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§1. What is a Bifurcation problem?
A Bifurcation problem is in its most general¹ form an equation:

¹We could allow even more general functions from ℝ𝑛 ×ℝ𝑚 → ℝ𝑝, but in practice this is done rarely and it
would complicate this introduction without providing any substantial advantages.

𝐺(𝑥; 𝜆) = 0

for a (smooth)² function 𝐺 : ℝ𝑛 ×ℝ → ℝ𝑛 with state variable 𝑥 ∈ ℝ𝑛 and parameter 𝜆 ∈ ℝ.
We will write 𝑔𝜆(𝑥) ≔ 𝐺(𝑥; 𝜆), letting us denote the solutions for a specific 𝜆 as 𝑔−1𝜆 ({0}). In

²All functions are presumed to be smooth.

case of 𝑥 ∈ ℝ it is often useful to graph the solutions of a bifurcation problem, with 𝜆 on the
horizontal and 𝑥 on the vertical axis. We will call such a diagram the bifurcation diagram
of a bifurcation.

Example (The Saddle-node Bifurcation) .
The most basic example of a bifurcation is 𝐺(𝑥; 𝜆) = 𝑥2 − 𝜆 with 𝑥 ∈ ℝ. As seen in Fig-
ure 1, moving 𝜆 from negative to positive one starts with having two solutions, which
“merge” at 𝜆 = 0 and vanish for 𝜆 > 0.

Example (The Pitchfork Bifurcation) .
Getting a bit more complicated, the pitchfork bifurcation is 𝐻(𝑥; 𝜆) = 𝑥3 + 𝜆𝑥, producing
a bifurcation diagram that unsurprisingly looks like a pitchfork (see Figure 2). In this case
one starts with 3 solutions for 𝜆 < 0, which merge to one for 𝜆 ≥ 0.
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Figure 1: The bifurcation diagram of the Saddle-node Bifurcation

Figure 2: The bifurcation diagram of the Pitchfork Bifurcation

Bifurcation theory is of course not (just) about drawing the bifurcation diagrams of interesting
bifurcations. We want to actually gain a better understanding of these bifurcations. A natural
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question to start with is the stability of these bifurcation, i.e. given a bifurcation problem 
𝐺(𝑥; 𝜆) = 0, how similar is it to the problem 𝐺(𝑥; 𝜆) = 𝜀 for a small 𝜀 > 0.

Figure 3: The perturbed Saddle-node Bifurcation

Figure 4: The perturbed no-longer-a-pitchfork Bifurcation
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The result of small perturbations of the Saddle-node and Pitchfork Bifurcation can be seen
in Figure 3 & Figure 4: The Saddle-node Bifurcation does not change “qualitatively”, but the
Pitchfork-Bifurcation does, it can no longer be called a Pitchfork-Bifurcation in any sense of
that word. We can’t yet explain why this happens, so let’s try doing that.

§2. The Path Approach
Let us limit ourselves to the pitchfork bifurcation, as it was the one who did actually change.

Trying to put this into more familiar terms, let’s look at all of the constant perturbations of
the pitchfork bifurcation at the same time, by defining:

𝐹(𝑥; 𝜆; 𝜀) = 𝑥3 + 𝜆𝑥 + 𝜀

Explaining the behavior of the pitchfork bifurcation under small perturbations is now equal to
explaining how small changes in 𝜀 change how 𝐹(𝑥; 𝜆; 𝜀) = 0 behaves under small changes of 𝜆.

What makes this different from the problems we considered before is the “two-layered-ness”,
having to consider the changes of 𝜆 and 𝜀 as separate things. The easier question would be how
𝐹(𝑥; 𝜆; 𝜀) behaves under small perturbations of 𝜆 and 𝜀 at the same time. Let us try to answer
this simpler question, maybe this helps us answering the more complicated one.

For that we can use the tools already at our disposal. Let us define:

𝐺(𝑥; 𝑢, 𝑣) = 𝑥3 + 𝑢𝑥 + 𝑣

We already know this as the versal unfolding of 𝑥3. Mapping the set of solutions, i.e.

𝑍𝐺 ≔ { (𝑥, 𝑢, 𝑣) ∈ ℝ3 | 𝐺(𝑥; 𝑢, 𝑣) = 0 }

gives us the familiar picture of the cusp catastrophe seen in Figure 5. The best way to look at
the behavior of this unfolding under permutations is to look at its singularity set, that is

Σ𝐺 ≔ { (𝑥, 𝑢, 𝑣) ∈ 𝑍𝐺 | 𝜕𝑥𝐺 = 0 }

but as usual, this is a bit too much information, so we will just look at the discriminant, i.e.

Δ𝐺 ≔ 𝜋(Σ𝐺)

with 𝜋 being the projection of (𝑥, 𝑢, 𝑣) to (𝑢, 𝑣), giving us the cusp as seen in Figure 6. This
is quite useful, since this is a problem we already understand quite well, but how do we now
add the “two-layered-ness” of our bifurcation problem? To achieve this let us first connect the
unperturbed pitchfork bifurcation to this diagram, which we will denote by 𝑃 . The unperturbed
pitchfork bifurcation can also be viewed as an unfolding of 𝑝0 = 𝑥3 and since 𝐺 is a 𝒦-versal
unfolding of exactly this function, we know that there is an ℎ that induces 𝑃  from 𝐺, that is 
𝑃 = ℎ∗𝐺. In this case the definition of ℎ can be seen directly from the definition of 𝐺 and 𝑃 :

𝑃(𝑥; 𝜆) = (ℎ∗𝐺)(𝑥; 𝜆) = 𝐺(𝑥; ℎ(𝜆)) = 𝐺(𝑥; 𝜆, 0)

hence ℎ(𝜆) = (𝜆, 0), similarly for the perturbed version we define ℎ𝜀(𝜆) = (𝜆, 𝜀), leading to 
𝐹 = ℎ∗𝜀𝐺.
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Figure 5: The cusp catastrophe

Figure 6: The familiar cusp
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As smooth maps from 𝑅 to 𝑅2 these can now be considered as paths in ℝ2, with ℝ2 being
the parameter space of 𝐺 and therefore the same space in which Δ𝐺 lives. Looking at their
image as seen in Figure 7, one sees directly (unsurprisingly) that the bifurcation point of the
pitchfork bifurcation corresponds to the intersection of ℎ with Δ𝐺. Since we are interested in
the change that happened to the pitchfork bifurcation after the small constant perturbations a
natural question is now in which way ℎ and ℎ𝜀 differ from each other/which properties ℎ has
that are “unstable” in the sense that any perturbation of it won’t have this property anymore
(in general). This leads us to two observations:
1. ℎ is tangent³ to Δ𝐺, while ℎ𝜀 isn’t
2. ℎ crosses Δ𝐺 once, so does ℎ𝜀. This interestingly is a stable property for ℎ𝜀, but not for 
ℎ, general perturbations also include rotations and any rotation (without translation) of ℎ
makes it cross Δ𝐺 twice.

³The notion of being tangent is in this case a bit more complicated since the discriminant is not a smooth
manifold in the origin, but there is a hopefully intuitive way to see that this can be treated like a tangent, but
more on that later

Figure 7: Δ𝐺 with the two paths that induce the pitchfork bifurcation and a small constant
perturbation of it

Based on these observation one would hope that any perturbation of the pitchfork bifurcation
can be represented by a perturbation of this path and vice versa. Before making this statement
more rigorous, let us experiment some more. By including rotations we should have total control
about the relevant properties of ℎ, so let us define in general:

ℎ𝑎,𝑏(𝜆) = (𝜆, 𝑎𝜆 + 𝑏)

In Figure 8 one sees all interesting perturbations of ℎ with them being all qualitatively different
from each other:
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Figure 8: Δ𝐺 with all interesting perturbations of ℎ
• ℎ is of course the only path being tangent to Δ𝐺 and crossing it in only one point, which

corresponds to the bifurcation point in the original pitchfork bifurcation as seen in Figure 2
• 𝛼 still crosses Δ𝐺 once, but does but is not tangent to it. Note that in this case crossing 
Δ𝐺 once is a stable property and hence, since not being tangent is also stable, its induced
bifurcation should be stable and have one bifurcation point, this can be seen in Figure 10

• 𝛽 crosses Δ𝐺 twice and is not tangent to it. In contrast to 𝛼 the number of intersections is
not stable, since small perturbations either cross Δ𝐺 once (like 𝛼) or thrice (like 𝛿). Hence
the induced bifurcation should have two bifurcation points and be not stable, with small
perturbations producing either the bifurcation induced by 𝛼 or the one induced by 𝛿, this
can be seen in Figure 11

• 𝛾 crosses Δ𝐺 twice and is tangent to it. Small perturbations of it are no longer tangent and
cross Δ𝐺 either once or thrice, so the induced bifurcation should have two bifurcation points,
with one of them being unstable, with perturbations either erasing it or turning it into two
bifurcation points, this can be seen in Figure 12

• 𝛿 crosses Δ𝐺 thrice without being tangent to it, so its bifurcation diagram should have three
bifurcation points, all of them stable, this can be seen in Figure 13

This is already quite useful. By just looking at the perturbed paths we can extract quite a lot
of information. Or at least we hope so, since all of this is just a heuristic approach right now.
But there is a way to make this a bit more rigorous – how the induced bifurcation behaves
under these paths is equivalent to asking how the bifurcation

𝐻(𝑥; 𝜆; 𝑎, 𝑏) = 𝑥3 + 𝜆𝑥 + 𝑎𝑥 + 𝑏

behaves under perturbations of its parameters 𝑎 and 𝑏 (𝜆 is taken as just a normal variable
here). This is a familiar question we can answer by graphing its determinant together with the
values corresponding to the paths as seen in Figure 9
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One immediately sees that the perturbed paths that are themselves unstable correspond to the
points in the parameter space on the determinant, “proving” that in this case unstable paths
do correspond to unstable bifurcations. All the bifurcations in the different areas should also
be qualitatively similar to each other e.g. all bifurcations in area A should look like the one
induced by 𝛿.
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Figure 10: The Bifurcation induced by 𝛼, the upper part of the graph consists of a saddle-node
bifurcation, the lower part does not have a bifurcation point.

Figure 11: The Bifurcation induced by 𝛽, the lower part consisting of a saddle-node bifurcation
and the upper is a so called hysteresis bifurcation, which is itself unstable, since it can either

split in two or vanish.
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Figure 12: The Bifurcation induced by 𝛾, the crossing is called a transcritical bifurcation and
the point at the right is a saddle-node bifurcation

Figure 13: The Bifurcation induced by 𝛿, consisting of three saddle-node bifurcation

All of this confirms our previous work, which is good. A natural question to ask which we did not
answer yet is whether these are all the bifurcations or whether we missed any. While we can’t
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answer this with certainty yet, one indicator that these are indeed all the possible perturbations
is that the unfolding we chose is versal i.e. every other unfolding (and every perturbation is
also an unfolding) of the pitchfork can be induced from it and this will indeed turn out to be
true. In Summary our heuristic approach, given a bifurcation 𝐺(𝑥; 𝜆) is:
1. Find the versal unfolding 𝐻(𝑥; 𝜆; 𝑢) of 𝑔0 and the map ℎ such that 𝐺 is 𝒦-equivalent to
ℎ∗𝐻

2. Figure out how small perturbations of ℎ change “the way ℎ meets Δ𝐺” and find the simplest
path parametrization representing every relevant perturbation

3. Us this path parametrization to find a versal unfolding of 𝐺 and/or classify all possible
perturbation results

§3. A Little Sprinkle of Rigor
While all of this has hopefully been a illuminating it also leaves a lot to be desired since a

lot of statements were just based on hope and a lot of definitions just appealed to intuition.
While doing all of this completely rigorous is not feasible in this text, we at least want to lay
some groundwork to convince the reader that we are not just guessing and hoping.

§3.1. Variety is the spice of life

Talking about paths being tangent to the discriminant made intuitive sense so far, but had
the major hurdle that the notion of tangency as we know it only works for smooth manifolds,
but in general the discriminant isn’t one. The solution to this is the algebraic geometric concept
of a Variety, or to be more exact a semi-algebraic Variety. Then one can define the logarithmic
tangent space of the Variety, which matches the usual definition of tangent space on all the
points where the Variety is also a smooth manifold. This allows to not only talk about the tan-
gency of a single path, but also about the module of vector field germs tangent to the Variety,
allowing us to properly handle discriminants. Doing all of this in proper detail would take too
much time. See Chapter 19 of [1] for a good introduction, we will just take the concept of the
discriminant being a Variety and having a tangent space as granted.

§3.2. “How ℎ meets Δ𝐺”

Another thing we swept under the rug was how one would “qualitatively” describe how a
path ℎ meets a discriminant. Luckily we already answered a similar question in the past, the
way how a path (or any function) meets the origin is captured by 𝒦-equivalence. Extending
this to a Variety 𝑉 , we define:

Definition 3.2.1 (𝒦𝑉 -equivalence) .
Let ℎ, 𝑔 : (ℝ𝑛, 0) → (ℝ𝑝, 0) be two map germs and 𝑉 ⊆ ℝ𝑝 a Variety. We call ℎ and 𝑔 𝒦𝑉
-equivalent, denoted by ℎ ∼𝒦𝑉

𝑔, if there is a diffeomorphism germ Ψ : (ℝ𝑛 ×ℝ𝑝, 0) →
(ℝ𝑛 ×ℝ𝑝, 0) of the form

Ψ(𝑥, 𝑦) = (𝜙(𝑥), 𝜄(𝑥, 𝑦))

such that
1. Ψ(ℝ𝑛 × 𝑉 ) = ℝ𝑛 × 𝑉
2. Ψ(Γ𝑓) = Γ𝑔
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with Γ𝑓  being the graph of 𝑓 .

These conditions are equivalent to requiring that 𝜓(𝑥, 𝑦) ∈ 𝑉  for every 𝑦 ∈ 𝑉 , 𝑥 ∈ ℝ𝑛 and (𝑔 ∘
𝜙)(𝑥) = 𝜓(𝑥, 𝑓(𝑥)), especially implying that 𝑓(𝑥) ∈ 𝑉  if and only if (𝑔 ∘ 𝜙)(𝑥) ∈ 𝑉 .

For our previously considered equivalence relations the concept of their respective tangent
spaces was a quite useful. To define the tangent space for this relation we first define 𝜃𝑉  to be
the ℰ𝑝-module generated by these polynomial vector fields in ℝ𝑝 that are tangent to 𝑉  and 
𝜃𝑉 ,0 = 𝜃𝑉 ∩ 𝔪𝑝𝜃𝑝 as these that also vanish at the origin. By the same rationale as in the regular
𝒦-equivalence case this leads to

Definition 3.2.2.
Let 𝑓 : (ℝ, 0) → (ℝ𝑝, 0) be a smooth map germ and 𝑉 ⊆ ℝ𝑝 an algebraic Variety. The 
𝒦𝑉 -tangent space of 𝑓 is defined to be

𝑇𝒦𝑉 ⋅ 𝑓 = t𝑓(𝔪𝜃) + 𝑓∗𝜃𝑉 ,0

The extended tangent space is defined to be

𝑇𝑒𝒦𝑉 ⋅ 𝑓 = t𝑓(𝜃) + 𝑓∗𝜃𝑉

with 𝑓∗𝜃𝑉  being the ℰ-module of vector fields along 𝑓 that are tangent to 𝑉 , similar for
𝑓∗𝜃𝑉 ,0

Most of the useful theorems we proved for 𝒦-equivalence hold by an analogous proof (which is
hence left to the reader), with the most important probably being the Thom-Levine theorem
and the implication of finite determinacy by finite 𝒦𝑉 -codimension.

Theorem 3.2.1 (The Thom-Levine theorem for 𝒦𝑉 -equivalence) .
Let 𝑓𝑠 be a smooth family of germs in ℰ𝑝 and 𝑉 ⊆ ℝ𝑝 a variety. 𝑓𝑠 is a 𝒦𝑉 -trivial family
if and only if ̇𝑓𝑠 ∈ 𝑇𝒦𝑉 ⋅ 𝑓𝑠, smoothly in 𝑠

Theorem 3.2.2.
Let 𝑓 ∈ ℰ𝑝 be a germ and 𝑉 ⊆ ℝ𝑝 a Variety. If

𝔪𝑘+1𝜃(𝑓) ⊆ 𝔪𝑛𝑇𝒦𝑉 ⋅ 𝑓

then 𝑓 is 𝑘-determined with respect to 𝒦𝑉 -equivalence.

The definitions of induced and versal deformations also follow from the 𝒦-equivalence case in
an obvious way, but in this setting infinitesimal versatility only implies versatility, with the
converse not being true in general.
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Theorem 3.2.3.
Let 𝑉 ⊆ ℝ𝑝 be an algebraic Variety, 𝑓 ∈ ℰ𝑝 a germ and 𝐹 : (ℝ × ℝ𝑎, (0, 0)) → ℝ𝑝 a defor-
mation of 𝑓 . If

𝑇𝑒𝒦𝑉 ⋅ 𝑓 + ̇𝐹 = 𝜃(𝑓)

then 𝐹  is 𝒦𝑉 -versal.

One could go into more detail on all of this, but we sadly can’t.

§4. Final Words
Armed with all of these tools one is now finally able to define two bifurcations 𝐺,𝐹  to be

path-equivalent if 𝑔0 ∼𝒦 𝑓0 and ℎ𝐺 ∼𝒦Δ𝐻
ℎ𝐹  with 𝐻 being the 𝒦-versal unfolding of 𝑔0 and

𝑓0 and ℎ𝐺, ℎ𝐹  such that 𝐺 ∼𝒦 ℎ∗𝑔𝐻 and 𝐹 ∼𝒦 ℎ∗𝑓𝐻, matching the intuition we developed at
the beginning, that two bifurcations should be equivalent if their paths meet the discriminant
in an equivalent way. Using commutative algebra it can even be shown that this notion of path-
equivalence is equivalent to the more “naive” notion of 𝐺,𝐹  being equivalent if 𝑔0 ∼𝒦 𝑓0 and 
𝐺 ∼𝒦un

𝐹  as unfoldings of 𝑔0, 𝑓0 (See [2] for a proof of this. Then one could classify bifurcations
(up to a certain codimension at least) by first using the classification of their behavior at 𝜆 = 0
and then classifying the paths that induce them (For more on that see Chapter 21 of [1]). One
could, but we sadly we can’t.
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