TOPOLOGY I C. Wendl, D. Gutwein, F. Schmäschke Humboldt-Universität zu Berlin Summer Semester 2023

PROBLEM SET 7 Due: 15.06.2023

Instructions

Problems marked with (*) will be graded. Solutions may be written up in German or English and should be handed in before the Übung on the due date. For problems without (*), you do not need to write up your solutions, but it is highly recommended that you think through them before the next Thursday lecture.

Note: You may continue to treat the computation $\pi_1(S^1) \cong \mathbb{Z}$ as a known fact, even though we have not proved it in full detail yet.

Problems

- 1. It is commonly said that whenever X and Y are both path-connected and are otherwise "reasonable" spaces, their wedge sum $X \lor Y$ satisfies $\pi_1(X \lor Y) \cong \pi_1(X) * \pi_1(Y)$ We've seen for instance that this is true when X and Y are both circles. The goal of this problem is to understand slightly better what "reasonable" means in this context, and why such a condition is needed.
 - (a) Call a pointed space (X, x) nice¹ if x has an open neighborhood that admits a deformation retraction to x. Show that for any collection $\{(X_{\alpha}, x_{\alpha})\}_{\alpha \in J}$ of nice pointed spaces, $\pi_1(\bigvee_{\alpha \in J} X_{\alpha}) \cong *_{\alpha \in J} \pi_1(X_{\alpha}, x_{\alpha})$, where we use the natural choice of base point on $\bigvee_{\alpha \in J} X_{\alpha}$.
 - (b) Here is an example of a space that is not "nice" in the sense of part (a): the so-called *Hawaiian earring* $H \subset \mathbb{R}^2$ can be defined as the subset of \mathbb{R}^2 consisting of the union for all $n \in \mathbb{N}$ of the circles of radius 1/n centered at (1/n, 0). As usual, we assign to this set the subspace topology induced by the standard topology of \mathbb{R}^2 . It is tempting to liken H to the wedge sum $X := \bigvee_{n=1}^{\infty} S^1$, since both are unions of countably infinite collections of circles that all intersect each other at one point. Show however that X is nice, and H is not: in particular, the point (0,0) does not have any simply connected open neighborhood in H.

(c) For the spaces H and X in part (b), show that there exists a *surjective* continuous map $S^1 \to H$, but continuous maps $S^1 \to X$ are never surjective. Hint: In H, start at (0,0) and traverse the largest circle first, then continue to smaller circles.

Comment: Part (c) gives a hint that $\pi_1(H)$ is a strictly larger group than $\pi_1(X) \cong *_{n=1}^{\infty} \mathbb{Z}$. If you're curious for more details, see page 49 of Hatcher and the reference mentioned there.

2. For integers $g, m \ge 0$, let $\Sigma_{g,m}$ denote the compact surface obtained by cutting *m* disjoint disk-shaped holes out of the closed orientable surface with genus *g*. (By this convention, $\Sigma_g = \Sigma_{g,0}$.) The boundary $\partial \Sigma_{g,m}$ is then a disjoint union of *m* circles, e.g. the case with g = 1 and m = 3 might look like the picture at the right.

(a) (*) Show that π₁(Σ_{g,1}) is a free group with 2g generators, and if g ≥ 1, then any simple closed curve parametrizing ∂Σ_{g,1} represents a nontrivial element of π₁(Σ_{g,1}).²
Hint: Think of Σ_g as a polygon with some of its edges identified. If you cut a hole in the middle of the polygon, what remains admits a deformation retraction to the edges. Prove it with a picture.

¹Not a standardized term, I made it up.

²Terminology: one says in this case that $\partial \Sigma_{g,1}$ is homotopically nontrivial or essential, or equivalently, not nullhomotopic.

(b) (*) Assume γ is a simple closed curve separating $\Sigma_{\underline{\mathfrak{P}}}$ into two pieces homeomorphic to $\Sigma_{h,1}$ and $\Sigma_{k,1}$ for some $h, k \geq 0$. (The picture at the right shows an example with h = 2 and k = 4.) Show that the image of $[\gamma] \in \pi_1(\Sigma_g)$ under the natural projection to the abelianization of $\pi_1(\Sigma_g)$ is trivial.

Hint: What does γ look like in the polygonal picture from part (a)? What is it homotopic to?

(c) (*) In the following, we abbreviate $[x, y] := xyx^{-1}y^{-1}$ and $\prod_{i=1}^{N} x_i := x_1x_2...x_N$, thus

$$G_g := \left\{ a_1, b_1, \dots, a_g, b_g \mid \prod_{i=1}^g [a_i, b_i] = e \right\}$$

is the standard presentation of $\pi_1(\Sigma_g)$. Show that if $J \subset \{1, \ldots, g\}$ is a nonempty proper subset, then there exists a homomorphism from G_g to a free group on two generators that sends the element $\prod_{i \in J} [a_i, b_i] \in G_g$ to something nontrivial. Deduce that G_g is not abelian for every $g \ge 2$. Hint: Once you've specified what your homomorphism does on each of the generators a_i, b_i , this determines a homomorphism defined on the free group $F_{\{a_1,b_1,\ldots,a_g,b_g\}}$, but you need to make sure it is trivial on the normal subgroup generated by the relation. Make your definition as simple as possible.

- (d) (*) Show that for h, k > 0, the curve γ in part (b) represents a nontrivial element of $\pi_1(\Sigma_q)$.
- (e) Generalize part (a): show that if $m \ge 1$, $\pi_1(\Sigma_{q,m})$ is a free group with 2g + m 1 generators.
- 3. The first of the two pictures at the right shows one of the standard ways of representing the *Klein bottle*³as an "immersed" (i.e. smooth but with self-intersections) surface in ℝ³. As a topological space, the technical definition is

$$\mathbb{K}^2 = [0,1]^2 / \sim$$

where $(s, 0) \sim (s, 1)$ and $(0, t) \sim (1, 1 - t)$ for every $s, t \in [0, 1]$. This is represented by the square with pairs of sides identified in the rightmost picture; notice the reversal of arrows, which is why $\mathbb{K}^2 \neq \mathbb{T}^2$! A theorem we proved in lecture thus implies that $\pi_1(\mathbb{K}^2)$ is isomorphic to the group

$$G := \{a, b \mid aba^{-1}b = e\}.$$

- (a) (*) Consider the subset $\ell = \{[(s,t)] \in \mathbb{K}^2 \mid t = 1/4 \text{ or } t = 3/4\}$ in \mathbb{K}^2 . Show that ℓ is a simple closed curve which separates \mathbb{K}^2 into two pieces, each homeomorphic to the Möbius band $\mathbb{M}^2 := \{(e^{i\theta}, \tau e^{i\theta/2}) \in S^1 \times \mathbb{C} \mid \theta \in [0, 2\pi], \tau \in [-1, 1]\}$. Use this decomposition to show via the Seifert-van Kampen theorem that $\pi_1(\mathbb{K}^2)$ is also isomorphic to $G' := \{c, d \mid c^2 = d^2\}$.
- (b) Recall that \mathbb{RP}^2 can be constructed by gluing \mathbb{M}^2 to a disk \mathbb{D}^2 , so conversely, $\mathbb{RP}^2 \backslash \mathbb{D}^2 \cong \mathbb{M}^2$. Part (a) implies therefore that \mathbb{K}^2 is homoemorphic to the connected sum $\mathbb{RP}^2 \# \mathbb{RP}^2$. Now, viewing \mathbb{RP}^2 as a polygon with two (curved) edges that are identified, imitate the argument we carried out for Σ_g in lecture to derive a different presentation for \mathbb{K}^2 as shown in the figure below, and deduce that $\pi_1(\mathbb{K}^2)$ is also isomorphic to $G'' := \{x, y \mid x^2y^2 = e\}$.

(c) For the groups G, G' and G'' above, find explicit isomorphisms of their abelianizations to $\mathbb{Z} \oplus \mathbb{Z}_2$. Then find explicit isomorphisms from each of G, G' and G'' to the others.

³If you think my glass Klein bottle is cool, you can buy your own at http://www.kleinbottle.com/.