (*), you do not need to write up your solutions, but it is highly recommended that you think through them before the next Thursday lecture.

Note: This problem set is a bit longer than usual—and you have two weeks to do it—because Thursday the 18th is a holiday. It includes material from three lectures, up to Tuesday the 16th.

Problems

- 1. Prove that \mathbb{R} and \mathbb{R}^n are not homeomorphic for any $n \ge 2$. Hint: If \mathbb{R} and \mathbb{R}^n are homeomorphic, then so are $\mathbb{R} \setminus \{t\}$ and $\mathbb{R}^n \setminus \{x\}$ for some $t \in \mathbb{R}$ and $x \in \mathbb{R}^n$. Find a topological property that $\mathbb{R}^n \setminus \{x\}$ has and $\mathbb{R} \setminus \{t\}$ does not.
- 2. (*) In lecture we proved that in any space X that is locally compact and Hausdorff, every neighborhood of every point $x \in X$ contains a compact neighborhood of x. Extend this result to prove the following: if X is locally compact and Hausdorff, then for any nested pair of subsets $K \subset \mathcal{U} \subset X$ with K compact and \mathcal{U} open, there exists an open set $\mathcal{V} \subset X$ with compact closure $\overline{\mathcal{V}}$ such that $K \subset \mathcal{V} \subset \overline{\mathcal{V}} \subset \mathcal{U}$.
- 3. Given a space X, the collection of all connected components of X can be viewed as a collection of topological spaces $\{X_{\alpha}\}_{\alpha \in I}$, where each X_{α} is endowed with the subspace topology as a subset of X. Each therefore comes with a continuous inclusion map $i_{\alpha} : X_{\alpha} \hookrightarrow X$, and these can be assembled into a map

$$i: \coprod_{\alpha \in I} X_{\alpha} \to X$$

defined by the property that $i|_{X_{\alpha}} = i_{\alpha}$ for each $\alpha \in I$. This map is obviously a bijection, and the definition of the disjoint union topology implies that it is continuous. Show that i is a homeomorphism if and only if every X_{α} is an open subset of X.¹

- 4. (a) Prove that if X and Y are both connected, then so is $X \times Y$.² Hint: Start by showing that for any $x \in X$ and $y \in Y$, the subsets $\{x\} \times Y$ and $X \times \{y\}$ in $X \times Y$ are connected. Then think about continuous maps $X \times Y \to \{0, 1\}$.
 - (b) Show that for any collection of path-connected spaces $\{X_{\alpha}\}_{\alpha \in I}$, the space $\prod_{\alpha \in I} X_{\alpha}$ is pathconnected in the usual product topology. *Hint: You might find Problem Set 2 #3(d) helpful.*
 - (c) Consider $\mathbb{R}^{\mathbb{N}}$ with the "box topology" which we discussed in Problem Set 2 #5. Show that the set of all elements $f \in \mathbb{R}^{\mathbb{N}}$ represented as functions $f : \mathbb{N} \to \mathbb{R}$ that satisfy $\lim_{n \to \infty} f(n) = 0$ is both open and closed, hence $\mathbb{R}^{\mathbb{N}}$ in the box topology is not connected (and therefore also not path-connected).
- 5. For each of the following spaces, determine whether it is (i) Hausdorff, (ii) locally compact, (iii) connected, (iv) locally path-connected.³
 - (a) (*) The irrational numbers $\mathbb{R}\setminus\mathbb{Q}$

¹As shown in lecture, this condition holds whenever X is locally connected or has only finitely many connected components, but e.g. it does not hold for $X = \mathbb{Q}$.

²The analogous statement about infinite products is also true, but it takes more work to prove it. If you're curious, you'll find some hints about the latter in Munkres' *Topology* (second edition), \S 23, Exercise 10.

³You should always assume unless otherwise specified that \mathbb{R} is endowed with its standard topology, and all spaces derived from it as subsets/products/quotients etc. carry the natural subspace/product/quotient topology.

(b) $\{0\} \cup \{1/n \mid n \in \mathbb{N}\} \subset \mathbb{R}$

- (c) The quotient group \mathbb{R}/\mathbb{Q}
- 6. There is a cheap trick to view any topological space as a compact space with a single point removed. For a space X with topology \mathcal{T} , let $\{\infty\}$ denote a set consisting of one element that is not in X, and define the *one point compactification* of X as the set $X^* = X \cup \{\infty\}$ with topology \mathcal{T}^* consisting of all subsets in \mathcal{T} plus all subsets of the form $(X \setminus K) \cup \{\infty\} \subset X^*$ where $K \subset X$ is closed and compact.
 - (a) Verify that \mathcal{T}^* is a topology and that X^* is always compact.
 - (b) (*) Show that if X is first countable and Hausdorff, a sequence in $X \subset X^*$ converges to $\infty \in X^*$ if and only if it has no convergent subsequence with a limit in X. Conclude that if X is first countable and Hausdorff, X^* is sequentially compact.
 - (c) Show that for $X = \mathbb{R}$, X^* is homeomorphic to S^1 . (More generally, one can use stereographic projection to show that the one point compactification of \mathbb{R}^n is homeomorphic to S^n .)
 - (d) Show that if X is already compact, then X^* is homeomorphic to the disjoint union $X \amalg \{\infty\}$.
 - (e) Show that X^* is Hausdorff if and only if X is both Hausdorff and locally compact.

Notice that \mathbb{Q} is not locally compact, since every neighborhood of a point $x \in \mathbb{Q}$ contains sequences without convergent subsequences, e.g. any sequence of rational numbers that converges to an irrational number sufficiently close to x. The one point compactification \mathbb{Q}^* is a compact space, and by part (b) it is also sequentially compact, but those are practically the only nice things we can say about it.

(f) Show that for any $x \in \mathbb{Q}$, every neighborhood of x in \mathbb{Q}^* intersects every neighborhood of ∞ , so in particular, \mathbb{Q}^* is not Hausdorff.

Advice: Do not try to argue in terms of sequences with non-unique limits (cf. part (g) below), and do not try to describe precisely what arbitrary compact subsets of \mathbb{Q} can look like (the answer is not nice). One useful thing you can say about arbitrary compact subsets of \mathbb{Q} is that they can never contain the intersection of \mathbb{Q} with any open interval. (Why not?)

- (g) Show that every convergent sequence in \mathbb{Q}^* has a unique limit. (Since \mathbb{Q}^* is not Hausdorff, this implies via a result mentioned in lecture—see Prop. 6.13 in the notes—that \mathbb{Q}^* is not first countable. In particular, ∞ does not have a countable neighborhood base.)
- (h) Find a point in \mathbb{Q}^* with a neighborhood that does not contain any compact neighborhood.
- 7. Given spaces X and Y, let C(X, Y) denote the set of all continuous maps from X to Y, and consider the natural *evaluation map*

$$ev: C(X, Y) \times X \to Y: (f, x) \mapsto f(x).$$

It is easy to show that ev is a continuous map if we assign the discrete topology to C(X, Y), but usually one can also find more interesting topologies on C(X, Y) for which ev is continuous. The *compact-open topology* is defined via a subbase consisting of all subsets of the form

$$\mathcal{U}_{K,V} := \left\{ f \in C(X,Y) \mid f(K) \subset V \right\},\$$

where K ranges over all compact subsets of X, and V ranges over all open subsets of Y.

- (a) Show that if Y is a metric space, then convergence of a sequence $f_n \in C(X, Y)$ in the compact-open topology means that f_n converges uniformly on all compact subsets of X.
- (b) Show that if C(X, Y) carries the topology of pointwise convergence (i.e. the subspace topology defined via the obvious inclusion $C(X, Y) \subset Y^X$), then ev is not sequentially continuous in general.
- (c) Show that if C(X,Y) carries the compact-open topology, then ev is always sequentially continuous.
- (d) (*) Show that if C(X, Y) carries the compact-open topology and X is locally compact and Hausdorff, then ev is continuous.

- (e) (*) Show that every topology on C(X, Y) for which ev is continuous contains the compact-open topology. (This proves that if X is locally compact and Hausdorff, the compact-open topology is the weakest topology for which the evaluation map is continuous.) Hint: If $(f_0, x_0) \in ev^{-1}(V)$ where $V \subset Y$ is open, then $(f_0, x_0) \in \mathcal{O} \times \mathcal{U} \subset ev^{-1}(V)$ for some open $\mathcal{O} \subset C(X, Y)$ and $\mathcal{U} \subset X$. Is $\mathcal{U}_{K,V}$ a union of sets \mathcal{O} that arise in this way?
- (f) Show that for the compact-open topology on $C(\mathbb{Q},\mathbb{R})$, $ev: C(\mathbb{Q},\mathbb{R}) \times \mathbb{Q} \to \mathbb{R}$ is not continuous.
- 8. (a) (*) Given two pointed spaces (X, x) and (Y, y), prove that $\pi_1(X \times Y, (x, y))$ is isomorphic to the product group $\pi_1(X, x) \times \pi_1(Y, y)$. Hint: Use the projections $p^X : X \times Y \to X$ and $p^Y : X \times Y \to Y$ to define a natural map from π_1 of the product to the product of π_1 's, then prove that it is an isomorphism.
 - (b) Generalize part (a) to the case of an infinite product of pointed spaces (with the product topology).
- 9. We can regard $\pi_1(X, p)$ as the set of base point preserving homotopy classes of maps $(S^1, \text{pt}) \to (X, p)$. Let $[S^1, X]$ denote the set of homotopy classes of maps $S^1 \to X$, with no conditions on base points. (The elements of $[S^1, X]$ are called *free homotopy classes of loops* in X). There is a natural map

$$F: \pi_1(X, p) \to [S^1, X]$$

defined by ignoring base points. Prove:

- (a) F is surjective if X is path-connected.
- (b) (*) $F([\alpha]) = F([\beta])$ if and only if $[\alpha]$ and $[\beta]$ are conjugate in $\pi_1(X, p)$. Hint: If $H : [0,1] \times S^1 \to X$ is a homotopy with $H(0, \cdot) = \alpha$ and $H(1, \cdot) = \beta$, and $t_0 \in S^1$ is the base point in S^1 , then $\gamma := H(\cdot, t_0) : [0,1] \to X$ begins and ends at p, and therefore also defines a loop. Compare α and the concatenation $\gamma \cdot \beta \cdot \gamma^{-1}$.

The conclusion is that if X is path-connected, F induces a bijection between $[S^1, X]$ and the set of conjugacy classes in $\pi_1(X)$. In particular, $\pi_1(X) \cong [S^1, X]$ whenever $\pi_1(X)$ is abelian.