Topology I
C. Wendl, D. Gutwein, F. Schmäschke

Summer Semester 2023

PROBLEM SET 9

Due: 13.07.2023

Instructions

Problems marked with (*) will be graded. Solutions may be written up in German or English and should be handed in before the Übung on the due date. For problems without (*), you do not need to write up your solutions, but it is highly recommended that you think through them before the next Thursday lecture.

Problems

1. The following picture shows a simplicial complex $K=(V, S)$ whose associated polyhedron $|K|$ is homeomorphic to the Klein bottle.

There are four vertices $V=\{\alpha, \beta, \gamma, \delta\}$, twelve 1 -simplices labeled by letters a, \ldots, ℓ, and eight 2 simplices labeled σ_{i} for $i=1, \ldots, 8$. The picture also shows a choice of orientation for each of the 2 -simplices ${ }^{11}$ (circular arrows represent a cyclic ordering of the vertices) and 1 -simplices (arrows point from the first vertex to the last). Assume every 0 -simplex is chosen to have the positive orientation.
(a) Write down $\partial \sigma_{i}$ explicitly for each $i=1, \ldots, 8$.
(b) $(*)$ Prove that $H_{2}^{\Delta}\left(K ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}$, and write down a specific 2-cycle that generates it.

Hint: If this were an oriented triangulation, there would be an obvious way to find a 2 -cycle with integer coefficients (we did it for \mathbb{T}^{2} in lecture). The use of \mathbb{Z}_{2} coefficients is meant to make up for the fact that the triangulation is not oriented.
(c) $(*)$ Prove that $H_{2}^{\Delta}(K ; \mathbb{Z})=0$.

Hint: Consider how the coefficients of individual 1-simplices in $\partial \sum_{i=1}^{8} c_{i} \sigma_{i} \in C_{1}(K ; \mathbb{Z})$ are determined. Show that if $\sum_{i=1}^{8} c_{i} \sigma_{i}$ is a cycle, then $c_{1}=c_{2}, c_{2}=c_{3}$ and so forth, but also $c_{1}+c_{8}=0$.
(d) Show that the 1-cycle $c+d$ represents a nontrivial homology class $[c+d]$ in both $H_{1}^{\Delta}(K ; \mathbb{Z})$ and $H_{1}^{\Delta}\left(K ; \mathbb{Z}_{2}\right)$, but satisfies $2[c+d]=0 \in H_{1}^{\Delta}(K ; \mathbb{Z})$ and $[c+d]=0 \in H_{1}^{\Delta}(K ; \mathbb{Q}) .^{2}$

[^0]2. (*) Show that for the 1-point space $\{\mathrm{pt}\}$ and any coefficient group G, singular homology satisfies
\[

H_{n}(\{\mathrm{pt}\} ; G) \cong $$
\begin{cases}G & \text { for } n=0 \\ 0 & \text { for } n \neq 0\end{cases}
$$
\]

Hint: For each integer $n \geqslant 0$, there is exactly one singular n-simplex $\Delta^{n} \rightarrow\{\mathrm{pt}\}$, so the chain groups $C_{n}(\{\mathrm{pt}\} ; G)$ are all naturally isomorphic to G. What is $\partial: C_{n}(\{\mathrm{pt}\} ; G) \rightarrow C_{n-1}(\{\mathrm{pt}\} ; G)$?
3. In this problem, we prove that $H_{1}(X ; \mathbb{Z})$ for a path-connected space X is isomorphic to the abelianization of its fundamental group. Fix a base point $x_{0} \in X$ and abbreviate $\pi_{1}(X):=\pi_{1}\left(X, x_{0}\right)$, so elements of $\pi_{1}(X)$ are represented by paths $\gamma: I \rightarrow X$ with $\gamma(0)=\gamma(1)=x_{0}$. Identifying the standard 1-simplex

$$
\Delta^{1}:=\left\{\left(t_{0}, t_{1}\right) \in \mathbb{R}^{2} \mid t_{0}+t_{1}=1, t_{0}, t_{1} \geqslant 0\right\}
$$

with $I:=[0,1]$ via the homeomorphism $\Delta^{1} \rightarrow I:\left(t_{0}, t_{1}\right) \mapsto t_{0}$, every path $\gamma: I \rightarrow X$ corresponds to a singular 1-simplex $\Delta^{1} \rightarrow X$, which we shall denote by $\tilde{h}(\gamma)$ and regard as an element of the singular 1-chain group $C_{1}(X ; \mathbb{Z})=\bigoplus_{\sigma \in \mathcal{K}_{1}(X)} \mathbb{Z}$. Show that \tilde{h} has each of the following properties:
(a) If $\gamma: I \rightarrow X$ satisfies $\gamma(0)=\gamma(1)$, then $\partial \tilde{h}(\gamma)=0$.
(b) For any constant path $e: I \rightarrow X, \tilde{h}(e)=\partial \sigma$ for some singular 2-simplex $\sigma: \Delta^{2} \rightarrow X$.
(c) (*) For any paths $\alpha, \beta: I \rightarrow X$ with $\alpha(1)=\beta(0)$, the concatenated path $\alpha \cdot \beta: I \rightarrow X$ satisfies $\widetilde{h}(\alpha)+\tilde{h}(\beta)-\tilde{h}(\alpha \cdot \beta)=\partial \sigma$ for some singular 2-simplex $\sigma: \Delta^{2} \rightarrow X$.
Hint: Imagine a triangle whose three edges are mapped to X via the paths α, β and $\alpha \cdot \beta$. Can you extend this map continuously over the rest of the triangle?
(d) If $\alpha, \beta: I \rightarrow X$ are two paths that are homotopic with fixed end points, then $\tilde{h}(\alpha)-\tilde{h}(\beta)=\partial f$ for some singular 2-chain $f \in C_{2}(X ; \mathbb{Z})$.
Hint: If you draw a square representing a homotopy between α and β, you can decompose this square into two triangles.
(e) Applying \tilde{h} to paths that begin and end at the base point x_{0}, deduce that \tilde{h} determines a group homomorphism $h: \pi_{1}(X) \rightarrow H_{1}(X ; \mathbb{Z}):[\gamma] \mapsto[\tilde{h}(\gamma)]$.

We call $h: \pi_{1}(X) \rightarrow H_{1}(X ; \mathbb{Z})$ the Hurewicz homomorphism. Notice that since $H_{1}(X ; \mathbb{Z})$ is abelian, ker h automatically contains the commutator subgroup $\left[\pi_{1}(X), \pi_{1}(X)\right] \subset \pi(X)$ (see Problem Set $6 \# 2$), thus h descends to a homomorphism on the abelianization of $\pi_{1}(X)$,

$$
\Phi: \pi_{1}(X) /\left[\pi_{1}(X), \pi_{1}(X)\right] \rightarrow H_{1}(X ; \mathbb{Z})
$$

We will now show that this is an isomorphism by writing down its inverse. For each point $p \in X$, choose arbitrarily a path $\omega_{p}: I \rightarrow X$ from x_{0} to p, and choose $\omega_{x_{0}}$ in particular to be the constant path. Regarding singular 1 -simplices $\sigma: \Delta^{1} \rightarrow X$ as paths $\sigma: I \rightarrow X$ under the usual identification of I with Δ^{1}, we can then associate to every singular 1-simplex $\sigma \in C_{1}(X ; \mathbb{Z})$ a concatenated path

$$
\widetilde{\Psi}(\sigma):=\omega_{\sigma(0)} \cdot \sigma \cdot \omega_{\sigma(1)}^{-1}: I \rightarrow X
$$

which begins and ends at the base point x_{0}, hence $\widetilde{\Psi}(\sigma)$ represents an element of $\pi_{1}(X)$. Let $\Psi(\sigma)$ denote the equivalence class represented by $\widetilde{\Psi}(\sigma)$ in the abelianization $\pi_{1}(X) /\left[\pi_{1}(X), \pi_{1}(X)\right]$. This uniquely determines a homomorphism 3

$$
\Psi: C_{1}(X ; \mathbb{Z}) \rightarrow \pi_{1}(X) /\left[\pi_{1}(X), \pi_{1}(X)\right]: \sum_{i} m_{i} \sigma_{i} \mapsto \sum_{i} m_{i} \Psi\left(\sigma_{i}\right)
$$

(f) (*) Show that $\Psi(\partial \sigma)=0$ for every singular 2-simplex $\sigma: \Delta^{2} \rightarrow X$, and deduce that Ψ descends to a homomorphism $\Psi: H_{1}(X ; \mathbb{Z}) \rightarrow \pi_{1}(X) /\left[\pi_{1}(X), \pi_{1}(X)\right]$.
(g) Show that $\Psi \circ \Phi$ and $\Phi \circ \Psi$ are both the identity map.
(h) For a closed surface Σ_{g} of genus $g \geqslant 2$, find an example of a nontrivial element in the kernel of the Hurewicz homomorphism $\pi_{1}\left(\Sigma_{g}\right) \rightarrow H_{1}\left(\Sigma_{g}\right)$. Hint: See Problem Set $7 \# 2$.

[^1]
[^0]: ${ }^{1}$ Notice however that this does not define an oriented triangulation, as the chosen orientations of neighboring 2 -simplices are not always compatible with each other. The Klein bottle does not admit an oriented triangulation.
 ${ }^{2}$ In any abelian group G, there is an obvious definition of $m g$ for any $m \in \mathbb{Z}$ and $g \in G$, so e.g. $2[c+d]:=[c+d]+[c+d]$.

[^1]: ${ }^{3}$ Since $\pi_{1}(X) /\left[\pi_{1}(X), \pi_{1}(X)\right]$ is abelian, we are adopting the convention of writing its group operation as addition, so the multiplication of an integer $m \in \mathbb{Z}$ by an element $\Psi(\sigma) \in \pi_{1}(X) /\left[\pi_{1}(X), \pi_{1}(X)\right]$ is defined accordingly.

