Topology I
C. Wendl, D. Gutwein, F. Schmäschke

## PROBLEM SET 7

## Due: 15.06.2023

## Instructions

Problems marked with (*) will be graded. Solutions may be written up in German or English and should be handed in before the Übung on the due date. For problems without (*), you do not need to write up your solutions, but it is highly recommended that you think through them before the next Thursday lecture.

Note: You may continue to treat the computation $\pi_{1}\left(S^{1}\right) \cong \mathbb{Z}$ as a known fact, even though we have not proved it in full detail yet.

## Problems

1. It is commonly said that whenever $X$ and $Y$ are both path-connected and are otherwise "reasonable" spaces, their wedge sum $X \vee Y$ satisfies $\pi_{1}(X \vee Y) \cong \pi_{1}(X) * \pi_{1}(Y)$ We've seen for instance that this is true when $X$ and $Y$ are both circles. The goal of this problem is to understand slightly better what "reasonable" means in this context, and why such a condition is needed.
(a) Call a pointed space $(X, x) n i c{ }^{1}$ if $x$ has an open neighborhood that admits a deformation retraction to $x$. Show that for any collection $\left\{\left(X_{\alpha}, x_{\alpha}\right)\right\}_{\alpha \in J}$ of nice pointed spaces, $\pi_{1}\left(\bigvee_{\alpha \in J} X_{\alpha}\right) \cong$ $*_{\alpha \in J} \pi_{1}\left(X_{\alpha}, x_{\alpha}\right)$, where we use the natural choice of base point on $\bigvee_{\alpha \in J} X_{\alpha}$.
(b) Here is an example of a space that is not "nice" in the sense of part (a): the so-called Hawaiian earring $H \subset \mathbb{R}^{2}$ can be defined as the subset of $\mathbb{R}^{2}$ consisting of the union for all $n \in \mathbb{N}$ of the circles of radius $1 / n$ centered at $(1 / n, 0)$. As usual, we assign to this set the subspace topology induced by the standard topology of $\mathbb{R}^{2}$. It is tempting to liken $H$ to the wedge sum $X:=\bigvee_{n=1}^{\infty} S^{1}$, since both are unions of countably infinite collections
 of circles that all intersect each other at one point. Show however that $X$ is nice, and $H$ is not: in particular, the point $(0,0)$ does not have any simply connected open neighborhood in $H$.
(c) For the spaces $H$ and $X$ in part (b), show that there exists a surjective continuous map $S^{1} \rightarrow H$, but continuous maps $S^{1} \rightarrow X$ are never surjective.
Hint: In $H$, start at $(0,0)$ and traverse the largest circle first, then continue to smaller circles.
Comment: Part (c) gives a hint that $\pi_{1}(H)$ is a strictly larger group than $\pi_{1}(X) \cong *_{n=1}^{\infty} \mathbb{Z}$. If you're curious for more details, see page 49 of Hatcher and the reference mentioned there.
2. For integers $g, m \geqslant 0$, let $\Sigma_{g, m}$ denote the compact surface obtained by cutting $m$ disjoint disk-shaped holes out of the closed orientable surface with genus $g$. (By this convention, $\Sigma_{g}=\Sigma_{g, 0}$.) The boundary $\partial \Sigma_{g, m}$ is then a disjoint union of $m$ circles, e.g. the case with $g=1$ and $m=3$ might look like the picture at the right.

(a) (*) Show that $\pi_{1}\left(\Sigma_{g, 1}\right)$ is a free group with $2 g$ generators, and if $g \geqslant 1$, then any simple closed curve parametrizing $\partial \Sigma_{g, 1}$ represents a nontrivial element of $\pi_{1}\left(\Sigma_{g, 1}\right)^{2}$
Hint: Think of $\Sigma_{g}$ as a polygon with some of its edges identified. If you cut a hole in the middle of the polygon, what remains admits a deformation retraction to the edges. Prove it with a picture.

[^0](b) (*) Assume $\gamma$ is a simple closed curve separating $\Sigma_{g}$ into two pieces homeomorphic to $\Sigma_{h, 1}$ and $\Sigma_{k, 1}$ for some $h, k \geqslant 0$. (The picture at the right shows an example with $h=2$ and $k=4$.) Show that the image
 of $[\gamma] \in \pi_{1}\left(\Sigma_{g}\right)$ under the natural projection to the abelianization of $\pi_{1}\left(\Sigma_{g}\right)$ is trivial.
Hint: What does $\gamma$ look like in the polygonal picture from part (a)? What is it homotopic to?
(c) (*) In the following, we abbreviate $[x, y]:=x y x^{-1} y^{-1}$ and $\prod_{i=1}^{N} x_{i}:=x_{1} x_{2} \ldots x_{N}$, thus
$$
G_{g}:=\left\{a_{1}, b_{1}, \ldots, a_{g}, b_{g} \mid \prod_{i=1}^{g}\left[a_{i}, b_{i}\right]=e\right\}
$$
is the standard presentation of $\pi_{1}\left(\Sigma_{g}\right)$. Show that if $J \subset\{1, \ldots, g\}$ is a nonempty proper subset, then there exists a homomorphism from $G_{g}$ to a free group on two generators that sends the element $\prod_{i \in J}\left[a_{i}, b_{i}\right] \in G_{g}$ to something nontrivial. Deduce that $G_{g}$ is not abelian for every $g \geqslant 2$. Hint: Once you've specified what your homomorphism does on each of the generators $a_{i}, b_{i}$, this determines a homomorphism defined on the free group $F_{\left\{a_{1}, b_{1}, \ldots, a_{g}, b_{g}\right\}}$, but you need to make sure it is trivial on the normal subgroup generated by the relation. Make your definition as simple as possible.
(d) (*) Show that for $h, k>0$, the curve $\gamma$ in part (b) represents a nontrivial element of $\pi_{1}\left(\Sigma_{g}\right)$.
(e) Generalize part (a): show that if $m \geqslant 1, \pi_{1}\left(\Sigma_{g, m}\right)$ is a free group with $2 g+m-1$ generators.
3. The first of the two pictures at the right shows one of the standard ways of representing the Klein bottl $\int^{3}$ as an "immersed" (i.e. smooth but with self-intersections) surface in $\mathbb{R}^{3}$. As a topological space, the technical definition is
$$
\mathbb{K}^{2}=[0,1]^{2} / \sim
$$

where $(s, 0) \sim(s, 1)$ and $(0, t) \sim(1,1-t)$ for every $s, t \in[0,1]$. This is represented by the square with pairs of sides identified in the rightmost picture; notice the reversal of arrows, which is why $\mathbb{K}^{2} \neq \mathbb{T}^{2}$ ! A theorem we proved in lecture thus implies that $\pi_{1}\left(\mathbb{K}^{2}\right)$ is isomorphic to the group
$$
G:=\left\{a, b \mid a b a^{-1} b=e\right\} .
$$
(a) (*) Consider the subset $\ell=\left\{[(s, t)] \in \mathbb{K}^{2} \mid t=1 / 4\right.$ or $\left.t=3 / 4\right\}$ in $\mathbb{K}^{2}$. Show that $\ell$ is a simple closed curve which separates $\mathbb{K}^{2}$ into two pieces, each homeomorphic to the Möbius band $\mathbb{M}^{2}:=$ $\left\{\left(e^{i \theta}, \tau e^{i \theta / 2}\right) \in S^{1} \times \mathbb{C} \mid \theta \in[0,2 \pi], \tau \in[-1,1]\right\}$. Use this decomposition to show via the Seifert-van Kampen theorem that $\pi_{1}\left(\mathbb{K}^{2}\right)$ is also isomorphic to $G^{\prime}:=\left\{c, d \mid c^{2}=d^{2}\right\}$.
(b) Recall that $\mathbb{R P}^{2}$ can be constructed by gluing $\mathbb{M}^{2}$ to a disk $\mathbb{D}^{2}$, so conversely, $\mathbb{R} \mathbb{P}^{2} \backslash \mathbb{D}^{2} \cong \mathbb{M}^{2}$. Part (a) implies therefore that $\mathbb{K}^{2}$ is homoemorphic to the connected sum $\mathbb{R} \mathbb{P}^{2} \# \mathbb{R} \mathbb{P}^{2}$. Now, viewing $\mathbb{R P}^{2}$ as a polygon with two (curved) edges that are identified, imitate the argument we carried out for $\Sigma_{g}$ in lecture to derive a different presentation for $\mathbb{K}^{2}$ as shown in the figure below, and deduce that $\pi_{1}\left(\mathbb{K}^{2}\right)$ is also isomorphic to $G^{\prime \prime}:=\left\{x, y \mid x^{2} y^{2}=e\right\}$.

(c) For the groups $G, G^{\prime}$ and $G^{\prime \prime}$ above, find explicit isomorphisms of their abelianizations to $\mathbb{Z} \oplus \mathbb{Z}_{2}$. Then find explicit isomorphisms from each of $G, G^{\prime}$ and $G^{\prime \prime}$ to the others.

[^1]
[^0]:    ${ }^{1}$ Not a standardized term, I made it up.
    ${ }^{2}$ Terminology: one says in this case that $\partial \Sigma_{g, 1}$ is homotopically nontrivial or essential, or equivalently, not nullhomotopic.

[^1]:    ${ }^{3}$ If you think my glass Klein bottle is cool, you can buy your own at http://www.kleinbottle.com/

