PROBLEM SET 8 Due: 22.06.2023

Instructions

Problems marked with (*) will be graded. Solutions may be written up in German or English and should be handed in before the Übung on the due date. For problems without (*), you do not need to write up your solutions, but it is highly recommended that you think through them before the next Thursday lecture.

Note: All spaces mentioned on this sheet should be assumed "reasonable", meaning they are path-connected and satisfy the additional hypotheses needed for the lifting theorem and Galois correspondence.

Problems

- 1. Prove each of the following, assuming $p: Y \to X$ is a covering map with X and Y both path-connected.
 - (a) If $\mathcal{U} \subset X$ is evenly covered, then so is every subset of \mathcal{U} .
 - (b) The map $p: Y \to X$ is open, i.e. it sends open subsets of Y to open subsets of X.
 - (c) For every $x \in X$, $f^{-1}(x)$ is a discrete subset of Y.¹
 - (d) If Y is compact, then X is also compact and $\deg(p) < \infty$.
 - (e) (*) The map p: Y → X is proper² if and only if deg(p) < ∞. Hint: Showing that properness implies finite degree is easy. For the converse, given a compact set K ⊂ X and an open cover f⁻¹(K) ⊂ ⋃_α U_α, it suffices to find a finite cover of f⁻¹(K) by open sets such that each is contained in some U_α. (Why?) Start by showing that K can be covered by a finite collection of open neighborhoods which are evenly covered and small enough so that their (finitely many!) lifts to Y are each contained in some U_α.
 - (f) Deduce from the above that the converse of part (d) also holds: if $\deg(p) < \infty$ and X is compact, then Y is also compact.
- 2. Assume $p: Y \to X$ is a covering map and X is path-connected.
 - (a) (*) Show that for any two points $x, y \in X$, lifting paths $x \xrightarrow{\gamma} y$ determines a bijection $\rho_{\gamma} : p^{-1}(x) \to p^{-1}(y)$ that depends only on the homotopy class of the path γ (with fixed end points).
 - (b) Writing $J := p^{-1}(x)$ and applying part (a) in the case x = y gives a map $\rho : \pi_1(X, x) \to S(J)$ sending $[\gamma] \in \pi_1(X, x)$ to ρ_{γ} , where S(J) is the group of all bijections $J \to J^{.3}$ Show that this map is a group anti-homomorphism, i.e. it satisfies $\rho_{\alpha \cdot \beta} = \rho_{\beta} \circ \rho_{\alpha}$ for all $[\alpha], [\beta] \in \pi_1(X, x)$.⁴
 - (c) (*) Write down the map $\rho : \pi_1(X, x) \to S(J)$ explicitly for the space $(X, x) = (\mathbb{C}^* := \mathbb{C} \setminus \{0\}, 1)$ with covering map $p : \mathbb{C} \to \mathbb{C}^* : z \mapsto e^z$.
- 3. (a) Show that every covering map of degree 2 is regular.Hint: There is an algebraic way to solve this problem, but a more direct approach is also possible.
 - (b) Prove that every covering map of the torus $\mathbb{T}^2 = S^1 \times S^1$ is regular.
 - (c) Find all subgroups of \mathbb{Z}^2 with index 2. Hint: Every subgroup $H \subset \mathbb{Z}^2$ is normal since \mathbb{Z}^2 is abelian, and H then has index 2 if and only if the quotient \mathbb{Z}^2/H is isomorphic to \mathbb{Z}_2 . Consider the images of the two generators $e_1 := (1,0)$ and

¹We say that a subset A in a space X is *discrete* if the subspace topology induced by X on A is the same as the discrete topology.

²A map $f: X \to Y$ is said to be proper (eigentlich) if for every compact subset $K \subset Y$, $f^{-1}(K) \subset X$ is also compact.

³Notice that if J is a set of n elements, S(J) is isomorphic to the symmetric group S_n .

⁴A small correction has been made on this problem sheet, because the original version claimed that ρ is a homomorphism, which is almost but not quite true. It is at least true if $\pi_1(X, x)$ is abelian, and it becomes true if one adopts a slightly unconventional definition of multiplication in $\pi_1(X, x)$, in which paths get concatenated in reverse order.

 $e_2 := (0,1)$ of \mathbb{Z}^2 under the quotient homomorphism $\mathbb{Z}^2 \to \mathbb{Z}^2/H$. Show that there are exactly three possibilities, depending on whether each of e_1 or e_2 represents the trivial or nontrivial element in the quotient.

- (d) (*) Deduce from part (c) that up to isomorphism of covers, T² admits exactly three distinct covering maps with degree 2, and write them down explicitly.
 Hint: You may have to take an educated guess as to what the covering spaces should be, but notice that part (c) tells you what their fundamental groups are.
- 4. Convince yourself that the maps depicted in the figure below are covers, and determine their deck transformation groups. Which ones are regular?

5. In this problem, we consider two base-point preserving covering maps

whose composition is therefore also a base-point preserving covering map $P: (Z, z_0) \to (X, x_0)$. Let us abbreviate the automorphism groups of P and q by $G := \operatorname{Aut}(P)$ and $H := \operatorname{Aut}(q)$, so for instance if Z is simply connected (though we will not assume this below), then a theorem proved in lecture gives natural isomorphisms $G \cong \pi_1(X, x_0)$ and $H \cong \pi_1(Y, y_0)$. Our goal is to understand what $\operatorname{Aut}(p)$ is.

(a) (*) Use the path-lifting property to prove the following lemma: If $F \in G$ and $f \in Aut(p)$ are deck transformations for which the relation $q \circ F = f \circ q$ holds at the base point $z_0 \in Z$, then it holds everywhere.

Hint: For any $z \in Z$, choose a path from z_0 to z, then use F, f and the covering projections to cook up other paths in Z, Y and X. Some of them are lifts of others, and two important ones will turn out to be the same.

- (b) Deduce from part (a) that H is the subgroup of G consisting of all deck transformations $F: Z \to Z$ for P that satisfy $F(z_0) \in q^{-1}(y_0)$.
- (c) Show that if $P: Z \to X$ is regular then so is $q: Z \to Y$. Give two proofs: one using the result of part (b), and another using the characterization of regularity in terms of normal subgroups.
- (d) The normalizer $N(H) \subset G$ of the subgroup H is by definition the largest subgroup of G that contains H as a normal subgroup, i.e.

$$N(H) := \{ g \in G \mid gHg^{-1} = H \}.$$

Show that if the cover $q: Z \to Y$ is regular, then for any $F \in N(H)$, there exists a deck transformation $f: Y \to Y$ of p satisfying the relation $q \circ F = f \circ q$, and it is unique. Moreover, the correspondence $F \mapsto f$ defines a group homomorphism $N(H) \to \operatorname{Aut}(p)$ whose kernel is H.

(e) Show that if the cover $P: Z \to X$ is also regular, then the homomorphism $N(H) \to \operatorname{Aut}(p)$ in part (d) is also surjective, and thus descends to an isomorphism $N(H)/H \xrightarrow{\cong} \operatorname{Aut}(p)$.