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Annika Thiele

Certain problems, to which we can apply Catastrophe Theory, give rise to symmetries
naturally. This motivates modifying the theory we have learned so far in this seminar to
functions obeying symmetry conditions. In this talk, we will look at functions that are
invariant under some group action. In particular, we will concentrate on even functions,
invariant under the non-trivial Z/2Z action.

1 Invariant Theory

The following discussion follows closely chapters 9, 16.2 and 16.4 of [Mon21] and some of
chapters 12.4 and 12.6 of [GSS88].

Let us recall what the representation of a group on a vector space is.

Definition 1.1 (Representations and Actions). A group G acts (linearly) on a vector space
V if there exists a mapping

G× V → V, (g, v) 7→ g · v,

such that the following conditions hold:

1. The map ρg : V → V, v 7→ g ·v is linear. We call the map ρ : G → hom(V, V ), g 7→ ρg
a Representation of G on V .

2. For any two group elements g1, g2 ∈ G and any v ∈ V ,

g1(g2 · v) = (g1g2) · v.

Morally, an action tells us how a group element transforms a vector and a representation
tells us how a group element transforms the entire space.

Example 1.2.

1. The group G = Z/2Z acts non-trivially on V = Rn by −1 · x = −x for all x ∈ Rn.

2. The group G = S1 acts on R2 ∼= C by θ · z = eiθz.

Definition 1.3 (Invariant functions). Let G be a compact Lie group, e.g. a finite group,
acting on an R-vector space V , a function f : V ↣ R is invariant under G if

f(g · x) = f(x) ∀g ∈ G, x ∈ dom(f)

An invariant polynomial is an invariant function that is polynomial.
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Example 1.4.

1. The first example of invariant functions are the even functions. Consider the non-
trivial action of G = Z/2Z on Rn. A function is called even if it is Z/2Z invariant,
i.e for all x ∈ Rn, f(−x) = f(x). We will later modify the theory to this class of
functions. The term even makes sense when looking at polynomials in one variable,
then a polynomial is even if and only if it has only even exponents.

2. Consider the action of S1 on R2 ∼= C described above. Then f : C → R is S1-
invariant if and only if f(θ · z) = f(z) holds for all θ ∈ S1 and complex numbers z.
That means, f is constant on circles centered at the origin.

Instead of functions, we can also look at the germs of G-invariant functions. As in the
general case these admit a ring structure.

Definition 1.5. We denote the ring of smooth G-invariant germs f : (V, 0) → R as E(G).
If V = Rn, we write En(G) and if additionally, G = Z/2Z , E+

n labels the ring of smooth
even germs f : (Rn, 0) → R. Finally, P(G) is the ring of invariant polynomials.

Similar to the general case, E+
n is a local ring with the unique maximal ideal m+

n consisting
of germs fixing the origin. It has the same generators as m2

n, namely the monomials of
degree two:

m+
n = ⟨x21, x1x2, . . . , x2n⟩,

but m+
n and m2

n are ideals over different rings and hence not the same. For example,
x31 ∈ m2

n \m+
n . But we can say m+

n = mn ∩ E+
n = m2

n ∩ E+
n .

Even polynomials have only even exponents, but can we generalize odd polynomials (with
only odd exponents) to a notion on smooth functions? Realize that a polynomial is odd if
and only if f(−x) = −f(x), a condition that is very similar to the even case.

Definition 1.6. A smooth function f : Rn → R is odd if it satisfies f(−x) = −f(x) for
all x ∈ Rn. Then write E−

n for the set of odd smooth function germs.

Achtung: E−
n is NOT a ring, but it is an E+

n -module.

Lemma 1.7. The ring of smooth germs admits a direct sum splitting En = E+
n ⊕ E−

n .

Proof. Consider a smooth germ f ∈ En. We can write f = f++ f− where f+ := 1
2(f(x)+

f(−x)) and f− := 1
2(f(x)− f(−x)) . Since f+ is even and f− is odd, En = E+

n + E−
n . The

sum is direct, since E+
n ∩ E−

n = {0}.

In the following we will use two results that we will not prove, but proofs can be found in
[GSS88] and [NS10].

Result 1.8 (Hilbert-Weyl Theorem). Let G be a compact Lie group acting on V . Then
there exists a finite Hilbert basis of P(G), i.e. there are finitely many G-invariant poly-
nomials p1, . . . , pk ∈ P(G) such that every f ∈ P(G) can be written as a polynomial of
p1, . . . , pk.
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Example 1.9. {x2} is a Hilbert basis for the ring of even polynomials in one variable.
Indeed, given any even polynomial f(x) = a0+a1x

2+· · ·+anx
2n, we can write f(x) = g(x2)

for g(x) = a0 + a1x+ · · ·+ anx
n.

We are working towards proving Schwartz’s Theorem, which generalizes this result to the
ring of G-invariant smooth germs. The proof we give will require another result stating
that the ideal generated by the elements of the Hilbert basis is of finite codimension in the
polynomial ring R[x1, . . . , xn]. This fails if G is not finite.

Result 1.10 (Emmy Noether). Let G be finite. p1, . . . , pk be a Hilbert basis of P(G),
define the function ϕ : V → Rk, x 7→ (p1(x), . . . , pk(x)). Then the ideal Iϕ := ⟨p1, . . . , pk⟩
is of finite codimension in the polynomial ring R[x1, . . . , xn], where n = dim(V ).

We can now prove the generalization of the Hilbert-Weyl Theorem to all G-invariant smooth
germs.

Theorem 1.11 (Schwartz). Let G be a compact Lie group acting on Rn. Moreover, let
f ∈ En(G) and p1, . . . , pk be a Hilbert basis of P(G). Then there exists a smooth germ
h ∈ Ek such that

f(x) = h(p1(x), . . . , pk(x)).

Remark. This recovers the Fundamental Theorem of Whitney, since {x2} is a Hilbert basis
of P (Z/2Z) in one variable:

Theorem 1.12 (Fundamental Theorem of Whitney). A smooth function f : R ↣ R is
even if and only if there exists a function g : R ↣ R such that f(x) = g(x2) for all
x ∈ dom(f).

Although we have stated Schwartz’s theorem in the general case for any compact Lie group,
we will only prove it for finite groups G. A proof of the general theorem can be found in
[GSS88].

Proof. The proof will use the Malgrange-Mather preparation theorem, of which we have
seen the proof in a previous talk, so let us recall the statement.

Theorem 1.13 (Magrange-Mather preparation theorem). Let ϕ : (Rn, 0) → (Rk, 0) be
the germ of a smooth map and A a finitely generated En-module for which A/IϕA is fi-
nite dimensional. Then A is also finitely generated as an Ek-module. More precisely, if
{u0, . . . , ur} ⊂ A is a cobasis for IϕA, then it is also a generating set for A as an Ep-
module. This means, that each a ∈ A can be written as a = (h0 ◦ ϕ)u0 + · · · + (hr ◦ ϕ)ur
for some h0, . . . , hr ∈ Ek.

By Result 1.10, the ideal Iϕ is of finite codimension in the ring of polynomials R[x1, . . . , xn].

Lemma 1.14. We can choose a cobasis {u0, . . . , ur} of Iϕ such that u0 = 1 and for all
j > 0, uj has average zero, i.e.

1

|G|
∑
g∈G

uj(g · x) = 0,
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for all x ∈ Rn.

We will postpone the proof of the lemma to the end of this proof. So choose {u0, . . . , ur}
to be such a cobasis of Iϕ. Now let us define the ideal Jϕ := ⟨p1, . . . , pk⟩ ◁ En with the
same generators as Iϕ, but over the ring of smooth germs. Then {u0, . . . , ur} is also a
cobasis of Jϕ in En ([Mon21] [Remark 3.14]). In particular, Jϕ is of finite codimension in
En. Applying Theorem 1.13 to A = En and ϕ shows that any f ∈ En can be written as

f =

r∑
j=0

uj(hj ◦ ϕ),

for some h0, . . . , hr ∈ Ek. If f is G-invariant,

f(x) = f(g · x) =
r∑

j=0

uj(g · x) · hj(ϕ(x)),

since ϕ is G-invariant by definition. Summing over g ∈ G yields

|G|f(x) =
r∑

j=0

∑
g∈G

uj(g · x)

hj(ϕ(x))

= h0(ϕ(x)).

The second equality holds by choice of the uj . This proves the statement.

It remains to prove the lemma.

Proof of Lemma 1.14. Start with any cobasis {v0, . . . , vr} such that v0 = 1 and vj ∈ mn

for all j > 0. The function

ρj(x) :=
1

|G|
∑
g∈G

vj(g · x)

is G-invariant. Indeed, for any element h ∈ G

ρj(h · x) = 1

|G|
∑
g∈G

vj(gh · x)

=
1

|G|
∑
k∈G

vj(k · x)

= ρj(x),

using G = {gh|g ∈ G}. Result 1.8 implies that pj ∈ Iϕ. Set u0 = v0 = 1, uj = vj − ρj ,
then {u0, . . . , ur} is a cobasis of Iϕ and satisfies the wanted conditions.

Remark. If G is not finite, Iϕ does not have to be of finite codimension. Thus, this argument
fails.
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2 Modify Theory to Even Functions

Let’s recap what we have introduced so far. E+
n is the ring of even smooth germs with

unique maximal ideal m+
n = ⟨x21, x1x2, . . . , x2n⟩. The set of odd smooth germs is denoted

by E−
n .

2.1 Right-equivalence

Let us adapt the notion of right-equivalence to even functions, by requiring the change of
coordinates to be odd. Precisely,

Definition 2.1. We say two even function germs f, g ∈ E+
n are Rev-equivalent if there is a

diffeomorphism germ ϕ : (Rn, 0) → (Rn, 0) satisfying ϕ(−x) = −ϕ(x), such that f = g ◦ ϕ.

Remark. Choosing ϕ to be odd really does perserve evenness:

(f ◦ ϕ)(−x) = f(ϕ(−x)) = f(−ϕ(x)) = f(ϕ(x)) = (f ◦ ϕ)(x).

Lemma 2.2. If θ−n is the set of odd vector fields, θ−n ⊆ mnθn.

Proof. Let v ∈ θ−n , then v(-x)=-v(x). Let x = 0, then v(0) = −v(0), so v(0) = 0.

Definition 2.3. The even Jacobian ideal of an even function germ f ∈ E+
n is defined as

J+f := tf(θ−n ) :=

∑
j

∂f

∂xj
vj | vj ∈ E−

n

 .

Lemma 2.4. J+f = Jf ∩ E+
n .

Proof. For an even function germ f , the partial derivatives ∂f
∂xi

are odd by the chain rule.
Define g(x) = −x, then by evenness of f , f ◦ g = f :

∂f

∂xi
(−x) = − ∂f

∂xi
(−x)

∂g

∂xi
(x) = −∂(f ◦ g)

∂xi
(x) = − ∂f

∂xi
(x).

Hence, each element
∑

j
∂f
∂xj

vj ∈ J+f is even and the inclusion J+f ⊆ Jf ∩ E+
n holds. For

the other inclusion, notice if
∑

j
∂f
∂xj

vj ∈ Jf is even, vj ∈ E−
n , since the partial derivatives

of f are odd.

Remark. Since the monomials of order one generate E−
n as a E+

n -module, J+f = ⟨xi ∂f
∂xj

⟩i,j .

In the general theory, the finite determinacy theorem gave us a condition, when a function
f is finitely determined, i.e for some k, the equality of the k-jets of f and some other germ
g implies the right-equivalence of the two. Similarly, one can ask oneself, when an even
function germ is finitely determined with respect to our new notion of right equivalence
for even germs. The answer is given by the following theorem.
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Theorem 2.5 (Finite determinacy theorem for Rev-equivalence). A function germ f ∈ E+
n

is 2k-determined with respect to Rev-equivalence, if (m+)k+1 ⊆ m+
n J

+f .

Proof (Sketch). Notice that (m+
n )

k+1 = m2k+1
n ∩ E+

n and m+
n J

+f = m2
nJf ∩ E+

n . Now
assume m2k+1

n ∩ E+
n ⊆ m2

nJf ∩ E+
n . The proof will follow along the lines of the proof of the

Finite Determinacy Theorem, with some minor alterations. Said proof used the homotopy
method, so similarly define the homotopy fs = f + sh but now for h ∈ m2k+1

n ∩ E+
n . We

want to construct a family of odd diffeomorphisms ϕs satisfying fs ◦ ϕs = f . We find this
by solving the infinitesimal homotopy equation,

d(fs)y(vs(y) = −h(y),

(with y = ϕs(x)) for all s. We can solve the infinitesimal homotopy equation as in the
general case. Let vs be a solution. Similar to Lemma 1.7, θn = θ+n ⊕ θ−n and we can write
vs = v+s + v−s . One checks that if vs solves the infinitesimal homotopy equation, so does
v−s . Now take the flow of this vector field and show that it is odd (since v−s is odd). In
this manner, we get the family ϕs of odd diffeomorphisms we are looking for.

2.2 Unfolding and Versality

Definition 2.6. We define the even codimension of f ∈ m+
n to be

codim+(f) := dim(m+
n /J

+f)

Example 2.7.

1. Consider f(x) =
∑

i x
2
i . Then

J+f = ⟨xixj⟩i,j = m+
n ,

so codim+(f) = 0.

2. For f(x, y) = x4 + y4, we can compute the even Jacobian ideal,

J+f = ⟨x4, x3y, xy3, y4⟩.

A cobasis of J+f in m+
2 is given by {x2, xy, y2, x2y2} (see Figure 1), so the even

codimension is codim+(f) = 4.

When looking at unfoldings of an even function, we can require that the smooth family
F : Rn × Ra → R is a family of even functions, i.e. fu is even for all u ∈ Ra. Then
we consider versality among these families. The next theorem states a condition for this
versality.

Theorem 2.8. A smooth family F : Rn × Ra → R of even functions is versal among the
class of smooth families of even functions if and only if

J+f + R+ Ḟ = E+
n ,

here Ḟ := ⟨Ḟi⟩ is the ideal generated by the inition speeds of the unfolding.
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m+
2

J+f

x6 x5y x4y2 x3y3 x2y4 xy5 y6

x4 x3y x2y2 xy3 y4

x2 xy y2

1

Figure 1: Newton-diagram for Example 2.7

Example 2.9.

1. Let f(x, y) = x6 + y4 ∈ E+
2 . Then the even Jacobian ideal is given by

J+f = ⟨x6, x5y, xy3, y4⟩

Notice that

(m+
2 )

4 = ⟨x8, x7y, x6y2, x5y3, x4y4, x3y5, x2y6, xy7, y8⟩ ⊂ J+f,

so Theorem 2.5 implies that f is 8-determined with resprect to Rev-equivalence.
Moreover, {x2, xy, y2, x4, x3y, x2y2, x4, y4} is a cobasis of J+f . So codim+(f) = 7
and by Theorem 2.8,

F (x, y, u1, . . . , u7) = x6+ y4+u1x
2+u2xy+u3y

2+u4x
4+u5x

3y+u6x
2y2+u7x

4y2

is a versal unfolding of f among the class of smooth familes of even functions.

m+
2

J+f

(m+
2 )

4

x8 x7y x6y2 x5y3 x4y4 x3y5 x2y6 xy7 y8

x6 x5y x4y2 x3y3 x2y4 xy5 y6

x4 x3y x2y2 xy3 y4

x2 xy y2

1

Figure 2: Newton-diagram for Example 2.9

2. Similar in the case of three variables, consider f(x, y, z) = x4 + y4 + z2. The even
Jacobian ideal ist

J+f = ⟨x4, x3y, x3z, xy3, y4, y3z, xz, yz, z2⟩.
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A cobasis of J+f is {x2, xy, y2, x2y2}, so codim+(f) = 4 and

F (x, y, z, r, s, t, u) = x4 + y4 + z2 + rx2 + sxy + ty2 + ux2y2

is versal.
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