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Preface

The original version of these notes was created in 2018–19 for a two-semester sequence of
topology courses at Humboldt University, Berlin. It has undergone substantial revisions during a
few repetitions of the two-semester course since then, plus the addition of a third semester in 2025.
The topics are divided among the three semesters roughly as follows:

‚ First semester: basic point-set topology, fundamental group and covering spaces, mani-
folds of dimension one and two, introduction to homology

‚ Second semester: homology and cohomology
‚ Third semester: homotopy theory, higher homotopy groups, fiber bundles and character-
istic classes

A few topics appear in multiple semesters, e.g. while the end of the first semester contains material
on singular homology, the second semester does not assume previous knowledge of homology, and
thus starts that subject from the beginning, though at a slightly higher level of sophistication.
This reflects the fact that at our university, Topology I is technically a Bachelor-level course and
Topology II is technically Master-level, though in practice, the audience for both courses is typically
a mixture.

There is a nearly exact one-to-one correspondence between the chapters in these notes and the
actual 90-minute lectures given in the course, though for some chapters that are a bit fatter, some
portions had to be skipped or mentioned only briefly in class.

Since the notes were designed for use at a German university, I have made an effort to include
the German translations (geschrieben in dieser Schriftart) of important terms wherever they are
introduced. The reader may notice that this effort subsides later in the course, as the deeper
one gets into algebraic topology, the harder it becomes to find authoritative German sources for
clarifying the terminology (and I am not linguistically qualified to invent terms in German myself).

About the current version

The version you are looking at right now is being updated regularly in order to serve as lecture
notes for the HU’s course “Topics in Topology” (unofficially known as Topology III) in the Summer
2025 semester.

One innovation of the current version—implemented in the notes for the second and third
semesters but not yet for the first semester—is that all exercises now appear in their own subsection
at the end of each lecture, and some of them are marked with an asterisk (like this (*)). The asterisk
means that the exercise is essential, e.g. because it contains a proof of some important result that
will be used again in the course, perhaps multiple times. Exercises without an asterisk are intended
to be helpful and/or informative, but not essential for the logical continuity of the notes.

Most recent update: March 24, 2025

v



vi PREFACE

Disclaimer and acknowledgements

These lecture notes were written quickly, and while many typos have in the mean time been
eliminated due to careful reading by a few motivated students, some probably remain. If you
notice any, please send me an e-mail and I will correct. Thanks for corrections already received are
due to Lennard Henze, Jens Lücke, Mateusz Majchrzak, Marie Christin Schmidtlein, Rens Breur,
Maxim Nevkrytyh, Laurenz Upmeier zu Belzen, Florian Kaufmann, Ben Eltschig and Daniel Acker.
(Apologies if I forgot anyone!)



First semester (Topologie I)

1. Introduction and motivation

To start with, let us discuss what kinds of problems are studied in topology. This lecture is
only intended as a sketch of ideas, so nothing in it is intended to be precise—we’ll introduce precise
definitions in the next lecture.

(1) Classification of spaces. Let’s assume for the moment that we understand what the word
“space” means. We’ll be more precise about it next week, but in this course, a “space” X is a set
with some extra structure on it such that we have well-defined notions of things like open subsets
(offene Teilmengen) U Ă X and continuous maps/mappings (stetige Abbildungen) f : X Ñ Y

(where Y is another space). It is then natural to consider two spaces X and Y equivalent if there
is a homeomorphism (Homöomorphismus) between them: this means a continuous bijection
f : X Ñ Y whose inverse f´1 : Y Ñ X is also continuous. We say in this case that X and Y are
homeomorphic (homöomorph).

So for instance, one can try to classify all surfaces (Flächen) up to homeomorphism:

The space in this picture is known as a “closed orientable surface of genus (Geschlecht) five”.
The genus is a nonnegative integer that, roughly speaking, counts the number of “handles” you
would need to attach to a sphere in order to construct the surface. The notation Σg is often used
for a surface of genus g ě 0.

There are also closed surfaces that cannot be embedded in R3, though they are harder to
visualize. Here are two examples.

Example 1.1. Here is a picture of the Klein bottle (Kleinsche Flasche), a surface that can
be “immersed” (with self-intersections) in R3, but not embedded:

We’ll give a more precise definition of the Klein bottle as a topological space later.

1



2 FIRST SEMESTER (TOPOLOGIE I)

Example 1.2. The real projective plane (reelle projektive Ebene) RP2 is a space that can
be described in various equivalent ways:

(1) RP2 :“ S2{„, i.e. the set of equivalence classes of elements in the unit sphere S2 :“ tx P
R3 | |x| “ 1u, with the equivalence relation defined by x „ ´x for each x P S2. In other
words, every element of RP2 is a set of two elements tx,´xu, with both belonging to the
unit sphere. (See Remark 1.3 below on notation for defining equivalence relations.)

(2) RP
2 :“ D2{„, where D2 :“ tx P R2 | |x| ď 1u and the equivalence relation is defined by

z „ ´z for every point z on the boundary of the disk. One obtains this from the first
description of RP2 by restricting attention to only one hemisphere of S2; no information
is lost since the other hemisphere is identified with it, but along the equator between
them, there is still an identification of antipodal points.

(3) RP
2 is the space of all lines through 0 in R3. This is equivalent to the first description

since every line through the origin in R3 hits S2 at exactly two points, which are antipodal
to each other.

(4) RP
2 is the space constructed by gluing a disk D2 to a Möbius strip (Möbiusband)

M :“  pθ, t cospπθq, t sinpπθqq P R{Zˆ R2
ˇ̌
θ P R, t P r´1, 1s( .

To see this, draw a picture of the unit sphere S2 and think of RP
2 as S2{„. After

identifying antipodal points of the sphere in this way, a neighborhood of the equator
looks like a Möbius strip, and everything else is a disk (it looks like two disks in the
picture, but the two are identified with each other).

More generally, for each integer n ě 0 one can define the n-sphere

Sn “  
x P Rn`1

ˇ̌ |x| “ 1
(

and the real projective n-space

RP
n “ Sn

Ltx „ ´xu “  
lines through 0 in Rn`1

(
.

Remark 1.3. In topology, we often specify an equivalence relation „ on a set X with words
such as “the equivalence relation defined by x „ fpxq for all x P A” where A Ă X is a subset and
f : AÑ X a map. This should always be interpreted to mean that „ is the smallest equivalence
relation for which the stated property is true, i.e. since every equivalence relation must also be
reflexive and symmetric, it is implied that x „ x for all x P X and fpxq „ x for all x P A, even if we
do not say so explicitly. Transitivity may then imply further equivalences that are not explicitly
specified: for an extreme example, “the equivalence relation on Z such that n „ n`1 for all n P Z”
makes every integer equivalent to every other integer, i.e. there is only one equivalence class.

Here is a result we will be able to prove later in the course:

Theorem 1.4. A closed orientable surface Σg of genus g is homeomorphic to a closed orientable
surface Σh of genus h if and only if g “ h.

The hard part is showing that if g ‰ h, then there cannot exist any continuous bijective
map f : Σg Ñ Σh with a continuous inverse. This requires techniques from the subject known
as algebraic topology. The main idea will be that we can associate to each topological space X
an algebraic object (e.g. a group) HpXq such that any continuous map f : X Ñ Y induces a
homomorphism f˚ : HpXq Ñ HpY q, and such that compositions of continuous maps satisfy

pf ˝ gq˚ “ f˚ ˝ g˚
and the identity map Id : X Ñ X gives rise to the identity map HpXq Ñ HpXq. These prop-
erties imply that whenever f : X Ñ Y is a homeomorphism, f˚ : HpXq Ñ HpY q must be an
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isomorphism. Thus it suffices to compute the algebraic objects HpΣgq and HpΣhq and show that
they are not isomorphic. (Recognizing non-isomorphic groups is often easier than recognizing
non-homeomorphic spaces.)

The full classification of closed orientable surfaces up to homeomorphism is completed by the
following result:

Theorem 1.5. Every closed connected and orientable surface is homeomorphic to Σg for some
g ě 0.

The previous theorem implies of course that for any given surface, the value of g in this result
is unique. For the moment, you can understand the word “orientable” to mean “embeddable in R3”.
There is a similar result for the non-orientable surfaces: notice that by the fourth definition we gave
above for RP2, one can understand RP2 as the result of taking S2, cutting out a hole (e.g. removing
the southern hemisphere, thus leaving the northern hemisphere, which is also a disk D2) and then
gluing in a Möbius strip. That is the first example of the following more general construction:

Theorem 1.6. Every closed connected and non-orientable surface is homeomorphic to a surface
obtained from S2 by cutting out finitely many holes and gluing in Möbius strips.

Surfaces are the simplest interesting examples of more general topological spaces called man-
ifolds (Mannigfaltigkeiten): a surface is a 2-dimensional manifold, while a smooth curve such as
the circle S1 is a 1-dimensional manifold. In general, one can consider n-dimensional manifolds
(abbreviated as “n-manifolds”) for any integer n ě 0; obvious examples include Rn, Sn and RPn.
The classification problem becomes much harder when n ě 3, e.g. the following difficult problem
was open for almost exactly 100 years:

Poincaré conjecture (solved by G. Perelman, c. 2004). Suppose X is a closed and con-
nected 3-manifold that is “simply connected” (i.e. every continuous map f : S1 Ñ X can be extended
continuously to D2 Ñ X). Then X is homeomorphic to S3.

One of the more surprising developments in topology in the 20th century was that the analogue
of this problem in dimensions greater than three turns out to be easier. We’ll introduce the notion
of “homotopy equvalence” (Homotopieäquivalenz) in a few weeks; it turns out that for closed 3-
manifolds, the condition of being simply connected is equivalent to being homotopy equivalent
to S3. Thus the following two results are higher-dimensional versions of the Poincaré conjecture,
but they were proved much earlier:

Theorem 1.7 (S. Smale, c. 1960). For every n ě 5, every closed connected n-manifold homo-
topy equivalent to Sn is also homeomorphic to Sn.

Theorem 1.8 (M. Freedman, c. 1980). Every closed connected 4-manifold homotopy equivalent
to S4 is also homeomorphic to S4.

(2) Differential topology. Though we will not have much time to talk about it in this semes-
ter, the neighboring field of “differential” topology modifies the classification problem by studying
the following stronger notion of equivalence between spaces: X and Y are diffeomorphic (dif-
feomorph) if there exists a homeomorphism f : X Ñ Y such that both f and f´1 are infinitely
differentiable, i.e. C8, and f is in this case called a diffeomorphism (Diffeomorphismus). From
your analysis courses, you at least know what this means if X and Y are open subsets of Euclidean
spaces—defining “differentiability” on spaces more general than that requires some notions from
the subject of differential geometry. In a nutshell, it requires X and Y to be spaces on which any
map X Ñ Y can at least locally (i.e. in a sufficiently small neighborhood of any point) be identified
with a map between open subsets of Euclidean spaces, for which we know how to define derivatives.
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Identifying a small neighborhood in X with an open subset of Rn is another way of saying that
we can choose a set of n independent “coordinates” to describe the points in that neighborhood,
and this is the fundamental property that defines X as an n-dimensional manifold. So talking
about smooth maps and diffeomorphisms doesn’t make sense for arbitrary topological spaces, but
it does make sense for at least some class of manifolds, and these are the main objects of study in
differential topology.

It turns out that up to dimension three, classification up to diffeomorphism is equivalent to
classification up to homeomorphism:

Theorem 1.9. For n ď 3, two n-manifolds X and Y are diffeomorphic if and only if they are
homeomorphic.

For n “ 1 and n “ 2, this theorem can be explained by the fact that both versions of
the classification problem for n-manifolds are not that hard to solve explicitly (this was already
understood in the 19th century), and the answer for both versions turns out to be the same. The
story of n “ 3 is much more complicated, as a complete classification of 3-manifolds is not known,
but this theorem was proved in the first half of the 20th century by using the more combinatorial
notion of “piecewise linear” manifolds as an intermediary notion between “smooth” and “topological”
manifolds.

From dimension four upwards, all hell breaks loose. For example, there are “exotic” R4’s:

Theorem 1.10. There exist 4-manifolds that are homeomorphic but not diffeomorphic to R4.

And from dimension seven upwards, there also tend to exist “exotic spheres”:

Theorem 1.11 (Kervaire and Milnor, 1963). There exist exactly 28 distinct manifolds that are
homeomorphic to S7 but not diffeomorphic to each other.

As you might guess, there is an algebraic phenomenon behind the appearance of the number 28
in this theorem: it is the order of a group. In every dimension n, one can define a group structure
on the set of all smooth manifolds up to diffeomorphism that are homeomorphic to Sn. Milnor and
Kervaire proved that when n “ 7, this group has order 28. In the mean time, this group is quite
well understood in most cases: it is sometimes trivial (e.g. for n “ 1, 2, 3, 5, 6) and often nontrivial,
but always finite. The only case for which almost nothing is known is n “ 4; dimension four turns
out to be the hardest case in differential topology, because it is on the borderline between “low
dimensional” and “high dimensional” methods, where often neither set of methods applies. If you
can solve the following open problem, you deserve an instant Ph.D. (and also a permanent job as
a research mathematician, and possibly a Fields medal):

Conjecture 1.12 (“smooth Poincaré conjecture”). Every manifold homeomorphic to S4 is
also diffeomorphic to S4.

It is difficult to say whether this conjecture is generally believed to be true or false.
(3) Fixed point problems. Here is a simpler class of problems on which we’ll actually be able

to prove something in this semester. Suppose f : X Ñ X is a continuous map. We say x P X
is a fixed point (Fixpunkt) of f if fpxq “ x. The question is: under what assumptions on X

is f guaranteed to have a fixed point? Note that this is fundamentally different from the fixed
point results you’ve probably seen in analysis, e.g. the Banach fixed point theorem (also known as
the contraction mapping principle) is a result about a special class of maps satisfying analytical
conditions, it does not just apply to every continuous map on a certain space.

The simplest fixed point theorem in topology is a statement about maps on the n-dimensional
disk Dn :“ tx P Rn | |x| ď 1u.
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Theorem 1.13 (Brouwer’s fixed point theorem). For every integer n ě 1, every continuous
map f : Dn Ñ Dn has a fixed point.

The case n “ 1 is an easy consequence of the intermediate value theorem, but for n ě 2, we
need some techniques from algebraic topology. Here is a sketch of the argument; we will fill in the
gaps over the course of the semester.

We argue by contradiction, so suppose there exists a continuous map f : Dn Ñ Dn such that
fpxq ‰ x for every x P Dn. Then there is a unique line in Rn connecting fpxq to x for each x P Dn.
Let gpxq P Sn´1 denote the point on the boundary of Dn obtained by following the unique line
from fpxq through x until that line reaches the boundary of the disk. Note that if x is already on
the boundary, then by this definition gpxq “ x. It is not hard to convince yourself that what we’ve
just defined is a continuous map

g : Dn Ñ Sn´1,

and if i : Sn´1 ãÑ Dn denotes the natural inclusion map for the subset Sn´1 Ă Dn, then g satisfies

(1.1) g ˝ i “ IdSn´1 .

We claim that, actually, no such map can exist. The proof of this requires an algebraic invariant,
whose complete construction will require some time and effort, but for now I’ll just tell you the
result: one can associate to each spaceX an abelian groupHn´1pXq called the singular homology
(singuläre Homologie) of X in dimension n´ 1, which satisfies the usual desirable properties that
continuous maps f : X Ñ Y induce group homomorphisms f˚ : Hn´1pXq Ñ Hn´1pY q satisfying
pf ˝ gq˚ “ f˚ ˝ g˚ and Id˚ “ 1. Crucially, one can also compute this invariant for both Dn and
Sn´1, and the answers are

Hn´1pDnq “ t0u, Hn´1pSn´1q – Z.

Now the relation (1.1) implies that g˚ ˝ i˚ is the identity map on Hn´1pSn´1q – Z, so in particular
it is an isomorphism. But g˚ ˝ i˚ also factors through the trivial group Hn´1pDnq – t0u, and
therefore can only be the trivial homomorphism. This is a contradiction, thus proving Brouwer’s
theorem.

We will discuss the construction of singular homology and carry out the required computations
for the above argument in the last few weeks of this semester; homology and the closely related
subject of cohomology (Kohomologie) will then be the main topic of Topology 2 next semester.
But before all that, we will also spend considerable time on other invariants in algebraic topology,
notably the fundamental group, which underlies the notion of “simply connected” spaces appearing
in the Poincaré conjecture.

2. Metric spaces

We now begin in earnest with point-set topology, which will be the main topic for the next
three or four weeks. This subject is important but a little dry, so we will cover only the portions
of it that seem absolutely necessary as groundwork for studying the more geometrically motivated
questions discussed in the previous lecture.

The subject begins with metric spaces, because these are the most familiar examples of topo-
logical spaces. For most students, this material will be a review of things you’ve seen before in
analysis courses. Almost everything in this lecture will be generalized to a wider and slightly more
abstract context when we introduce topologies and topological spaces next week.

Definition 2.1. A metric space (metrischer Raum) is a set X endowed with a function
d : X ˆX Ñ R that satisfies the following conditions for all x, y, z P X :

(i) dpx, yq ě 0;
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(ii) dpx, xq “ 0;
(iii) dpx, yq “ dpy, xq, i.e. “symmetry”;
(iv) dpx, zq ď dpx, yq ` dpy, zq, i.e. the “triangle inequality” (Dreiecksungleichung);
(v) dpx, yq ą 0 whenever x ‰ y.

The function d is then called a metric (Metrik). If d satisfies the first four conditions but not
necessarily the fifth, then it is called a pseudometric (Pseudometrik).

Much of the theory of metric spaces makes sense for pseudometrics just as well as metrics, but
we will see that some desirable and intuitively “obvious” facts become false when the positivity
condition is dropped.

In any metric space pX, dq, one can define the open ball (offene Kugel) of radius r ą 0 about
a given point x P X as

Brpxq :“  
y P X ˇ̌

dpx, yq ă r
(
.

An arbitrary subset U Ă X is then called open (offen) if for every x P U , the ball Bǫpxq is contained
in U for all ǫ ą 0 sufficiently small. (Of course it only needs to be true for one particular ǫ ą 0,
since then it is true for all smaller ǫ as well.) Given a subset A Ă X , another subset U Ă X is
called a neighborhood (Umgebung) of A in X if U contains some open subset of X that also
contains A. Some books require the neighborhood itself to be open, but we will not require this;
it makes very little difference in practice, but this bit of extra freedom in our definition will allow
us to make certain other definitions and proofs a few words shorter now and then.

A subset A Ă X is closed (abgeschlossen) if its complement XzA is open. Achtung: this is
not the same thing as saying that A is not open. It is a common trap for beginners to think that
every subset must be either open or closed, but in reality, most are neither—and some (e.g. X
itself) are both.1

Whenever you encounter a set of axioms, you should ask yourself why we are studying these
axioms in particular—why not a slightly different set of axioms? In the case of metrics, it’s fairly
obvious why we would want any notion of “distance” to satisfy conditions (i)–(iii) and (v), but
perhaps the triangle inequality seems slightly less obvious. So, let us point out two obviously
desirable properties that follow mainly from the triangle inequality:

‚ The “open ball” Brpxq Ă X is also an open subset in the sense of the definition given
above. Indeed, for any y P Brpxq, we have Bǫpyq Ă Brpxq for every ǫ ă r ´ dpx, yq since
every z P Bǫpyq then satisfies

dpx, zq ď dpx, yq ` dpy, zq ă dpx, yq ` ǫ ă dpx, yq ` r ´ dpx, yq “ r.

‚ The function d : XˆX Ñ r0,8q is continuous (see below for a review of the definition of
continuity), since one can use the triangle inequality to show that for every x, y, x1, y1 P X ,

|dpx, yq ´ dpx1, y1q| ď dpx, x1q ` dpy, y1q.
Also, while I’m sure you already accept without question that the distance between two distinct
points should always be positive rather than zero, let us point out one “obvious” fact that would
cease to be true if condition (v) were removed:

‚ For every x P X , the subset txu Ă X is closed. Indeed, Xztxu is an open subset of X
because for every y P Xztxu, the ball Bǫpyq is contained in Xztxu for all ǫ ă dpx, yq.
(This of course presupposes that dpx, yq ą 0.)

You’re probably not used to thinking about pseudometric spaces much, so here is an example.

1Yes, the empty set H Ă X is always open. Reread the definition carefully until you are convinced that this is
true.
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Example 2.2. Let X “ pR ˆ t0, 1uqL„ for an equivalence relation defined by px, 0q „ px, 1q
for every x ‰ 0. We can think of this intuitively as a “real line with two zeroes” because it mostly
looks just the same as R (each number x ‰ 0 corresponding to the equivalence class of px, 0q and
px, 1q), but x “ 0 is an exception, where there really are two distinct points rp0, 0qs and rp0, 1qs
in X . We can then define d : X ˆX Ñ R by

dprpx, iqs, rpy, jqsq :“ |x´ y| for i, j P t0, 1u, x, y P R.

This satisfies conditions (i)–(iv) for all the same reasons that the usual metric on R does, but
condition (v) fails because

dprp0, 0qs, rp0, 1qsq “ 0

even though rp0, 0qs ‰ rp0, 1qs.
Exercise 2.3. Show that for the pseudometric space X in Example 2.2, trp0, 0qsu Ă X is not

a closed subset.

Definition 2.4. In a metric space pX, dq, a sequence (Folge) xn P X indexed by n P N

converges to (konvergiert gegen) a point x P X if for every ǫ ą 0, we have xn P Bǫpxq for all n
sufficiently large. Equivalently, this means that for every neighborhood U Ă X of x, xn P U for all
n sufficiently large. We use the notation

xn Ñ x or limxn “ x

to indicate that xn converges to x.

Note that in the second formulation of this definition, involving arbitrary neighborhoods in-
stead of the open ball Bǫpxq, one can understand the definition without knowing what the metric
is—one only has to know what a “neighborhood” is, which means knowing which subsets are open
and which are not. This will be the formulation that we need when we generalize sequences and
convergence to arbitrary topological spaces.

Here is a similarly standard definition from analysis, for which we give three equivalent formu-
lations.

Definition 2.5. For two metric spaces pX, dXq and pY, dY q, a map (Abbildung) f : X Ñ Y

is called continuous (stetig) if it satisfies any of the following equivalent conditions:
(a) For every x0 P X and ǫ ą 0, there exists a number δ ą 0 such that dY pfpxq, fpx0qq ă ǫ

whenever dXpx, x0q ă δ, i.e. fpBδpx0qq Ă Bǫpfpx0qq.
(b) For every open subset U Ă Y , the preimage

f´1pUq :“ tx P X | fpxq P Uu
is an open subset of X .

(c) For every convergent sequence xn P X , xn Ñ x implies fpxnq Ñ fpxq.
The equivalence of (a) and (b) is pretty easy to see: if (a) holds and U Ă Y is open, then for

every x0 P f´1pUq, the openness of U guarantees an ǫ ą 0 such that fpx0q P Bǫpfpx0qq Ă U . But
then condition (a) gives a δ ą 0 such that fpBδpx0qq Ă Bǫpfpx0qq Ă U , implying Bδpx0q Ă f´1pUq,
hence U is open and (b) therefore holds. Conversely, if (b) holds, then (a) holds because Bǫpfpx0qq
is open and thus so is f´1pBǫpfpx0qqq, which contains x0 and therefore also (by openness) contains
Bδpx0q for some δ ą 0.

Notice that conditions (b) and (c) do not require specific knowledge of the metric, but again
only require knowing what an open subset is. Condition (b) is the one we will later use to de-
fine continuity in general topological spaces. It may be instructive to review why (b) and (c)
are equivalent—especially because this is something that will turn out to be false in general for
topological spaces, at least without some extra assumption.
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Proof that (b) ô (c). To show that (b) ñ (c), suppose xn Ñ x and U Ă Y is a neigh-
borhood of fpxq. Then U contains an open set V containing fpxq, hence f´1pUq contains f´1pVq
which contains x, and by condition (b), f´1pVq is also open, implying f´1pUq is a neighborhood
of x. Convergence then implies that xn P f´1pUq and thus fpxnq P U for all n sufficiently large,
which proves fpxnq Ñ fpxq since the neighborhood U was arbitrary.

For the other direction, we shall prove the contrapositive, i.e. we show that if (b) is false then
so is (c). So assume there is an open subset U Ă Y such that f´1pUq Ă X is not open. Being
not open means that for some x P f´1pUq, no open ball about x is contained in f´1pUq. As a
consequence, for every n P N, we can find a point

xn P B1{npxq such that xn R f´1pUq,
meaning fpxnq R U . The sequence xn then converges to x, since every neighborhood of x contains
B1{npxq for n sufficiently large, implying that xn belongs to the given neighborhood for all large n.
But fpxnq cannot converge to fpxq since it never belongs to U , which is a neighborhood of fpxq. �

I want to point out two things about the above proof. First, the proof that (b) ñ (c) never
mentioned the metric, it only talked about neighborhoods and open sets—as a consequence, that
implication will remain true when we reconsider all these notions in general topological spaces. But
the proof that (c)ñ (b) did refer to the metric, because it used the precise definition of openness in
terms of open balls. We will see that this implication does not actually hold in arbitrary topological
spaces, though a mild modification of it does.

Definition 2.6. A map f : X Ñ Y is a homeomorphism (Homöomorphismus) if it is
continuous and bijective and its inverse f´1 : Y Ñ X is also continuous.

Example 2.7. Consider Rn with the standard Euclidean metric

dEpx,yq :“ |x´ y| “
gffe nÿ

j“1

pxj ´ yjq2

for vectors x “ px1, . . . , xnq and y “ py1, . . . , ynq in Rn. We claim that for any x P Rn and r ą 0,
pBrpxq, dEq is homeomorphic to pRn, dEq. (It follows of course that all open balls in Rn are also
homeomorphic to each other, though it is perhaps easier to prove the latter directly.) To construct
a homeomorphism, choose any continuous, increasing, bijective function f : r0, rq Ñ r0,8q and
define F : Brpxq Ñ Rn by

F pxq “ x and F px` yq “ x` fp|y|q y|y| for all y P Brp0qzt0u Ă Rn.

It is easy to check that both F and F´1 are then continuous.

One conclusion to draw from the above example is that the notion of “boundedness,” which is
very important in analysis, is not going to make much sense in topology. Indeed, we would like to
consider two spaces as “equivalent” whenever they are homeomorphic, so topologically it would be
meaningless to call a space bounded if another space homeomorphic to it is not. What plays this
role instead is the somewhat stricter notion of compactness. To write down the correct definition,
we need to have the notion of an open covering (offene Überdeckung): assume I is any set (the
so-called “index set”) and tUαuαPI is a collection of open subsets Uα Ă X labeled by elements α P I.
We call tUαuαPI an open covering/cover of a subset A Ă X if

A Ă ď
αPI

Uα.
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Definition 2.8. A subset K in a metric space pX, dq is compact (kompakt) if either of the
following equivalent conditions is satisfied:

(a) Every open cover tUαuαPI of K has a finite subcover (eine endliche Teilüberdeckung),
i.e. there is a finite subset tα1, . . . , αNu Ă I such that

K Ă
Nď
i“1

Uαi
.

(b) Every sequence xn P K has a convergent subsequence with limit in K.
We call pX, dq itself a compact space if X is a compact subset of itself.

Compactness is probably the least intuitive definition in this course so far, and at this stage we
can only justify it by saying that it has stood the test of time: many beautiful and useful theorems
have turned out to be true for compact spaces and only compact spaces. The first of these is the
following, which explains why, unlike boundedness, compactness really is a topologically invariant
notion, i.e. if X is compact, then so is every space that is homeomorphic to it.

Theorem 2.9. If f : X Ñ Y is continuous and K Ă X is compact, then so is fpKq Ă Y .

Proof. If tUαuαPI is an open cover of fpKq, then the sets f´1pUαq are all open in X and thus
form an open cover of K, which is compact, so there is a finite subset tα1, . . . , αNu Ă I such that

K Ă
Nď
i“1

f´1pUαi
q,

implying fpKq Ă ŤN
i“1 Uαi

, hence we have found a finite subcover of our given open cover of fpKq.
�

One more remark about compactness: the equivalence of conditions (a) and (b) in Definition 2.8
is not so obvious, but is a fairly deep theorem called the Bolzano-Weierstrass theorem which you’ve
probably seen proved in your analysis classes. We will prove an analogue of that theorem for
topological spaces in Lecture 5, but it does not say that these two definitions are always equivalent—
as with continuity, characterizing compactness via sequences becomes a slightly subtler issue in
topological spaces, though the equivalence does hold for most of the spaces we actually care about.

Let’s see some more examples now.

Example 2.10. For any metric space pX, dq and an arbitrary subset A Ă X , pA, dq is also a
metric space. So for instance, we can use the Euclidean metric dE on Rn`1 to define a metric on
the subset

Sn “  
x P Rn`1

ˇ̌ |x| “ 1
(
,

the n-dimensional sphere.

Example 2.11. Any set X can be assigned the discrete metric (diskrete Metrik), defined
by

dDpx, yq “
#
0 if x “ y,

1 otherwise.

This metric keeps every point at a measured distance away from every other point. So for instance,
we can assign the discrete metric to Rn and compare it with the Euclidean metric dE . We claim
that the identity map on Rn defines a continuous map from pRn, dDq to pRn, dEq, but it is not a
homeomorphism, i.e. its inverse is not continuous. This follows immediately from the next exercise.
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Exercise 2.12. Show that on any set X with the discrete metric dD, every subset is open. In
particular this includes the set txu Ă X for every x P X . Conclude that a sequence xn converges
to x if and only if xn “ x for all n sufficiently large, i.e. the sequence is “eventually constant”. Then
use this to prove the following statements:

(a) All maps from pX, dDq to any other metric space are continuous.
(b) All continuous maps from pRn, dEq to pX, dDq are constant.
Example 2.13. Given two metric spaces pX, dXq and pY, dY q, one can define a product

metric on X ˆ Y by

dXˆY ppx, yq, px1, y1qq :“
a
dXpx, x1q2 ` dY py, y1q2.

This is the obvious generalization of the Euclidean metric, e.g. if X and Y are both R with its
standard Euclidean metric, then dXˆY becomes dE on R2. But this is not the only reasonable
choice of metric on X ˆ Y : for instance, one can also define a metric by

d1XˆY ppx, yq, px1, y1qq :“ max
 
dX px, x1q, dY py, y1q( .

This metric is indeed different: for instance, if we again take X and Y to be the Euclidean R, then
an open ball with respect to d1XˆY in R2 does not look circular, it looks rather like a square. On
the other hand, this does not have a huge impact on the notion of open sets: it is not hard to show
that the identity map from pX ˆ Y, dXˆY q to pX ˆ Y, d1XˆY q is always a homeomorphism.

Definition 2.14. Twometrics d and d1 on the same setX are called (topologically) equivalent
if the identity map from pX, dq to pX, d1q is a homeomorphism.

In light of the various ways we now have for defining what “continuous” means, equivalence of
metrics can also be understood as follows:

‚ d and d1 are equivalent if they both define the same notion of open subsets in X ;
‚ d and d1 are equivalent if they both define the same notion of convergence of sequences
in X .

The characterization in terms of sequences is the subject of the next exercise.

Exercise 2.15. Suppose d1 and d2 are two metrics on the same set X . Show that the identity
map defines a homeomorphism pX, d1q Ñ pX, d2q if and only if the following condition is satisfied:
for every sequence xn P X and x P X ,

xn Ñ x in pX, d1q ðñ xn Ñ x in pX, d2q.
Example 2.16. In functional analysis, one often studies metric spaces whose elements are

functions, and the exact choice of metric on such a space needs to be handled rather carefully.
Consider for instance the set

X “ C0r´1, 1s :“ tcontinuous functions f : r´1, 1s Ñ Ru .
If we think of this as an infinite-dimensional vector space whose elements f P X are described by
the (infinitely many) “coordinates” fptq P R for t P r´1, 1s, then the natural generalization of the
Euclidean metric to such a space is

d2pf, gq :“
dż 1

´1

|fptq ´ gptq|2 dt.

This is the metric corresponding to the so-called “L2-norm” on the space of functions r´1, 1s Ñ R.
On the other hand, our alternative product metric discussed in Example 2.13 above generalizes to
this space in the form

d8pf, gq :“ max
tPr´1,1s

|fptq ´ gptq|,
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which is well defined since continuous functions on compact intervals always attain maxima. It
is not hard to see that the identity map from pX, d8q to pX, d2q is continuous, but is not a
homeomorphism. Indeed, if fn Ñ f in pX, d8q, then

d2pfn, fq2 “
ż 1

´1

|fnptq ´ fptq|2 dt ď
ż 1

´1

max
t
|fnptq ´ fptq|2 dt ď 2d8pfn, fq2 Ñ 0,

proving that fn Ñ f also in pX, d2q. On the other hand, there exist sequences fn P X such that
fn Ñ 0 with respect to d2 but d8pfn, 0q “ 1 for all n: just take a sequence of “bump” functions fn :

r´1, 1s Ñ r0, 1s that all satisfy fnp0q “ 1 but vanish outside of progressively smaller neighborhoods
of 0. These will satisfy d2pfn, 0q2 “ ş1

´1
|fnptq|2 dtÑ 0, but d8pfn, 0q “ maxt |fnptq| “ 1 for all n,

preventing convergence to 0 with respect to d8.
Exercise 2.17. Suppose pX, dXq is a metric space and „ is an equivalence relation on X , with

the resulting set of equivalence classes denoted by X{ „. For equivalence classes rxs, rys P X{ „,
define

(2.1) dprxs, rysq :“ inf
 
dXpx, yq

ˇ̌
x P rxs, y P rys( .

(a) Show that d is a metric on X{ „ if the following assumption is added: for every triple
rxs, rys, rzs P X{ „, there exist representatives x P rxs, y P rys and z P rzs such that

dXpx, yq “ dprxs, rysq and dXpy, zq “ dprys, rzsq.
Comment: The hard part is proving the triangle inequality.

(b) Consider the real projective n-space

RP
n :“ Sn{ „,

where Sn :“ tx P Rn`1 | |x| “ 1u and the equivalence relation identifies antipodal
points, i.e. x „ ´x. If dX is the metric on Sn induced by the standard Euclidean metric
on Rn`1, show that the extra assumption in part (a) is satisfied, so that (2.1) defines a
metric on RPn.

(c) For the metric defined on RP
n in part (b), show that the natural quotient projection

π : Sn Ñ RP
n sending each x P Sn to its equivalence class rxs P RP

n is continuous,
and a subset U Ă RPn is open if and only if π´1pUq Ă Sn is open (with respect to the
metric dX).

(d) Here is a very different example of a quotient space. Define

X “ p´1, 1q2ztp0, 0qu Ă R2

with the metric dX induced by the Euclidean metric on R2. Now fix the function f : X Ñ
R : px, yq ÞÑ xy and define the relation p0 „ p1 for p0, p1 P X to mean that there exists a
continuous curve γ : r0, 1s Ñ X with γp0q “ p0 and γp1q “ p1 such that f ˝ γ is constant.
Show that for this equivalence relation, the extra assumption of part (a) is not satisfied,
and the distance function defined in (2.1) does not satisfy the triangle inequality.

(e) Despite our failure to define X{ „ as a metric space in part (d), it is natural to consider
the following notion: define a subset U Ă X{ „ to be open if and only if π´1pUq is an
open subset of pX, dXq, where π : X Ñ X{ „ denotes the natural quotient projection.
We can then define a sequence rxns P X{ „ to be convergent to an element rxs P X{ „ if
for every open subset U Ă X{ „ containing rxs, rxns P U for all n sufficiently large. Find
a sequence rxns P X{ „ and two elements rxs, rys P X{ „ such that

rxns Ñ rxs and rxns Ñ rys, but rxs ‰ rys.
This could not happen if we’d defined convergence on X{ „ in terms of a metric. (Why
not?)
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Exercise 2.18.

(a) Show that for any metric space pX, dq,
d1px, yq :“ mint1, dpx, yqu

defines another metric on X which is equivalent to d. In particular, this means that every
metric is equivalent to one that is bounded.

(b) Suppose pX, dXq and pY, dY q are metric spaces satisfying

dXpx, x1q ď 1 for all x, x1 P X, dY py, y1q ď 1 for all y, y1 P Y .
Now let Z “ X Y Y , and for z, z1 P Z define

dZpz, z1q “
$’&’%
dXpz, z1q if z, z1 P X,
dY pz, z1q if z, z1 P Y ,
2 if pz, z1q is in X ˆ Y or Y ˆX.

Show that dZ is a metric on Z with the following property: a subset U Ă Z is open in
pZ, dZq if and only if it is the union of two (possibly empty) open subsets of pX, dXq and
pY, dY q. In particular, X and Y are each both open and closed subsets of Z. (Recall that
subsets of metric spaces are closed if and only if their complements are open.)

(c) Suppose pZ, dq is a metric space containing two disjoint subsets X,Y Ă Z that are each
both open and closed. Show that there exists no continuous map γ : r0, 1s Ñ Z with
γp0q P X and γp1q P Y .

(d) Show that if pX, dq is a metric space with the discrete metric, then for every point x P X ,
the subset txu Ă X is both open and closed.

3. Topological spaces

We saw in the last lecture that most of the notions we want to consider in topology (continuous
maps, homeomorphisms, convergence of sequences. . . ) can be defined on metric spaces without
specific reference to the metric, but using only our knowledge of which subsets are open. Moreover,
one can define distinct but “equivalent” metrics on the same space for which the open sets match
and therefore all these notions are the same. This suggests that we should view the notion of open
sets as something more fundamental than a metric. The starting point of topology is to endow a
set with the extra structure of a distinguished collection of subsets that we will call “open”. The
first question to answer is: what properties should we require this collection of subsets to have?

To motivate the axioms, let’s revisit metric spaces for a moment and recall two important
definitions. Both will also make sense in the context of topological spaces once we have fixed a
definition for the latter.

Definition 3.1. Suppose X is a metric (or topological) space.
(a) The interior (offener Kern or Inneres) of a subset A Ă X is the set

Å “  
x P A ˇ̌

some neighborhood of x in X is contained in A
(
.

Points in this set are called interior points (innere Punkte) of A.
(b) The closure (abgeschlossene Hülle or Abschluss) of a subset A Ă X is the setsA “  

x P X ˇ̌
every neighborhood of x in X intersects A

(
.

Points in this set are called cluster points (Berührpunkte) of A.

The following exercise is easy, but it’s worth thinking through why it is true.
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Exercise 3.2. Show that for any subset A Ă X , the interior Å is the largest open subset of
X that is contained in A, and the closure sA is the smallest closed subset of X that contains A, i.e.

Å “ ď
UĂX open, UĂA

U and sA “ č
UĂX closed, AĂU

U .

I worded this exercise in a slightly sneaky way by calling the union of all the open sets inside A
the “largest open subset of X that is contained in A”: how do we actually know that this union of
subsets is also open? This is the point: we know it because in a metric space, arbitrary unions of
open subsets are also open. This follows almost immediately from the definitions in the previous
lecture. It also implies (by taking complements) that arbitrary intersections of closed subsets are
also closed, hence writing sA as an intersection as in the exercise reveals that sA is also a closed
subset. These are properties you’d expect any reasonable notion of “open” or “closed” sets to have,
so we will want to keep them.

What about intersections of open sets? Well, in metric spaces, arbitrary intersections of open
sets need not be open, e.g. the intervals p´1{n, 1{nq Ă R are open for all n P N, butč

nPN

ˆ
´ 1

n
,
1

n

˙
“ t0u

is not an open subset of R. Something slightly weaker is true, however: the intersection of any
two open sets is open, and by an easy inductive argument, it follows that any finite intersection of
open sets is open. Indeed, if U ,V Ă X are both open and x P U X V , we know that U and V each
contain balls about x for sufficiently small radii, so it suffices to take any radius small enough to fit
inside both of them. (Why doesn’t this necessarily work for an infinite intersection of open sets?
Look at the example of the intervals p´1{n, 1{nq above if you’re not sure.) Taking complements,
we also deduce from this discussion that arbitrary unions of closed subsets are not always closed,
but finite unions are.

One last remark before we proceed: in any metric space X , the empty set H and X itself are
both open (and therefore also closed) subsets. With these observations as motivation, here is the
definition on which everything else in this course will be based.

Definition 3.3. A topology (Topologie) on a set X is a collection2 T of subsets of X
satisfying the following axioms:

(i) H P T and X P T ;
(ii) For every subcollection I Ă T ,

ď
UPI

U P T ;

(iii) For every pair U1,U2 P T , U1 X U2 P T .
The pair pX, T q is then called a topological space (topologischer Raum), and we call the sets
U P T the open subsets (offene Teilmengen) in pX, T q.

We can now repeat several definitions from the previous lecture in our newly generalized
context.

Definitions 3.4. Assume pX, TXq and pY, TY q are topological spaces.
(1) A subset A Ă X is closed (abgeschlossen) if XzA P TX .

2I am calling T a “collection” instead of a “set” in an attempt to minimize the inevitable confusion caused by
T being a set whose elements are also sets. Strictly speaking, there is nothing wrong with saying “T is a subset of
2X satisfying the following axioms. . . ,” where 2X is the set-theoretician’s fancy notation for the set consisting of all
subsets of X. But if you found that sentence confusing, my recommendation is to call T a “collection” instead of a
“set”.
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(2) A map f : X Ñ Y is continuous (stetig) if for all U P TY , f´1pUq P TX . Note that if
we prefer to describe the topology in terms of closed rather than open subsets, then it is
equivalent to say that for all U Ă Y closed, f´1pUq Ă X is also closed.

(3) A neighborhood (Umgebung) of a subset A Ă X is any subset U Ă X such that
A Ă V Ă U for some V P TX .

(4) A sequence (Folge) xn P X converges to (konvergiert gegen) x P X (written “xn Ñ x”)
if for every neighborhood U Ă X of x, xn P U holds for all n P N sufficiently large.

Remark 3.5. One can equivalently define a topology T on a set X by specifying the closed
sets T 1 :“ tXzU | U P T u. Then condition (ii) in Definition 3.3 is equivalent toč

API
A P T 1 for all subcollections I Ă T 1,

and condition (iii) is equivalent to

A1 YA2 P T 1 for all A1, A2 P T 1.

For many topologies that one encounters in practice, it is not so easy to say what all the open
sets look like, but much easier to describe a smaller subcollection that “generates” them.

Definition 3.6. Suppose pX, T q is a topological space and B Ă T is a subcollection of the
open sets.

‚ We call B a base or basis (Basis)3 for T if every set U P T is a union of sets in B, i.e.

U “ ď
VPI

V for some subcollection I Ă B.

‚ We call B a subbase or subbasis (Subbasis) for T if every set U P T is a union of finite
intersections of sets in B, i.e.

U “ ď
αPI

Uα

for some collection of subsets Uα Ă X indexed by a (possibly empty) set I, such that for
each α P I,

Uα “ U1
α X . . .X UNα

α

for some Nα P N and U1
α, . . . ,U

Nα
α P B.

Every base is obviously also a subbase, though we’ll see in a moment that the converse is not
true. You should take a moment to convince yourself that given any collection B of subsets of X
that cover all of X (meaning X “ Ť

UPB U), B is a subbase of a unique topology on X , namely the
smallest topology that contains B. It consists of all unions of finite intersections of sets from B,
and we say in this case that the topology T is generated by the collection B.

Example 3.7. The standard topology on R has the collection of all open intervals tpa, bq Ă
R | ´ 8 ď a ă b ď 8u as a base. The smaller subcollection of half-infinite open intervals
tp´8, aq | a P Ru Y tpa,8q | a P Ru is also a subbase, though not a base. (Why not?)

3Things got slightly confusing in Tuesday’s lecture because when I stated the definition of a base, I neglected
at first to require B Ă T , i.e. not only is every open set a union of sets from B, but the sets in B are themselves also
open, and as a result, every union of sets from B is also an open set. If one did not require the latter, then some
stupid examples would be possible, e.g. the collection of one-point subsets would be a base for every topology. With
the correct definition, however, B determines T uniquely, so taking B to consist of all one-point subsets automatically
makes T the discrete topology.
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Example 3.8. If pX, dq is any metric (or pseudometric) space, the natural topology on X

induced by the metric is defined via the base

B “  
Brpxq Ă X

ˇ̌
x P X, r ą 0

(
.

Note that if d and d1 are equivalent metrics as in Definition 2.14, then they induce the same
topology on X : indeed, if the identity map pX, dq Ñ pX, d1q is a homeomorphism then it maps
open sets to open sets. A topology that arises in this way from a metric is called metrizable
(metrisierbar).

Example 3.9. On any set X , the discrete topology is the collection T consisting of all
subsets of X . Take a moment to convince yourself that this is a topology, and moreover, it is
metrizable—it can be defined via the discrete metric, see Definition 2.11. (Can you think of another
metric onX that defines the same topology?) As a base for T , we can take B “  txu Ă X

ˇ̌
x P X(

.
Note that since all subsets are open, all subsets are also closed! Moreover:

‚ Every map f : X Ñ R is continuous.
‚ A map f : R Ñ X is continuous if and only if it is constant. Here is a quick proof: for
every x P X , txu Ă X is both open and closed, so continuity requires f´1pxq Ă R also to
be both open and closed, but the only subsets of R with this property are R itself and
the empty set.

‚ A sequence xn P X converges to x P X if and only if xn “ x for all n P N sufficiently
large.

Example 3.10. Also on any set X , one can define the trivial (also sometimes called the
“indiscrete”) topology T “ tH, Xu. This topology has the distinguishing feature that every point
x P X has only one neighborhood, namely the whole set. We then have:

‚ A map f : X Ñ R is continuous if and only if it is constant. Proof: Suppose f is
continuous, x0 P X and fpx0q “ t P R. Then for every ǫ ą 0, f´1pt´ ǫ, t` ǫq is an open
subset of X containing x0, so it is not H and is therefore X . This proves

fpXq Ă č
ǫą0

pt´ ǫ, t` ǫq “ ttu.

‚ All maps f : RÑ X are continuous.
‚ xn Ñ x holds always, i.e. all sequences in X converge to all points! This proves that
pX, T q is not metrizable, as the limit of a convergent sequence in a metric space is always
unique. (Prove it!)

Example 3.11. The cofinite topology on a set X is defined such that a proper subset A Ă X

is closed if and only if it is finite. Take a moment to convince yourself that this really defines a
topology—see Remark 3.5. (Note that X itself is automatically closed but does not need to be
finite, since it is not a proper subset of itself.) The neighborhoods of a point x P X are then all of
the form Xztx1, . . . , xN u for arbitrary finite subsets x1, . . . , xN P X that do not include x.

Suppose T1 and T2 are two topologies on the same set X such that

T1 Ă T2,

meaning every open set in pX, T1q is also an open set in pX, T2q. In this case we say that T2 is
stronger/finer/larger than (stärker/feiner als) T1, and T1 is weaker/coarser/smaller than
(schwächer/gröber als) T2. For example, since the open sets Rztx1, . . . , xNu for the cofinite topol-
ogy on R are also open with respect to its standard topology, we can say that the standard topology
of R is stronger than the cofinite topology. On any set, the discrete topology is the strongest, and
the trivial topology is the weakest. In general, having a stronger topology means that fewer se-
quences converge, fewer maps into X from other spaces are continuous, but more functions defined
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on X are continuous. In various situations, it is common and natural to specify a topology on a set
as being the “strongest” or “weakest” possible topology subject to the condition that some given
collection of maps are all continuous. We will see some examples of this below.

There are several natural ways in which a given topology on one or more spaces can induce a
topology on some related space.

Definition 3.12. pX, T q determines on any subset A Ă X the so-called subspace topology
(Unterraumtopologie)

TA :“  
U XA

ˇ̌
U P T

(
.

This is the weakest topology on A such that the natural inclusion A ãÑ X is a continuous map.
(Prove it!)

Example 3.13. The standard topology on Rn`1 is the one defined via the Euclidean metric.
We then assign the subspace topology to the set of unit vectors Sn Ă Rn`1, meaning a subset
V Ă Sn will be considered open in Sn if and only if V “ Sn X U for some open subset U Ă Rn`1.
As you might expect, this is the same as the topology induced by the metric on Sn defined by
restricting the Euclidean metric, but for a given open set V Ă Sn, it is not always so easy to see
an open set U Ă Rn`1 such that V “ U X Sn. Such a set can be constructed as follows: for each
x P V , choose ǫx ą 0 such that every y P Sn satisfying |y´ x| ă ǫx is also in V . Then the set

U :“ ď
xPV

 
y P Rn`1

ˇ̌ |y´ x| ă ǫx
(

is a union of open balls and is thus open in Rn`1, and satisfies U X Sn “ V .

Exercise 3.14. Convince yourself that for any metric space pX, dq and subset A Ă X , the nat-
ural metrizable topology on pA, dq is precisely the subspace topology with respect to the topology
on X induced by d.

Definition 3.15. Given a collection of topological spaces tpXα, TαquαPI indexed by a set I
such that Xα X Xβ “ H for all α ‰ β, the disjoint union (disjunkte Vereinigung) is the set
X :“ Ť

αPI Xα with the topology

T :“
#ď
αPI

Uα

ˇ̌̌̌
Uα P Tα for all α P I

+
.

We typically denote the topological space pX, T q defined in this way byž
αPI

Xα,

or for finite collections I “ t1, . . . , Nu, X1 > . . . > XN . The topology on this space is called the
disjoint union topology.

Exercise 3.16. Show that the disjoint union topology T on X “ š
αXα is the strongest

topology on this set such that for every α P I, the inclusion Xα ãÑ X is continuous.

Remark 3.17. A key feature of the disjoint union topology is that for every individual α P I,
the subset Xα Ă X is both open and closed. It follows that there is no continuous path γ : r0, 1s Ñ
X with γp0q P Xα and γp1q P Xβ for α ‰ β, cf. Exercise 2.18(c).

Remark 3.18. It is also often useful to be able to discuss disjoint unions
š
αXα in which the

sets Xα and Xβ need not be disjoint for α ‰ β, e.g. a common situation is where all Xα are taken
to be the same fixed set Y . In this case we still want to treat Xα and Xβ as disjoint “copies” of the
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same subset when α ‰ β, so that no element in the union can belong to more than one of them.
One way to do this is by redefining the set X “š

αXα as

X :“  pα, xq ˇ̌ α P I, x P Xα

(
,

so that the disjoint union topology now literally becomes the collection of all subsets in X of the
form ď

αPI
tαu ˆ Uα

with Uα Ă Xα open for every α, and in analogy with Exercise 3.16, this is the strongest topology
on X for which the injective maps Xα Ñ X : x ÞÑ pα, xq are continuous for all α P I. We
will usually not bother with this cumbersome notation when examples arise: just remember that
whenever X1 and X2 are two sets, disjoint or otherwise, the set X1 > X2 is defined so that its
subsets X1 Ă X1 >X2 and X2 Ă X1 >X2 are disjoint.

Exercise 3.19. Let I “ R and define Xα for each α P R to be the same space consisting
of only one element; for concreteness, say Xα :“ t0u Ă R. According to the definition described
above, this sets up an obvious bijectionž

αPR
t0u :“ tpα, 0q P Rˆ t0uu Ñ R,

pα, 0q ÞÑ α.

Show that this bijection is a homeomorphism if we assign the discrete topology to R on the right
hand side.

4. Products, sequential continuity and nets

From now on, we’ll adopt the following convention of terminology: if I say that X is a “space”,
then I mean X is a topological space unless I specifically say otherwise or the context clearly
indicates that I mean something different (e.g. that X is a vector space). Similarly, if X and Y
are spaces in the above sense and I refer to f : X Ñ Y as a “map”, then I typically mean that f
is a continuous map unless the context indicates otherwise. We will sometimes have occasion to
speak of maps f : I Ñ X where X is a space but I is only a set, on which no topology has been
specified: in this case no continuity is assumed since that notion is not well defined, but I will often
try to be extra clear about it by calling f a “(not necessarily continuous) function” or something
to that effect. I do not promise to be completely consistent about this, but hopefully my intended
meaning will never be in doubt.

The previous lecture introduced two ways of inducing new topologies from old ones, namely on
subspaces and on disjoint unions. It remains to discuss the natural topologies defined on products
and quotients. We’ll deal with the former in this lecture, and then use it to construct a surprising
example illustrating the distinction between continuity and sequential continuity.

Definition 4.1. Given two spaces pX1, T1q and pX2, T2q, the product topology T onX1ˆX2

is generated by the base

B :“  
U1 ˆ U2 Ă X1 ˆX2

ˇ̌
U1 P T1, U2 P T2

(
.

Notice that if X1ˆX2 is endowed with the product topology, then both of the projection maps
π1 : X1 ˆX2 Ñ X1 : px1, x2q ÞÑ x1

π2 : X1 ˆX2 Ñ X2 : px1, x2q ÞÑ x2

are continuous. Indeed, for any open set U1 Ă X1, π´1
1 pU1q “ U1 ˆX2 is the product of two open

sets and is therefore open in X1 ˆX2; similarly, π´1
2 pU2q “ X1 ˆ U2 is open if U2 Ă X2 is open.



18 FIRST SEMESTER (TOPOLOGIE I)

Notice moreover that the intersection of these two sets is U1 ˆU2, so one can form all open sets in
the product topology as unions of sets that are finite intersections of the form π´1

1 pU1q X π´1
2 pU2q.

In other words, the subcollection 
π´1
1 pUq ˇ̌ U P T1

(Y  
π´1
2 pUq ˇ̌ U P T2

(
forms a subbase for the product topology T . This makes T the weakest (i.e. smallest) topology
for which the projection maps π1 and π2 are both continuous.

That last observation leads us to the natural generalization of this discussion to infinite prod-
ucts, but the outcome turns out to be slightly different from what you probably would have
expected.

Suppose tpXα, TαquαPI is a collection of spaces, indexed by an arbitrary (possibly infinite)
set I. Their product can be defined as the setź

αPI
Xα :“

#
functions f : I Ñ ď

αPI
Xα : α ÞÑ xα such that xα P Xα for all α P I

+
.

Note that since I in this discussion is only a set with no topology, there is no assumption of
continuity for the functions α ÞÑ xα. Whether the set I is infinite or finite, we can denote elements
of the product space by

txαuαPI P
ź
αPI

Xα,

so we think of each of the individual elements xα P Xα as “coordinates” on the product.

Definition 4.2. The product topology (Produkttopologie) on
ś
αPI Xα is the weakest

topology such that all of the projection maps

πα :
ź
βPI

Xβ Ñ Xα : txβuβPI ÞÑ xα

for α P I are continuous.

In particular, the product topology must contain π´1
α pUαq for every α P I and Uα P Tα, and it

is the smallest topology that contains them, which means the sets π´1
α pUαq form a subbase. It is

important to spell out precisely what this means. We have

π´1
α pUαq “

#
txβuβPI P

ź
βPI

Xβ

ˇ̌̌̌
xα P Uα

+
,

so in each of these sets, only a single coordinate is constrained. It follows that in a finite inters-
esection of sets of this form, only finitely many of the coordinates will be constrained, while the
rest remain completely free. This implies:

Proposition 4.3. A base for the product topology on
ś
αPI Xα is formed by the collection of

all subsets of the form
ś
αPI Uα where Uα Ă Xα is open for every α P I and Uα ‰ Xα is satisfied

for at most finitely many α P I. �

The last part of the above statement makes no difference when the product is finite, but for
infinite products, it means that arbitrary subsets of the form

ś
αPI Uα Ă

ś
αPI Xα are not open

just because Uα Ă Xα is open for every α. Dropping the “at most finitely many” condition would
produce a much stronger topology with very different properties (see Exercise 4.6 below).

Exercise 4.4. Show that a sequence txnαuαPI P
ś
αPI Xα for n P N converges as n Ñ 8 to

txαuαPI P ś
αPI Xα in the product topology if and only if for all α P I, the individual sequences

xnα converge in Xα to xα.
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Exercise 4.5. Show that for any other space Y , a map f : Y Ñś
αPI Xα is continuous if and

only if πα ˝ f : Y Ñ Xα is continuous for every α P I.
There is a special notation for the product set in the case where all the Xα are taken to be

the same fixed space X : the product
ś
αPI X has an obvious identification with the set of all (not

necessarily continuous) functions I Ñ X , and we write

XI :“ź
αPI

X “ t(not necessarily continuous) functions f : I Ñ Xu .

For example we could now write Rn “ Rt1,...,nu if we preferred. The notation is motivated in
part by the combinatorial observation that if X and I are both finite sets with a and b elements
respectively, then XI has ab elements. The case X “ t0, 1u is popular in abstract set theory since
t0, 1uI “ tf : I Ñ t0, 1uu has a straightforward interpretation as the set of all subsets of I, which is
often abbreviated as 2I :“ t0, 1uI . But this example is not very interesting for topology since t0, 1u
is not a very interesting topological space (no matter which topology you put on it—there are only
four choices). When X is a more interesting space, the most important thing to understand about
XI comes from Exercise 4.4: a sequence of functions fn P XI converges to f P XI if and only if it
converges pointwise, i.e.

fnpαq Ñ fpαq for every α P I.
The product topology on XI is therefore also sometimes called the topology of pointwise con-
vergence (punktweise Konvergenz).

Exercise 4.6. Assume I is an infinite set and tpXα, TαquαPI is a collection of topological
spaces. In addition to the usual product topology on

ś
αXα, one can define the so-called box

topology, which has a base of the form#ź
αPI

Uα

ˇ̌̌̌
Uα P Tα for all α P I

+
.

(a) Compared with the usual product topology, is the box topology stronger, weaker, or
neither?

(b) What does it mean for a sequence in
ś
αXα to converge in the box topology? In par-

ticular, consider the case where all the Xα are a fixed space X and
ś
αX is identified

with the space of all functions XI “ tf : I Ñ Xu; what does it mean for a sequence of
functions fn : I Ñ X to converge in the box topology to a function f : I Ñ X?

With examples like these at our disposal, we can now address the following important question
in full generality:

Question 4.7. To what extent are the following conditions for maps f : X Ñ Y between
topological spaces equivalent?

‚ f´1pUq Ă X is open for every open set U Ă Y ;
‚ For every convergent sequence xn Ñ x in X, fpxnq Ñ fpxq in Y .

The first condition is ordinary continuity, while the second is called sequential continuity
(Folgenstetigkeit). We proved in Lecture 2 that these two conditions are equivalent for maps
between metric spaces, and if you look again at the proof that (b)ñ(c) in the discussion following
Definition 2.5, you’ll see that it still makes sense in arbitrary topological spaces, proving:

Theorem 4.8. For arbitrary topological spaces X and Y , all continuous maps X Ñ Y are
sequentially continuous. �
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The converse is trickier. Look again at the proof in Lecture 2 that (c)ñ(b) for Definition 2.5.
That proof specifically referred to open balls about a point, so it is not so clear how to make sense
of it in topological spaces where there is no metric. We can see however that the argument still
works if we can remove all mention of open balls and replace it with the following lemma:

“Lemma” 4.9. In any topological space X, a subset A Ă X is not open if and only if there
exists a point x P A and a sequence xn P XzA such that xn Ñ x.

I’ve put the word “lemma” in quotation marks here for a very good reason: as written, the
statement is false, and so is the converse of Theorem 4.8! Sequential continuity does not always
imply continuity. Here is a counterexample.

Example 4.10 (cf. [Jän05, §6.3]). Let X “ C0pr0, 1s, r´1, 1sq Ă r´1, 1sr0,1s, i.e. X is the set of
all continuous functions f : r0, 1s Ñ r´1, 1s, and we assign to it the subspace topology as a subset
of the space r´1, 1sr0,1s of all functions f : r0, 1s Ñ r´1, 1s. In other words, X carries the topology
of pointwise convergence. Next, define Y to be the same set, but with the topology induced by
the L2-metric

d2pf, gq “
dż 1

0

|fptq ´ gptq|2 dt.
Now consider the identity map from X to Y :

Φ : X Ñ Y : f ÞÑ f.

If fn Ñ f is a convergent sequence in X , then the functions converge pointwise, so |fn ´ f |2
converges pointwise to 0, and we claim that this implies

ş1
0
|fnptq ´ fptq|2 dt Ñ 0. This re-

quires a fundamental result from measure theory, Lebesgue’s dominated convergence theorem (see
e.g. [LL01, §1.8] or [Rud87, Theorem 1.34]): it states that if gn is a sequence of measurable func-
tions that converge almost everywhere to g and all satisfy |gn| ď G for some Lebesgue integrable
function G, then

ş
gn converges to

ş
g. In the present case, the hypotheses are satisfied since the

functions fn take values in the bounded domain r´1, 1s, which bounds |fn´f | uniformly below the
constant (and thus integrable) function 2. We conclude that d2pfn, fq Ñ 0, hence Φ is sequentially
continuous.

To show however that Φ is continuous, we would need to find for every ǫ ą 0 a neighborhood
U Ă X of 0 such that ΦpUq Ă Bǫp0q Ă Y . The trouble here is that neighborhoods in X (with
the product topology) are somewhat peculiar objects: if U is one, then it contains some open
set containing 0, which means it contains at least one of the sets

ś
αPr0,1s Uα in our base for the

product topology, where the Uα are all open neighborhoods of 0 in r´1, 1s but there is at most a
finite subset I Ă r0, 1s consisting of α P r0, 1s for which Uα ‰ r´1, 1s. Now choose a continuous
function f : r0, 1s Ñ r0, 1s that vanishes on the finite subset I but equals 1 on a “large” subset of
r0, 1szI. Depending how many points are in I, you may have to make this function oscillate very
rapidly back and forth between 0 and 1, but since I is only finite, you can still do this such that the
measure of the domain on which f “ 1 is as close to 1 as you like, which makes d2pf, 0q also only
slightly less than 1. In particular, f belongs to the neighborhood U in X but not to Bǫp0q Ă Y if
ǫ is sufficiently small.

We deduce from the above example that “Lemma” 4.9 is not always true, since it would imply
that continuity and sequential continuity are equivalent. We are led to ask: what extra hypotheses
could be added so that the lemma holds?

Definition 4.11. Given a point x in a space X , a neighborhood base (Umgebungsbasis)
for x is a collection B of neighborhoods of x such that every neighborhood of x contains some
U P B.
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Recall that a set I is countable (abzählbar) if it admits an injection into the natural num-
bers N. This definition allows I to be either finite or infinite; if it is “countably infinite” then we
can equivalently say that I admits a bijection with N. This is also equivalent to saying that there
exists a sequence txn P IunPN that includes every point of I. For example, it is easy to show that
the set Q of rational numbers is countable, but Cantor’s famous “diagonal” argument shows that
R is not.

Definition 4.12 (the countability axioms). A space X is called first countable (“X erfüllt
das erste Abzählbarkeitsaxiom”) if every point in x has a countable neighborhood base. We call X
second countable (“X erfüllt das zweite Abzählbarkeitsaxiom”) if its topology has a countable
base.

It is easy to see that every second countable space is also first countable: if X has a countable
base B, then for each x P X , the collection of sets in B that contain x is a countable neighborhood
base for x. The next example shows that the converse is false.

Example 4.13. If X has the discrete topology, then it is first countable because for each
x P X , one can form a neighborhood base out of the single open set txu Ă X . But X is second
countable if and only if X itself is a countable set (prove it!), so e.g. R with the discrete topology
is first but not second countable.

Example 4.14. All metric spaces are first countable. Indeed, for every x P X , the collection of
open balls B1{npxq Ă X for n P N forms a countable neighborhood base. (Note that Example 4.13
is a special case of this, so not all metric spaces are second countable.)

We can now prove a corrected version of “Lemma” 4.9. Let us first make a useful general
observation that follows directly from the axioms of a topology.

Lemma 4.15. In any space X, a subset A Ă X is open if and only if every point x P A has a
neighborhood V Ă X that is contained in A.

Proof. If the latter condition holds, then A is the union of open sets contained in such
neighborhoods and is therefore open. Conversely, if A is open, then A itself can be taken as the
desired neighborhood of every x P A. �

Lemma 4.16. In any first countable topological space X, a subset A Ă X is not open if and
only if there exists a point x P A and a sequence xn P XzA such that xn Ñ x.

Proof. If A Ă X is open, then for every x P A and sequence xn P X converging to x, we
cannot have xn P XzA for all n since A is a neighborhood of x. This is true so far for all topological
spaces, with or without the first countability axiom, but the latter will be needed in order to prove
the converse. So, suppose now that A Ă X is not open, which by Lemma 4.15, means there
exists a point x P A such that no neighborhood V Ă X of x is contained in A. Fix a countable
neighborhood base U1,U2,U3, . . . for x.

It will make our lives slightly easier if the neighborhood base is a nested sequence, meaning

X Ą U1 Ą U2 Ą U3 Ą . . . Q x,
and we claim that this can be assumed without loss of generality. Indeed, set U 11 :“ U1, and if
U2 is not contained in U 11, consider instead the set U2 X U 11, which is also a neighborhood of x
and therefore (by the definition of a neighborhood base) contains Un for some n P N. Since Un is
contained in U 11, we then set U 12 :“ Un. Now continue this process by setting U 13 :“ Um such that
Um Ă U 12 X U3 and so forth. This algorithm produces a nested sequence U 11 Ą U 12 Ą U 13 Ą . . . such
that U 1n Ă Un for every n, hence the new neighborhoods also form a neighborhood base for x. Let
us replace our original sequence with the nested sequence and continue to call it tUnunPN.
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With this new assumption in place, observe that since none of the neighborhoods Un can be
contained in A, there exists a sequence of points

xn P Un such that xn R A.
This sequence converges to x since every neighborhood V Ă X of x contains one of the UN , implying
that for all n ě N ,

xn P Un Ă UN Ă V .

�

Combining this lemma with our proof in Lecture 2 that sequential continuity implies continuity
in metric spaces yields:

Corollary 4.17. For any spaces X and Y such that X is first countable, every sequentially
continuous map X Ñ Y is also continuous. �

It is possible to generalize this result beyond first countable spaces, but it requires expanding
our notion of what a “sequence” can be. If you think of a sequence in X as a map from the (ordered)
set of natural numbers N to X , then one possible way to generalize is to consider more general
partially ordered sets as domains. Recall that a binary relation ă defined on some subset of all
pairs of elements in a set I is called a partial order (Halbordnung or Teilordnung) if it satisfies
(i) x ă x for all x, (ii) x ă y and y ă x implies x “ y, and (iii) x ă y and y ă z implies x ă z. We
write “x ą y” as a synonym for “y ă x”, and the set I together with its partial order ă is called a
partially ordered set (partiell geordnete Menge). One obvious example is pN,ďq, though unlike
this example (which is totally ordered), it is not generally required in a partially ordered set pI,ăq
that every pair of elements x, y P I satisfy either x ă y or y ă x. We will see more exotic examples
below.

Definition 4.18. A directed set (gerichtete Menge) pI,ăq consists of a set I with a partial
order ă such that for every pair α, β P I, there exists an element γ P I with γ ą α and γ ą β.

The natural numbers pN,ďq clearly form a directed set, but in topology, one also encounters
many interesting examples of directed sets that need not be totally ordered or countable.

Example 4.19. If X is a space and x P X , one can define a directed set pI,ăq where I is the set
of all neighborhoods of x in X , and U ă V for U ,V P I means V Ă U . This is a directed set because
given any pair of neighborhoods U ,V Ă X of x, the intersection U XV is also a neighborhood of x
and thus defines an element of I with U X V Ă U and U X V Ă V . Note that neither of U and V

need be contained in the other, so they might not satisfy either U ă V or V ă U .

Definition 4.20. Given a space X , a net (Netz) txαuαPI in X is a function I Ñ X : α ÞÑ xα,
where pI,ăq is a directed set.

Definition 4.21. We say that a net txαuαPI in X converges to x P X if for every neighbor-
hood U Ă X of x, there exists an element α0 P I such that xα P U for every α ą α0.

Convergence of nets is also sometimes referred to in the literature asMoore-Smith convergence,
see e.g. [Kel75]. Note that a net txαuαPI whose underlying directed set is pI,ăq “ pN,ďq is simply
a sequence, and the above definition then reduces to the usual notion of convergence for a sequence.
We can now prove the most general corrected version of “Lemma” 4.9.

Lemma 4.22. In any space X, a subset A Ă X is not open if and only if there exists a point
x P A and a net txαuαPI in X that converges to x but satisfies xα R A for every α P I.
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Proof. If A Ă X is open then it is a neighborhood of every x P A, so the nonexistence of
such a net is an immediate consequence of Definition 4.21. Conversely, if A is not open, then
Lemma 4.15 provides a point x P A such that for every neighborhood V Ă X of x, there exists a
point

xV P V such that xV R A.
Taking pI,ăq to be the directed set of all neighborhoods of x, ordered by inclusion as in Ex-
ample 4.19, the collection of points txVuVPI is now a net which converges to x since for every
neighborhood U Ă X of x,

V ą U ñ xV P V Ă U .

�

Putting all this together leads to the following statement equating continuity with a generalized
notion of sequential continuity. The proof is just a repeat of arguments we’ve already worked
through, but we’ll spell it out for the sake of completeness.

Theorem 4.23. For any spaces X and Y , a map f : X Ñ Y is continuous if and only if for
every net txαuαPI in X converging to a point x P X, the net tfpxαquαPI in Y converges to fpxq.

Proof. Suppose f is continuous and txαuαPI is a net in X converging to x P X . Then for
any neighborhood U Ă Y of fpxq, f´1pUq Ă X is a neighborhood of x, hence there exists α0 P I
such that α ą α0 implies xα P f´1pUq, or equivalently, fpxαq P U . This proves that tfpxαquαPI
converges in the sense of Definition 4.21 to fpxq.

To prove the converse, let us suppose that f : X Ñ Y is not continuous, so there exists an
open set U Ă Y for which f´1pUq Ă X is not open. Then by Lemma 4.22, there exists a point
x P f´1pUq and a net txαuαPI in X that converges to x but satisfies xα R f´1pUq for every α P I.
Now tfpxαquαPI is a net in Y that does not converge to fpxq, since U is an open neighborhood of
fpxq but fpxαq is never in U . �

Nets take a bit of getting used to in comparison with sequences. The following addendum to
Example 4.10 may help in this regard, but it may also make you feel deeply unsettled.

Example 4.24. For the identity map Φ : X Ñ Y in Example 4.10, one could extract from the
above proof an example of a net txαuαPI in X that converges to 0 without tΦpxαquαPI converging
to 0 in Y , but here is perhaps a slightly simpler example. Define I as the set of all finite subsets of
r0, 1s, with the partial order A ă B for A,B Ă r0, 1s defined to mean A Ă B. Note that pI,ăq is
a directed set since for any two finite subsets A,B Ă r0, 1s, AY B is also a finite subset and thus
an element of I. Now choose for each A P I a continuous function

fA : r0, 1s Ñ r0, 1s
such that fA|A “ 0 but

ş1
0
|fAptq|2 dt ą 1{4. The net tΦpfAquAPI in Y clearly does not converge

to 0 since none of these functions belong to the ball B1{2p0q in Y . But tfAuAPI does converge to
0 in X : indeed, since X has the product topology, any neighborhood U Ă X of 0 contains some
open neighborhood of 0 that is of the form

ś
αPr0,1s Uα for open neighborhoods Uα Ă r´1, 1s of 0

such that Uα “ r´1, 1s for all α outside of some finite subset A0 Ă r0, 1s. It follows that for all
A P I with A ą A0 P I,

fApαq “ 0 P Uα for all α P A0,

implying fA P U .
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5. Compactness

We saw in our discussion of metric spaces (Lecture 2) that boundedness is not a meaningful
notion in topology, i.e. even if we have data such as a metric with which to define what a “bounded”
set is, it may still be homeomorphic to sets that are not bounded. Instead, we consider compact
sets, a notion that is topologically invariant. The main definition carries over from Lecture 2 with
no change.

Definition 5.1. Given a space X and subset A Ă X , an open cover/covering (offene
Überdeckung) of A is a collection of open subsets tUα Ă XuαPI such that A Ă Ť

αPI Uα.

We will also occasionally use the notation

A Ă ď
UPO

U

to indicate an open covering of A, where O is a collection of open subsets of X , i.e. O Ă T , where
T is the topology of X .

Definition 5.2. A subset A Ă X is compact (kompakt) if every open cover of A has a finite
subcover (eine endliche Teilüberdeckung), i.e. given an arbitrary open cover tUαuαPI of A, one can
always find a finite subset tα1, . . . , αNu Ă I such that A Ă Uα1

Y . . .Y UαN
. We say that X itself

is a compact space if X is a compact subset of itself.

Exercise 5.3. Show that a subset A Ă X is compact if and only if A with the subspace
topology is a compact space.

Example 5.4. For any space X with the discrete topology, a subset A Ă X is compact if and
only if A is finite. Indeed, the collection of subsets ttxu Ă XuxPA forms an open covering of A in
the discrete topology, and it has a finite subcovering if and only if A is finite, hence compactness
implies finiteness. The converse follows from the next example.

Example 5.5. In any space X , every finite subset A Ă X is compact. Indeed, for A “
ta1, . . . , aNu with an open covering tUαuαPI , pick any αi P I with ai P Uαi

for i “ 1, . . . , N , then
the sets Uα1

, . . . ,UαN
form an open subcover.

Example 5.6. A subset A Ă Rn in Euclidean space with its standard topology is compact
if and only if it is closed and bounded. This is known as the Heine-Borel theorem, and in one
direction it is easy to prove; see Exercise 5.7 below. For the other direction, you have probably
seen a proof in your analysis classes of the Bolzano-Weierstrass theorem, stating that if A is closed
and bounded then every sequence in A has a convergent subsequence with limit in A; we say in this
case that A is sequentially compact. We will prove in the following that compactness and sequential
compactness are equivalent for second countable spaces, and every subset of Rn is second countable
(see Exercise 5.9 below). A frequently occurring concrete example is the sphere

Sn Ă Rn`1,

which is a closed and bounded subset of Rn`1 and is therefore compact.

Exercise 5.7. Show that in any metric space, compact subsets must be both closed and
bounded.
Hint: For closedness, you may want to assume the theorem proved below that compact first
countable spaces are also sequentially compact—recall that all metric spaces are first countable.

Remark 5.8. Note that the converse of Exercise 5.7 is generally false: being closed and
bounded is not enough for compactness in arbitrary metric spaces. Here is an important class of
examples from functional analysis: a vector spaceH with an inner product x , y is called aHilbert
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space (Hilbertraum) if it is complete (meaning all Cauchy sequences converge) with respect to
the metric dpx, yq “axx´ y, x´ yy. The closed unit ball sB1p0q “ tx P H | xx, xy ď 1u is clearly
both closed and bounded in H, and it is compact if H is finite dimensional since, in this case, H is
both linearly isomorphic and homeomorphic to Rn (or Cn in the complex case) with its standard
inner product. But if H is infinite dimensional, then sB1p0q contains an infinite orthonormal set
e1, e2, e3, . . ., i.e. satisfying

xei, eiy “ 1 for all i, xei, ejy “ 0 if i ‰ j.

It then follows by a standard argument of Euclidean geometry that dpei, ejq “
?
2 whenever i ‰ j,

so for any r ă ?
2{2, no ball of radius r in H can contain more than one of these vectors. It

follows that tBrpxq | x P Hu is an open cover of sB1p0q that has no finite subcover. This way of
characterizing the distinction between finite- and infinite-dimensional Hilbert spaces in terms of
the compactness of the unit ball has useful applications, e.g. in the theory of elliptic PDEs. The
latter has many quite deep applications in geometry and topology, for instance the index theory of
Atiyah-Singer (see [Boo77,BB85]), gauge-theoretic invariants of smooth manifolds [DK90], and
the theory of pseudoholomorphic curves in symplectic topology [MS12,Wen18].

Exercise 5.9. A space X is called separable (separabel) if it contains a countable subset
A Ă X that is also dense (dicht), meaning the closure4 of A is X .

(a) Show that if X is a metric space and A Ă X is a dense subset, then the collection of open
balls tB1{npxq Ă X | n P N, x P Au forms a base for the topology of X .

(b) Deduce that every separable and metrizable space is second countable.
(c) Show that Rn with its standard topology is separable.
(d) Show that if X is any second countable space, then every subset A Ă X with the subspace

topology is also second countable.

Example 5.10. A union of finitely many compact subsets in a space X is also compact. (This
is an easy exercise.)

The next result implies that closed subsets in compact spaces are also compact.

Proposition 5.11. For any compact subset K Ă X, if A Ă X is closed and also is contained
in K, then A is compact.

Proof. Suppose tUαuαPI is an open cover of A. Since A is closed, XzA is open, so that
supplementing the collection tUαuαPI with XzA defines an open cover of X , and therefore also an
open cover of K. Since K is compact, there is then a finite subset tα1, . . . , αNu Ă I such that

K Ă Uα1
Y . . .Y UαN

Y pXzAq.
But A Ă K is disjoint from XzA, so this means A Ă Uα1

Y . . . Y UαN
, and we have found the

desired finite subcover for A. �

The following theorem is just a repeat of Theorem 2.9, but in the more general context of
topological rather than metric spaces. The proof carries over word for word.

Theorem 5.12. If f : X Ñ Y is continuous and K Ă X is compact, then so is fpKq Ă Y . �

Now would be a good moment to introduce the quotient topology, since it provides a large
class of new examples of compact spaces.

4We gave the definition of the term closure in Lecture 3 (see Definition 3.1), originally in the context of metric
spaces, but the same definition carries over to general topological spaces without change.
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Definition 5.13. Suppose X is a space and „ is an equivalence relation on X , with the set of
equivalence classes denoted by X{„. The quotient topology on X{„ is the strongest topology
for which the natural projection map π : X Ñ X{„ sending each point x P X to its equivalence
class rxs P X{„ is continuous. Equivalently, a subset U Ă X{„ is open in the quotient topology if
and only if π´1pUq is an open subset of X .

I suggest you pause for a moment to make sure you understand why the two descriptions of
the quotient topology in that definition are equivalent. Applying Theorem 5.12 to the continuous
projection π : X Ñ X{„, we now have:

Corollary 5.14. For any compact space X with an equivalence relation „, X{„ with the
quotient topology is also compact. �

Example 5.15. Since Sn is compact, so is RPn “ Sn
Ltx „ ´xu if we assign it the quotient

topology. (Note that by Exercise 2.17(c), the quotient topology on RP
n is metrizable, and can be

defined in terms of a natural metric induced on the quotient from the Euclidean metric restricted
to Sn.)

Exercise 5.16. The space S1, known as the circle, is normally defined as the unit circle in
R2 and endowed with the subspace topology (induced by the Euclidean metric on R2). Show that
the following spaces with their natural quotient topologies are both homeomorphic to S1:

(a) R{Z, meaning the set of equivalence classes of real numbers where x „ y means x´y P Z.
(b) r0, 1s{„, where 0 „ 1.

For the next example, we introduce a convenient piece of standard notation. The quotient of a
space X by a subset A Ă X is defined as

X{A :“ X{„
with the quotient topology, where the equivalence relation is defined such that x „ y for every
x, y P A and otherwise x „ x for all x P X . In other words, X{A is the result of modifying X by
“collapsing A to a point”.

(c) Convince yourself that for every n P N, Sn is homeomorphic to Dn{Sn´1, where

Dn :“ tx P Rn | |x| ď 1u.
Remark: Part (b) becomes a special case of part (c) if we replace r0, 1s by D1 “ r´1, 1s.

The remainder of this lecture will be concerned with the extent to which compactness is
equivalent to the notion of sequential compactness (Folgenkompaktheit), defined as follows:

Definition 5.17. A subset A Ă X is sequentially compact if every sequence in A has a
subsequence that converges to a point in A.

As you might guess from our discussion of sequential continuity in the previous lecture, com-
pactness and sequential compactness are not generally equivalent without some extra condition.
But as with continuity, one obtains a result free of extra conditions by replacing sequences with
nets.

Definition 5.18. Suppose pI,ăq is a directed set and txαuαPI is a net in a space X . A point
x P X is called a cluster point (Häufungspunkt) of txαuαPI if for every neighborhood U Ă X of
x and every α0 P I, there exists α ą α0 such that xα P U .

Notice that the above definition is almost identical to that of convergence of txαuαPI to x
(see Definition 4.21), only the roles of “for every” and “there exist” have been reversed at the end.
Informally, x being a cluster point does not require xα to be arbitrarily close to x for all sufficiently
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large α, but only that one should be able to find some α arbitrarily large for which xα is arbitrarily
close. You should take a moment to think about what this definition means in the special case
pI,ăq “ pN,ďq, where the net becomes a sequence, so the notion should be already familiar.

Definition 5.19. Given two directed sets pI,ăq and pJ,ăq, and nets txαuαPI and tyβuβPJ in
a space X , we call tyβuβPJ a subnet (Teilnetz) of txαuαPI if yβ “ xφpβq for all β P J and some
function φ : J Ñ I with the property that for every α0 P I, there exists β0 P J for which β ą β0
implies φpβq ą α0.

If pI,ăq and pJ,ăq in the above definition are both pN,ďq so that txαuαPI and tyβuβPI become
sequences xn and yk respectively, then yk will be a subnet of xn if it is of the form yk “ xnk

for
some sequence nk P N satisfying limkÑ8 nk “ 8. This agrees with at least one of the standard
definitions of the term subsequence (Teilfolge); a slightly stricter definition would require the
sequence nk to be monotone, but this difference is harmless. One should however be careful
not to fall into the trap of thinking that a subnet of a sequence is always a subsequence—even if
pI,ăq “ pN,ďq, Definition 5.19 allows much more general choices for the directed set pJ,ăq and the
function φ : J Ñ N underlying a subnet of a sequence. In particular, the following lemma cannot be
used to find convergent subsequences without imposing further conditions (cf. Lemma 5.22 below).

Lemma 5.20. A net txαuαPI in X has a cluster point at x P X if and only if it has a subnet
convergent to x.

Proof. Let us prove that a convergent subnet can always be derived from a cluster point x.
Let Nx denote the set of all neighborhoods of x in X , and define J “ I ˆNx with a partial order
ă defined by

pα,Uq ą pβ,Vq ô α ą β and U Ă V .

This makes pJ,ăq a directed set since pI,ăq is already a directed set and the intersection of two
neighborhoods is a neighborhood contained in both. Now since x is a cluster point of the net
txαuαPI , there exists a function φ : J Ñ I such that for all pβ,Uq P J , φpβ,Uq “: α satisfies α ą β

and xα P U . It is then straightforward to check that txφpβ,Uqupβ,UqPJ is a subnet convergent to x.
The converse is easier, so I will leave it as an exercise. �

Here is the most general result relating compactness to nets.

Theorem 5.21. A space X is compact if and only if every net in X has a convergent subnet.

Proof. We prove first that if X is compact, then every net txαuαPI has a cluster point (and
therefore by Lemma 5.20 a convergent subnet). Arguing by contradiction, suppose no x P X is
a cluster point of txαuαPI . Then one can associate to every x P X a neighborhood Ux and an
element αx P I such that for every α ą αx, xα R Ux. Without loss of generality let us suppose
the neighborhoods Ux are all open. Then the collection of sets tUxuxPX forms an open cover of X ,
and therefore has a finite subcover since X is compact. This means there is a finite set of points
x1, . . . , xN P X such that X “ Ux1

Y . . .Y UxN
. Now since pI,ăq is a directed set, we can find an

element β P I satisfying
β ą αxi

for all i “ 1, . . . , N,

hence xβ R Uxi
for every i “ 1, . . . , N . But the latter sets cover X , so this is impossible, and we

have found a contradiction.
For the converse, we shall prove that if X is not compact then there exists a net with no

cluster point. Being noncompact means one can find a collection O of open subsets such that
X “ Ť

UPO U but no finite subcollection of them has union equal to X . Define I to be the set of
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all finite subcollections of the sets in O, so by assumption, one can associate to every A P I a point
xA P X satisfying

(5.1) xA R ď
UPA

U .

Define a partial order ă on I by
A ă B ô A Ă B,

and notice that pI,ăq is now a directed set since the union of any two finite subcollections is
another finite subcollection that contains both. This makes txAuAPI a net in X , and we claim
that it has no cluster point. Indeed, if x P X is a cluster point of txAuAPI , then since the sets in
O cover X , there is a set V P O that is a neighborhood of x, and it follows that there must exist
some A ą tVu in I for which

xA P V Ă ď
UPA

U .

This contradicts (5.1) and thus proves the claim that there is no cluster point. �

The next step is to impose countability axioms so that Theorem 5.21 gives us corollaries about
sequential compactness.

Lemma 5.22. If xn P X is a sequence with a cluster point at x P X and x has a countable
neighborhood base, then xn has a subsequence converging to x.

Proof. As in the proof of Lemma 4.16, we can assume without loss of generality that our
countable neighborhood base has the form of a nested sequence of neighborhoods

X Ą U1 Ą U2 Ą . . . Q x.
Since x is a cluster point, we can choose k1 P N so that xk1 P U1, and then inductively for each
n P N, choose kn P N such that xkn P Un and kn ą kn´1. Then xkn is a subsequence of xn and it
converges to x, since for all neighborhoods V Ă X of x, we have V Ą UN for some N P N, implying

n ě N ñ xkn P Un Ă UN Ă V .

�

Corollary 5.23. If X is compact and first countable, then it is also sequentially compact. �

Example 5.24. Though it is not so easy to see this, the space r0, 1sR of (not necessarily
continuous) functions R Ñ r0, 1s with the topology of pointwise convergence is compact, but
not sequentially compact. Compactness follows directly from a deep result known as Tychonoff’s
theorem, which we will discuss in the next lecture. For the construction of a sequence in r0, 1sR
with no convergent subsequence, see Exercise 6.5.

To prove compactness from sequential compactness, it turns out that we will need to invoke
the second countability axiom. In practice, almost all of the spaces that topologists spend their
time thinking about are second countable, resulting from the fact that most of them are separable
and metrizable (see Exercise 5.9). One useful property shared by all second countable (but not
necessarily compact) spaces is the following.

Lemma 5.25. If X is second countable, then every open cover of X has a countable subcover.

Proof. Assume tUαuαPI is an open cover of X and B is a countable base. Then each Uα is a
union of sets in B, and the collection of all sets in B that are contained in some Uα is a countable
subcollection B1 Ă B that also covers X . Let us denote B1 “ tV1,V2,V3, . . .u. We can now choose
for each Vn P B1 an element αn P I such that Vn Ă Uαn

, and tUαn
unPN is then a countable subcover

of tUαuαPI . �
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If you now take the second half of the proof of Theorem 5.21 and redo it with the focus on
sequences instead of nets, and with Lemma 5.25 in mind, the result is the following.

Theorem 5.26. If X is second countable and sequentially compact, then it is compact.

Proof. We need to show that every open cover of X has a finite subcover. Since X is second
countable, we can first use Lemma 5.25 to reduce the given open cover to a countable subcover
U1,U2,U3, . . . Ă X . Now arguing by contradiction, suppose that X is sequentially compact but the
sets U1, . . . ,Un do not cover X for any n P N, hence there exists a sequence xn P X such that

(5.2) xn R U1 Y . . .Y Un

for every n P N. Some subsequence xkn then converges to a point x P X , which necessarily lies
in UN for some N P N. It follows that xkn also lies in UN for all n sufficiently large, but this
contradicts (5.2) as soon as kn ě N . �

Exercise 5.27. Consider the space

X “  
f P r0, 1sR ˇ̌

fpxq ‰ 0 for at most countably many points x P R
(
,

with the subspace topology that it inherits from r0, 1sR.
(a) Show that X is sequentially compact.

Hint: For any sequence fn P X , the set
Ť
nPNtx P R | fnpxq ‰ 0u is also countable.

(b) For each x P R, define Ux “ tf P X | ´ 1 ă fpxq ă 1u. Show that the collection
tUx Ă X | x P Ru forms an open cover of X that has no finite subcover, hence X is not
compact.

Corollary 5.23 and Theorem 5.26 combine to give the following result that is easy to remember:

Corollary 5.28. A second countable space is compact if and only if it is sequentially compact.
�

A loose end: We know from Exercise 5.9 that every separable metric space is second countable,
thus Corollary 5.28 implies the equivalence of compactness and sequential compactness for sepa-
rable metric spaces, which includes most of the metric spaces that one uses in practice. However,
more than this was claimed in Lecture 2: the equivalence should hold in all metric spaces, and this
does not quite follow from what we’ve proved here. The missing ingredient needed is the notion
of total boundedness : one can show that every sequentially compact set A in a metric space X is
totally bounded (total beschränkt), meaning that for every ǫ ą 0, A is contained in the union
of finitely many balls of radius ǫ. Taking ǫ “ 1{n for n P N then provides a countable collection of
open balls covering A, which can serve as a substitute for the countable subcover we used in the
proof of Theorem 5.26. We will not go further into the details here, since this is a topology and
not an analysis course, and we will not need the result going forward.

6. Tychonoff’s theorem and the separation axioms

Topic 1: Products of compact spaces. Here is a result that may sound less surprising at
first than it actually is.

Theorem 6.1 (Tychonoff’s theorem). For any collection of compact spaces tXαuαPI , the prod-
uct

ś
αPI Xα is compact.

Nonmathematical remark. Thinking like an Anglophone may lead you to false assumptions
about the pronunciation of the name Tychonoff, e.g. I was mispronouncing it for years until I finally
looked up the name on Wikipedia in the context of teaching this course. The original Russian
spelling is Tihonov, which would normally get transliterated into English as Tikhonov. The
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reason he instead became known outside of Russia as Tychonoff is that his papers were published
in German, hence different phonetic conventions.

When I is a finite set, Theorem 6.1 says something not at all surprising, and the proof is
straightforward, so let’s start with that.

Proof of Theorem 6.1 for finite products. By induction, it will suffice to prove that
if X and Y are both compact spaces then so is X ˆ Y . We will do so by showing that every
net in X ˆ Y has a convergent subnet. Recall that a net tpxα, yαquαPI in X ˆ Y converges to
px, yq P X ˆ Y if and only if the nets txαuαPI in X and tyαuαPI in Y converge to x and y

respectively. (The corresponding fact about sequences was proved in Exercise 4.4—the proof for
nets is the same.) Now, since X is compact, txαuαPI has a subnet txφpβquβPJ convergent to some
point x P X , where J is some other directed set with a suitable function φ : J Ñ I. Compactness
of Y implies in turn that tyφpβquβPJ has a subnet tyφpψpγqquγPK convergent to some point y P Y .
We therefore obtain a subnet

tpxφ˝ψpγq, yφ˝ψpγqquγPK
of the original net tpxα, yαquαPI that converges in X ˆ Y to px, yq. �

The much less obvious aspect of Theorem 6.1 is that it is also true for infinite products, even
those for which the index set I is uncountably infinite. So it follows for instance that the space

r0, 1sR “ tnot necessarily continuous functions f : RÑ r0, 1su “ ź
αPR

r0, 1s

with the topology of pointwise convergence is compact, as an immediate consequence of the fact that
r0, 1s is compact. Of course, this does not mean that every sequence of functions fn : R Ñ r0, 1s
has a pointwise convergent subsequence! That would be truly surprising, but it is false (see
Exercise 6.5); it turns out that r0, 1sR is not a first countable space, so it is allowed to be compact
without being sequentially compact.

For a slightly different example, r´1, 1sN is compact. We can identify this space with the set
of all sequences in r´1, 1s, again with the topology of pointwise convergence, i.e. a sequence of
sequences txnkukPN P r´1, 1sN converges as n Ñ 8 to a sequence txkukPN if limnÑ8 xnk “ xk for
every k P N. Now observe that r´1, 1sN also contains the unit ball in the infinite-dimensional
Hilbert space

ℓ2r´1, 1s :“
#
txk P RukPN

ˇ̌̌̌
ˇ 8ÿ
k“1

|xk|2 ă 8
+

with metric defined by

dptxku, tykuq2 “
8ÿ
k“1

|xk ´ yk|2.

The unit ball in ℓ2r´1, 1s is clearly noncompact since it contains the sequence of sequenes

p1, 0, 0, . . .q, p0, 1, 0, . . .q, p0, 0, 1, 0, . . .q, . . . ,
which converges pointwise to 0 but stays at a constant distance away from 0 with respect to
the metric, so it can have no convergent subsequence in the topology of ℓ2r´1, 1s. It may seem
surprising in this case that the larger set r´1, 1sN is compact, but the reason is that r´1, 1sN has a
much weaker topology than ℓ2r´1, 1s: since it is easier to converge pointwise than it is to converge
in the ℓ2-norm, r´1, 1sN has more sequences with convergent subsequences (or subnets, as the case
may be).
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Remark 6.2. One conclusion you should draw from the above discussion is that Tychonoff’s
theorem depends crucially on the way we defined the product topology on

ś
αPI Xα, i.e. it is

a result about the topology of pointwise convergence. The result becomes false, for instance, if
we replace the usual product topology by the “box” topology from Exercise 4.6. For a concrete
example, consider the set r´1, 1sN with the box topology, meaning sets of the form 

f P r´1, 1sN ˇ̌
fpkq P Uk for all k P N

(
for arbitrary collections of open subsets tUk Ă r´1, 1sukPN are open. Then the sequence of constant
functions fnpkq :“ 1{n converges pointwise to 0, but we claim that it has no cluster point in the
box topology. Indeed, the box topology contains the product topology, so if any subnet of fn
converges in the box topology, then it must also converge in the product topology and hence
pointwise, meaning the only limit it could possibly converge to is 0, and 0 is therefore the only
possible cluster point. But in the box topology,

U :“  
f P r´1, 1sN ˇ̌

fpkq P p´1{k, 1{kq for all k P N
(

is an open neighborhood of 0 satisfying fn R U for all n P N, so 0 is not a cluster point of this
sequence.

Let’s go ahead and prove another special case of Tychonoff’s theorem. The next proof is still
relatively straightforward, and it applies for instance to r´1, 1sN. Part of the idea is to make our
lives easier by dealing with sequences instead of nets, which is made possible by the following
simple observation:

Lemma 6.3. If X1, X2, X3, . . . is a countably infinite sequence of spaces that are all second
countable, then

ś8
i“1Xi is also second countable.

Proof. Fix for each i “ 1, 2, 3, . . . a countable base Bi for the topology of Xi. Then for each
n P N, the collection of sets

On :“
#
U1 ˆ . . .ˆ Un ˆXn`1 ˆXn`2 ˆ . . . Ă

8ź
i“1

Xi

ˇ̌̌̌
ˇ Ui P Bi for each i “ 1, . . . , n

+
is countable since B1 ˆ . . . ˆ Bn is countable. Then the countable union of countable sets O1 Y
O2 YO3 Y . . . is a base for

ś8
i“1Xi, and it is countable. �

Proof of Theorem 6.1, second countable case. Assume the set I is countable and the
spaces Xα are all second countable for α P I. In light of Lemma 6.3 and Theorem 5.26, it will
now suffice to prove that for any sequence X1, X2, X3, . . . of second countable spaces,

ś8
i“1Xi is

sequentially compact. The idea is to combine the argument above for the case of finite products with
Cantor’s diagonal method. In order to avoid too many indices, let us denote elements f Pś8

i“1Xi

as functions f : N Ñ Ť8
i“1Xi that satisfy fpiq P Xi for each i P N. Now given a sequence

fn Pś8
i“1Xi, the compactness of X1 guarantees that there is a subsequence f1

n of fn for which the
sequence f1

np1q in X1 converges. Continuing inductively, we can construct a sequence of sequences
fkn P

ś8
i“1Xi for k, n P N such that for every k ě 2, tfknu8n“1 is a subsequence of tfk´1

n u8n“1 and
the sequence fknpkq in Xk converges as nÑ 8. It follows that for every fixed k P N, the sequence
tfnn pkqu8n“1 in Xk converges, thus tfnn u8n“1 is a convergent subsequence of the original sequence fn
in

ś8
i“1Xi. �

The ideas in the special cases we’ve treated so far can be applied toward a general proof of
Tychonoff’s theorem, but the general case requires one major ingredient that wasn’t needed so far:
the axiom of choice. This makes e.g. the compactness of r´1, 1sr0,1s somewhat harder to grasp
intuitively, as invoking the axiom of choice means that the existence of a cluster point for every
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sequence in r´1, 1sr0,1s is guaranteed, but there is nothing even slightly resembling an algorithm
for finding one. It is known in fact that this is not just a feature of any particular method of
proving the theorem—by a result due to Kelley [Kel50], if one assumes that the usual axioms of
set theory (not including choice) hold and that Tychonoff’s theorem also holds, then the axiom of
choice follows, thus the two are actually equivalent.

Speaking only for myself, I had a Ph.D. in mathematics already for several years before I ever
started to find the axiom of choice remotely worrying, so if you’ve never worried about it before,
I don’t encourage you to start worrying now. As far as this course is concerned, we actually could
have skipped the general case of Tychonoff’s theorem with no significant loss of continuity—I am
including it here mainly for the sake of cultural education, and because the proof itself is interesting.

The proof given below is based on the characterization of compactness in terms of convergent
subnets (Theorem 5.21) and is due to Paul Chernoff [Che92]. Similarly to certain standard results
in functional analysis that also depend on the axiom of choice (e.g. the Hahn-Banach theorem),
it uses the axiom in a somewhat indirect way, namely via Zorn’s lemma, which is known to be
equivalent to the axiom of choice. I do not want to go far enough into abstract set theory here to
explain why it is equivalent: the proof is elementary but somewhat tedious, and you can find it
explained e.g. in [Jän05] or [Kel75]. I would recommend reading through that proof exactly once
in your life. For our purposes, we will just take the following statement of Zorn’s lemma as a black
box.

Lemma 6.4 (Zorn’s lemma). Suppose pP ,ăq is a nonempty partially ordered set in which every
totally ordered subset A Ă P has an upper bound, i.e. for every subset in which all pairs x, y P A

satisfy x ă y or y ă x, there exists an element p P P such that p ą a for all a P A. Then every
totally ordered subset A Ă P also has an upper bound p P P that is a maximal element, i.e. such
that no q P P with q ‰ p satisfies q ą p. �

Proof of Theorem 6.1, general case. We shall continue to denote elements of
ś
αPI Xα

by functions f : I Ñ Ť
αPI Xα satisfying fpαq P Xα for each α P I. Assuming all the Xα are

compact, it suffices by Theorem 5.21 to prove that every net tfβuβPK in
ś
αPI Xα has a cluster

point. The idea of Chernoff’s proof is as follows: we introduce below the notion of a “partial”
cluster point, which may be a function defined only on a subset of I. We will show that the set of
all partial cluster points has a partial order for which Zorn’s lemma applies and delivers a maximal
element. The last step is to show that a maximal element in the set of partial cluster points must
in fact be a cluster point of tfβuβPK .

To define partial cluster points, notice that for any subset J Ă I, restricting any function f Pś
αPI Xα to the smaller domain J defines an element f |J PśαPJ Xα. We will refer to a pair pJ, gq

as a partial cluster point of the net tfβuβPK if J is a subset of I and g PśαPJ Xα is a cluster
point of the net tfβ|JuβPK in

ś
αPJ Xα obtained by restricting the functions fβ : I Ñ Ť

αPI Xα

to J Ă I. Let P denote the set of all partial cluster points of tfβuβPK . It is easy to see that
P is nonempty: indeed, for each individual α P I, the compactness of Xα implies that the net
tfβpαquβPK in Xα has a cluster point xα P Xα, hence ptαu, xαq P P .

There is also an obvious partial order on P : we shall write pJ, gq ď pJ 1, g1q whenever J Ă J 1
and g “ g1|J . In order to satisfy the main hypothesis of Zorn’s lemma, we claim that every totally
ordered subset A Ă P has an upper bound. Being totally ordered means that for any two elements
of A, one is obtained from the other by restricting the function to a subset. We can therefore
define a set J8 Ă I with a function g8 PśαPJ8 Xα by

J8 “ ď
tJ | pJ,gqPAu

J,
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with g8pαq defined as gpαq for any pJ, gq P A such that α P J . The total ordering condition
guarantees that pJ8, g8q is independent of choices, but it is not immediately clear whether it is an
element of P , i.e. whether g8 is a cluster point of tfβ|J8uβPK . To see this, suppose U Ăś

αPJ8 Xα

is a neighborhood of g8, and recall that by the definition of the product topology, this means

g8 P ź
αPJ8

Uα Ă U

for some collection of open sets Uα Ă Xα such that Uα “ Xα for all α outside some finite subset
J0 Ă J8. Since J0 is finite, and A is totally ordered, there exists some pJ, gq P A such that J0 Ă J .
Then the fact that pJ, gq is a partial cluster point means that for every β0 P K, there exists a
β ą β0 for which

fβ |J P
ź
αPJ

Uα.

It follows that fβ |J8 P
ś
αPJ8 Uα as well, hence pJ8, g8q is indeed a partial cluster point.

We can now apply Zorn’s lemma and conclude that P has a maximal element pJM , gM q P P .
We claim JM “ I, which means gM is a cluster point of the original net tfβuβPK in

ś
αPI Xα.

Note that since gM P śαPJM
Xα is a cluster point of tfβ|JM

uβPK , Lemma 5.20 provides a subnet
tfφpγquγPL of tfβuβPK in

ś
αPI Xα whose restriction to JM converges to gM . But if JM ‰ I,

then choosing an element α0 P IzJM , we can exploit the fact that Xα0
is compact and use the

same trick as in the proof of Tychonoff for finite products to find a further subnet that also
converges at α0 to some element x0 P Xα0

. We have therefore found a subnet of tfβuβPK whose
restriction to JM Y tα0u converges to the function g1M P śαPJMYtα0uXα defined by g1M |JM

“ gM

and g1M pα0q “ x0. This means pJM Y tα0u, g1M q P P and pJM Y tα0u, g1M q ą pJM , gM q, which is a
contradiction since pJM , gM q is maximal. �

Exercise 6.5. Consider the space r0, 1sR of all functions f : R Ñ r0, 1s, with the topology
of pointwise convergence. Tychonoff’s theorem implies that r0, 1sR is compact, but one can show
that it is not first countable, so it need not be sequentially compact.

(a) For x P R and n P N, let xpnq P t0, . . . , 9u denote the nth digit to the right of the deci-
mal point in the decimal expansion of x. Now define a sequence fn P r0, 1sR by setting
fnpxq “ xpnq

10
. Show that for any subsequence fkn of fn, there exists x P R such that

fknpxq does not converge, hence fn has no pointwise convergent subsequence.
Food for thought: Could you do this if you also had to assume that x is rational? Pre-
sumably not, because r0, 1sQ is a product of countably many second countable spaces,
and we’ve proved that such products are second countable (unlike r0, 1sR). This implies
that since r0, 1sQ is compact, it must also be sequentially compact.

(b) The compactness of r0, 1sR does imply that every sequence has a convergent subnet,
or equivalently, a cluster point. Use this to deduce that for any given sequence fn P
r0, 1sR, there exists a function f P r0, 1sR such that for every finite subset X Ă R, some
subsequence of fn converges to f at all points in X .
Achtung: Pay careful attention to the order of quantifiers here. We’re claiming that
the element f exists independently of the finite set X Ă R on which we want some
subsequence to converge to f . (If you could let f depend on the choice of subset X ,
this would be easy—but that is not allowed.) On the other hand, the actual choice of
subsequence is allowed to depend on the subset X .

Challenge: Find a direct proof of the statement in part (b), without passing through Tychonoff’s
theorem. I do not know of any way to do this that isn’t approximately as difficult as actually
proving Tychonoff’s theorem and dependent on the axiom of choice.
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So much for Tychonoff’s theorem. In truth, aside from the easy case of finite products, the
general version of this theorem will probably not be mentioned again in this course. You may
hear of it again if you take functional analysis since it lies in the background of the Banach-
Alaoglu theorem on compactness in the weak˚-topology, and I will have occasion to mention it in
Topologie II next semester in the context of the Eilenberg-Steenrod axioms for Čech homology.
But right now we need to discuss a few more mundane things.

Topic 2: Separation axioms. Recall from Proposition 5.11 that closed subsets of compact
spaces are always compact. Your intuition probably tells you that all compact sets are closed, but
this in general is false. Here is a counterexample.

Example 6.6. Recall from Example 2.2 the so-called “line with two zeroes”. We defined it
as a quotient X :“ pR ˆ t0, 1uq{„ by the equivalence relation such that px, 0q „ px, 1q for all
x ‰ 0, with a topology defined via the pseudometric dprpx, iqs, rpy, jqsq “ |x´ y|, i.e. the open balls
Brpxq :“ ty P X | dpy, xq ă ru for x P X and r ą 0 form a base of the topology. Each x P Rzt0u
corresponds to a unique point rpx, 0qs “ rpx, 1qs P X , but for x “ 0 there are two distinct points,
which we shall abbreviate by

00 :“ rp0, 0qs P X and 01 :“ rp0, 1qs P X.
As we saw in Exercise 2.3, the one-point subset t01u Ă X is not closed, but it certainly is compact
since finite subsets are always compact (see Example 5.5). The failure of t01u to be closed results
from the fact that since dp00, 01q “ 0, every neighborhood of 00 also contains 01, implying that
Xzt01u cannot be open.

The example of the line with two zeroes is pathological in various ways, e.g. it has the property
that every sequence convergent to 01 also converges to the distinct point 00. We would now like
to formulate some precise conditions to exclude such behavior. The most important of these will
be the Hausdorff axiom, but there is a whole gradation of stronger or weaker variations on the
same theme, known collectively as the separation axioms (Trennungsaxiome). Intuitively, they
measure the degree to which topological notions such as convergence of sequences and continuity
of maps can recognize the difference between two disjoint points or subsets.

Definition 6.7. A space X is said to satisfy axiom T0 if for every pair of distinct points in X ,
there exists an open subset of X that contains one of these points but not the other.

Since almost all spaces we want to consider will satisfy the T0 axiom, we should point out some
examples of spaces that do not. One obvious example is any space of more than one element with
the trivial topology: if the only open subset other than H is X , then you clearly cannot find an
open set that contains x and not y ‰ x or vice versa. A slightly more interesting example is the
line with two zeroes as in Example 6.6 above, with the pseudometric topology: it fails to be a T0
space because every open set that contains 00 or 01 must contain both of them.

Definition 6.8. A space X is said to satisfy axiom T1 if for every pair of distinct points
x, y P X , there exist neighborhoods Ux Ă X of x and Uy Ă X of y such that x R Uy and y R Ux.

Obviously every T1 space is also T0. The following alternative characterization of the T1 axiom
is immediate from the definitions:

Proposition 6.9. A space X satisfies axiom T1 if and only if for every point x P X, the subset
txu Ă X is closed. �

Definition 6.10. A space X is said to satisfy axiom T2 (the Hausdorff axiom) if for every
pair of distinct points x, y P X , there exist neighborhoods Ux Ă X of x and Uy Ă X of y such that
Ux X Uy “ H.
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Every Hausdorff space is clearly also T1 and T0. Here is an easy criterion with which to
recognize a non-Hausdorff space:

Exercise 6.11. Show that if X is Hausdorff, then for any sequence xn P X satisfying xn Ñ x

and xn Ñ y, we have x “ y.

Finding an example that is T1 but not Hausdorff requires only a slight modification of our
previous “line with two zeroes”.

Example 6.12. Consider X “ pR ˆ t0, 1uq{„ again with px, 0q „ px, 1q for every x ‰ 0, but
instead of the pseudometric topology as in Example 6.6, assign it the quotient topology, meaning
U Ă X is open if and only if its preimage under the projection map π : R ˆ t0, 1u Ñ X :

px, iq ÞÑ rpx, iqs is open. Recall that the quotient topology is the strongest topology for which π
is a continuous map, and in this case, it turns out to be slightly stronger than the pseudometric
topology. For example, the open set

V :“ pp´1, 1q ˆ t0uq Y pp´1, 0q ˆ t1uq Y pp0, 1q ˆ t1uq Ă Rˆ t0, 1u
is π´1pUq for U :“ πpVq Ă X , thus U is open in the quotient topology. But U contains 00 and not
01, so it is not an open set in the pseudometric topology. The existence of this set implies that
X with the quotient topology satisfies T0. By exchanging the roles of 0 and 1, one can similarly
construct an open neighborhood of 01 that does not contain 00, so the space also satisfies T1.
But it does not satisfy T2: even in the quotient topology, every neighborhood of 00 has nonempty
intersection with every neighborhood of 01.

Exercise 6.11 has a converse of sorts, which I will state here only for first countable spaces.
The countability axiom can be removed at the cost of talking about nets instead of sequences; I
will leave the details of this as an exercise for the reader.

Proposition 6.13. A first countable space X is Hausdorff if and only if the limit of every
convergent sequence in X is unique.

Proof. In light of Exercise 6.11, we just need to show that if X is a first countable space that
is not Hausdorff, we can find a sequence xn P X that converges to two distinct points x, y P X .
Since X is not Hausdorff, we can pick two distinct points x and y such that every neighborhood
of x intersects every neighborhood of y. Fix countable neighborhood bases X Ą U1 Ą U2 Ą . . . Q x
and X Ą V1 Ą V2 . . . Q y. Then by assumption, for each n P N there exists a point xn P Un X Vn.
It is now straightforward to verify that xn Ñ x and xn Ñ y. �

The Hausdorff axiom can still be strengthened a bit by talking about neighborhoods of closed
sets rather than points. This can be useful, for instance, when considering the quotient space X{A
defined by collapsing some closed subset A Ă X to a point; cf. Exercise 6.20 below.

Definition 6.14. A space X is called regular (regulär) if for every point x P X and every
closed subset A Ă X not containing x, there exist neighborhoods Ux Ă X of x and UA Ă X of A
such that Ux X UA “ H. We say X satisfies axiom T3 if it is regular and also satisfies T1.

Definition 6.15. A space X is called normal if for every pair of disjoint closed subsets
A,B Ă X , there exist neighborhoods UA Ă X of A and UB Ă X of B such that UA X UB “ H.
We say X satisfies axiom T4 if it is normal and also satisfies T1.

Remark 6.16. The point of including T1 in the definitions of T3 and T4 is that it makes each
one-point subset txu Ă X closed, thus producing obvious implications

(6.1) T4 ñ T3 ñ T2 ñ T1 ñ T0.
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Without assuming T1, it is possible for spaces to be regular or normal without being Hausdorff,
though we will not consider any examples of this. In fact, almost all spaces we actually want to
think about in this course will be Hausdorff, and most will also be normal, thus satisfying all of
these axioms.

Remark 6.17. Some of the above definitions, especially for axioms T3 and T4, can be found
in a few not-quite-equivalent variations in various sources in the literature. One common variation
is to interchange the meanings of “regular” with “T3” and “normal” with “T4”, which destroys the
first two implications in (6.1). These discrepancies are matters of convention which are to some
extent arbitrary: you are free to choose your favorite convention, but must then be careful about
stating your definitions precisely and remaining consistent.

We can now give a better answer to the question of when a compact set must also be closed.

Theorem 6.18. If X is Hausdorff, then every compact subset of X is closed.

Proof. Given a compact set K Ă X , we need to show that XzK is open, or equivalently, that
every x P XzK is contained in an open set disjoint from K. By assumption X is Hausdorff, so for
each y P K, we can find open neighborhoods Uy Ă X of x and Vy Ă X of y such that UyXVy “ H.
Then the sets tVyuyPK form an open cover of K, and since the latter is compact by assumption,
we obtain a finite subset y1, . . . , yN P K such that

K Ă Vy1 Y . . .Y VyN .

The set U :“ Uy1X . . .XUyN is then an open neighborhood of x and is disjoint from Vy1Y . . .YVyN ,
implying in particular that it is disjoint from K. �

Exercise 6.19. Prove:

(a) A finite topological space satisfies the axiom T1 if and only if it carries the discrete
topology.

(b) X is a T2 space (i.e. Hausdorff) if and only if the diagonal ∆ :“ tpx, xq P X ˆXu is a
closed subset of X ˆX .

(c) Every compact Hausdorff space is regular, i.e. compact` T2 ñ T3.
Hint: The argument needed for this was already used in the proof of Theorem 6.18.

(d) Every metrizable space satisfies the axiom T4 (in particular it is normal).
Hint: Given disjoint closed sets A,A1 Ă X , each x P A admits a radius ǫx ą 0 such that
the ball Bǫxpxq is disjoint from A1, and similarly for points in A1 (why?). The unions of
all these balls won’t quite produce the disjoint neighborhoods you want, but try cutting
their radii in half.

Exercise 6.20. Suppose X is a Hausdorff space and „ is an equivalence relation on X . Let
X{„ denote the quotient space equipped with the quotient topology and denote by π : X Ñ X{„
the canonical projection. Given a subset A Ă X , we will sometimes also use the notation X{A
explained in Exercise 5.16.

(a) A map s : X{„ Ñ X is called a section of π if π ˝ s is the identity map on X{„. Show
that if a continuous section exists, then X{„ is Hausdorff.

(b) Show that if X is also regular and A Ă X is a closed subset, then X{A is Hausdorff.
(c) Consider X “ R with the non-closed subset A “ p0, 1s. Which of the separation axioms

T0, . . . , T4 does X{A satisfy?

Just for fun: think about some other examples of Hausdorff spaces X with non-Hausdorff quotients
X{„. What stops you from constructing continuous sections X{„ Ñ X?
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Remark 6.21. In earlier decades, it was common to define compactness slightly differently:
what many papers and textbooks from the first half of the 20th centuary call a “compact space” is
what we would call a “compact Hausdorff space”. You should be aware of this discrepancy if you
consult the older literature.

7. Connectedness and local compactness

We would like to formalize the idea that in some spaces, you can find a continuous path
connecting any point to any other point, and in other spaces you cannot.

Definition 7.1. A space X is called path-connected (wegzusammenhängend) if for every
pair of points x, y P X , there exists a continuous map γ : r0, 1s Ñ X such that γp0q “ x and
γp1q “ y.

A subset of X is similarly called path-connected if it is a path-connected space in the subspace
topology, which is equivalent to saying that any two points in the subset can be connected by a
continuous path in that subset. We will refer to any maximal path-connected subset of a space X
as a path-component (Wegzusammenhangskomponente) of X .

Exercise 7.2. Show that any two path-components of a space X must be either identical or
disjoint, i.e. the path-components partition X into disjoint subsets. One can also express this by
saying that there is a well-defined equivalence relation „ on X such that x „ y if and only if x
and y belong to the same path-component. (Why is that an equivalence relation?)

The notion of path-connectedness is framed in terms of maps into X , but there is also a “dual”
perspective based on functions defined on X . To motivate this, notice that if f : X Ñ t0, 1u is any
continuous function and x, y P X belong to the same path-component, then continuity demands
fpxq “ fpyq. (We will formalize this observation in the proof of Theorem 7.13 below.)

Definition 7.3. A space X is connected (zusammenhängend) if every continuous map X Ñ
t0, 1u is constant.

In many textbooks one finds a cosmetically different definition of connectedness in terms of
subsets that are both open and closed, but the two definitions are equivalent due to the following
result.

Proposition 7.4. A space X is connected if and only if H and X are the only subsets of X
that are both open and closed.

Proof. We prove first that the condition in this statement implies connectedness. The key
observation is that the sets t0u and t1u in t0, 1u are each both open and closed, so if f : X Ñ t0, 1u
is continuous, the same must hold for both f´1p0q and f´1p1q in X . Then one of these is the
empty set and the other is X , so f is constant.

Conversely, suppose X contains a nonempty subset X0 Ă X that is both open and closed
but X0 ‰ X . Then X1 :“ XzX0 is also a nonempty open and closed subset, implying that X is
the union of two disjoint open subsets X0 and X1. We can now define a nonconstant continuous
function f : X Ñ t0, 1u by f |X0

“ 0 and f |X1
“ 1. Checking that it is continuous is easy since

t0, 1u only contains four open sets: the main point is that f´1p0q “ X0 and f´1p1q “ X1 are both
open. �

Remark 7.5. The important fact about t0, 1u used in the above proof was that it is a space
of more than one element with the discrete topology: officially t0, 1u carries the subspace topology
as a subset of R, but this happens to match the discrete topology since 0 and 1 are each centers
of open balls in R that do not touch any other points of t0, 1u. If we preferred, we could have
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replaced Definition 7.3 with the condition that every continuous map f : X Ñ Y to any space Y
with the discrete topology is constant.

We can of course also talk about connected subsets A Ă X , meaning subsets that become
connected spaces with the subspace topology. Spaces or subsets that are not connected are some-
times called disconnected. By analogy with path-components, any maximal connected subset of
X will be called a connected component (Zusammenhangskomponente) of X .

Proposition 7.6. Any two connected components A,B Ă X are either identical or disjoint.

Proof. If A and B are both maximal connected subsets of X and AXB ‰ H, then we claim
that A Y B is also connected. Indeed, any continuous function f : A Y B Ñ t0, 1u must restrict
to constant functions on both A and B, so if y P A X B, then fpxq “ fpyq for every x P A Y B,
implying that every continous function A Y B Ñ t0, 1u is constant. Now if A and B are not
identical, then the set A Y B is strictly larger than either A or B, giving a contradiction to the
maximality assumption. �

Example 7.7. For any collection tXαuαPI of connected spaces, the disjoint union X :“š
αPI Xα has the individual spaces Xα Ă X for α P I as its connected components. Indeed,

endowing X with the disjoint union topology makes each of the subsets Xα Ă X open, and since
XzXα “ Ť

β‰αXβ is then also open, it follows that Xα is also closed. Any strictly larger set
A Ă X with Xα Ă A could not then be connected, as it would contain Xα as a nonempty proper
open and closed subset; this makes Xα a maximal connected subset of X .

Exercise 7.8. Show that if the spaces Xα in Example 7.7 are also path-connected, then they
also form the path-components of the disjoint union X “š

αPI Xα.

For an arbitrary space X , let us choose an index set I with which to label each connected
component of X , so the connected components from a collection of spaces tXαuαPI , each of which
is a subset Xα Ă X endowed with the subspace topology. Proposition 7.6 shows that Xα X
Xβ “ H whenever α ‰ β, and obviously

Ť
αPI Xα “ X , so as sets, there is a canonical bijective

correspondence between X and the disjoint union
š
αPI Xα. It is natural to wonder: is this

correspondence a homeomorphism? It is easy to see that it is continuous in at least one direction:
the individual subsets Xα Ă X come with inclusion maps iα : Xα ãÑ X , and endowing Xα with
the subspace topology makes iα continuous. The canonical bijection from

š
αPI Xα to X can then

be written as

(7.1)
ž
αPI

iα :
ž
αPI

Xα Ñ X,

meaning it is the unique map whose restriction to each of the subsetsXα Ăš
βPI Xβ is precisely iα.

The definition of the disjoint union topology makes this map automatically continuous. The
following example shows however that, in general, its inverse need not be continuous.

Example 7.9. The set Q of rational numbers is a perfectly nice algebraic object, but when
endowed with the subspace topology as a subset of R, it becomes a very badly behaved topological
space. We claim that if A Ă Q is any subset with more than one element, then A is disconnected.
Indeed, given x, y P A with x ă y, we can find an irrational number r P RzQ with x ă r ă y, and
the sets A´ :“ A X p´8, rq and A` :“ A X pr,8q are then nonempty open subsets of A which
are complements of each other, hence both are open and closed. This proves that the connected
components of Q are simply the one-point subspaces txu Ă Q for all x P Q, so the map (7.1) in
this case takes the form ž

xPQ
txu Ñ Q.
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The domain and target of this map are the same set, and the map itself is the identity, but the
two sets are endowed with very different topologies: in particular, the domain carries the discrete
topology, while Q on the right hand side carries the subspace topology that it inherits from the
standard topology of R. The identity map is thus continuous—indeed, every map defined on
a space with the discrete topology is continuous—but it is not a homeomorphism, because the
discrete topology contains many open sets that are not open in the standard topology of Q.

Example 7.9 shows that while every space X has a natural bijective correspondence with the
disjont union

š
αPI Xα of its connected components, the natural topology on

š
αPI Xα may in

general be different from the original topology of X . We’ve seen for instance that each individual
Xα is automatically both an open and closed subset of

š
βPI Xβ, thus there is no hope of (7.1)

being a homeomorphism unless Xα is also an open and closed subset of X . The example of Q
shows that the latter is not always true: the 1-point connected components txu Ă Q are closed
subsets, but they are not open. The fact that they are closed turns out to be a completely general
phenomenon:

Proposition 7.10. Every connected component A Ă X of a space X is a closed subset.

Proof. Assume A Ă X is a maximal connected subset. Recall from Definition 3.1 that the
closure sA Ă X of A is the set of all points x P X for which every neighborhood of x intersects A. If
we equip sA with the subspace topology and view it as a topological space in itself, with A Ă sA as a
subset, then the closure of A in sA is still sA: indeed, every neighborhood in sA of a point x P sA takes
the form U X sA for some neighborhood U of x in X , implying that U intersects A, and therefore
so does U X sA.

Now suppose f : sAÑ t0, 1u is a continuous function. Its restriction to A is then also contin-
uous, and therefore constant, since A is connected; let us write fpAq “ tiu Ă t0, 1u. Then since
tiu is a closed subset of t0, 1u and f is continuous, f´1piq is a closed subset of sA that contains A,
and it therefore also contains the closure sA. This implies that f is in fact constant on sA, and thus
proves that sA is connected. Since A is a maximal connected subset, we conclude A “ sA, meaning
A is closed. �

We note one obvious case in which connected components will necessarily be both closed and
open: here openness follows from the fact that the complement of a connected component is a
union of disjoint connected components, and finite unions of closed sets are closed.

Corollary 7.11. If X is a space with only finitely many connected components, then each of
them is both closed and open. �

Exercise 7.12. If tXα Ă XuαPI are the connected components of a space X , show that the
canonical continuous bijection (7.1) from

š
αPI Xα to X is a homeomorphism if and only if every

Xα is an open subset of X . (In particular, Corollary 7.11 implies that this is always true if I is
finite, and we will see in Prop. 7.18 below that it is also true if X is locally connected.)

It is time to clarify the relationship between connectedness and path-connectedness.

Theorem 7.13. Every path-connected space X is connected.

Proof. If X is not connected, then there exist points x, y P X and a continuous function
f : X Ñ t0, 1u such that fpxq “ 0 and fpyq “ 1. But if X is path-connected, then there also exists
a continuous map γ : r0, 1s Ñ X with γp0q “ x and γp1q “ y. The composition g :“ f ˝ γ is then
a continuous function g : r0, 1s Ñ t0, 1u satisfying gp0q “ 0 and gp1q “ 1, and this violates the
intermediate value theorem. �

Surprisingly, the converse of this theorem is false.
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Example 7.14. Define X Ă R2 to be the subset of R2 consisting of the vertical line tx “ 0u
and the graph of the equation ty “ sinp1{xqu for x ‰ 0. The latter is a sine curve that oscillates
more and more rapidly as xÑ 0. We claim that

X0 :“ tx “ 0u
is a path-component of X . It clearly is path-connected, so we need to show that there does not
exist any continuous path γ : r0, 1s Ñ X that begins on the sine curve ty “ sinp1{xqu and ends on
the line tx “ 0u. Since tx “ 0u is a closed subset, the preimage of this set under γ is closed (and
therefore compact) in r0, 1s, implying that it has a minimum τ P p0, 1s. We can therefore restrict
our path to γ : r0, τ s Ñ X and assume that it lies on the sine curve for all 0 ď t ă τ but ends
on the vertical line at t “ τ . Now observe that due to the rapid oscillation as x Ñ 0, we can find
for any y P r´1, 1s a sequence tn P r0, τq with tn Ñ τ such that γptnq Ñ p0, yq. The point y here
is arbitrary, yet continuity of γ requires γptnq Ñ γpτq, so this is a contradiction and proves the
claim. In particular, this proves that X is not path-connected. The other path-components of X
are now easy to identify: they are

X´ :“ X X tx ă 0u and X` :“ X X tx ą 0u,
the portions of the sine curve lying to the left and right ofX0, so there are three path-components in
total. The path-components are path-connected and therefore (by Theorem 7.13) also connected.
But neither X´ nor X` is closed, so by Prop. 7.10, neither of these can be a connected component.
The maximal connected subset containing X´, for instance, must be a closed set containing X´
and therefore contains the closure ĚX´, which includes points in X0. Since X0 is path-connected,
it follows that the connected component containing X´ also contains all of X0. But the same
argument applies equally well to X`, and these two observations together imply that all three
path-components are in the same connected component, i.e. X is connected.

The space in Example 7.14 is sometimes called the topologist’s sine curve. There is a certain
“local” character to the pathologies of this space, i.e. part of the reason for its bizarre proper-
ties is that one can zoom in on certain points in X arbitrarily far without making it look more
reasonable—in particular this is true for the points in X0 that are in the closure of X´ and X`.
One can use neighborhoods of points to formalize this notion of “zooming in” arbitrarily far.

Definition 7.15. A space X is locally connected (lokal zusammenhängend) if for all points
x P X , every neighborhood of x contains a connected neighborhood of x.

The version of this for path-connectedness is completely analogous.

Definition 7.16. A space X is locally path-connected (lokal wegzusammenhängend) if for
all points x P X , every neighborhood of x contains a path-connected neighborhood of x.

Local path-connectedness obviously implies local connectedness by Theorem 7.13. Since most
spaces we can easily imagine will have both properties, it is important at this juncture to look at
some examples that do not. The topologist’s sine curve in Example 7.14 is one such space: it is not
locally connected (even though it is connected), since sufficiently small neighborhoods of points
p0, yq P X for ´1 ă y ă 1 always have infinitely many pieces of the sine curve passing through and
are thus disconnected. Here is an example that is path-connected, but not locally:

Example 7.17. Let X Ă R2 denote the compact set

X “
˜ 8ď
n“1

Ln

¸
Y L8,
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where for each n P N, Ln denotes the straight line segment from p0, 1q to p1{n, 0q, and the case n “
8 is included for the vertical segment from p0, 1q to p0, 0q. Then sufficiently small neighborhoods
of p0, 0q in this space are never connected, so X is not locally connected. Notice however that
there are continuous paths along the line segments Ln from any point in X to p0, 1q, so X is
path-connected.

Proposition 7.18. If X is locally connected, then its connected components are open subsets.
Similarly, if X is locally path-connected, then its path-components are open subsets.

Proof. If X is locally connected and A Ă X is a maximal connected subset, then for each
x P A, fix a connected neighborhood Ux Ă X of x. Now for U :“ Ť

xPA Ux, any continuous function
f : U Ñ t0, 1u must restrict to a constant on each Ux and also on A, implying that f is constant,
hence U is connected. The maximality of A thus implies A “ U , but U is also a neighborhood of
A and thus contains an open set containing A, therefore A is open.

A completely analogous argument works in the locally path-connected case, taking path-
connected neighborhoods Ux and using the fact that their union must also be path-connected. �

A consequence of this result is that the phenomenon allowing certain spaces to be connected
but not path-connected is essentially local:

Theorem 7.19. Every space that is connected and locally path-connected is also path-connected.

Proof. If X is locally path-connected, then by Prop. 7.18 its path-components are open.
Then if A Ă X is a path-component, XzA is a union of path-components and is therefore also
open, implying that A is both open and closed. If X is connected, it follows that A “ X , so X is
a path-component. �

Exercise 7.20. In this exercise we show that products of (path-)connected spaces are also
(path-)connected, so long as one uses the correct topology on the product.

(a) Prove that if X and Y are both connected, then so is X ˆ Y .
Hint: Start by showing that for any x P X and y P Y , the subsets txu ˆ Y and X ˆ tyu
in X ˆ Y are connected. Then think about continuous maps X ˆ Y Ñ t0, 1u.

(b) Show that for any collection of path-connected spaces tXαuαPI , the space
ś
αPI Xα is

path-connected in the usual product topology.
Hint: You might find Exercise 4.5 helpful.

(c) ConsiderRN with the “box topology” which we discussed in Exercise 4.6. Show that the set
of all elements f P RN represented as functions f : N Ñ R that satisfy limnÑ8 fpnq “ 0

is both open and closed, hence RN in the box topology is not connected (and therefore
also not path-connected).

The rest of this exercise is aimed at generalizing part (a) to the statement that for an arbitrary
collection tXαuαPI of connected (but not necessarily path-connected) spaces,

ś
αPI Xα with the

product topology is also connected. Choose a point tcαuαPI PśαPI Xα and, for each finite subset
J Ă I of the index set, consider the set

XJ :“
#
txαuαPI P

ź
αPI

Xα

ˇ̌̌̌
ˇ xβ “ cβ for all β P IzJ

+
,

endowed with the subspace topology that it inherits from the product topology of
ś
αPI Xα.

(d) Show that for every choice of finite subset J Ă I, XJ is connected.
Hint: This is not really that different from part (a).

(e) Deduce that the union
Ť
J XJ Ăś

αPI Xα is also connected, where J ranges over the set
of all finite subsets of I.
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(f) Show that the closure of the subset
Ť
J XJ Ă ś

αPI Xα is
ś
αPI Xα, and deduce thatś

αPI Xα is also connected.

With the definition of local connectedness in mind, we now briefly revisit the subject of com-
pactness.

Definition 7.21. A space X is locally compact (lokal kompakt) if every point x P X has a
compact neighorhood.

Local compactness is one of the notions for which one can find multiple inequivalent definitions
in the literature, but as we’ll see in a moment, all the plausible definitions of this concept are
equivalent if we only consider Hausdorff spaces. Let’s first note a few examples.

Example 7.22. The Euclidean space Rn is locally compact, and more generally, so is any
closed subset X Ă Rn endowed with the subspace topology. Indeed, since closed and bounded
subsets of Rn are compact, every x P X Ă Rn has a compact neighborhood of the form ĞBrpxq XX
for any r ą 0.

Example 7.23. This is a non-example: a Hilbert space is not locally compact if it is infinite
dimensional. This is due to the fact that every neighborhood of a point x must contain some closed
ball ĞBrpxq, but the latter is not compact (cf. Remark 5.8).

Example 7.24. Since a space is a neighborhood of all of its points, every compact space is
(trivially) locally compact.

The last example is the one that becomes slightly controversial if you look at alternative
definitions of local compactness in the literature, and indeed, if we had phrased Definition 7.21
more analogously to the definition of local (path-)connectedness, it would be easy to imagine spaces
that are compact without being locally compact. As it happens, this never happens for Hausdorff
spaces, and since we will mainly be interested in Hausdorff spaces, we shall take the following
result as an excuse to avoid worrying any further about discrepancies in definitions. It will also be
a useful result in its own right.

Theorem 7.25. If X is Hausdorff, then the following conditions are equivalent:
(i) X is locally compact (in the sense of Definition 7.21);
(ii) For all x P X, every neighborhood of x contains a compact neighborhood of x;
(iii) If K Ă U Ă X where K is compact and U is open, then K Ă V Ă sV Ă U for some open

set V with compact closure sV.
Proof. Since single point subsets txu Ă X are always compact, it is clear that (iii)ñ (ii)ñ (i).

The implication (ii)ñ (iii) is a relatively straightforward exercise using the finite covering property
for the compact set K. We will therefore focus on the implication (i) ñ (ii).

Assume we are given a neighborhood U Ă X of x and would like to find a compact neighborhood
inside U . By assumption, x also has a compact neighborhoodK Ă X . It will do no harm to replace
U with a smaller neighorhood such as the interior of U XK, so without loss of generality, let us
assume U is open and contained in K, in which case (since X is Hausdorff and K is therefore
closed) its closure sU is also contained in K and is thus compact. We define the boundary of sU by

B sU “ sU XĘXzU .
This is a closed subset of sU and is therefore also compact, and we observe that since x is contained
in a neighborhood disjoint from XzU , x is not in the closure ĘXzU and thus

x R B sU .
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Since X is Hausdorff, for every y P B sU there exists a pair of open neighborhoods

x P Ay Ă X, y P By Ă X such that Ay XBy “ H.
Then the sets By for y P B sU form an open cover of the compact set B sU , hence there exists a finite
subset ty1, . . . , yNu Ă B sU such that

B sU Ă
Nď
i“1

Byi .

Now the set

V :“ U X
˜

Nč
i“1

Ayi

¸
is an open neighborhood of x contained in U and disjoint from the neighborhood

ŤN
i“1Byi of B sU .

The latter implies that for any y P B sU , y has a neighborhood disjoint from V , hence y R sV.
Similarly, V Ă U implies y cannot be in the closure of V if it is in the interior of ĘXzU , so we
conclude sV Ă U . The compactness of sV follows because it is a closed subset of sU and the latter is
compact. �

Exercise 7.26. Prove the implication that was skipped in the proof of Theorem 7.25 above,
namely: if X is locally compact and Hausdorff, then for any nested pair of subsets K Ă U Ă X

with K compact and U open, there exists an open set V Ă X with compact closure sV such that
K Ă V Ă sV Ă U .

Exercise 7.27. There is a cheap trick to view any topological space as a compact space with a
single point removed. For a spaceX with topology T , let t8u denote a set consisting of one element
that is not in X , and define the one point compactification of X as the set X˚ “ X Y t8u
with topology T ˚ consisting of all subsets in T plus all subsets of the form pXzKq Y t8u Ă X˚
where K Ă X is closed and compact.

(a) Verify that T ˚ is a topology and that X˚ is always compact.
(b) Show that if X is first countable and Hausdorff, a sequence in X Ă X˚ converges to

8 P X˚ if and only if it has no convergent subsequence with a limit in X . Conclude that
if X is first countable and Hausdorff, X˚ is sequentially compact.

(c) Show that for X “ R, X˚ is homeomorphic to S1. (More generally, one can use stere-
ographic projection to show that the one point compactification of Rn is homeomorphic
to Sn.)

(d) Show that if X is already compact, then X˚ is homeomorphic to the disjoint union
X > t8u.

(e) Show that X˚ is Hausdorff if and only if X is both Hausdorff and locally compact.
Notice that Q is not locally compact, since every neighborhood of a point x P Q contains sequences
without convergent subsequences, e.g. any sequence of rational numbers that converges to an
irrational number sufficiently close to x. The one point compactification Q˚ is a compact space,
and by part (b) it is also sequentially compact, but those are practically the only nice things we
can say about it.

(f) Show that for any x P Q, every neighborhood of x in Q˚ intersects every neighborhood
of 8, so in particular, Q˚ is not Hausdorff.
Advice: Do not try to argue in terms of sequences with non-unique limits (cf. part (g)
below), and do not try to describe precisely what arbitrary compact subsets of Q can
look like (the answer is not nice). One useful thing you can say about arbitrary compact
subsets of Q is that they can never contain the intersection of Q with any open interval.
(Why not?)
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(g) Show that every convergent sequence in Q˚ has a unique limit. (Since Q˚ is not Hausdorff,
this implies via Proposition 6.13 that Q˚ is not first countable—in particular, 8 does not
have a countable neighborhood base.)

(h) Find a point in Q˚ with a neighborhood that does not contain any compact neighborhood.

Exercise 7.28. Given spaces X and Y , let CpX,Y q denote the set of all continuous maps
from X to Y , and consider the natural evaluation map

ev : CpX,Y q ˆX Ñ Y : pf, xq ÞÑ fpxq.
It is easy to show that ev is a continuous map if we assign the discrete topology to CpX,Y q, but
usually one can also find more interesting topologies on CpX,Y q for which ev is continuous. The
compact-open topology is defined via a subbase consisting of all subsets of the form

UK,V :“  
f P CpX,Y q ˇ̌ fpKq Ă V

(
,

where K ranges over all compact subsets of X , and V ranges over all open subsets of Y . Prove:
(a) If Y is a metric space, then convergence of a sequence fn P CpX,Y q in the compact-open

topology means that fn converges uniformly on all compact subsets of X .
(b) If CpX,Y q carries the topology of pointwise convergence (i.e. the subspace topology

defined via the obvious inclusion CpX,Y q Ă Y X), then ev is not sequentially continuous
in general.

(c) If CpX,Y q carries the compact-open topology, then ev is always sequentially continuous.
(d) If CpX,Y q carries the compact-open topology and X is locally compact and Hausdorff,

then ev is continuous.
(e) Every topology on CpX,Y q for which ev is continuous contains the compact-open topol-

ogy. (This proves that if X is locally compact and Hausdorff, the compact-open topology
is the weakest topology for which the evaluation map is continuous.)
Hint: If pf0, x0q P ev´1pV q where V Ă Y is open, then pf0, x0q P O ˆ U Ă ev´1pV q for
some open O Ă CpX,Y q and U Ă X . Is UK,V a union of sets O that arise in this way?

(f) For the compact-open topology on CpQ,Rq, ev : CpQ,Rq ˆQÑ R is not continuous.

Exercise 7.29. One of the good reasons to use the notation XY for the set of all functions
f : Y Ñ X between two sets is that there is an obvious bijection

ZXˆY Ñ pZY qX
sending a function F : X ˆ Y Ñ Z to the function Φ : X Ñ ZY defined by

(7.2) Φpxqpyq “ F px, yq.
The existence of this bijection is sometimes called the exponential law for sets. In this exercise we
will explore to what extent the exponential law carries over to topological spaces and continuous
maps. We will see that this is also related to the question of how to define a natural topology on
the group of homeomorphisms of a space.

If X and Y are topological spaces, let us denote by CpX,Y q the space of all continuous maps
X Ñ Y , with the compact-open topology, which has a subbase consisting of all sets of the form

UK,V :“  
f P CpX,Y q ˇ̌ fpKq Ă V

(
for K Ă X compact and V Ă Y open (see Exercise 7.28 above). Assume Z is also a topological
space.

(a) Prove that if F : X ˆ Y Ñ Z is continuous, then the correspondence (7.2) defines a
continuous map Φ : X Ñ CpY, Zq.

(b) Prove that if Y is locally compact and Hausdorff, then the converse also holds: any
continuous map Φ : X Ñ CpY, Zq defines a continuous map F : X ˆ Y Ñ Z via (7.2).
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Let’s pause for a moment to observe what these two results imply for the case X :“ I “ r0, 1s.
First, here is a quick definition of a notion that will appear very often in the remainder of this
course: given two continuous maps f0, f1 : Y Ñ Z, a continuous map

h : I ˆ Y Ñ Z such that hp0, ¨q “ f0 and hp1, ¨q “ f1

is called a homotopy (Homotopie) between f0 and f1, and we call f0 and f1 homotopic (homo-
top) if a homotopy between them exists. According to part (a), a homotopy between two maps
Y Ñ Z can always be regarded as a continuous path in CpY, Zq, and part (b) says that the converse
is also true if Y is locally compact and Hausdorff, hence two maps Y Ñ Z are homotopic if and
only if they lie in the same path-component of CpY, Zq.5

(c) Deduce from part (b) a new proof of the following result from Exercise 7.28(d): if X is
locally compact and Hausdorff, then the evaluation map ev : CpX,Y qˆX Ñ Y : pf, xq ÞÑ
fpxq is continuous.
Hint: This is very easy if you look at it from the right perspective.
Remark: If you were curious to see a counterexample to part (b) in a case where Y is not
locally compact, you could now extract one from Exercise 7.28(f).

(d) The following cannot be deduced directly from part (b), but it is a similar result and
requires a similar proof: show that if Y is locally compact and Hausdorff, then

CpX,Y q ˆ CpY, Zq Ñ CpX,Zq : pf, gq ÞÑ g ˝ f
is a continuous map.
Hint: Exercise 7.26 is useful here.

Now let’s focus on maps from a space X to itself. A group G with a topology is called a
topological group if the maps

GˆGÑ G : pg, hq ÞÑ gh and GÑ G : g ÞÑ g´1

are both continuous. Common examples include the standard matrix groups GLpn,Rq, GLpn,Cq
and their subgroups, which have natural topologies as subsets of the vector space of (real or
complex) n-by-n matrices. Another natural example to consider is the group

HomeopXq “  
f P CpX,Xq ˇ̌ f is bijective and f´1 P CpX,Xq(

for any topological space X , where the group operation is defined via composition of maps. We
would like to know what topologies can be assigned to CpX,Xq so that HomeopXq Ă CpX,Xq,
with the subspace topology, becomes a topological group. Notice that the discrete topology clearly
works; this is immediate because all maps between spaces with the discrete topology are automat-
ically continuous, so there is nothing to check. But the discrete topology is not very interesting.
Let TH denote the topology on CpX,Xq with subbase consisting of all sets of the form UK,V and
UXzV,XzK , where again K Ă X can be any compact subset and V Ă X any open subset. Notice
that if X is compact and Hausdorff, then for any V open and K compact, XzV is compact and
XzK is open, thus TH is again simply the compact-open topology. But if X is not compact or
Hausdorff, TH may be stronger than the compact-open topology.

5Since CpX ˆ Y,Zq and CpX,CpY, Zqq both have natural topologies in terms of the compact-open topology,
you may be wondering whether the correspondence (7.2) defines a homeomorphism between them. The answer to
this is more complicated than one would like, but Steenrod showed in a famous paper in 1967 [Ste67] that the
answer is “yes” if one restricts attention to spaces that are compactly generated, a property that most respectable
spaces have. The caveat is that CpX, Y q in the compact-open topology will not always be compactly generated if X
and Y are, so one must replace the compact-open topology by a slightly stronger one that is compactly generated
but otherwise has the same properties for most practical purposes. If you want to know what “compactly generated”
means and why it is a useful notion, see [Ste67]. These issues are somewhat important in homotopy theory at more
advanced levels, though it is conventional to worry about them as little as possible.
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(e) Show that if X is locally compact and Hausdorff, then HomeopXq with the topology TH
is a topological group.
Hint: Notice that fpKq Ă V if and only if f´1pXzV q Ă XzK. Use this to show directly
that f ÞÑ f´1 is continuous, and reduce the rest to what was proved already in part (d).

Conclusion: We’ve shown that if X is compact and Hausdorff, then HomeopXq with the compact-
open topology is a topological group. This is actually true under somewhat weaker hypotheses,
e.g. it suffices to know that X is Hausdorff, locally compact and locally connected. (If you’re
interested, a quite clever proof of this fact may be found in [Are46].)

Just for fun, here’s an example to show that just being locally compact and Hausdorff is
not enough: let X “ t0u Y ten | n P Zu Ă R with the subspace topology, and notice that X
is neither compact (since it is unbounded) nor locally connected (since every neighborhood of
0 is disconnected). Consider the sequence fk P HomeopXq defined for k P N by fkp0q “ 0,
fkpenq “ en´1 for n ď ´k or n ą k, fkpenq “ en for ´k ă n ă k, and fkpekq “ e´k. It is not hard
to show that in the compact-open topology on CpX,Xq, fk Ñ Id but f´1

k Ñ Id as k Ñ 8, hence
the map HomeopXq Ñ HomeopXq : f ÞÑ f´1 is not continuous.

8. Paths, homotopy and the fundamental group

The rest of this course will concentrate on algebraic topology. The class of spaces we consider
will often be more restrictive than up to this point, e.g. we will usually (though not always) require
them to be Hausdorff, second countable, locally path-connected and one or two other conditions
that are satisfied in all interesting examples.6 It will happen often from now on that the best
way to prove any given result is with a picture, but I might not always have time to produce the
relevant picture in these notes. I’ll do what I can.

As motivation, let us highlight two examples of questions that the tools of algebraic topology
are designed to answer.

Sample question 8.1. The following figures show two examples of knots K and K0 in R3:

PSfrag replacements

K Ă R3Ă

PSfrag replacements

Ă
K0 Ă R3

The first knot K is known as the trefoil knot (Kleeblattknoten), and the second K0 is the trivial
knot or unknot (Unknoten). Roughly speaking, a knot is a subset in R3 that is homeomorphic to
S1 and satisfies some additional condition to avoid overly “wild” behavior, e.g. one could sensibly
require each of K and K0 to be the image of some infinitely differentiable 1-periodic map RÑ R3.
The question then is: can K be deformed continuously to K0? Let us express this more precisely.
If you imagine K and K0 as physical knots in space, then when you move them around, you don’t

6The question of which examples are considered “interesting” depends highly on context, of course. In functional
analysis, one encounters many interesting spaces of functions that do not have all of the properties we just listed.
But this is not a course in functional analysis.
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move only the knots—you also displace the air around them, and the motion of this collection of
air particles over time can be viewed as defining a continuous family of homeomorphisms on R3.
Mathematically, the question is then, does there exists a continuous map

ϕ : r0, 1s ˆ R3 Ñ R3

such that ϕpt, ¨q : R3 Ñ R3 is a homeomorphism for every t P r0, 1s, ϕp0, ¨q is the identity map on
R3 and ϕp1, ¨q : R3 Ñ R3 sends K0 to K?

It turns out that the answer is no: in particular, if a homeomorphism ϕp1, ¨q on R3 sending
K0 to K exists, then there must also be a homeomorphism between R3zK and R3zK0, and we
will see that the latter is impossible. The reason is because we can associate to these spaces
groups π1pR3zKq and π1pR3zK0q, which would need to be isomorphic if R3zK and R3zK0 were
homeomorphic, and we will be able to compute enough information about both groups to show
that they are not isomorphic.

Sample question 8.2. Here is another pair of spaces defined as subsets of R3:

PSfrag replacements

A

F

1

PSfrag replacements

A

F 1

A question of tremendous practical import: can the set F in the picture at the left be shifted
continuously to match the set F 1 in the picture at the right, but without “passing through” A,
i.e. is there a continuous family of embeddings F ãÑ R3zA that begins as the natural inclusion and
ends by sending F to F 1? If there is, then you may want to adjust your bike lock.

Of course there is no such continuous family of embeddings, and to see why, you could just
delete the bicycle from the picture and pay attention only to the loop representing the bike lock,
which is shown “linked” with A in the left picture and not in the right picture. The precise way
to express the impossibility of deforming one picture to the other is that this loop is parametrized
by a “noncontractible loop” γ : S1 Ñ R3zA, meaning γ represents a nontrivial element in the
fundamental group π1pR3zAq.

Our task in this lecture is to define what the fundamental group is for an arbitrary space. We
will then develop a few more of its general properties in the next lecture and spend the next four
or five weeks developing methods to compute it.

We must first discuss paths in a space X . Since the unit interval r0, 1s will appear very often
in the rest of this course, let us abbreviate it from now on by

I :“ r0, 1s.
For two points x, y P X , a path (Pfad) from x to y is a map γ : I Ñ X satisfying γp0q “ x and
γp1q “ y.7 We will sometimes use the notation

x
γ
 y

to indicate that γ is a path from x to y.
The inverse of a path x

γ
 y is the path

y
γ´1

 x

7This seems a good moment to emphasize that all maps in this course are assumed continuous unless otherwise
noted.
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defined by γ´1ptq :“ γp1 ´ tq. The reason for this terminology and notation will become clearer
when we give the definition of the fundamental group below. The same goes for the notion of
the product of two paths: there is no natural multiplication defined for a pair of paths between
arbitrary points, but given x α

 y and y
β
 z, we can define the product path x

α¨β
 z by

(8.1) pα ¨ βqptq “
#
αp2tq if 0 ď t ď 1{2,
βp2t´ 1q if 1{2 ď t ď 1.

This operation is also called a concatenation of paths. The trivial path at a point x P X is
defined as the constant path x ex

 x, i.e.

exptq “ x.

The idea is for this to play the role of the identity element in some kind of group structure.
If we want to turn concatenation into a product structure on a group, then we have one

immediate problem: it is not associative. In fact, given paths x α
 y, y

β
 z and z

γ
 a, we have

α ¨ pβ ¨ γq ‰ pα ¨ βq ¨ γ,
though clearly the images of these two concatenations are the same, and their difference is only in
the way they are parametrized. We would like to introduce an equivalence relation on the set of
paths that forgets this distinction in parametrizations.

Definition 8.3. Two maps f, g : X Ñ Y are homotopic (homotop) if there exists a map

H : I ˆX Ñ Y such that Hp0, ¨q “ f and Hp1, ¨q “ g.

The map H is in this case called a homotopy (Homotopie) from f to g, and when a homotopy
exists, we shall write

f „
h
g.

It is straightforward to show that „
h
is an equivalence relation. In particular, if there are

homotopies from f to g and from g to h, then by reparametrizing the parameter in I “ r0, 1s we
can “glue” the two homotopies together to form a homotopy from f to h. The definition of the
new homotopy is analogous to the definition of the concatenation of paths in (8.1).

For paths in particular we will need a slightly more restrictive notion of homotopy that fixes
the end points.

Definition 8.4. For two paths α and β from x to y, we write

α „
h` β

and say α is homotopic with fixed end points to β if there exists a map H : I ˆ I Ñ X

satisfying Hp0, ¨q “ α, Hp1, ¨q “ β, Hps, 0q “ x and Hps, 1q “ y for all s P I.
Exercise 8.5. Show that for any two points x, y P X , „

h` defines an equivalence relation on

the set of all paths from x to y.

We will now prove several easy results about paths and homotopies. In most cases we will
give precise formulas for the necessary homotopies, but one can also represent the main idea quite
easily in pictures (see e.g. [Hat02, pp. 26–27]). We adopt the following convenient terminology:
if H : I ˆX Ñ Y is a homotopy from f0 :“ Hp0, ¨q : X Ñ Y to f1 :“ Hp1, ¨q : X Ñ Y , then we
obtain a continuous family of maps fs :“ Hps, ¨q : X Ñ Y for s P I. The words “continuous
family” will be understood as synonymous with “homotopy” in this sense.
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Proposition 8.6. If α „
h` α1 are homotopic paths from x to y and β „

h` β1 are homotopic

paths from y to z, then
α ¨ β „

h` α
1 ¨ β1.

Proof. By assumption, there exist continuous families of paths x αs
 y and y

βs
 z for s P I

with α0 “ α, α1 “ α1, β0 “ β and β1 “ β1. Then a homotopy with fixed end points from α ¨ β to
α1 ¨ β1 can be defined via the continuous family

x
αs¨βs
 z for s P I.

�

We next show that while concatenation of paths is not an associative operation, it is associative
“up to homotopy”.

Proposition 8.7. Given paths x α
 y, y

β
 z and z

γ
 a,

pα ¨ βq ¨ γ „
h` α ¨ pβ ¨ γq.

Proof. A suitable homotopyH : IˆI Ñ X can be defined as a family of linear reparametriza-
tions of the sequence of paths α, β, γ:

Hps, tq “

$’’&’’%
α
´

4t
s`1

¯
if 0 ď t ď s`1

4
,

βp4t´ ps` 1qq if s`1
4
ď t ď s`2

4
,

γ
´

4
2´s pt´ 1q ` 1

¯
if s`2

4
ď t ď 1.

�

And finally, a result that allows us to interpret the constant paths ex as “identity elements”
and γ and γ´1 as “inverses”:

Proposition 8.8. For any path x
γ
 y, the following relations hold:

(i) ex ¨ γ „
h` γ

(ii) γ „
h` γ ¨ ey

(iii) γ ¨ γ´1 „
h` ex

(iv) γ´1 ¨ γ „
h` ey

Proof. For (i), we define a family of reparametrizations of the concatenated path ex ¨ γ that
shrinks the amount of time spent on ex from 1{2 to 0:

Hps, tq “
#
x if 0 ď t ď 1´s

2
,

γ
´

2
s`1

pt´ 1q ` 1
¯

if 1´s
2
ď t ď 1.

The homotopy for (ii) is analogous.
For (iii), the idea is to define a family of paths that traverse only part of γ up to some time

depending on s, then stay still for a suitable length of time and, in a third step, follow γ´1 back
to x:

Hps, tq “
$’&’%
γp2tq if 0 ď t ď 1´s

2
,

γp1´ sq if 1´s
2
ď t ď 1`s

2
,

γp2´ 2tq if 1`s
2
ď t ď 1.

The last relation follows from this by interchanging the roles of γ and γ´1. �
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The last three propositions combine to imply that the group structure in the following definition
is a well-defined associative product which admits an identity element and inverses.

Definition 8.9. Given a space X and a point p P X , the fundamental group (Fundamen-
talgruppe) of X with base point (Basispunkt) p is defined as the set of equivalence classes of
paths p p up to homotopy with fixed end points:

π1pX, pq :“
!
paths p

γ
 p

)L „
h` .

The product of two equivalence classes rαs, rβs P π1pX, pq is defined via concatenation:

rαsrβs :“ rα ¨ βs,
and the identity element is represented by the constant path reps. The inverse element for rγs P
π1pX, pq is represented by the reversed path γ´1.

Before exploring the further properties of the group π1pX, pq, let us clarify in what sense it is a
“topological invariant” of the space X . Intuitively, we would like this to mean that wheneverX and
Y are two homeomorphic spaces, their fundamental groups should be isomorphic groups. What
makes this statement a tiny bit more complicated is that the fundamental group of X doesn’t just
depend on X alone, but also on a choice of base point, so in order to make precise and correct
statements about topological invariance, we will need to carry around a base point as extra data.
The following definition is intended to formalize this notion.

Definition 8.10. A pointed space (punktierter Raum) is a pair pX, pq consisting of a topo-
logical space X and a point p P X . The point p P X is in this case called the base point
(Basispunkt) of X . Given pointed spaces pX, pq and pY, qq, any continuous map f : X Ñ Y

satisfying fppq “ q is called a pointed map or map of pointed spaces, and can be denoted by

f : pX, pq Ñ pY, qq.
We also sometimes refer to such objects as base-point preserving maps. Finally, given two
pointed maps f, g : pX, pq Ñ pY, qq, a homotopy H : I ˆ X Ñ Y from f to g that satisfies
Hps, pq “ q for all s P I is called a pointed homotopy, or homotopy of pointed maps,
or base-point preserving homotopy. One can equivalently describe such a homotopy as a
continuous 1-parameter family of pointed maps fs :“ Hps, ¨q : pX, pq Ñ pY, qq defined for s P I.

Here is the first main result about the topological invariance of π1:

Theorem 8.11. One can associate to every pointed map f : pX, pq Ñ pY, qq a group homo-
morphism

f˚ : π1pX, pq Ñ π1pY, qq : rγs ÞÑ rf ˝ γs,
which has the following properties:

(i) For any pointed maps pX, pq fÑ pY, qq and pY, qq gÑ pZ, rq, pg ˝ fq˚ “ g˚ ˝ f˚.
(ii) The map associated to the identity map pX, pq IdÑ pX, pq is the identity homomorphism

π1pX, pq 1Ñ π1pX, pq.
(iii) Each homomorphism f˚ depends only on the pointed homotopy class of f .

Proof. It is clear that up to homotopy (with fixed end points), the path q
f˝γ
 q in Y depends

only on the path p
γ
 p only up to homotopy with fixed end points; indeed, if H : IˆI Ñ X defines

a homotopy with fixed end points between two paths α and β based at p, then f ˝H : I ˆ I Ñ Y

defines a corresponding homotopy between f ˝ α and f ˝ β. Similarly, if rγs P π1pX, pq and
f, g : pX, pq Ñ pY, qq are homotopic via a base-point preserving homotopy H : I ˆX Ñ Y , then
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h : I ˆ I Ñ Y : ps, tq ÞÑ Hps, γptqq defines a homotopy with fixed end points between f ˝ γ and
g ˝ γ. This shows that f˚ : π1pX, pq Ñ π1pY, qq is a well-defined map that depends on f only up
to base-point preserving homotopy. It is similarly easy to check that f˚ is a homomorphism and
satisfies the first two stated properties: e.g. for any two paths p

α,β
 p, we have

f˚prαsrβsq “ rf ˝ pα ¨ βqs “ rpf ˝ αq ¨ pf ˝ βqs “ f˚rαsf˚rβs
and

f˚reps “ reqs.
�

Corollary 8.12. If X and Y are spaces admitting a homeomorphism f : X Ñ Y , then for
any choice of base point p P X, the groups π1pX, pq and π1pY, fppqq are isomorphic.

Proof. Abbreviate q :“ fppq, so f : pX, pq Ñ pY, qq is a pointed map, and since its inverse
is continuous, f´1 : pY, qq Ñ pX, pq is also a pointed map. Using Theorem 8.11, the commutative
diagram (see Remark 8.14 below) of continuous maps

(8.2)
pY, qq

pX, pq pX, pq
f´1f

Id

then gives rise to a similar commutative diagram of group homomorphisms

(8.3)
π1pY, qq

π1pX, pq π1pX, pq

f´1
˚f˚

1

Reversing the roles of pX, pq and pY, qq produces similar diagrams to show that f˚ and f´1˚ are
inverse homomorphisms, hence both are isomorphisms. �

Remark 8.13. The fancy way to summarize Theorem 8.11 is that π1 defines a “covariant
functor” from the category of pointed spaces and pointed homotopy classes to the category of groups
and homomorphisms. We will discuss categories and functors more next semester in Topologie II.

Remark 8.14. Commutative diagrams such as (8.2) and (8.3) will appear more and more
often as we get deeper into algebraic topology. When we say that such a diagram commutes, it
means that any two maps obtained by composing a sequence of arrows along different paths from
one place in the diagram to another must match, so e.g. the message carried by (8.2) is the relation
f´1 ˝ f “ Id, and (8.3) means f´1˚ ˝ f˚ “ 1. These were especially simple examples, but later we
will also encounter larger diagrams like

A B C˚

A B1 C 1

f

α

g

β γ

f 1 g1

The purpose of this one is to communicate the two relations β ˝ f “ f 1 ˝α and γ ˝ g “ g1 ˝β, along
with all the more complicated relations that follow from these, such as g1 ˝ f 1 ˝ α “ γ ˝ g ˝ f .
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Since the paths representing elements of π1pX, pq have the same fixed starting and ending
point, we often think of them as loops in X . We will establish some general properties of π1pX, pq
in the next lecture, starting with the observation that whenever X is path-connected, π1pX, pq up
to isomorphism does not actually depend on the choice of the base point p P X , thus we can sensibly
write it as π1pXq. Computing π1pXq for a given space X is not always easy or possible, but we will
develop some methods that are very effective on a wide class of spaces. I can already mention two
simple examples: first, π1pRnq is the trivial group, resulting from the relatively obvious fact that
(by linear interpolation) every path in Rn from a point to itself is homotopic with fixed end points
to the constant path. In contrast, we will see that π1pS1q and π1pR2zt0uq are both isomorphic to
the integers, and this simple result already has many useful applications, e.g. we will derive from
it a very easy proof of the fundamental theorem of algebra.

9. Some properties of the fundamental group

We would now like to clarify to what extent π1pX, pq depends on p in addition to X .

Theorem 9.1. Given p, q P X, any homotopy class (with fixed end points) of paths p
γ
 q

determines a group isomorphism

Φγ : π1pX, qq Ñ π1pX, pq : rαs ÞÑ rγ ¨ α ¨ γ´1s.
Proof. Note that in writing the formula above for Φγprαsq, we are implicitly using the fact

(Proposition 8.7) that concatenation of paths is an associative operation up to homotopy, so one
can represent Φγprαsq by either of the paths γ ¨ pα ¨γ´1q or pγ ¨αq ¨γ´1 without the result depending
on this choice. Similarly, Proposition 8.6 implies that the homotopy class of γ ¨ α ¨ γ´1 with fixed
end points only depends on the homotopy classes of γ and α (also with fixed end points).8 This
proves that Φγ is a well-defined map as written. The propositions in the previous lecture imply in
a similarly straightforward manner that Φγ is a homomorphism, i.e.

Φγprαsrβsq “ rγ ¨ α ¨ β ¨ γ´1s “ rγ ¨ α ¨ γ´1 ¨ γ ¨ β ¨ γ´1s “ ΦγprαsqΦγprβsq,
and

Φγpreqsq “ rγ ¨ eq ¨ γ´1s “ rγ ¨ γ´1s “ reps.
It remains only to observe that Φγ and Φγ´1 are inverses of each other, hence both are isomor-
phisms. �

Corollary 9.2. If X is path-connected, then π1pX, pq up to isomorphism is independent of
the choice of base point p P X. �

Due to this corollary, it is conventional to abbreviate the fundamental group by

π1pXq :“ π1pX, pq
whenever X is path-connected, and we will see many theorems about π1pXq in situations where
the base point plays no important role. If X is not path-connected but X0 Ă X denotes the
path-component containing p, then π1pX, pq “ π1pX0, pq – π1pX0q, so in practice it is sufficient to
restrict our attention to path-connected spaces. Some caution is nonetheless warranted in using
the notation π1pXq: strictly speaking, π1pXq is not a concrete group but only an isomorphism
class of groups, and the subtle distinction between these two notions occasionally leads to trouble.
You should always keep in the back of your mind that even if the base point is not mentioned, it
is an essential piece of the definition of π1pXq.

8Note that the homotopy class of γ determines that of γ´1. (Why?)
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We next discuss some alternative ways to interpret π1pX, pq. Recall the following useful nota-
tional device: given a space X with subset A Ă X , we define

X{A :“ X{„
with the quotient topology, where the equivalence relation defines a „ b for all a, b P A. In other
words, this is the quotient space obtained from X by “collapsing” the subset A to a single point.
For example, it is straightforward (see Exercise 5.16) to show that Dn{Sn´1 is homeomorphic to Sn

for every n P N, and if we replace D1 “ r´1, 1s by the unit interval I “ r0, 1s, we obtain the special
case

r0, 1sLt0, 1u “ I
LBI – S1.

Here we have used the notation
BX :“ “boundary of X”,

which comes from differential geometry, so for instance BDn “ Sn´1 and we can therefore also
identify Sn with Dn{BDn. A specific homeomorphism I{BI Ñ S1 can be written most easily by
thinking of S1 as the unit circle in C:

I{BI Ñ S1 : rts ÞÑ e2πit.

Lemma 9.3. For any space X and subset A Ă X, there is a canonical bijection between the
set of all continuous maps f : X Ñ Y that are constant on A and the set of all continuous maps
g : X{AÑ Y . For any two maps f and g that correspond under this bijection, the diagram

X X{A

Y

π

f

g

commutes, where π : X Ñ X{A denotes the quotient projection; in other words, g ˝ π “ f .

Proof. The diagram determines the correspondence: given g : X{A Ñ Y , we can define
f :“ g˝π to obtain a mapX Ñ Y that is automatically constant on A, and conversely, if f : X Ñ Y

is given and is constant on A, then there is a well-defined map g : X{A Ñ Y : rxs ÞÑ fpxq. Our
main task is to show that f is continuous if and only if g is continuous. In one direction this
is immediate: if g is continuous, then f “ g ˝ π is the composition of two continuous maps and
is therefore also continuous. Conversely, if f is continuous, then for every open set U Ă Y , we
know f´1pUq Ă X is open. A point rxs P X{A is then in g´1pUq if and only if x P f´1pUq, so
g´1pUq “ πpf´1pUqq and thus π´1pg´1pUqq “ f´1pUq is open. By the definition of the quotient
topology, this means that g´1pUq Ă X{A is open, so g is continous. �

Lemma 9.3 gives a canonical bijection between the set of all paths p
γ
 p in X beginning and

ending at the base point and the set of all continuous pointed maps

pI{BI, r0sq Ñ pX, pq.
It is easy to check moreover that two paths p

γ
 p are homotopic with fixed end points if and only

if they correspond to maps pI{BI, r0sq Ñ pX, pq in the same pointed homotopy class. Under the
aforementioned homeomorphism I{BI – S1 Ă C that identifies r0s “ r1s with 1, this gives us an
alternative description of π1pX, pq as

π1pX, pq “  
pointed maps γ : pS1, 1q Ñ pX, pq( L „

h`,



54 FIRST SEMESTER (TOPOLOGIE I)
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Figure 1. A map f : I2 Ñ D2 which descends to a homeomorphism g : I2{AÑ
D2 in the proof of Theorem 9.4.

where „
h` now denotes the equivalence relation defined by pointed homotopy. The group structure

of π1pX, pq is less easy to see from this perspective, but it will nonetheless be extremely useful to
think of elements of π1pXq as represented by loops γ : S1 Ñ X .

Theorem 9.4. A loop γ : pS1, 1q Ñ pX, pq represents the identity element in π1pX, pq if and
only if there exists a continuous map u : D2 Ñ X with u|BD2 “ γ.

Proof. I can’t explain this proof without a picture, so to start with, have a look at Figure 1.
It depicts a map f : I2 Ñ D2 Ă C that collapses the red region consisting of three sides of the
square

A :“ pBI ˆ Iq Y pI ˆ t1uq Ă I2

to the single point fpAq “ t1u Ă D2, but is bijective everywhere else, and maps the path Iˆt0u Ă I2

to the loop BD2. By Lemma 9.3, f determines a map

g : I2{AÑ D2

which is continuous and bijective, and it is also an open map (i.e. it maps open sets to open sets),
hence its inverse is also continuous and g is therefore a homeomorphism. Now, a path γ : I Ñ X

with γp0q “ γp1q “ p represents the identity in π1pX, pq if and only if there exists a homotopy
H : I2 Ñ X with Hp0, ¨q “ γ and H|A ” p. Applying Lemma 9.3 again, such a map is equivalent
to a map h : I2{A Ñ X which sends the equivalence class represented by every point in A to
the base point p. In this case, h ˝ g´1 is a map D2 Ñ X whose restriction to BD2 is the loop
S1 – I{BI Ñ X determined by γ : I Ñ X . �

Remark 9.5. Maps γ : S1 Ñ X that admit extensions over D2 as in the above theorem are
called contractible loops (zusammenziehbare Schleifen).

Definition 9.6. A space X is called simply connected (einfach zusammenhängend) if it is
path-connected and its fundamental group is trivial.

It is common to denote the trivial group by “0”, so for path-connected spaces, we can write

X is simply connected ô π1pXq “ 0.

By Theorem 9.4, this is equivalent to the condition that every map γ : S1 Ñ X admits a continuous
extension u : D2 Ñ X satisfying u|BD2 “ γ. Note that there was no need to mention the base point
in this formulation: if X is path-connected, then π1pXq “ 0 means π1pX, pq “ 0 for every p, so
for a given loop γ : S1 Ñ X we are free to choose p :“ γp1q P X as the base point and then apply
Theorem 9.4.
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Figure 2. Two equivalent pictures of the same homotopy with fixed end points
x and y between two paths α and β, using a homeomorphism I2 – D2.

Examples 9.7. Though we will need to develop a few more tools before we can prove it, the
sphere S2 is simply connected. (Try to imagine a loop in S2 that cannot be filled in by a disk—but
do not try too hard!)

In contrast, R2zt0u is not simply connected: we will see that the natural inclusion map γ :

S1 ãÑ R2zt0u is an example of a loop that cannot be extended to a map u : D2 Ñ R2zt0u. Of
course, it can be extended to a map D2 Ñ R2, but it will turn out that such an extension must
always hit the origin somewhere—in other words, the loop is contractible in R2, but not contractible
in R2zt0u. This observation has many powerful implications, e.g. we will see in the next lecture
that it is the key idea behind one of the simplest proofs of the fundamental theorem of algebra,
that every nonconstant complex polynomial has a root.

Another example with nontrivial fundamental group is the torus T2 :“ S1 ˆ S1. Pictures
of this space embedded in R3 typically depict it as the surface of a tube (or a doughnut or a
bagel—depending on your cultural preferences). Can you visualize a loop on this surface that is
contractible in R3 but not in T2?

One can also use the fundamental group to gain insight into homotopy classes of non-closed
paths:

Theorem 9.8. Two paths x
α,β
 y in X are homotopic with fixed end points if and only if the

concatenated path x
α¨β´1

 x represents the identity element in π1pX, xq.
Proof. The condition α „

h` β means the existence of a homotopy H : I2 Ñ X with certain

properties as depicted at the left in Figure 2, but by a suitable choice of homeomorphism I2 – D2

as shown to the right of that picture, we can equally well regard H as a map D2 Ñ X . The
loop γ :“ H|BD2 : S1 Ñ X can then be viewed as the concatenation α ¨ ey ¨ β´1 ¨ ex, which by
Proposition 8.8 is homotopic with fixed end points to α ¨β´1. The result then follows directly from
Theorem 9.4. �

Corollary 9.9. A space X is simply connected if and only if for every pair of points p, q P X,
there exists a path from p to q and it is unique up to homotopy with fixed end points. �

Let us finally work out a few concrete examples.

Example 9.10. For each n ě 0, the Euclidean space Rn is simply connected. Indeed, since it
is path-connected, we are free to choose the base point 0 P Rn, and can then observe that every
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loop 0
γ
 0 is homotopic to the constant loop via the continuous family of loops

γs : I Ñ Rn : t ÞÑ sγptq for s P I.
Example 9.11. Since every open ball Brpxq in Rn is homeomorphic to Rn itself, Corollary 8.12

implies that π1pBrpxqq also vanishes, i.e. Brpxq is simply connected. One could also give a direct
proof of this, analogously to Example 9.10: just choose x P Brpxq as the base point and define
γs via linear interpolation between γ and the constant loop at x. A similar trick works in fact
for any convex subset K Ă Rn, i.e. any set K with the property that the straight line segment
connecting any two points x, y P K is also contained in K. It follows that all convex subsets of
finite-dimensional vector spaces are simply connected.

Example 9.12. Our first example of a nontrivial fundamental group (and probably also the
most important one to take note of in this course) is the circle: we claim that

π1pS1q – Z.

The proof is based on a pair of lemmas that we will prove (in more general forms) in a few weeks,
though I suspect you will already find them easy to believe. Regarding S1 as the unit circle in C,
consider the map

f : RÑ S1 : t ÞÑ e2πit.

This is our first interesting example of a so-called covering map (Überlagerung): it is surjective,
and it looks like a homeomorphism on the small scale (i.e. if you zoom in close enough on any
particular point in R), but it is not injective, in fact it “wraps” the line R around S1 infinitely
many times. The next two statements are special cases of results that we will later prove about a
much more general class of covering spaces:

(1) Given a path x
γ
 y in S1 and a point x̃ P f´1pxq, there exists a unique path x̃

γ̃
 ỹ in R

that is a “lift” of γ in the sense that f ˝ γ̃ “ γ.
(2) Given a homotopy H : I ˆ I Ñ S1 of paths x

γ
 y (with fixed end points) and a point

x̃ P f´1pxq, there exists a unique homotopy rH : I ˆ I Ñ R of lifted paths x̃
γ̃
 ỹ which

lifts H in the sense that f ˝ rH “ H .

Now for any rγs P π1pS1, 1q represented by a path 1
γ
 1, there is a unique lift to a path 0

γ̃
 γ̃p1q

in R. Unlike γ, the end point of the lift need not match its starting point, but the fact that it is a
lift implies γ̃p1q P f´1p1q “ Z, and the fact that homotopies can be lifted implies that this integer
does not change if we replace γ with any other representative of rγs P π1pS1, 1q. We therefore
obtain a well-defined map

Φ : π1pS1, 1q Ñ Z : rγs ÞÑ γ̃p1q.
It is easy to show that Φ is a group homomorphism by lifting concatenated paths. Moreover, Φ
is surjective since Φprγksq “ k for each of the loops γkptq “ e2πikt with k P Z, as these have lifts
γ̃ptq “ kt. Injectivity amounts to the statement that γ must be homotopic to a constant whenever
its lift satisfies γ̃p1q “ 0, and this follows from the fact that π1pRq “ 0: indeed, in this case γ̃ is not
just a path in R but is also a loop, thus it represents an element of π1pR, 0q “ 0 and is therefore
homotopic to the constant loop. Composing that homotopy with f : RÑ S1 gives a homotopy of
the original loop γ to a constant.

Exercise 9.13. In this exercise we show that the fundamental group of a product is a product
of fundamental groups.

(a) Given two pointed spaces pX, xq and pY, yq, prove that π1pX ˆ Y, px, yqq is isomorphic to
the product group π1pX, xq ˆ π1pY, yq.
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Hint: Use the projections pX : X ˆY Ñ X and pY : XˆY Ñ Y to define a natural map
from π1 of the product to the product of π1’s, then prove that it is an isomorphism.

(b) Generalize part (a) to the case of an infinite product of pointed spaces (with the product
topology).

Exercise 9.14. Let us regard π1pX, pq as the set of base-point preserving homotopy classes
of maps pS1, ptq Ñ pX, pq, and let rS1, Xs denote the set of homotopy classes of maps S1 Ñ X ,
with no conditions on base points. (The elements of rS1, Xs are called free homotopy classes
of loops in X). There is a natural map

F : π1pX, pq Ñ rS1, Xs
defined by ignoring base points. Prove:

(a) F is surjective if X is path-connected.
(b) F prαsq “ F prβsq if and only if rαs and rβs are conjugate in π1pX, pq.

Hint: If H : r0, 1sˆS1 Ñ X is a homotopy with Hp0, ¨q “ α and Hp1, ¨q “ β, and t0 P S1

is the base point in S1, then γ :“ Hp¨, t0q : r0, 1s Ñ X begins and ends at p, and therefore
also defines a loop. Compare α and the concatenation γ ¨ β ¨ γ´1.

The conclusion is that if X is path-connected, F induces a bijection between rS1, Xs and the set
of conjugacy classes in π1pXq. In particular, π1pXq – rS1, Xs whenever π1pXq is abelian.

10. Retractions and homotopy equivalence

Having proved that two homeomorphic spaces always have isomorphic fundamental groups, it
is natural to wonder whether the converse is true. The answer is an emphatic no, but this will turn
out to be more of an advantage than a disadvantage: it becomes much easier to compute π1pXq
if we are free to replace X with another space X 1 that is not homeomorphic to X but still has
certain features in common. This idea leads us naturally to the notion of homotopy equivalence,
another equivalence relation on topological spaces that is strictly weaker than homeomorphism.

Let us first discuss conditions that make the homomorphisms f˚ : π1pX, pq Ñ π1pY, qq injective
or surjective.

Definition 10.1. For a space X with subset A Ă X , a map f : X Ñ A is called a retraction
(Retraktion) if f |A is the identity map A Ñ A. Equivalently, if i : A ãÑ X denotes the natural
inclusion map, then f being a retraction means that the following diagram commutes:

(10.1)
A A

X

Id

i f

We say in this case that A is a retract of X .

Example 10.2. For A :“ Rˆ t0u Ă R2, the map f : R2 Ñ A : px, yq ÞÑ px, 0q is a retraction.

A wide class of examples of retractions arises from the following general construction.

Definition 10.3. The wedge sum of two pointed spaces pX, pq and pY, qq is the space
X _ Y :“ pX > Y qL„

where the equivalence relation sets p P X equivalent to q P Y and is otherwise trivial. More
generally, any (potentially infinite) collection of pointed spaces tpXα, pαquαPJ has a wedge sumł

αPJ
Xα :“ ž

αPJ
Xα

M
„,
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where the equivalence relation identifies all the base points pα „ pβ for α, β P J . The wedge sum
is naturally also a pointed space, with base point rpαs PŽβ Xβ.

Remark 10.4. I did not specify the topology on X _ Y or
Ž
αXα, but by now you know

enough to deduce from context what it must be: e.g. for the wedge of two spaces, we assign the
disjoint union topology to X > Y and then endow pX > Y q{„ with the resulting quotient topology.
We will see many more constructions of this sort that involve a combination of quotients with
disjoint unions and/or products, so you should always assume unless otherwise specified that the
topology is whatever arises naturally from disjoint union, product and/or quotient topologies.

The notation for wedge sums is slightly nonideal since the definition of
Ž
αXα depends not just

on the spaces Xα but also on their base points pα P Xα, and it is not true in general that changing
base points always produces homeomorphic wedge sums. It is true however for most examples
that arise in practice, so the ambiguity in notation will usually not cause a problem. Note that
since each of the individual spaces Xα are naturally subspaces of

š
β Xβ, they can equally well

be regarded as subspaces of
Ž
βXβ , and it is straightforward to show that the obvious inclusion

Xα ãÑ Ž
β Xβ for each α is a homeomorphism onto its image. As subspaces of a disjoint unionš

αXα, the individual spaces Xβ and Xγ for β ‰ γ are by definition disjoint, whereas in
Ž
αXα,

they intersect each other at the base point, and only there.

Exercise 10.5. Show that for any collection of pointed maps tfα : pXα, pαq Ñ pY, qquαPJ ,
the unique map f :

Ž
αPJ Xα Ñ Y determined by the condition f |Xα

“ fα for each α P J is
continuous.

Example 10.6. For the wedge sum X _ Y of two pointed spaces pX, pq and pY, qq, there is a
natural base-point preserving retraction

f : X _ Y Ñ X : rxs ÞÑ
#
x if x P X,
p if x P Y .

In words, f maps X Ă X _ Y to itself as the identity map while collapsing all of Y Ă X _ Y to
the base point. One can analogously define a natural retraction X _ Y Ñ Y , and for a wedge sum
of arbitrarily many spaces, a natural retraction

Ž
βPJ Xβ Ñ Xα for each α P J .

Exercise 10.7. Convince yourself that the map f : X_Y Ñ X in Example 10.6 is continuous.

Example 10.8. For X “ Y “ S1, the wedge sum S1 _ S1 is a space homeomorphic to the
symbols “8” and “8”, i.e. a so-called figure eight. Note that in this case, we did not need to specify
the base points on the two copies of S1 because choosing different base points leads to wedge sums
that are homeomorphic. As a special case of Example 10.6, there are two retractions S1_S1 Ñ S1

that collapse either the top half or the bottom half of the “8” to a point.

The next example originates in the proof of the Brouwer fixed point theorem that we sketched
at the end of Lecture 1 (cf. Theorem 1.13).

Example 10.9. As explained in Lecture 1, if there exists a continuous map f : Dn Ñ Dn with
no fixed point, then one can use it to define a map g : Dn Ñ BDn “ Sn´1 that satisfies gpxq “ x

for all x P BDn. The idea is to follow the unique line from x through fpxq until arriving at some
point of the boundary, which is defined to be gpxq. This makes g a retraction of Dn to BDn. The
main step in the proof of Brouwer’s fixed point theorem is to show that no such retraction exists.
We will carry this out for n “ 2 in a moment.

Theorem 10.10. If f : X Ñ A is a retraction and i : A ãÑ X denotes the inclusion, then for
any choice of base point a P A, the induced homomorphism i˚ : π1pA, aq Ñ π1pX, aq is injective,
while f˚ : π1pX, aq Ñ π1pA, aq is surjective.
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Proof. Since the maps in the commutative diagram (10.1) all send the base point a P A to
itself, Theorem 8.11 produces a corresponding commutative diagram of homomorphisms:

π1pA, aq π1pA, aq

π1pX, aq

1

i˚ f˚

In particular, f˚ ˝ i˚ is both injective and surjective, which is only possible if i˚ is injective and f˚
is surjective. �

Proof of the Brouwer fixed point theorem for n “ 2. If there is a map f : D2 Ñ D2

with no fixed point, then there is also a retraction g : D2 Ñ BD2 “ S1 as explained in Example 10.9,
so Theorem 10.10 implies that the induced homomorphism g˚ : π1pD2q Ñ π1pS1q is surjective. As
we saw at the end of the previous lecture, π1pS1q – Z, and an easy modification of Example 9.10
shows that π1pD2q “ 0. (In fact, the same argument proves that every convex subset of Rn is
simply connected—this will also follow from the more general Corollary 10.24 below.) But there
is no surjective homomorphism from the trivial group to Z, so this is a contradiction. �

Definition 10.11. Assume X is a space with subset A Ă X and i : A ãÑ X denotes the
inclusion. A deformation retraction (Deformationsretraktion) of X to A is a homotopy H :

I ˆ X Ñ X such that Hps, ¨q|A “ IdA for every s P I, Hp1, ¨q “ IdX and Hp0, ¨q “ i ˝ f for
some retraction f : X Ñ A. If a deformation retraction exists, we say that A is a a deformation
retract (Deformationsretrakt) of X .

You should imagine a deformation retraction as a gradual “pulling” of all points in X toward
the subset A until eventually all of them end up in A.

Example 10.12. We call X Ă Rn a star-shaped domain (sternförmige Menge) if for every
x P X , the rescaled vector tx is also in X for every t P r0, 1s. In this case Hpt, xq :“ tx defines a
deformation retraction of X to the one-point subset t0u.

Example 10.13. This is actually a non-example: while the maps f : S1 _ S1 Ñ S1 in
Example 10.8 are retractions, i ˝ f in this case is not homotopic to the identity on S1 _ S1, so
S1 is not a deformation retract of S1 _ S1. We are not yet in a position to prove this, as it will
require more knowledge of π1pS1 _ S1q than we presently have, but the necessary results will be
proved within the next four lectures. For now, feel free to try to imagine how you might define
a homotopy of maps S1 _ S1 Ñ S1 _ S1 that starts with the identity and ends with a retraction
collapsing one of the circles. (Keep in mind however that it is not possible, so don’t try too hard.)

Example 10.14. The sphere Sn´1 Ă Rnzt0u is a deformation retract of the punctured Eu-
clidean space. A suitable homotopy H : I ˆ pRnzt0uq Ñ Rnzt0u can be defined by

Hpt, xq “ x

t` p1´ tq|x| ,

which makesHp1, ¨q the identity map, whileHp0, xq :“ x{|x| retracts Rnzt0u to Sn´1 andHpt, xq “
x for x P Sn´1. It is important to observe that no continuous map can be defined in this way with
all of Rn as its domain: the removal of one point changes the topology of Rn in an essential way
that makes the deformation retraction to Sn´1 possible. (We will later be able to prove that Rn

does not admit any retraction to Sn´1. When n “ 2, this already follows from Theorem 10.10
since π1pS1q – Z and π1pR2q “ 0.)
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Example 10.15. Writing Sn “  px, zq P Rn ˆ R
ˇ̌ |x|2 ` z2 “ 1

(
, define the two “poles” p˘ “

p0,˘1q. Removing these poles produces a space that can be decomposed into a 1-parameter family
of pn´ 1q-spheres, i.e. there is a homeomorphism

Snztp`, p´u –ÝÑ Sn´1 ˆ p´1, 1q : px, zq ÞÑ
ˆ

x

|x| , z
˙
.

If we identify Snztp`, p´u with Sn´1 ˆ p´1, 1q in this way, then we see that the “equator”
Sn´1 ˆ t0u Ă Sn is a deformation retract of Snztp`, p´u. This follows from the fact that t0u
is a deformation retract of p´1, 1q.

Definition 10.16. A map f : X Ñ Y is a homotopy equivalence (Homotopieäquivalenz) if
there exists a map g : Y Ñ X such that g˝f and f ˝g are each homotopic to the identity map on X
and Y respectively. When this exists, we say that g is a homotopy inverse (Homotopieinverse) of
f , and that the spaces X and Y are homotopy equivalent (homotopieäquivalent). This defines
an equivalence relation on topological spaces which we shall denote in these notes by

X »
h.e.

Y.

Exercise 10.17. Verify that homotopy equivalence defines an equivalence relation.

Remark 10.18. The notation “ »
h.e.

” for homotopy equivalence is not universal, and there are

several similar but slightly different standards that frequently appear in the literature. This one
happens to be my current favorite, but I may change to something else next year.

Example 10.19. A homeomorphism f : X Ñ Y is obviously also a homotopy equivalence,
with homotopy inverse f´1.

Example 10.20. If H : I ˆ X Ñ X is a deformation retraction with Hp0, ¨q “ f ˝ i for a
retraction f : X Ñ A, then the inclusion i : A ãÑ X is a homotopy inverse of f , so that both f
and i are homotopy equivalences and thus X »

h.e.
A. Indeed, the retraction condition implies that

f ˝ i is not just homotopic but also equal to IdA, and adding the word “deformation” provides the
condition i ˝ f „

h
IdX .

Definition 10.21. We say that a space X is contractible (zusammenziehbar or kontrahier-
bar) if it is homotopy equivalent to a one-point space.

Remark 10.22. The above definitions imply immediately that any space admitting a defor-
mation retraction to a one-point subset (as in Example 10.12) is contractible. The converse is not
quite true. Indeed, suppose txu is a one-point space and f : X Ñ txu is a homotopy equivalence
with homotopy inverse g : txu Ñ X and a homotopy H : I ˆ X Ñ X from IdX to g ˝ f . (We
do not need to discuss any homotopy of f ˝ g since there is only one map txu Ñ txu.) Then if
p :“ gpxq P X , F : X Ñ tpu denotes the constant map at p and i : tpu ãÑ X is the inclusion,
we have F ˝ i “ Idtpu, and H is a homotopy from IdX to i ˝ F . Unfortunately, the definition of
homotopy equivalence does not guarantee that this homotopy will satisfy Hpt, pq “ p for all t P I,
so H might not be a deformation retraction in the strict sense of Definition 10.11. It turns out that
this distinction matters, but only for fairly strange spaces: see [Hat02, p. 18, Exercise 6] for an
example of a space that is contractible but does not admit a deformation retraction to any point.

We can now state the main theorem of this lecture.

Theorem 10.23. If f : X Ñ Y is a homotopy equivalence with fppq “ q, then the induced
homomorphism f˚ : π1pX, pq Ñ π1pY, qq is an isomorphism.
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Since a one-point space contains only one path and therefore has trivial fundamental group,
this implies:

Corollary 10.24. For every contractible space X, π1pXq “ 0. �

Proof of Theorem 10.23. Here is a preliminary remark: if you’re only half paying at-
tention, then you might reasonably think this theorem follows immediately from Theorem 8.11.
Indeed, we stated in that theorem that the homomorphism f˚ : π1pX, pq Ñ π1pY, qq depends only
on the pointed homotopy class of f , and the same is of course true of the compositions g ˝ f and
f ˝ g, which ought to make g˚ ˝ f˚ and f˚ ˝ g˚ both the identity if g ˝ f and f ˝ g are homotopic
to the identity. The problem however is that we are not paying attention to the base point: the
definition of homotopy equivalence never mentions any base point and says “homotopy” rather than
“pointed homotopy,” while in Theorem 8.11, maps and homotopies are always required to preserve
base points. In particular, if fppq “ q and g : Y Ñ X is a homotopy inverse of f , then there is
no reason to expect gpqq “ p, in which case g˚ : π1pY, qq Ñ π1pX, gpqqq cannot be an inverse of
f˚ : π1pX, pq Ñ π1pY, qq, as its target is not even the same group as the domain of f˚. The main
content of the following proof is an argument to cope with this annoying detail.

With that out of the way, assume f : X Ñ Y is a map with homotopy inverse g : Y Ñ X ,
satisfying fppq “ q and gpqq “ r, so we have a sequence of pointed maps

pX, pq fÝÑ pY, qq gÝÑ pX, rq
and induced homomorphisms

(10.2) π1pX, pq f˚ÝÑ π1pY, qq g˚ÝÑ π1pX, rq.
By assumption there exists a homotopy H : I ˆX Ñ X , which we shall write as a 1-parameter
family of maps

hs :“ Hps, ¨q : X Ñ X for s P I,
satisfying h0 “ IdX and h1 “ g ˝ f . We can therefore define a path p

γ
 r by

γptq :“ htppq,
and by Theorem 9.1, this gives rise to an isomorphism

Φγ : π1pX, rq Ñ π1pX, pq : rαs ÞÑ rγ ¨ α ¨ γ´1s.
We claim that the diagram

π1pX, pq π1pY, qq

π1pX, rq

f˚

Φ´1
γ

g˚

commutes, or equivalently, Φγ ˝ g˚ ˝ f˚ is the identity map on π1pX, pq. Given a loop p α
 p, the

element Φγ ˝ g˚ ˝ f˚rαs “ Φγ ˝ pg ˝ fq˚rαs is represented by γ ¨ pg ˝ f ˝αq ¨ γ´1, so we need to show
that the latter is homotopic with fixed end points to α. A precise formula for such a homotopy is
provided by the following 1-parameter family of loops: for s P I, let

αs :“ γs ¨ phs ˝ αq ¨ γ´1
s ,

where p
γs
 γpsq denotes the path γsptq :“ γpstq. (For a visualization of what this homotopy is

actually doing, I recommend the picture on page 37 of [Hat02].) This proves the claim, and since
Φγ is an isomorphism, it implies that g˚ ˝ f˚ “ Φ´1

γ is also an isomorphism, from which we deduce
that f˚ is injective and g˚ is surjective.
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The preceding argument was based on the assumption that g ˝ f : X Ñ X is homotopic to
the identity. We have not yet used the assumption that f ˝ g : Y Ñ Y is also homotopic to the
identity, but we can use it now to carry out the same argument again with the roles of f and g
reversed. The conclusion is that f˚ ˝ g˚ is also an isomorphism, implying g˚ is injective and f˚ is
surjective. We conclude that f˚ and g˚ are in fact both isomorphisms. �

Example 10.25. Here are some examples of contractible spaces, which therefore have iso-
morphic (trivial) fundamental groups even though they are not all homeomorphic: Rn, Dn (not
homeomorphic to Rn since it is compact), any convex subset or star-shaped domain in Rn as in
Example 10.12. A quite different type of example comes from graph theory : a graph is a combi-
natorial object consisting of a set V (called the vertices) and a set E whose elements (the edges)
are unordered pairs of vertices. A graph is typically represented by depicting the vertices as points
and the edges tx, yu P E as curves connecting the corresponding vertices x and y to each other.
One can thus naturally view a graph as a topological space in which each vertex is a point and each
edge is a subset homeomorphic to r0, 1s (possibly with its end points identified if its two vertices
are the same one). A graph is called a tree if there is exactly one path (up to parametrization)
connecting any two of its vertices. It is not hard to show that any finite graph with this property is
a contractible space: pick your favorite vertex v P V , draw the unique path from v to every other
vertex, then define a deformation retraction to v by pulling everything back along these paths.

Example 10.26. Viewing S1 as the unit circle in C, associate to each z P C the loop γz :

S1 ãÑ Cztzu : eiθ ÞÑ z` eiθ. Since these are pointed maps pS1, 1q Ñ pCztzu, z` 1q, they represent
elements rγzs P π1pCztzu, z`1q. We claim in fact that this group is isomorphic to Z, and that rγzs
generates it. The proof is mainly the observation that γzpS1q is a deformation retract of Cztzu, by a
construction analogous to Example 10.14, hence γz is a homotopy equivalence and therefore induces
an isomorphism π1pS1, 1q Ñ π1pCztzu, z ` 1q. Since the identity map pS1, 1q Ñ pS1, 1q represents
a generator of π1pS1, 1q, composing this with γz now represents a generator of π1pCztzu, z ` 1q as
claimed.

Exercise 10.27. For a point z P C and a continuous map γ : r0, 1s Ñ Cztzu with γp0q “ γp1q,
one defines the winding number of γ about z as

windpγ; zq “ θp1q ´ θp0q P Z

where θ : r0, 1s Ñ R is any choice of continuous function such that

γptq “ z ` rptqe2πiθptq
for some function r : r0, 1s Ñ p0,8q. Notice that since γptq ‰ z for all t, the function rptq is
uniquely determined, and requiring θptq to be continuous makes it unique up to the addition of a
constant integer, hence θp1q ´ θp0q depends only on the path γ and not on any additional choices.
One of the fundamental facts about winding numbers is their important role in the computation
of π1pS1q: as we saw in Example 9.12, viewing S1 as tz P C | |z| “ 1u, the map

π1pS1, 1q Ñ Z : rγs ÞÑ windpγ; 0q
is an isomorphism to the abelian group pZ,`q. Assume in the following that Ω Ă C is an open set
and f : ΩÑ C is a continuous function.

(a) Suppose fpzq “ w and w R fpUztzuq for some neighborhood U Ă Ω of z. This implies
that the loop f ˝ γǫ for γǫ : r0, 1s Ñ Ω : t ÞÑ z ` ǫe2πit has image in Cztwu for all
ǫ ą 0 sufficiently small, hence windpf ˝ γǫ;wq is well defined. Show that for some ǫ0 ą 0,
windpf ˝ γǫ;wq does not depend on ǫ as long as 0 ă ǫ ď ǫ0.
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(b) Show that if the ball Brpz0q of radius r ą 0 about z0 P Ω has its closure contained in Ω,
and the loop γptq “ z0 ` re2πit satisfies windpf ˝ γ;wq ‰ 0 for some w P C, then there
exists z P Brpz0q with fpzq “ w.
Hint: Recall that if we regard elements of π1pX, pq as pointed homotopy classes of maps
S1 Ñ X , then such a map represents the identity in π1pX, pq if and only if it admits a
continuous extension to a map D2 Ñ X . Define X in the present case to be Cztwu.

(c) Prove the Fundamental Theorem of Algebra: every nonconstant complex polynomial has
a root.
Hint: Consider loops γptq “ Re2πit with R ą 0 large.

(d) We call z0 P Ω an isolated zero of f : Ω Ñ C if fpz0q “ 0 but 0 R fpUztz0uq for
some neighborhood U Ă Ω of z0. Let us say that such a zero has order k P Z if
windpf ˝ γǫ; 0q “ k for γǫptq “ z0 ` ǫe2πit and ǫ ą 0 small (recall from part (a) that this
does not depend on the choice of ǫ if it is small enough). Show that if k ‰ 0, then for
any neighborhood U Ă Ω of z0, there exists δ ą 0 such that every continuous function
g : ΩÑ C satisfying |f ´ g| ă δ everywhere has a zero somewhere in U .

(e) Find an example of the situation in part (d) with k “ 0 such that f admits arbitrarily
close perturbations g that have no zeroes in some fixed neighborhood of U .
Hint: Write f as a continuous function of x and y where x` iy P Ω. You will not be able
to find an example for which f is holomorphic—they do not exist!

General advice: Throughout this problem, it is important to remember that Cztwu is homotopy
equivalent to S1 for every w P C. Thus all questions about π1pCztwuq can be reduced to questions
about π1pS1q.

11. The easy part of van Kampen’s theorem

The main question of this lecture is the following: If X is the union of two subsets AYB and
we know both π1pAq and π1pBq, what can we say about π1pXq?

Example 11.1. The sphere Sn can be viewed as the union of two subsets A and B that are both
homeomorphic to Dn, e.g. when n “ 2, we would take the northern and southern “hemispheres”
of the globe. Since Dn is contractible, π1pAq “ π1pBq “ 0. We will see below that this is almost
enough information to compute π1pSnq.

The next lemma is the “easy” first half of an important result about fundamental groups
known as the Seifert-van Kampen theorem, or often simply van Kampen’s theorem. The much
more powerful “hard” part of the theorem will be dealt with in the two subsequent lectures, though
the easy part already has several impressive applications. We will state it here in somewhat
greater generality than is needed for most applications: on first reading, you are free to replace
the arbitrary open covering X “ Ť

αPJ Aα with a covering by two open subsets X “ AYB, which
will be the situation in all of the examples below.

Lemma 11.2. Suppose X “ Ť
αPJ Aα for a collection of open subsets tAα Ă XuαPJ satisfying

the following conditions:

(1) Aα is path-connected for every α P J ;
(2) Aα XAβ is path-connected for every pair α, β P J ;
(3)

Ş
αPJ Aα ‰ H.

Let Aα
iαãÑ X denote the natural inclusion maps. Then for any base point p P Ş

αPJ Aα, π1pX, pq
is generated by the subgroups

piαq˚ pπ1pAα, pqq Ă π1pX, pq,
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i.e. every element of π1pX, pq is a product of elements of the form piαq˚rγs for some α P J and
rγs P π1pAα, pq.

Before proving the lemma, let’s look at several more examples, starting with a rehash of
Example 11.1 above.

Example 11.3. Denote points in the unit sphere Sn by px, zq P RnˆR such that |x|2`z2 “ 1,
and define the open subsets

A :“ tz ą ´ǫu Ă Sn, B :“ tz ă ǫu Ă Sn

for some ǫ ą 0 small. Then A – B – Rn, so both have trivial fundamental group. Moreover,
AXB – Sn´1ˆp´ǫ, ǫq is path-connected if n ě 2. (Note that this is not true if n “ 1: the 0-sphere
S0 is just the set of two points t1,´1u Ă R, so it is not path-connected.) The lemma therefore
implies that for any p P AXB, π1pSn, pq is generated by images of homomorphisms into π1pSn, pq
from the groups π1pA, pq and π1pB, pq, both of which are trivial, therefore π1pSn, pq is trivial.

We just proved:

Corollary 11.4. For all n ě 2, Sn is simply connected. �

Here is an easy application:

Theorem 11.5. For every n ě 3, R2 is not homeomorphic to Rn.

Proof. The complement of one point in Rn is homotopy eqivalent to Sn´1, thus π1pRnztptuq –
π1pSn´1q “ 0 if n ě 3, while π1pR2ztptuq – π1pS1q – Z. It follows that R2ztptu and Rnztptu for
n ě 3 are not homeomorphic, hence neither are R2 and Rn. �

A wider class of examples comes from the following general construction known as gluing of
spaces. Assume X , Y and A are spaces and we have inclusions9

iX : A ãÑ X, iY : A ãÑ Y.

We then define the space
X YA Y :“ pX > Y qL„

where the equivalence relation identifies iXpaq P X with iY paq P Y for every a P A. As usual in
such constructions, we assign to X > Y the disjoint union topology and then give X YA Y the
quotient topology. We say that X YA Y is the space obtained by gluing X to Y along A. Note
that we can regard X and Y both as subspaces of X YA Y , and their intersection is a subspace
homeomorphic to A. The wedge sum of two spaces (see Example 10.3) is the special case of this
construction where A is a single point. (The notation is slightly non-ideal since XYAY depends on
the inclusions of A into X and Y , not just on the three spaces themselves, but in most interesting
examples the inclusions are obvious, so the notation is easy to interpret.)

Example 11.6. If X “ Y “ Dn and A “ Sn´1 is included in both as the boundary BDn, then
the descriptions of Sn in Examples 11.1 and 11.3 translates into

Dn YSn´1 Dn – Sn.

9The technical meaning of the word inclusion in this context is a map A ãÑ X which is injective and is a
homeomorphism onto its image (with the subspace topology). Such a map is also sometimes called a topological
embedding.
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Example 11.7. In Example 1.2 we gave a description of RP2 as the space obtained by gluing
a disk D2 to a Möbius strip

M :“  peiθ, t cospθ{2q, t sinpθ{2qq P S1 ˆ R2
ˇ̌
eiθ P S1, t P r´1, 1s(

along their boundaries, which are both homeomorphic to S1. Choose a particular inclusion of S1

as the boundary of M, e.g.

S1 ãÑ M : eiθ ÞÑ pe2iθ, cospθq, sinpθqq.
Then our picture of RP2 can be expressed succinctly as

RP
2 – D2 YS1 M.

Lemma 11.2 can now be applied to this as follows. There is an obvious deformation retraction of
M to the “central” circle S1 ˆ t0u ĂM, defined via the homotopy

H : I ˆMÑM : ps, peiθ, t cospθ{2q, t sinpθ{2qqq ÞÑ peiθ, st cospθ{2q, st sinpθ{2qq,
thus M »

h.e.
S1. The gluing construction allows us to view both D2 and M as subsets of RP2,

but they are not open subsets as required by the lemma. This can easily be fixed by slightly
expanding both of them. Concretely, by adding a neighborhood of BM in M to D2, we obtain an
open neighborhood A Ă RP2 of D2 that is homeomorphic to an open disk, and similarly, adding
a neighborhood of BD2 in D2 to M gives an open neighborhood B Ă RP

2 of M that admits a
deformation retraction to M and thus also to the central circle S1 ˆ t0u ĂM. We now have

π1pAq – π1pD̊2q “ 0 and π1pBq – π1pMq – π1pS1q – Z,

and notice also that A and B are both path connected, and so is A X B since we can arrange for
the latter to be homeomorphic to S1 ˆ p´1, 1q, i.e. it is the union of an annular neighborhood of
BD2 in D2 with another annular neighborhood of BM in M. The lemma thus implies that for any
p P A X B, π1pRP2, pq is generated by the element iB˚ rγs P π1pRP2, pq, where iB : B ãÑ RP

2 is
the inclusion and γ : pS1, 1q Ñ pB, pq is any loop such that rγs generates π1pB, pq – Z. In light
of the deformation retraction to the central circle, the inclusion of that circle into B induces an
isomorphism of fundamental groups, thus we can take γ to be the obvious inclusion of S1 into B
as the central circle:

γ : S1 –Ñ S1 ˆ t0u ĂM Ă RP
2,

eiθ ÞÑ peiθ, 0q.(11.1)

The conclusion is that if we regard γ in this way as a loop in RP2, then rγs generates π1pRP2, pq.
The loop γ is not hard to visualize if you translate from our picture of RP2 as D2 YS1 M back to
the usual definition of RP2 as a quotient of S2 (see Example 1.2): in the latter picture you can
realize γ as a path along the equator of S2 that goes exactly halfway around. Note that this is not
a loop in S2, but it becomes a loop when you project it to RP2 since its starting and end point
are antipodal.

A word of caution is in order: we have not yet actually computed π1pRP2q, we have only shown
that every element in π1pRP2q is a power of a single element rγs. It is still possible that π1pRP2q is
trivial because γ is contractible—this will turn out not to be the case, but we are not in a position
to prove it just yet. We can say one more thing, however: rγs2 is the identity element in π1pRP2, pq.
Indeed, rγs2 is represented by the concatenation of γ with itself, which can also be realized as the
projection through S2 πÑ RP

2 of a path that goes all the way around the equator in S2, i.e. it
is the concatenation of two paths that go halfway around. But if α : S1 Ñ S2 parametrizes
this loop around the equator, then there is obviously an extension of α to a map u : D2 Ñ S2

satisfying u|BD2 “ α, namely the inclusion of either the northern or southern hemisphere of S2.



66 FIRST SEMESTER (TOPOLOGIE I)

The map π ˝ u : D2 Ñ RP
2 is then an extension over the disk of our loop representing rγs2, which

proves via Theorem 9.4 that rγs2 is trivial. This proves that π1pRP2q is either the trivial group
or is isomorphic to Z2; we will see that it is the latter when we prove that the generator rγs is
nontrivial.

Here is another pair of general constructions that produce many more examples.

Definition 11.8. Given a space X , the cone (Kegel) of X is the space

CX :“ pX ˆ Iq{pX ˆ t1uq.
The single point in CX represented by px, 1q for every x P X is sometimes called the “summit”

or “node” of the cone.

Exercise 11.9. Show that CSn´1 is homeomorphic to Dn.

Lemma 11.10. For every space X, the cone CX is contractible.

Proof. There is an obvious deformation retraction of X ˆ I to X ˆ t1u defined by pushing
every px, tq P X ˆ I upward in the t-coordinate. Writing down this same deformation retraction
on the quotient pX ˆ Iq{pX ˆ t1uq, the result is that everything gets pushed to a single point, the
summit of the cone. �

Definition 11.11. Given a space X , the suspension (Einhängung) of X is the space

SX :“ C`X YXˆt0u C´X,
where C`X :“ CX as above, and C´X is the “reversed” cone pX ˆ r´1, 0sq{pX ˆ t´1uq. Equiva-
lently, the suspension can be written as

SX “ pX ˆ r´1, 1sqL„
where px, 1q „ py, 1q and px,´1q „ py,´1q for every x, y P X .

Exercise 11.12. Show that SSn´1 – Sn.

We can now generalize the result that π1pSnq “ 0 for n ě 2 as follows.

Theorem 11.13. If X is path-connected, then its suspension SX is simply connected.

Proof. We define A,B Ă SX to be open neighborhoods of C`X and C´X respectively, e.g.

A :“ pX ˆ p´ǫ, 1sqLpX ˆ t1uq, B :“ pX ˆ r´1, ǫqqLpX ˆ t´1uq
for any ǫ P p0, 1q. The subspaces are both contractible for the same reason that C`X and C´X
are: one can define deformation retractions to a point by pushing upward in A and downward
in B. Moreover, AXB “ X ˆ p´ǫ, ǫq is path-connected if and only if X is path-connected, and in
that case, Lemma 11.2 implies that π1pSXq is generated by the images of homomorphisms from
π1pAq and π1pBq, both of which are trivial, therefore π1pSXq is trivial. �

Let us finally prove the lemma.

Proof of Lemma 11.2. We assume X “ Ť
αPJ Aα and p P ŞαPJ Aα, where the sets Aα Ă X

are open and path-connected, and AαXAβ is also path-connected for every pair α, β P J . What we
need to show is that every loop p

γ
 p in X is homotopic with fixed end points to a concatenation

of finitely many loops based at p that are each contained in one of the subsets Aα. To start with,
observe that since γ : I Ñ X is continuous, Iα :“ γ´1pAαq is an open subset of I for every α, and
is therefore a union of open subintervals of I.10 The union of all these open subintervals for all

10Remember that since sets like r0, ǫq Ă I that include an end point are open subsets of I, they are included
in the term “open subinterval of I”.
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α P J thus forms an open covering of I, which has a finite subcovering since I is compact, giving
rise to a finite collection of open subintervals

I “ I1 Y . . .Y IN

such that for each j “ 1, . . . , N , γpIjq Ă Aαj
for some αj P J . After relabeling the αj ’s if necessary,

we can then find a finite increasing sequence

0 “: t0 ă t1 ă . . . ă tN´1 ă tN :“ 1

such that γprtj´1, tjsq Ă Aαj
for each j “ 1, . . . , N . In particular, for j “ 1, . . . , N ´ 1, each γptjq

lies in both Aαj
and Aαj`1

. The intersection of these two sets is path-connected by assumption, so
choose a path βj in Aαj

X Aαj`1
from γptjq to the base point p. Then if we write γj :“ γ|rtj´1,tjs

and reparametrize each of these paths to define them on the usual interval I, we have

γ “ γ1 ¨ . . . ¨ γN „
h` γ1 ¨ β1 ¨ β

´1
1 ¨ γ2 ¨ β2 ¨ β´1

2 ¨ . . . ¨ βN´2 ¨ β´1
N´2 ¨ γN´1 ¨ βN´1 ¨ β´1

N´1 ¨ γN .
The latter is the concatenation we were looking for since γ1 ¨ β1 is a loop from p to itself in Aα1

,
β´1
1 ¨ γ2 ¨ β2 is a loop from p to itself in Aα2

, and so forth up to β´1
N´2 ¨ γN´1 ¨ βN´1 in AαN´1

and
β´1
N´1 ¨ γN in AαN

. �

To conclude this lecture, we would like to restate Lemma 11.2 in more precise terms. This
requires a few notions from combinatorial group theory.

Definition 11.14. Suppose tGαuαPJ is a collection of groups, with the identity element in
each denoted by eα P Gα. For any integer N ě 0, an ordered set b1b2 . . . bN together with a
corresponding ordered set α1, α2, . . . , αN P J is called a word in tGαuαPJ if bi P Gαi

for each
i “ 1, . . . , N . Informally, we call the elements of the sequence letters, and denote the word by
b1 . . . bN even though, strictly speaking, the set of indices α1, . . . , αN P J is also part of the data
defining the word.11 Note that this definition includes the so-called empty word, with N “ 0,
i.e. the word with no letters. A word a1 . . . aN is called a reduced word if:

‚ none of the letters bi are the identity element eαi
P Gαi

in the corresponding group, and
‚ no two adjacent letters bi and bi`1 satisfy αi “ αi`1, i.e. the groups that appear in
adjacent positions are distinct.

Note that the empty word trivially satisfies both conditions, thus it is a reduced word.

There is an obvious map called reduction from the set of all words to the set of all reduced
words: it acts on a given word b1 . . . bN by replacing all adjacent pairs bibi`1 with their product
in Gα whenever αi “ αi`1 “ α, and removing all eα’s.

Definition 11.15. The free product (freies Produkt) ˚αPJ Gα of a collection of groups
tGαuαPJ is defined as the set of all reduced words in tGαuαPJ . The product of two reduced words
w “ b1 . . . bN and w1 “ b11 . . . b1N 1 in this group is defined to be the reduction of the concatenated
word ww1 “ b1 . . . bNb

1
1 . . . b

1
N 1 . The identity element is the empty word, and will be denoted by

e P ˚
αPJ

Gα.

We will typically deal with collections of only finitely many groups G1, . . . , GN , in which case
the free product is usually denoted by

G1 ˚ . . . ˚GN .
11This is important to remember in case some Gα and Gβ contain common elements for α ‰ β, e.g. if they

are both subgroups of a single larger group. If not, then this detail is safe to ignore and the notation b1 . . . bN for a
word is completely unambiguous.
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In general, this is an enormous group, e.g. it is always infinite if there are at least two nontrivial
groups in the collection, no matter how small those groups are. It is also always nonabelian in
those cases. Let us see some examples.

Example 11.16. Consider two copies of the same group G “ H “ Z2, with the unique
nontrivial elements of G and H denoted by a P G and b P H . Then G ˚H consists of all possible
reduced words built out of these two letters, plus the empty word e, so

Z2 ˚ Z2 – G ˚H “ te, a, b, ab, ba, aba, bab, abab, baba, . . .u .
For an example of how multiplication in Z2 ˚ Z2 works, the product of aba and ab is a, i.e. this is
the result of reducing the unreduced word abaab since aa and bb are both identity elements.

Example 11.17. Let G “ Z with a generator denoted by a P G, and H “ Z2 with nontrivial
element b. If we write G as a multiplicative group so that its elements are all of the form ap for
p P Z, then

Z ˚ Z2 – G ˚H “  
e, ap, b, apb, bap, apbaq, bapbaq, apbaqbar, . . .

ˇ̌
p, q, r, . . . P Z

(
.

For an example of a product, apbar times a´1b gives apbar´1b.

With this terminology understood, here is what we actually proved when we proved Lemma 11.2.

Lemma 11.18. Given X “ Ť
αPJ Aα and p P ŞαPJ Aα as in Lemma 11.2, there exists a natural

group homomorphism
˚
αPJ

π1pAα, pq ΦÝÑ π1pX, pq
sending each reduced word rγ1s . . . rγN s P ˚αPJ π1pAα, pq with rγis P π1pAαi

, pq to the concatenation
rγ1 ¨ . . . ¨ γN s P π1pX, pq, and Φ is surjective. �

The existence of the homomorphism Φ is an easy and purely algebraic fact, which we’ll expand
on a bit in the next lecture. The truly nontrivial statement here is that Φ is surjective. If we
can now identify the kernel of Φ, then Φ descends to an isomorphism from the quotient of the
free product by kerΦ to π1pX, pq, and we will thus have a formula for π1pX, pq. Identifying the
kernel and then using the resulting formula in applications will be our main topic for the next two
lectures.

12. Normal subgroups, generators and relations

Before stating the general version of the Seifert-van Kampen theorem, we need to collect a few
more useful algebraic facts about groups and the free product. Recall from the previous lecture
that the free product ˚αPJ Gα of an arbitrary collection of groups tGαuαPJ is defined to consist of
all so-called reduced words g1 . . . gN in which each “letter” gi is an element of one of the groups Gαi

,
and the choice of αi P J such that gi P Gαi

for each i “ 1, . . . , N is considered part of the data
defining the word.12 The word “reduced” means that the sequence of letters in the word cannot
be simplified by computing products in any of the individual groups, hence no consecutive letters
gigi`1 with αi “ αi`1 “: α appear—if such a pair appeared then it could be replaced by a single
letter formed from the product gigi`1 P Gα—and similarly, none of the letters is the identity
element in any of the groups. Products in ˚αPJ Gα are formed by concatenating words and then

12This latter detail is unimportant if the groups Gα are all disjoint sets in the first place, but if any of them
have elements in common, e.g. if some Gα and Gβ for α ‰ β are copies of the same group, then we regard them
as separate copies and always keep track of which letter belongs to which copy. The idea is somewhat analogous
to constructing the disjoint union

š
αPJ Xα of sets, in which Xβ and Xγ for β ‰ γ always become disjoint subsets

of
š

αPJ Xα, even if they are originally defined as the same set, e.g. R > R is by definition two disjoint copies of R,
which is different from the ordinary union RY R “ R.
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reducing them if necessary, so for example, if G and H are two groups containing elements g P G
and h, k P H , then the product of the reduced words gh P G ˚H and h´1k P G ˚H is

pghqph´1kq “ gk P G ˚H,
since the concatenated word ghh´1k can be reduced by replacing hh´1 with the identity element
e P H and then removing e from the word. The identity element in ˚αPJ Gα itself is the so-called
“empty” word, with zero letters, which we will usually denote by e; there should be no danger of
confusing this with the identity elements of the individual groups Gα, since they never appear in
reduced words.

The following result is easy to prove directly from the definitions.

Proposition 12.1. Assume tGαuαPJ is a collection of groups. Then:

(1) For each α P J , the free product ˚βPJ Gβ contains a distinguished subgroup isomorphic
to Gα: it consists of the empty word plus all reduced words of exactly one letter which is
in Gα.

(2) If we regard each Gα as a subgroup of ˚γPJ Gγ as described above, then for every α, β P J
with α ‰ β, the intersection Gα XGβ in ˚γPJ Gγ consists only of the identity element e
(i.e. the empty word), and any two nontrivial elements g P Gα and h P Gβ satisfy gh ‰ hg

in ˚γPJ Gγ.
(3) For any group H with a collection of homomorphisms tΦα : Gα Ñ HuαPJ , there exists a

unique homomorphism
Φ : ˚

αPJ
Gα Ñ H

whose restriction to each of the subgroups Gα Ă ˚βPJ Gβ is Φα.

The third item in this list deserves brief comment: the homomorphism Φ : ˚αPJ Gα Ñ H

exists and is unique because every element of ˚αPJ Gα is uniquely expressible as a reduced word
g1 . . . gN with gi P Gαi

for some specified α1, . . . , αN P J , hence the definition of Φ can only be

Φpg1 . . . gN q “ Φα1
pg1q . . .ΦαN

pgN q P H.
It is similarly straightfoward to verify that Φ by this definition is a homomorphism.

Remark 12.2. In Lemma 11.18 at the end of the previous lecture the homomorphism

(12.1) ˚
αPJ

π1pAα, pq ΦÝÑ π1pX, pq
is determined as in the proposition above by the homomorphisms piαq˚ : π1pAα, pq Ñ π1pX, pq
induced by the inclusions iα : Aα ãÑ X .

We now address the previously unanswered question about the homomorphism (12.1) from
Lemma 11.18: what is its kernel?

We can make two immediate observations about this: first, for any group homomorphism
Ψ : G Ñ H , kerΨ is a normal subgroup of G. Recall that a subgroup K Ă G is called normal if
it is invariant under conjugation with arbitrary elements of G, i.e.

gkg´1 P K for all k P K and g P G.
This condition is abbreviated by “gKg´1 “ K”. It is obviously satisfied ifK “ kerΨ since Ψpkq “ e

implies Ψpgkg´1q “ ΨpgqΨpkqΨpg´1q “ ΨpgqeΨpgq´1 “ e. Recall further that for any subgroup
K Ă G, the quotient G{K is defined as the set of all left cosets of K, meaning subsets of the
form gK :“ tgh | h P Ku for fixed elements g P G. For arbitrary subgroups K Ă G, the quotient
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G{K does not have a natural group structure, but it does when K is a normal subgroup: indeed,
the condition gKg´1 “ K gives rise to a well-defined product

paKqpbKq :“ pabqK P G{K
since, as subsets of G, aKbK “ apbKb´1qbK “ abKK “ abK. In particular, any homomorphism
Ψ : GÑ H between groups G and H gives rise to a normal subgroup K :“ kerΨ Ă G and thus a
quotient group G{K, such that Ψ determines a a well-defined map

G{ kerΨÑ H : gK ÞÑ Ψpgq,
meaning that the value Ψpgq of this map does not depend on the choice of element g P G repre-
senting the coset gK P G{K. It is easy to check that this map is also a group homomorphism, in
which case we say that Ψ descends to a homomorphism G{K Ñ H , and moreover, it is injective
since Ψpgq “ e means g P kerΨ “ K and thus gK “ K “ eK, which is the identity element of
G{K. It follows that the induced map G{ kerΨ Ñ H is an isomorphism whenever the original
homomorphism Ψ is surjective. (A standard reference for these basic notions from group theory is
[Art91].)

The second observation concerns certain specific elements that obviously belong to the kernel
of the map (12.1). Consider the inclusions

jαβ : Aα XAβ ãÑ Aα

for each pair α, β P J , and recall that iα : Aα ãÑ X denotes the inclusion of Aα Ă X . Then the
following diagram commutes,

Aα

Aα XAβ X

Aβ

iα
jαβ

jβα
iβ

meaning iα ˝ jαβ “ iβ ˝ jβα, since both are just the inclusion of Aα X Aβ into X . This trivial
observation has a nontrivial consequence for the homomorphism Φ. Indeed, for any loop p

γ
 p in

AαXAβ representing a nontrivial element of π1pAαXAβ , pq, the two elements pjαβq˚rγs P π1pAα, pq
and pjβαq˚rγs P π1pAβ , pq belong to distinct subgroups in the free product ˚γPJ π1pAγ , pq, yet
clearly

piαq˚pjαβq˚rγs “ piβq˚pjβαq˚rγs P π1pX, pq
since iα ˝ jαβ “ iβ ˝ jβα. It follows that Φppjαβq˚rγsq “ Φppjβαq˚rγsq, hence kerΦ must contain
the reduced word formed by the two letters pjαβq˚rγs P π1pAα, pq and pjβαq˚rγs´1 P π1pAβ , pq:

pjαβq˚rγspjβαq˚rγs´1 P kerΦ.

Combining this with the first observation, kerΦ must contain the smallest normal subgroup of
˚γPJ π1pAγ , pq that contains all elements of this form.

Definition 12.3. For any group G and subset S Ă G, we denote by

xSy Ă G

the smallest subgroup of G that contains S, i.e. xSy is the set of all products of elements g P S and
their inverses g´1. Similarly,

xSyN Ă G
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denotes the smallest normal subgroup of G that contains S. Concretely, this means xSyN is the
set of all conjugates of products of elements of S and their inverses.

We are now in a position to state the complete version of the Seifert-van Kampen theorem.
The first half of the statement is just a repeat of Lemma 11.18, which we have proved already. The
second half tells us what kerΦ is, and thus gives a formula for π1pX, pq.

Theorem 12.4 (Seifert-van Kampen). Suppose X “ Ť
αPJ Aα for a collection of open and

path-connected subsets tAα Ă XuαPJ with nonempty intersection, denote by iα : Aα ãÑ X and
jαβ : Aα XAβ ãÑ Aα the inclusion maps for α, β P J , and fix p P ŞαPJ Aα.

(1) If Aα XAβ is path-connected for every pair α, β P J , then the natural homomorphism

Φ : ˚
αPJ

π1pAα, pq Ñ π1pX, pq
induced by the homomorphisms piαq˚ : π1pAα, pq Ñ π1pX, pq is surjective.

(2) If additionally Aα XAβ XAγ is path-connected for every triple α, β, γ P J , then
kerΦ “

A!
pjαβq˚rγspjβαq˚rγs´1

ˇ̌̌
α, β P J, rγs P π1pAα XAβ , pq

)E
N
.

In particular, Φ then descends to an isomorphism

˚
αPJ

π1pAα, pq
M
kerΦ

–ÝÑ π1pX, pq.
Remark 12.5. In most applications, we will consider coverings of X by only two subsets

X “ A Y B, and the condition on triple intersections in the second half of the statement then
merely demands that AX B be path-connected, which we already needed for the first half. (One
can take the third subset in that condition to be either A or B; we never said that α, β and γ need
to be distinct!)

I will give you the remaining part of the proof of this theorem in the next lecture. Let’s now
discuss some simple applications.

Example 12.6. Consider the figure-eight S1 _ S1 with its natural base point p P S1 _ S1,
i.e. S1 _ S1 is the union of two circles A,B Ă S1 _ S1 with A X B “ tpu. These are not open
subsets, but since a neighborhood of p in S1 _ S1 has a fairly simple structure, we can get away
with the usual trick (cf. Examples 11.3 and 11.7) of replacing both with homotopy equivalent open
neighborhoods: define A1 Ă S1 _ S1 as a small open neighborhood of A and B1 Ă S1 _ S1 as a
small open neighborhood of B such that there exist deformation retractions of A1 to A and B1
to B. The inclusions A ãÑ A1 and B ãÑ B1 then induce isomorphisms Z – π1pA, pq –ÝÑ π1pA1, pq
and Z – π1pB, pq –ÝÑ π1pB1, pq. The intersection A1 X B1 is now a pair of line segments with one
intersection point at p, so it admits a deformation retraction to p and is thus contractible, implying
π1pA1 XB1, pq “ 0. This makes kerΦ in Theorem 12.4 trivial, hence the map

π1pA, pq ˚ π1pB, pq Ñ π1pS1 _ S1, pq
determined by the homomorphisms of π1pA, pq and π1pB, pq to π1pS1 _ S1, pq induced by the
inclusions A,B ãÑ S1 _ S1 is an isomorphism. To see more concretely what this group looks like,
fix generators α P π1pA, pq – Z and β P π1pB, pq – Z, each of which can also be identified with
elements of π1pS1 _ S1, pq via the inclusions of A and B into S1 _ S1. Then

π1pS1 _ S1, pq – Z ˚ Z “ te, αp, βq, αpβq, βpαq, αpβqαr, . . . | p, q, r, . . . P Zu .
These elements are easy to visualize: α and β are represented by loops that start and end at p and
run once around the circles A or B respectively, so each element in the above list is a concatenation
of finitely many repetitions of these two loops and their inverses. Notice that αβ ‰ βα, so
π1pS1 _ S1q is our first example of a nonabelian fundamental group.
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Example 12.7. Recall from Exercise 7.27 that for each n P N, one can identify Sn with the
one point compactification of Rn, a space defined by adjoining a single point called “8” to Rn:

Sn – Rn Y t8u.
This gives rise to an inclusion map Rn

iãÑ Sn with image Snzt8u. We claim that for any compact
subset K Ă R3 such that R3zK is path-connected, and any choice of base point p P R3zK,

i˚ : π1pR3zK, pq Ñ π1pS3zK, pq
is an isomorphism. To see this, define the open subset A :“ R3zK Ă S3zK, and choose B0 Ă S3zK
to be an open ball about 8, i.e. a set of the form pR3zĞBRp0qqYt8u where ĞBRp0q Ă R3 is any closed
ball large enough to contain K. Since p might not be contained in B0 but R3zK is path-connected,
we can then define a larger set B by adjoining to B0 the neighborhood in R3zK of some path from
a point in B0 to p: this can be done so that both B0 and B are homeomorphic to an open ball, so in
particular they are contractible. The intersection AXB is then Bzt8u and is thus homoemorphic
to R3zt0u and homotopy equivalent to S2, implying π1pA X Bq “ 0. The Seifert-van Kampen
theorem therefore gives an isomorphism π1pR3zK, pq ˚ π1pB, pq Ñ π1pS3zK, pq, but π1pB, pq is the
trivial group, so this proves the claim.

A frequently occuring special case of this example is when K Ă R3 is a knot, i.e. the image of
an embedding S1 ãÑ R3. The fundamental group π1pR3zKq is then called the knot group of K,
and the argument above shows that we are free to adjoin a point at infinity and thus replace the
knot group with π1pS3zKq. This will be convenient for certain computations.

As in the previous lecture, we shall conclude this one by introducing some more terminology
from combinatorial group theory in order to state a more usable variation on the Seifert-van
Kampen theorem.

Definition 12.8. Given a set S, the free group on S is defined as

FS :“ ˚
αPS

Z,

or in other words, the set of all reduced words ap11 a
p2
2 . . . a

pN
N for N ě 0, pi P Z with pi ‰ 0,

ai P S and ai ‰ ai`1 for every i, with the product defined by concatenation of words followed by
reduction. The elements of S are called the generators of FS .

Example 12.9. The computation in Example 12.6 gives π1pS1 _ S1q – Ftα,βu – Z ˚Z, where
the set generating Ftα,βu consists of the two loops α and β parametrizing the two circles that form
S1 _ S1.

Proposition 12.10. For any set S, group G and map φ : S Ñ G, there is a unique group
homomorphism Φ : FS Ñ G satisfying Φpaq “ φpaq for single-letter words a P FS defined by
elements a P S.

Proof. Writing elements of FS in the form a
p1
1 a

p2
2 . . . a

pN
N , there is clearly only one formula

for Φ : FS Ñ G that will match φ on single-letter words and also be a homomorphism, namely

Φpap11 . . . a
pN
N q “ φpa1qp1 . . . φpaN qpN .

It is straightforward to check that this defines a homomorphism. �

Proposition 12.11. Every group is isomorphic to a quotient of a free group by some normal
subgroup.

Proof. Pick any subset S Ă G that generates G, e.g. one can choose S :“ G, though smaller
subsets are usually also possible. Then the unique homomorphism Φ : FS Ñ G sending each
g P S Ă FS to g P G is surjective, thus Φ descends to an isomorphism FS{ kerΦÑ G. �
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Definition 12.12. Given a set S, a relation in S is defined to mean any equation of the form
“a “ b” where a, b P FS .

Definition 12.13. For any set S and a set R consisting of relations in S, we define the group

tS | Ru :“ FS

M
xR1yN

where R1 is the set of all elements of the form ab´1 P FS for relations “a “ b” in R. The elements
of S are called the generators of this group, and elements of R are its relations.

Let us pause a moment to interpret this definition. By a slight abuse of notation, we can write
each element of tS | Ru as a reduced word w formed out of letters in S, with the understanding that
w represents an equivalence class in the quotient FS{xR1yN , thus it is possible to have w “ w1 in
tS | Ru even if w and w1 are distinct elements of FS . This will happen if and only if w´1w1 belongs
to the normal subgroup xR1yN , and in particular, it happens whenever “w “ w1” is one of the
relations in R. The relations are usually necesary because most groups are not free groups: while
free groups are easy to describe (they depend only on their generators), most groups have more
interesting structure than free groups, and this structure is encoded by relations. Proposition 12.11
implies that every group can be presented in this way, i.e. every group is isomorphic to tS | Ru
for some set of generators S and relations R. Indeed, if G “ FS{ kerΦ for a set S and a surjective
homomorphism Φ : FS Ñ G, then we can take S as the set of generators and define R to consist
of all relations of the form “a “ b” such that ab´1 P kerΦ; the latter is equivalent to the condition
Φpaq “ Φpbq, so the relations tell us precisely when two products of generators give us the same
element in G.

Definition 12.14. Given a group G, a presentation of G consists of a subset S Ă G together
with a set R of relations in S such that the unique homomorphism FS Ñ G matching the inclusion
S ãÑ G on single-letter words descends to a group isomorphism

tS | Ru –ÝÑ G.

We say that G is finitely presented if it admits a presentation such that S and R are both finite
sets.

Example 12.15. The group tau :“ ta | Hu consisting of a single generator a with no relations
is isomorphic to the free group Ftau on one element. The isomorphism ap ÞÑ p identifies this with
the integers Z.

Example 12.16. The group ta, b | ab “ bau has two generators and is abelian, so it is isomor-
phic to Z2. An explicit isomorphism is defined by apbq ÞÑ pp, qq. To see that this is an isomorphism,
observe first that since Fta,bu is free, there exists a unique homomorphism Φ : Fta,bu Ñ Z2 with
Φpaq “ p1, 0q and Φpbq “ p0, 1q, and Φ is clearly surjective since it necesarily sends apbq to pp, qq.
Since Z2 is abelian, we also have

Φpabpbaq´1q “ Φpaba´1b´1q “ Φpaq ` Φpbq ´ Φpaq ´ Φpbq “ 0,

so kerΦ contains abpbaq´1 and therefore also contains the smallest normal subgroup containing
abpbaq´1, which is the group xR1yN appearing in the quotient ta, b | ab “ bau “ Fta,bu{xR1yN . This
proves that Φ descends to a surjective homomorphism ta, b | ab “ bau Ñ Z2. Finally, observe that
since ab “ ba in the quotient ta, b | ab “ bau, every reduced word in Fta,bu is equivalent in this
quotient to a word of the form apbq for some pp, qq P Z2, and Φpapbqq then vanishes if and only if
apbq “ e, proving that Φ is also injective.

Example 12.17. The group ta | ap “ eu is isomorphic to Zp :“ Z{pZ, with an explicit
isomorphism defined in terms of the unique homomorphism Ftau Ñ Zp that sends a to r1s.
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Example 12.18. We will prove in Lecture 14 that for the trefoil knot K Ă R3 Ă S3, (see
Lecture 8), π1pS3zKq – ta, b | a2 “ b3u, and Exercise 12.20 below proves that this group is not
abelian. By contrast, we will also see that the unknot K0 Ă R3 Ă S3 has π1pS3zK0q – Z, which
is abelian. This implies via Example 12.7 that π1pR3zKq fl π1pR3zK0q, so R3zK and R3zK0 are
not homeomorphic, hence the trefoil cannot be deformed continuously to the unknot.

Note that for any given set of generators S and relations R, it is often possible to reduce these
to smaller sets without changing the isomorphism class of the group that they define. For the
relations in particular, it is easy to imagine multiple distinct choices of the subset R1 Ă FS that
will produce the same normal subgroup xR1yN . In general, it is a very hard problem to determine
whether or not two groups described via generators and relations are isomorphic; in fact, it is
known that there does not exist any algorithm to decide whether a given presentation defines the
trivial group. Nonetheless, generators and relations provide a very convenient way to describe
many simple groups that arise in practice, especially in the context of van Kampen’s theorem.
This is due to the following reformulation of Theorem 12.4 for the case of two open subsets when
all fundamental groups are finitely presented.

Corollary 12.19 (Seifert-van Kampen for finitely-presented groups). Suppose X “ A Y B

where A,B Ă X are open and path-connected subsets such that AXB is also path-connected, and
jA : A X B ãÑ A and jB : A X B ãÑ B denote the inclusions. Suppose moreover that there exist
finite presentations

π1pAq –  taiu ˇ̌ tRju( , π1pBq –  tbku ˇ̌ tSℓu( , π1pAXBq –  tcpu ˇ̌ tTqu( ,
with the indices i, j, k, ℓ, p, q each ranging over finite sets. Then

π1pXq –  taiu Y tbku ˇ̌ tRju Y tSℓu Y tpjAq˚cp “ pjBq˚cpu( .
�

In other words, as generators for π1pXq, one can take all generators of π1pAq together with all
generators of π1pBq. The relations must then include all of the relations among the generators of
π1pAq and π1pBq separately, but there may be additional relations that mix the generators from
π1pAq and π1pBq: these extra relations set pjAq˚cp P π1pAq equal to pjBq˚cp P π1pBq for each of
the generators cp of π1pA X Bq. These extra relations are exactly what is needed to describe the
normal subgroup kerΦ in the statement of Theorem 12.4. The relations in π1pAXBq do not play
any role.

Exercise 12.20. Let us prove that the finitely-presented groupG “ tx, y | x2 “ y3u mentioned
in Example 12.18 is nonabelian.

(a) Denoting the identity element by e, consider the related group

H “ tx, y | x2 “ y3, y3 “ e, xyxy “ eu.
Show that every element of H is equivalent to one of the six elements e, x, y, y2, xy, xy2 P
H . This proves that H has order at most six, though in theory it could be less, since
some of those six elements might still be equivalent to each other. To prove that this is
not the case, construct (by writing down a multiplication table) a nonabelian group H 1
of order six that is generated by two elements a, b satisfying the relations a2 “ b3 “ e and
abab “ e. Show that there exists a surjective homomorphism H Ñ H 1, which is therefore
an isomorphism since |H| ď 6.
Remark: You don’t need this fact, but if you’ve seen some of the standard examples of
finite groups before, you might in any case notice that H is isomorphic to the dihedral
group (Diedergruppe) of order 6.
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(b) Show that H is a quotient of G by some normal subgroup, and deduce that G is also
nonabelian.

Exercise 12.21. Given a group G, the commutator subgroup rG,Gs Ă G is the subgroup
generated by all elements of the form

rx, ys :“ xyx´1y´1

for x, y P G.
(a) Show that rG,Gs Ă G is always a normal subgroup, and it is trivial if and only if G is

abelian.
(b) The abelianization (Abelisierung) of G is defined as the quotient group G

LrG,Gs. Show
that this group is always abelian, and it is equal to G if G is already abelian.13

(c) Given any two abelian groups G,H , find a natural isomorphism from the abelianization
of the free product G ˚H to the Cartesian product GˆH .

(d) Prove that the abelianization of tx, y | x2 “ y3u is isomorphic to Z.
Hint: An isomorphism ϕ from the abelianization to Z will be determined by two integers,
ϕpxq and ϕpyq. If ϕ exists, how must these two integers be related to each other?

13. Proof of the Seifert-van Kampen theorem

We have put off the proof of the Seifert-van Kampen theorem long enough. Here again is the
statement.

Theorem 13.1 (Seifert-van Kampen). Suppose X “ Ť
αPJ Aα for a collection of open and

path-connected subsets tAα Ă XuαPJ , iα : Aα ãÑ X and jαβ : Aα X Aβ ãÑ Aα denote the natural
inclusion maps for α, β P J , and p P ŞαPJ Aα.

(1) If Aα XAβ is path-connected for every pair α, β P J , then the unique homomorphism

Φ : ˚
αPJ

π1pAα, pq Ñ π1pX, pq
that restricts to each subgroup π1pAα, pq Ă ˚βPJ π1pAβ , pq as piαq˚ is surjective.

(2) If additionally Aα XAβ XAγ is path-connected for every triple α, β, γ P J , then
kerΦ “ xSyN ,

meaning kerΦ is the smallest normal subgroup containing the set

S :“
!
pjαβq˚rγspjβαq˚rγs´1

ˇ̌̌
α, β P J, rγs P π1pAα XAβ , pq

)
.

In particular, if we abbreviate F :“ ˚αPJ π1pAα, pq, then Φ descends to an isomorphism

F
M
xSyN Ñ π1pX, pq.

Proof. We proved the first statement already in Lecture 11, so assume the hypothesis of the
second statement holds. As observed in the previous lecture, Φppjαβq˚γq “ Φppjβαq˚γq for every
α, β P J and γ P π1pAα X Aβ , pq, thus kerΦ clearly contains xSyN , and in particular, Φ descends
to a surjective homomorphism F

LxSyN Ñ π1pX, pq. We need to show that this homomorphism is
injective, or equivalently, that whenever Φpwq “ Φpw1q for a pair of reduced words w,w1 P F , their
equivalence classes in F

LxSyN must match.

13Note that ifG “ tS | Ru is a finitely-presented group with generators S and relations R, then its abelianization
is tS | R1u where R1 is the union of R with all relations of the form “ab “ ba” for a, b P S.
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Given a loop p
γ
 p in X , let us say that a factorization of γ is any finite sequence tpγi, αiquNi“1

such that αi P J and p
γi
 p is a loop in Aαi

for each i “ 1, . . . , N , and

γ „
h` γ1 ¨ . . . ¨ γN .

The first half of the theorem follows from the fact (proved in Lemma 11.2) that every γ has a
factorization. Now observe that any factorization as described above determines a reduced word
w P F , defined as the reduction of the word rγ1s . . . rγN s with rγis P π1pAαi

, pq for i “ 1, . . . , N ,
and this word satisfies Φpwq “ rγs. Conversely, every reduced word w P Φ´1prγsq can be realized
as a factorization of γ by choosing specific loops to represent the letters in w. The theorem will
then follow if we can show that any two factorizations of γ can be related to each other by a finite
sequence of the following operations and their inverses:

(A) Given two adjacent loops γi and γi`1 such that αi “ αi`1, replace them with their
concatenation p

γi¨γi`1

 p. (This does not change the corresponding reduced word in F ,
as it just implements a step in the reduction of an unreduced word.)

(B) Replace some γi with any loop γ1i that is homotopic (with fixed end points) in Aαi
. (This

also does not change the corresponding reduced word in F ; in fact it doesn’t even change
the unreduced word from which it is derived.)

(C) Given a loop γi that lies in Aαi
X Aβ for some β P J , replace αi with β. (In the

corresponding reduced word in F , this replaces a letter of the form pjαiβq˚rγis P π1pAαi
, pq

with one of the form pjβαi
q˚rγis P π1pAβ , pq, thus it changes the word but does not change

its equivalence class in F
LxSyN .)

We now prove that any two factorizations tpγi, αiquNi“1 and tpγ1i, α1iquN 1
i“1 of γ are related by these

operations. By assumption γ1 ¨ . . . ¨ γN „
h` γ

1
1 ¨ . . . ¨ γ1N 1 , so after choosing suitable parametrizations

of both of these concatenations on the unit interval I,14 there exists a homotopy

H : I2 Ñ X

with Hp0, ¨q “ γ1 ¨ . . . ¨ γN , Hp1, ¨q “ γ11 ¨ . . . ¨ γ1N and Hps, 0q “ Hps, 1q “ p for all s P I. Since I2 is
compact, one can find a number ǫ ą 0 such that for every ps, tq P I2,15 the intersection of I2 with
the box

rs´ 2ǫ, s` 2ǫs ˆ rt´ 2ǫ, t` 2ǫs Ă R2

is contained in H´1pAαq for some α P J . For suitably small ǫ “ 1{n with n P N, we can therefore
break up I2 into n2 boxes of side length ǫ which are each contained in H´1pAαq for some α P J
(possibly a different α for each box), forming a grid in I2. For each box in the diagram there may
be multiple α P J that satisfy this condition, but let us choose a specific one to associate to each
box. (These choices are indicated by the three colors in Figure 3.) Notice that each vertex in the
grid is contained in the intersection of H´1pAαq for each of the α P J associated to boxes that it
touches. We can now perturb this diagram slightly to fill I2 with a collection of boxes of slightly
varying sizes such that every vertex in the interior touches only three of them (see the right side
of Figure 3). We can similarly assume after such a perturbation that the vertices in ts “ 0u and
ts “ 1u never coincide with the starting or ending times of the loops γi, γ1i in the concatenations

14Recall that concatenation of paths is associative up to homotopy, so the N-fold concatenation γ1 ¨ . . . ¨ γN is
not a uniquely determined path I Ñ X if N ą 2, but it is unique up to homotopy with fixed end points.

15I do not consider this statement completely obvious, but it is a not very difficult exercise in point-set topology,
and since that portion of the course is now over, I would rather leave it as an exercise than give the details here.
Here is a hint: if the claim is not true, one can find a sequence psk, tkq P I2 such that for each k, the intersection
of I2 with the box of side length 1{k about psk, tkq is not fully contained in any of the subsets H´1pAαq. This
sequence has a convergent subsequence. What can you say about its limit?
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perturbation

PSfrag replacements
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Figure 3. A grid on the domain of the homotopy H : I2 Ñ X between two
factorizations γ1 ¨ . . . ¨ γN and γ11 ¨ . . . ¨ γ1N 1 of a loop p

γ
 p in X . In this example,

there are three open sets Aα, Aβ , Aγ Ă X , and colors are used to indicate that
each of the small boxes filling I2 has image lying in (at least) one of these subsets.
In the perturbed picture at the right, every vertex in the interior touches exactly
three boxes.

γ1 ¨ . . . ¨γN and γ11 ¨ . . . ¨γ1N 1 . Moreover, each vertex still lies in the same intersection of sets H´1pAαq
as before, assuming the perturbation is sufficiently small.

Now suppose ps, tq P I2 is a vertex in the interior of the perturbed grid. Then ps, tq is on the
boundary of exactly three boxes in the diagram, each of which belongs to one of the sets H´1pAαq,
H´1pAβq and H´1pAγq for three associated elements α, β, γ P J (they need not necessarily be
distinct). If p0, tq is a vertex with t R t0, 1u, then it is on the boundary of exactly two boxes
and thus lies in H´1pAα X Aβq for two associated elements α, β P J , but it also lies in H´1pAγq
where γ :“ αi is associated to the particular path γi whose domain as part of the concatenation
Hp0, ¨q “ γ1 ¨ . . . ¨ γN contains p0, tq. For vertices p1, tq with t R t0, 1u, choose Aγ :“ Aα1i similarly
in terms of the concatenation γ11 ¨ . . . ¨ γ1N 1 . In any of these cases, we have associated to each vertex
ps, tq a path-connected set Aα XAβ XAγ that contains Hps, tq, thus we can choose a path16

Hps, tq δps,tq p in Aα XAβ XAγ .

Since Hps, tq “ p for t P t0, 1u, this definition can be extended to vertices with t P t0, 1u by
defining δps,tq as the trivial path. Now if E is any edge in the diagram, i.e. a side of one of the
boxes, connecting two neighboring vertices ps0, t0q and ps1, t1q, then we can identify E with the
unit interval in order to regard H|E : E Ñ X as a path, and thus associate to E a loop

p
γE
 p in Aα XAβ , γE :“ δ´1

ps0,t0q ¨H|E ¨ δps1,t1q,
where α, β P J are the two (not necessarily distinct) elements associated to the boxes bordered
by E.

16This is the specific step where we need the assumption that triple intersections are path-connected. If
you’re curious to see an example of the second half of the theorem failing without this assumption, I refer you to
[Hat02, p. 44].
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With these choices in place, any path through I2 that follows a sequence of edges E1, . . . , Ek
starting at some vertex in ps0, 0q and ending at a vertex ps1, 1q produces various factorizations of γ
in the form tpγEi

, βiquki“1. Here there is some freedom in the choices of βi P J : whenever a given
edge Ei lies in H´1pAβq XH´1pAγq, we can choose βi to be either β or γ and thus produce two
valid factorizations, which are related to each other by operation (C) in the list above.

We can now describe a procedure to modify the factorization tpγi, αiquNi“1 to tpγ1i, α1iquN 1
i“1. We

show first that tpγi, αiquNi“1 is equivalent via our three operations to the factorization corresponding
to the sequence of edges in ts “ 0u moving from t “ 0 to t “ 1. This is not so obvious because,
although Hp0, ¨q is a parametrization of the concatenated path γ1 ¨ . . . ¨ γN , the times that mark
the boundaries between one path and the next in this concatenation need not have anything to
do with the vertices of our chosen grid. Instead, our perturbation of the grid ensured that each γi
in the concatenation hits vertices only in the interior of its domain, not at starting or end points.
Denote by p0, t1q, . . . , p0, tm´1q the particular grid vertices in the domain of γi, thus splitting up
γi into a concatenation of paths γi “ γ1i ¨ . . . ¨ γmi which have these vertices as starting and/or end
points. Then

γi „
h` pγ

1
i ¨ δp0,t1qq ¨ pδ´1

p0,t1q ¨ γ2i ¨ δp0,t2qq ¨ . . . ¨ pδ´1
p0,tm´1q ¨ γmi q in Aαi

.

We can now apply operations (B) and (A) in that order to replace γi with the sequence of loops
of the form δ´1

p0,tj´1q ¨ γji ¨ δp0,tjq in Aαi
as indicated above. The result is a new factorization that

has more loops in the sequence, but the resulting concatenation is broken up along points that
include all vertices in ts “ 0u. It is also broken along more points, corresponding to the pieces of
the original concatenation γ1 ¨ . . . ¨ γN , but after applying operation (C) if necessary, we can now
apply operation (A) to combine all adjacent loops whose domains belong to the same edge. The
result is precisely the factorization corresponding to the sequence of edges in ts “ 0u. The same
procedure can be used to modify tpγ1i, α1iquN 1

i“1 to the factorization corresponding to the sequence
of edges in ts “ 1u.

To finish, we need to show that the factorization given by the edges in ts “ 0u can be trans-
formed into the corresponding factorization at ts “ 1u by applying our three operations. The core
of the idea for this is shown in Figure 4, where the purple curves show two sequences of edges which
represent two factorizations. In this case the difference between one path and the other consists
only of replacing two edges on adjacent sides of a particular box Q Ă I2 with their two opposite
sides, and we can change from one to the other as follows. First, if the box Q is in H´1pAαq,
apply the operation (C) to both factorizations until all the loops corresponding to sides of Q are
regarded as loops in Aα. Having done this, both factorizations now contain two consecutive loops
in Aα that correspond to two sides of Q, so we can apply the operation (A) to concatenate each of
these pairs, reducing two loops to one distinguished loop through Aα in each factorization. Those
two distinguished loops are also homotopic in Aα, as one can see by choosing a homotopy of paths
through the square Q that connects two adjacent sides to their two opposite sides (Figure 4, right).
This therefore applies the operation (B) to change one factorization to the other.

We note finally that for any sequence of edges that includes edges in tt “ 0u or tt “ 1u, those
edges represent the constant path at the base point p, and since concatenation with constant paths
produces homotopic paths, adding these edges or removing them from the diagram changes the
factorization by a combination of operations (A) and (B). It now only remains to observe that the
path of edges along ts “ 0u can always be modified to the path of edges along ts “ 1u by a finite
sequence of the modifications just described.

�
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Figure 4. The magenta paths in both pictures are sequences of edges that define
factorizations of γ, differing only at pairs of edges that surround a particular boxQ.
We can change one to the other by applying the three operations in our list.

Exercise 13.2. Recall that the wedge sum of two pointed spaces pX, xq and pY, yq is defined
as X _ Y “ pX > Y q{„ where the equivalence relation identifies the two base points x and y. It is
commonly said that whenever X and Y are both path-connected and are otherwise “reasonable”
spaces, the formula

(13.1) π1pX _ Y q – π1pXq ˚ π1pY q

holds. We saw for instance in Example 12.6 that this is true when X and Y are both circles. The
goal of this problem is to understand slightly better what “reasonable” means in this context, and
why such a condition is needed.

(a) Show by a direct argument (i.e. without trying to use Seifert-van Kampen) that if X and
Y are both Hausdorff and simply connected, then X _ Y is simply connected.
Hint: Hausdorff implies that Xztxu and Y ztyu are both open subsets. Consider loops
γ : r0, 1s Ñ X_Y based at rxs “ rys and decompose r0, 1s into subintervals in which γptq
stays in either X or Y .

(b) Call a pointed space pX, xq nice17 if x has an open neighborhood that admits a deforma-
tion retraction to x. Show that the formula (13.1) holds whenever pX, xq and pY, yq are
both nice, and more generally, the formula

π1

˜ł
αPJ

Xα

¸
– ˚
αPJ

π1pXαq

holds for any (possibly infinite) collection of nice pointed spaces tpXα, xαquαPJ .

17Not a standardized term, I made it up.



80 FIRST SEMESTER (TOPOLOGIE I)

(c) Here is an example of a space that is not “nice” in the sense of part (b):
for each n P N, let S1

n Ă R2 denote the circle of radius 1{n centered
at p1{n, 0q. The union of all these circles is a space known informally
as the Hawaiian earring

H :“ ď
nPN

S1
n Ă R2.

As usual, we assign to H the subspace topology induced by the stan-
dard topology of R2. Show that in this space, the point p0, 0q does
not have any simply connected open neighborhood.

(d) It is tempting to liken the Hawaiian earring H to the infinite wedge sum of circles X :“Ž8
n“1 S

1, defined as above by choosing a base point in each copy of the circle and then
identifying all the base points in the infinite disjoint union

š8
n“1 S

1. Both are unions of
infinite collections of circles that all intersect each other at one point. Show in fact that
there exists a continuous map

f : X Ñ H

that is a bijection sending the natural base point of
Ž
n S

1 to p0, 0q P Şn S
1
n, but that X

(unlike H) is a “nice” space, hence f : X Ñ H cannot be a homeomorphism.
Hint: Continuity of maps defined on wedge sums is easy to check—see Exercise 10.5.

(e) Show that there exists a surjective continuous map S1 Ñ H , but continuous maps S1 Ñ X

are never surjective.
Hint: In H , start at p0, 0q and traverse the largest circle first, then continue to smaller
circles.

(f) Show that for any finite subset J Ă N, there exists a retraction

rJ : H Ñ ď
nPJ

S1
n Ă H,

and deduce from this that the map f˚ : π1pXq Ñ π1pHq is injective.
Hint: Unlike H ,

Ť
nPJ S1

n really is homeomorphic to a wedge sum of circles, the crucial
detail in this case being that there are only finitely many.

(g) Writing rn :“ rtnu : H Ñ S1
n for each individual value of n P N, show that the homomor-

phism
π1pHq Ñ

ź
nPN

π1pS1
nq –

ź
nPN

Z

determined by the maps prnq˚ : π1pHq Ñ π1pS1
nq is surjective, and deduce from this that

f˚ : π1pXq Ñ π1pHq is not injective.
Remark: The direct product

ś
nPN Z of infinitely many groups (or in this case copies of the

same group) is much larger than the direct sum
À

nPN Z, and in fact, the standard “Cantor
diagonal trick” that is typically used for proving the uncountability of R implies thatś
nPN Z is likewise an uncountable set. It follows that π1pHq itself is uncountable, whereas

π1pXq – ˚nPN Z, being generated by countably many countable groups, is countable.

14. Surfaces and torus knots

We will discuss two applications of the Seifert-van Kampen theorem in this lecture: one to the
study of surfaces, and the other to knots. Let’s begin with surfaces.

Someday, when we talk about topological manifolds in this course (namely in Lecture 18), I
will give you a precise mathematical definition of what the word “surface” means, but that day is
not today. For now, we’re just going to consider a class of specific examples that can be presented
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in a way that is convenient for computing their fundamental groups. A theorem we will discuss
later in the semester implies that all compact surfaces can be presented in this way, but that is
rather far from obvious.

We are going to consider pictures of polygons such as the following:

PSfrag replacements
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c

Suppose in general that P Ă R2 is a compact region bounded by some collection of N smooth
curves that are arranged in a cyclic sequence with matching end points and do not intersect each
other except at the matching end points. We will refer to these curves as edges, and label each of
them with a letter ai and an arrow. The letters a1, . . . , aN need not all be distinct. We then define
a topological space

X :“ P
L„,

where the equivalence relation is trivial on the interior of P but identifies all vertices with each
other, thus collapsing the set of vertices to a single point, and it also identifies any pair of edges
labeled by the same letter with each other via a homeomorphism that matches the directions of
the arrows. (The exact choice of this homeomorphism will not matter.) In the picture above, this
means the two edges labeled with “a” get identified, and so do the two edges labeled with “b”. (By
the time you’ve read to the end of this lecture, you should be able to form a fairly clear picture of
this surface in your mind, but I suggest reading somewhat further before you try this.)

Example 14.1. Take P to be a square whose sides have two labels a and b such that opposite
sides of the square have matching letters and arrows pointing in the same direction. You could then
build a physical model of X “ P {„ in two steps: take a square piece of paper and bend it until
you can tape together the two opposite sides labeled a, producing a cylinder. The two boundary
components of this cylinder are circles labeled b, so if you were doing this with a sufficiently
stretchable material (paper is not stretchable enough), you could then bend the cylinder around
and tape together its two circular boundary components. The result is what’s depicted in the
picture at the right, a space conventionally known as the 2-torus (or just “the torus” for short)
and denoted by T2. It is homeomorphic to the product S1 ˆ S1.
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Example 14.2. If you relax your usual understanding of what a “polygon” is, you can also
allow edges of the polygon to be curved as in the following example with only two edges:
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The polygon itself is homeomorphic to the disk D2, but identifying the two edges via a homeomor-
phism matching the arrows means we identify each point on BD2 with its antipodal point. The
result matches the second description of RP2 that we saw in the first lecture, see Example 1.2.

Theorem 14.3. Suppose X “ P {„ is a space defined as described above by a polygon P with
N edges labeled by (possibly repeated) letters a1, . . . , aN , where we are listing them in the order in
which they appear as the boundary is traversed once counterclockwise. Let G denote the set of all
letters that appear in this list, and for each i “ 1, . . . , N , write pi “ 1 if the arrow at edge i points
counterclockwise around the boundary and pi “ ´1 otherwise. Then π1pXq is isomorphic to the
group with generators G and exactly one relation ap11 . . . a

pN
N “ e:

π1pXq –  
G

ˇ̌
a
p1
1 . . . a

pN
N “ e

(
.

Proof. Let P 1 :“ BPL„ Ă X . Since all vertices are identified to a point, P 1 is homeomorphic
to a wedge sum of circles, one for each of the letters that appear as labels of edges, hence by an
easy application of the Seifert-van Kampen theorem (cf. Exercise 13.2(b)),

π1pP 1q – π1pS1q ˚ . . . ˚ π1pS1q – Z ˚ . . . ˚ Z “ FG,

the free group generated by the set G. Now decompose X into two open subsets A and B, where
A is the interior of the polygon (not including its boundary) and B is an open neighborhood
of P 1. We can arrange this so that AXB is homeomorphic to an annulus S1 ˆ p´1, 1q occupying
a neighborhood of BP in the interior of P , so for any choice of base point p P A X B, π1pA X
B, pq – Z is generated by a loop that circles around parallel to BP . Since the neighborhood
of BP admits a deformation retraction to BP , there is similarly a deformation retraction of B
to P 1, giving π1pB, pq – π1pP 1q “ FG. Likewise, A is homeomorphic to an open disk, hence
π1pAq “ 0. The Seifert-van Kampen theorem then idenifies π1pX, pq with a quotient of the free
product π1pA, pq˚π1pB, pq – π1pP 1q “ FG, modulo the normal subgroup generated by the relation
that if jA : AXB ãÑ A and jB : AXB ãÑ B denote the inclusion maps and rγs P π1pAXB, pq – Z

is a generator, then pjAq˚rγs “ pjBq˚rγs. The left hand side of this equation is the trivial element
since π1pAq “ 0. On the right hand side, we have the element of π1pB, pq represented by a
loop p

γ
 p in the annulus A X B that is parallel to the boundary of the polygon. Under the

deformation retraction of A X B to P 1, γ becomes the concatenated loop ap11 . . . a
pN
N defined by

composing a traversal of BP with the quotient projection BP Ñ P 1, thus producing the relation
a
p1
1 . . . a

pN
N “ e. �

Example 14.4. Applying the theorem to the torus in Example 14.1 gives

π1pT2q – ta, b | aba´1b´1 “ eu “ ta, b | ab “ bau – Z2.

Notice that this matches the result of applying Exercise 9.13(a), which gives π1pS1ˆS1q – π1pS1qˆ
π1pS1q – Zˆ Z.

Example 14.5. For the picture of RP2 in Example 14.2, we obtain

π1pRP2q – ta | a2 “ eu – Z2.

We already saw in Example 11.7 that π1pRP2q is generated by a single loop γ : S1 Ñ RP2, the
projection to RP

2 “ S2{„ of a path that goes halfway around the equator of the sphere from one
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point to its antipodal point. We have now shown that rγs really is a nontrivial element of π1pRP2q,
but its square is trivial. The latter was also observed in Example 11.7, where it followed essentially
from the fact that S2 is simply connected: the concatenation of γ with itself is the projection to
RP

2 of a path that goes all the way around the equator in S2, i.e. it is a loop, and can then be
filled in with a map D2 Ñ S2 since π1pS2q “ 0. Composing the map D2 Ñ S2 with the projection
S2 Ñ RP

2 then contracts the loop γ2 in RP
2. However, we could not have deduced so easily from

our knowledge of S2 the fact that γ itself is not a contractible loop in RP2; that required the full
strength of the Seifert-van Kampen theorem.

In Lecture 1, I drew you some pictures of topological spaces that I called “surfaces of genus g”
for various values of a nonnegative integer g. I will now give you a precise definition of this space
which, unfortunately, looks completely different from the original pictures, but we will soon see
that it is equivalent.

Definition 14.6. For any integer g ě 0, the closed orientable surface Σg of genus
(Geschlecht) g is defined to be S2 if g “ 0, and otherwise Σg :“ P {„ where P is a polygon
with 4g edges labeled by 2g distinct letters tai, biugi“1 in the order

a1, b1, a1, b1, a2, b2, a2, b2, . . . , ag, bg, ag, bg,

such that the arrows point counterclockwise on the first instance of each letter in this sequence
and clockwise on the second instance.

Once you’ve fully digested this definition, you may recognize that Σ1 is defined by the square
in Example 14.1, i.e. it is the torus T2. The diagram for Σ2 is shown at the bottom of Figure 5.
The projective plane RP2 is not an “orientable” surface, so it is not Σg for any g, though it is
sometimes called a “non-orientable surface of genus 1”. This terminology will make more sense
when we later discuss the classification of surfaces.

In order to understand what Σg has to do with pictures we’ve seen before, we consider an
operation on surfaces called the connected sum. It can be defined on any pair of surfaces Σ and
Σ1, or more generally, on any pair of n-dimensional topological manifolds, though for now we will
consider only the case n “ 2. Since I haven’t yet actually given you precise definitions of the terms
“surface” and “topological manifold,” for now you should just assume Σ and Σ1 come from the list
of specific examples Σ0 “ S2, Σ1 “ T2, Σ2, Σ3, . . . defined above.

Given a pair of inclusions D2 ãÑ Σ and D2 ãÑ Σ1, the connected sum (zusammenhängende
Summe) of Σ and Σ1 is defined as the space

Σ#Σ1 :“
´
ΣzD̊2

¯
YS1

´
Σ1zD̊2

¯
.

The result of this operation is not hard to visualize in many concrete examples, see e.g. Figure 6.
More generally, for topological n-manifoldsM andM 1, one defines the connected sum M#M 1

by choosing inclusions of Dn into M and M 1, then removing the interiors of these disks and gluing
together MzD̊n and M 1zD̊n along Sn´1 “ BDn. The notation M#M 1 obscures the fact that the
definition of the connected sum depends explicitly on choices of inclusions of Dn into both spaces,
and it is not entirely true in general that M#M 1 up to homeomorphism is independent of this
choice. It is true however for surfaces:

Lemma 14.7 (slightly nontrivial). Up to homeomorphism, the connected sum Σ#Σ1 of two
closed connected surfaces Σ and Σ1 does not depend on the choices of inclusions D2 ãÑ Σ and
D2 ãÑ Σ1.

Sketch of a proof. A complete proof of this would be too much of a digression and require
more knowledge about the classification of surfaces than is presently safe to assume, but I can
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Figure 5. The connected sum T2#T2 is formed by cutting holes D2 out of two
copies of T2 along some loop γ, and then gluing together the two copies of T2zD2.
The result is Σ2, the closed orientable surface of genus 2.

give the rough idea. The main thing you need to believe is that “up to orientation” (I’ll come
back to that detail in a moment), any inclusion i0 : D2 ãÑ Σ can be deformed into any other
inclusion i1 : D2 ãÑ Σ through a continuous family of inclusions it : D2 ãÑ Σ for t P I. You should
imagine this roughly as follows: since D2 is homeomorphic via the obvious rescalings to the disk



14. SURFACES AND TORUS KNOTS 85

PSfrag replacements
–#

Figure 6. The connected sum of two surfaces is defined by cutting a hole out
of each of them and gluing the rest together along the resulting boundary circle.

D2
r of radius r for every r ą 0, one can first deform i0 and i1 to inclusions whose images lie in

arbitrarily small neighborhoods of two points z0, z1 P Σ. Now since Σ is connected (and therefore
also path-connected, as all topological manifolds are locally path-connected), we can choose a path
γ from z0 to z1, and the idea is then to define it as a continuous family of inclusions D2 ãÑ Σ such
that the image of it lies in an arbitrarily small neighborhood of γptq for each t. You should be able
to imagine concretely how to do this in the special case Σ “ R2. That it can be done on arbitrary
connected surfaces Σ depends on the fact that every point in Σ has a neighborhood homeomorphic
to R2 (in other words, Σ is a topological 2-manifold).

Now for the detail that was brushed under the rug in the previous paragraph: even if i0, i1 :

D2 ãÑ Σ are two inclusions that send 0 to the same point z P Σ and have images in an arbitrarily
small neighborhood of z, it is not always true that i0 can be deformed to i1 through a continuous
family of inclusions. For example, if we take Σ “ R2, it is not true for the two inclusions i0, i1 :

D2 ãÑ R2 defined by i0px, yq “ pǫx, ǫyq and i1px, yq “ pǫx,´ǫyq. In this example, both inclusions
are defined as restrictions of injective linear maps R2 Ñ R2, but one has positive determinant and
the other has negative determinant, so one cannot deform from one to the other through injective
linear maps. One can use the technology of local homology groups (which we’ll cover next semester)
to remove the linearity from this argument and show that there also is no deformation from i0
to i1 through continuous inclusions. The issue here is one of orientations : i0 is an orientation-
preserving map, while i1 is orientation-reversing. It turns out that two inclusions of D2 into R2

can be deformed to each other through inclusions if and only if they are either both orientation
preserving or both orientation reversing. This obstruction sounds like bad news for our proof,
but the situation is saved by the following corollary of the classification of surfaces: every closed
orientable surface admits an orientation-reversing homeomorphism to itself. For example, if you
picture the torus as the usual tube embedded in R3 and you embed it so that it is symmetric
about some 2-dimensional coordinate plane, then the linear reflection through that plane restricts
to a homeomorphism of T2 that is orientation reversing. Once we see what all the other closed
orientable surfaces look like, it will be easy to see that one can do that with all of them. Actually,
it is also not so hard to see this for the surfaces Σg defined as polygons: you just need to choose
a sufficiently clever axis in the plane containing the polygon and reflect across it. Once this is
understood, you realize that the orientation of your inclusion D2 ãÑ Σ does not really matter, as
you can always replace it with an inclusion having the opposite orientation, and the picture you
get in the end will be homeomorphic to the original.

With this detail out of the way, you just have to convince yourself that if you have a pair of
continuous families of inclusions it : D2 ãÑ Σ and jt : D2 ãÑ Σ1 defined for t P r0, 1s, then the
resulting glued surfaces

Σ#tΣ
1 :“

´
ΣzitpD̊2q

¯
YS1

´
Σ1zjtpD̊2q

¯
are homeomorphic for all t. It suffices in fact to prove that this is true just for t varying in an
arbitrarily small interval pt0 ´ ǫ, t0 ` ǫq, since r0, 1s is compact and can therefore be covered by
finitely many such intervals. A homeomorphism Σ#tΣ

1 Ñ Σ#sΣ
1 for t ‰ s is easy to define if we

can first find a homeomorphism Σ Ñ Σ that sends itpzq ÞÑ ispzq for every z P D2 and similarly
on Σ1. This is not hard to construct if t and s are sufficiently close. �
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Now we are in a position to relate Σg with the more familiar pictures of surfaces.

Theorem 14.8. For any nonnegative integers g, h, Σg#Σh – Σg`h. In particular, Σg is the
connected sum of g copies of the torus:

Σg – T2# . . .#T2loooooomoooooon
g

Proof. The result becomes obvious if one makes a sufficiently clever choice of hole to cut
out of Σg and Σh, and Lemma 14.7 tells us that the resulting space up to homeomorphism is
independent of this choice. The example of g “ h “ 1 is shown in Figure 5, and the same idea
works (but is more effort to draw) for any values of g and h. �

Now that we know how to draw pretty pictures of the surfaces Σg, we can also observe that we
have already proved something quite nontrivial about them: we have computed their fundamental
groups!

Corollary 14.9 (of Theorem 14.3). The closed orientable surface Σg of genus g ě 0 has a
fundamental group with 2g generators and one relation, namely

π1pΣgq –  
a1, b1, . . . , ag, bg

ˇ̌
a1b1a

´1
1 b´1

1 a2b2a
´1
2 b´1

2 . . . agbga
´1
g b´1

g “ e
(
.

�

Using the commutator notation from Exercise 12.21, the relation in Corollary 14.9 can be
conveniently abbreviated as

gź
i“1

rai, bis “ e.

Exercise 14.10. Show that the abelianization (cf. Exercise 12.21) of π1pΣgq is isomorphic to
the additive group Z2g.
Hint: π1pΣgq is a particular quotient of the free group on 2g generators. Observe that the abelian-
ization of that free group is identical to the abelianization of π1pΣgq. (Why?)

By the classification of finitely generated abelian groups, Zm and Zn are never isomorphic
unless m “ n, so Exercise 14.10 implies that π1pΣgq and π1pΣhq are not isomorphic unless g “ h.
This completes the first step in the classification of closed surfaces:

Corollary 14.11. For two nonnegative integers g ‰ h, Σg and Σh are not homeomorphic. �

Exercise 14.12. Assume X and Y are path-connected topological manifolds of dimension n.
(a) Use the Seifert-Van Kampen theorem to show that if n ě 3, then π1pX#Y q – π1pXq ˚

π1pY q. Where does your proof fail in the cases n “ 1 and n “ 2?
(b) Show that the formula of part (a) is false in general for n “ 1, 2.

Exercise 14.13. For integers g,m ě 0, let Σg,m denote the compact surface obtained by
cutting m disjoint disk-shaped holes out of the closed orientable surface with genus g. (By this
convention, Σg “ Σg,0.) The boundary BΣg,m is then a disjoint union of m circles, e.g. the case
with g “ 1 and m “ 3 is shown in Figure 7.

(a) Show that π1pΣg,1q is a free group with 2g generators, and if g ě 1, then any simple
closed curve parametrizing BΣg,1 represents a nontrivial element of π1pΣg,1q.18
Hint: Think of Σg as a polygon with some of its edges identified. If you cut a hole in
the middle of the polygon, what remains admits a deformation retraction to the edges.
Prove it with a picture.

18Terminology: one says in this case that BΣg,1 is homotopically nontrivial or essential, or equivalently,
BΣg,1 is not nullhomotopic.
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Figure 7. The surface Σ1,3 as in Exercise 14.13.

(b) Assume γ is a simple closed curve separating Σg
into two pieces homeomorphic to Σh,1 and Σk,1
for some h, k ě 0. (The picture at the right shows
an example with h “ 2 and k “ 4.) Show that
the image of rγs P π1pΣgq under the natural pro-
jection to the abelianization of π1pΣgq is trivial.

PSfrag replacements

–
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Hint: What does γ look like in the polygonal picture from part (a)? What is it homotopic
to?

(c) Prove that if g ě 2 and G denotes the group
 
a1, b1, . . . , ag, bg

ˇ̌ śg
i“1rai, bis “ e

(
, then

for any proper subset J Ă t1, . . . , gu, śiPJ rai, bis is a nontrivial element of G.
Hint: Given j P J and ℓ P t1, . . . , guzJ , there is a homomorphism Φ : Fta1,b1,...,ag ,bgu Ñ
Ftx,yu that sends aj ÞÑ x, bj ÞÑ y, aℓ ÞÑ y, bℓ ÞÑ x and maps all other generators to the
identity. Show that Φ descends to the quotient G and maps

ś
iPJ rai, bis P G to something

nontrivial.
(d) Deduce from part (c) that if h ą 0 and k ą 0, then the curve γ in part (b) represents a

nontrivial element of π1pΣgq.
(e) Generalize part (a): show that if m ě 1, π1pΣg,mq is a free group with 2g ` m ´ 1

generators.

Now let’s talk about knots. Back in Lecture 8, I showed you two simple examples of knots
K Ă R3: the trefoil and the unknot. I claimed that it is impossible to deform one of these knots
into the other, and in fact that the complements of both knots in R3 are not homeomorphic. It is
time to prove this.

We will consider both as special cases of a more general class of knots called torus knots. Fix
the standard embedding of the torus

f : T2 “ S1 ˆ S1 ãÑ R3,

where by “standard,” I mean the one that you usually picture when you imagine a torus embedded
in R3 (see the surface bounding the grey region in Figure 9). Given any two relatively prime
integers p, q P Z, the pp, qq-torus knot is defined by

Kp,q :“  
fpepiθ, eqiθq ˇ̌ θ P R

( Ă R3.

In other words, Kp,q is a knot lying on the image of the embedded torus fpT2q Ă R3, obtained from
a loop that rotates p times around one of the dimensions of T2 “ S1 ˆ S1 while rotating q times
around the other. It is conventional to assume p and q are relatively prime, since the definition of
Kp,q above would not change if both p and q were multiplied by the same nonzero constant.

Example 14.14. K2,3 is the trefoil knot (Figure 8, left).

Example 14.15. K1,0 is the unknot (Figure 8, right).
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Figure 8. The trefoil knot K2,3 and unknot K1,0.

The knot group of a knot K Ă R3 is defined as the fundamental group of the so-called knot
complement, π1pR3zKq. We saw in Example 12.7 that the natural inclusion R3 ãÑ S3 defined by
identifying S3 with the one-point compactification R3Yt8u induces an isomorphism of π1pR3zKq
to π1pS3zKq, thus in order to compute knot groups, we may as well regard the knot K Ă R3 as a
subset of the slightly larger but compact space S3 and compute π1pS3zKq. We shall now answer
the question: given relatively prime integers p and q, what is π1pS3zKp,qq?

Here is a useful trick for picturing S3. By definition, S3 “ BD4, but notice that D4 is also
homeomorphic to the “box” D2 ˆ D2, whose boundary consists of the two pieces BD2 ˆ D2 and
D2 ˆ BD2, intersecting each other along BD2 ˆ BD2. The latter is a copy of T2, and the pieces
S1 ˆ D2 and D2 ˆ S1 are called solid tori since we usually picture them as the region in R3

bounded by the standard embedding of the torus. The homeomorphism D4 – D2ˆD2 thus allows
us to identify S3 with the space constructed by gluing together these two solid tori along the
obvious identification of their boundaries:

S3 – pS1 ˆ D2q YT2 pD2 ˆ S1q.
A picture of this decomposition is shown in Figure 9. Here the 2-torus along which the two solid
tori are glued together is depicted as the standard embedding of T2 in R3, so this is where we
will assume Kp,q lies. The region bounded by this torus is S1 ˆ D2, shown in the picture as an
S1-parametrized family of disks D2. It requires a bit more imagination to recognize D2 ˆ S1 in
the picture: instead of a family of disks, we have drawn it as a D2-parametrized family of circles,
where it is important to understand that one of those circles passes through 8 P S3 and thus
looks like a line instead of a circle in the picture. This picture will now serve as the basis for a
Seifert-van Kampen decomposition of S3zKp,q into two open subsets. They will be defined as open
neighborhoods of the two subsets

A0 :“ pS1 ˆ D2qzKp,q, B0 :“ pD2 ˆ S1qzKp,q.

In order to define suitable neighborhoods, let us identify a neighborhood of fpT2q in R3 with
p´1, 1q ˆ T2 such that fpT2q becomes t0u ˆ T2 Ă R3. We then define

A :“
´
S1 ˆ D̊2

¯
Y `p´1, 1q ˆ pT2zf´1pKp,qqq˘ ,

and
B :“

´
D̊2 ˆ S1

¯
Y `p´1, 1q ˆ pT2zf´1pKp,qqq˘ .
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Figure 9. The sphere S3 “ R3 Y t8u decomposed as a union of two solid
tori whose common boundary is the “standard” embedding of T2 in R3: S3 –
BpD2ˆD2q “ pS1ˆD2q YT2 pD2 ˆS1q. The vertical blue line passing through the
middle is actually a circle in S3 passing through the point at 8.

By contracting the interval p´1, 1q, we can define a deformation retraction of A to A0 and then
retract further by contractng the disk D2 to its center, eventually producing a deformation retrac-
tion of A to the circle S1 ˆ t0u at the center of the inner solid torus—this is the red circle in
Figure 9 that passes through the center of each disk. In an analogous way, there is a deformation
retraction of B to the center t0uˆ S1 of the outer solid torus, which is the blue line through 8 in
the picture, though you might prefer to perturb this to one of the parallel circles tzuˆS1 Ă D2ˆS1

for z ‰ 0, since these actually look like circles in the picture. We can now regard π1pAq and π1pBq
as separate copies of the integers whose generators we shall call a and b respectively,

π1pAq – ta | Hu, π1pBq – tb | Hu.
The intersection is

AXB “ p´1, 1q ˆ `
T2zf´1pKp,qq˘ »

h.e.
T2zf´1pKp,qq »

h.e.
S1.

That last homotopy equivalence deserves an explanation: if you draw T2 as a square with its
sides identified, then f´1pKp,qq looks like a straight line that periodically exits one side of the
square and reappears at the opposite side. Now draw another straight path parallel to this one (I
recommend using a different color), and you will easily see that after removing f´1pKp,qq from T2,
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what remains admits a deformation retraction to the parallel path, which is an embedded copy
of S1. We will call the generator of its fundamental group c,

π1pAXBq – tc | Hu.
According to the Seifert-van Kampen theorem (in particular Corollary 12.19, the version for finitely-
presented groups), we can now write

π1pS3zKp,qq –  
a, b

ˇ̌ pjAq˚c “ pjBq˚c( ,
where jA and jB denote the inclusions of A X B into A and B respectively. To interpret this
properly, we should choose a base point in AXB and picture a, b and c as represented by specific
loops through this base point, so without loss of generality, a is a loop near the boundary T2 of
S1 ˆ D2 that wraps once around the S1 direction, and b is another loop near T2 that wraps once
around the S1-direction of D2ˆS1, which is the other dimension of T2 “ S1ˆS1. The interesting
part is c, as it is represented by a loop in T2 that is parallel to Kp,q, thus it wraps p times around
the direction of a and q times around the direction of b. This means pjAq˚c “ ap and pjBq˚c “ bq,
so putting all of this together yields:

Theorem 14.16. π1pS3zKp,qq – ta, b | ap “ bqu. �

Example 14.17. For pp, qq “ p1, 0q, we obtain the knot group of the unknot: π1pS3zK1,0q –
ta, b | a “ eu “ tb | Hu “ Z. In particular, this is an abelian group.

Example 14.18. The knot group of the trefoil is π1pS3zK2,3q – ta, b | a2 “ b3u. We proved
in Exercise 12.20 that this group is not abelian, in contrast to Example 14.17, hence π1pS3zK2,3q
and π1pS3zK1,0q are not isomorphic.

Corollary 14.19. The knot complements R3zK1,0 and R3zK2,3 are not homeomorphic. �

Before moving on19 from the Seifert-van Kampen theorem, I would like to sketch one more
application, which answers the question, “which groups can be fundamental groups of nice spaces?”
If we are only interested in finitely-presented groups and decide that “nice” should mean “compact
and Hausdorff”, then the answer turns out to be that there is no restriction at all.

Theorem 14.20. Every finitely-presented group is the fundamental group of some compact
Hausdorff space.

Proof. The following lemma will be used as an inductive step. Suppose X0 is a compact
Hausdorff space with a finitely-presented fundamental group

π1pX0, pq –  taiu ˇ̌ tRju( .
Then for any loop γ : pS1, 1q Ñ pX0, pq, we claim that the space

X :“ D2 Yγ X0 :“ `
D2 >X0

˘M
z „ γpzq P X0 for all z P BD2

is compact and Hausdorff with

π1pX, pq –  taiu ˇ̌ tRju, rγs “ e
(
,

i.e. its fundamental group has the same generators and one new relation, defined by setting rγs P
π1pX0, pq equal to the trivial element. This claim follows easily20 from the Seifert-van Kampen

19We ran out of time in the actual lecture before we could talk about Theorem 14.20, but I am including it in
the notes just because it is interesting.

20I am glossing over the detail where we need to prove that X is also compact and Hausdorff. This is not
completely obvious, but it is yet another exercise in point-set topology that I feel justified in not explaining now
that that portion of the course is finished.
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theorem using the decomposition X “ A Y B where A “ D̊2 and B is an open neighborhood
of X0 obtained by adding a small annulus near the boundary of BD2. Since the annulus admits
a deformation retraction to BD2, we have B »

h.e.
X0, while A X B »

h.e.
S1 and A is contractible.

According to Corollary 12.19, π1pX, pq then inherits all the generators and relations of π1pBq –
π1pX0q, no new generators from π1pAq “ 0, and one new relation from the generator of π1pAXBq –
Z, whose inclusion into A is trivial, so the relation says that its inclusion into B must become the
trivial element. That inclusion is precisely rγs P π1pX0, pq, hence the claim is proved.

Now suppose G is a finitely-presented group with generators x1, . . . , xN and relations w1 “
e, . . . , wm “ e for wi P Ftx1,...,xNu. We start with a space X0 whose fundamental group is the
free group on tx1, . . . , xNu: the wedge sum of N circles will do. As the previous paragraph
demonstrates, we can then attach a 2-disk for each individual relation we would like to add to the
fundamental group, and doing this finitely many times produces a compact Hausdorff space with
the desired fundamental group. �

15. Covering spaces and the lifting theorem

We now leave the Seifert-van Kampen theorem behind and introduce the second major tool
for computing fundamental groups: the theory of covering spaces.

Definition 15.1. A map f : Y Ñ X is called a covering map (Überlagerung), or simply a
cover of X , if for every x P X , there exists an open neighborhood U Ă X such that

f´1pUq “ ď
αPJ

Vα

for a collection of disjoint open subsets tVα Ă Y uαPJ such that f |Vα
: Vα Ñ U is a homeomorphism

for each α P J . The domain Y of this map is called a covering space (Überlagerungsraum) of X .
Any subset U Ă X satisfying the conditions stated above is said to be evenly covered.

Example 15.2. The map f : RÑ S1 : θ ÞÑ eiθ is a covering map of S1.

Example 15.3. The map S1 Ñ S1 sending eiθ to ekiθ for any nonzero k P Z is also a covering
map of S1.

Example 15.4. The n-dimensional torus Tn :“ S1 ˆ . . .ˆ S1looooooomooooooon
n

admits a covering map

Rn Ñ Tn : pθ1, . . . , θnq ÞÑ peiθ1 , . . . , eiθnq.
More generally, it is straightforward to show that given any two covering maps fi : Yi Ñ Xi for
i “ 1, 2, there is a “product” cover

Y1 ˆ Y2
f1ˆf2ÝÑ X1 ˆX2 : px1, x2q ÞÑ pf1px1q, f2px2qq.

Example 15.5. For any space X , the identity map X Ñ X is trivially a covering map.

Example 15.6. Another trivial example of a covering map can be defined for any space X
and any set J by setting Xα :“ X for every α P J and defining f :

š
αPJ Xα Ñ X as the unique

map that restricts to each Xα “ X as the identity map on X . This is a disconnected covering
map. We will usually restrict our attention to covering spaces that are connected.

Example 15.7. For each n P N, the quotient projection Sn Ñ RP
n “ Sn{„ is a covering map.

Theorem 15.8. If X is connected and f : Y Ñ X is a cover, then the number (finite or
infinite) of points in f´1pxq Ă Y does not depend on the choice of a point x P X.
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Proof. Given x P X , choose an evenly covered neighborhood U Ă X of x and write f´1pUq “Ť
αPJ Vα. Then for every y P U , |f´1pyq| “ |J |, and it follows that for every n P t0, 1, 2, 3, . . . ,8u,

the subset Xn :“ tx P X | |f´1pxq| “ nu Ă X is open. If x P Xn, notice that
Ť
m‰nXm is also

open, thus Xn is also closed, so connectedness implies Xn “ X . �

In the setting of the above theorem, the number of points in f´1pxq is called the degree
(Grad) of the cover. If degpfq “ n, we sometimes call f an n-fold cover.

Examples 15.9. The cover S1 Ñ S1 : z ÞÑ zk from Example 15.3 has degree |k|, while the
quotient projection Sn Ñ RP

n has degree 2 and the cover RÑ S1 from Example 15.2 has infinite
degree.

Remark 15.10. Some authors strengthen the definition of a covering map f : Y Ñ X by
requiring f to be surjective. We did not require this in Definition 15.1, but notice that if X
is connected, then it follows immediately from Theorem 15.8. In practice, it is only sensible to
consider covers of connected spaces, and we shall always assume connectedness.

Note that in Definition 15.1, one should explicitly require the sets Vα Ă f´1pUq to be open.
This is important, as part of the point of that definition is that X can be covered by open neigh-
borhoods U whose preimages are homeomorphic to disjoint unions of copies of U , i.e.

f´1pUq – ž
αPJ

U .

This is true specifically because each of the sets Vα is open, and therefore (as the complement ofŤ
β‰α Vβ) also closed in f´1pUq. To put it another way, in a covering map, every point x P X has

a neighborhood U such that f´1pUq is the disjoint union of homeomorphic neighborhoods of the
individual points in f´1pxq. An important consequence of this definition is that every covering
map f : Y Ñ X is also a local homeomorphism, meaning that for each y P Y and x :“ fpyq, f
maps some neighborhood of y homeomorphically to some neighborhood of x.

Almost every result in covering space theory is based on the answer to the following question:
given a map f : A Ñ X and a covering map p : Y Ñ X , can f be “lifted” to a map f̃ : A Ñ Y

satisfying p ˝ f̃ “ f? This problem can be summarized with the diagram

(15.1)
Y

A X

p
f̃

f

in which the maps f and p are given, but the dashed arrow for f̃ indicates that we do not know
whether such a map exists. If it does, then we call f̃ a lift of f to the cover. It is easy to see that
lifts do not always exist: take for instance the cover p : R Ñ S1 : θ ÞÑ eiθ and let f : S1 Ñ S1

be the identity map. A lift f̃ : S1 Ñ R would need to associate to every eiθ P S1 some point
φ :“ f̃peiθq such that eiφ “ eiθ. It is easy to define a function that does this, but can we make it
continuous? If it were continuous, then f̃peiθq would have to increase by 2π as eiθ turns around
the circle from θ “ 0 to θ “ 2π, producing two values f̃pe2πiq “ f̃p1q ` 2π even though e2πi “ 1.
The goal for the remainder of this lecture is to determine precisely which maps can be lifted to
which covering spaces and which cannot.

We start with the following observation: choose base points a P A and x P X to make
f : pA, aq Ñ pX, xq into a pointed map. Then if a lift f̃ : A Ñ Y exists and we set y :“ f̃paq to
make f̃ a pointed map, p now becomes one as well since ppyq “ ppf̃paqq “ fpaq “ x, hence (15.1)
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becomes a diagram of pointed maps and induces a corresponding diagram of group homomorphisms

(15.2)

π1pY, yq

π1pA, aq π1pX, xq.
p˚

f̃˚

f˚

The existence of this diagram implies a nontrivial condition that relates the homomorphisms f˚
and p˚ but has nothing intrinsically to do with the lift: it implies im f˚ Ă im p˚, i.e. these are
two subgroups of π1pX, xq, and one of them must be contained in the other. The lifting theorem
states that under some assumptions that are satisfied by most reasonable spaces, this necessary
condition is also sufficient.

Theorem 15.11 (lifting theorem). Assume X,Y,A are all path-connected spaces, A is also
locally path-connected, p : Y Ñ X is a covering map and f : pA, a0q Ñ pX, x0q is a base-point
preserving map. Then for any choice of base point y0 P f´1px0q Ă Y , f admits a base-point
preserving lift f̃ : pA, a0q Ñ pY, y0q if and only if

f˚ pπ1pA, a0qq Ă p˚ pπ1pY, y0qq ,
and the point y0 “ f̃pa0q uniquely determines the lift f̃ .

Let us discuss some applications before we get to the proof.

Corollary 15.12. For any covering map p : Y Ñ X between path-connected spaces and any
space A that is simply connected and locally path-connected, every map f : A Ñ X can be lifted
to Y . �

Corollary 15.13. For every base-point preserving covering map p : pY, y0q Ñ pX, x0q between
path-connected spaces, the homomorphism p˚ : π1pY, y0q Ñ π1pX, x0q is injective.

Proof. Suppose γ̃ : pS1, 1q Ñ pY, y0q is a loop such that p˚rγ̃s “ e P π1pX, x0q. Then
γ :“ p ˝ γ̃ : pS1, 1q Ñ pX, x0q admits an extension u : pD2, 1q Ñ pX, x0q with u|BD2 “ γ. But D2 is
simply connected, so u admits a lift ũ : pD2, 1q Ñ pY, y0q satisfying p ˝ ũ “ u, thus p ˝ ũ|BD2 “ γ

implies that ũ|BD2 : pS1, 1q Ñ pY, y0q is a lift of γ. Uniqueness of lifts then implies ũ|BD2 “ γ̃ and
thus rγ̃s “ e P π1pY, y0q. �

Corollary 15.14. If X is simply connected, then every path-connected covering space of X
is also simply connected. �

Example 15.15. Corollary 15.14 implies that there does not exist any covering map S1 Ñ R.

Here is an application important in complex analysis. Observe that

p : CÑ C˚ :“ Czt0u : z ÞÑ ez

is a covering map. Writing ppx` iyq “ exeiy, we can picture p as a transformation from Cartesian
to polar coordinates: it maps every horizontal line tIm z “ constu to a ray in C˚ emanating from
the origin, and every vertical line tRe z “ constu to a circle in C˚, which it covers infinitely many
times. This shows that p is not bijective, so it has no global inverse, but it will admit inverses if we
restrict it to suitably small domains, and it is useful to know what domains will generally suffice
for this. In other words, we would like to know which open subsets U Ă C˚ can be the domain of
a continuous function

log : U Ñ C such that elog z “ z for all z P U .
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For simplicity, we will restrict our attention to path-connected21 domains and also assume 1 P U ,
so that we can adopt the convention logp1q :“ 0. Defining f : pU , 1q ãÑ pC˚, 1q as the inclusion,
the desired function log : pU , 1q Ñ pC, 0q will then be the unique solution to the lifting problem

pC, 0q

pU , 1q pC˚, 1q
p

log

f

Theorem 15.11 now gives the answer: log : U Ñ C exists if and only if f˚pπ1pU , 1qq Ă p˚pπ1pC, 0qq “
0, or in other words, if every loop in U can be extended to a map D2 Ñ C˚. Using the notion of
the winding number from Exercise 10.27, this is the same as saying every loop γ : S1 Ñ U satisfies
windpγ; 0q “ 0. For example, log : U Ñ C can be defined whenever U is simply connected, or if U
has the shape of an annulus whose outer circle does not enclose the origin. Examples that do not
work include any annulus whose inner circle encloses the origin: this will always contain a loop
that winds nontrivially around the origin, so that trying to define log along this loop produces a
function that shifts by 2πi as one rotates fully around the loop. Notice that when log : U Ñ C

exists, it is uniquely determined by the condition logp1q “ 0; without this one could equally well
modify any given definition of log by adding integer multiples of 2πi.

The proof of the lifting theorem requires two lemmas that are also special cases of the theorem.
We assume for the remainder of this lecture that pY, y0q pÑ pX, x0q is a covering map and X , Y
and A are all path-connected.

Lemma 15.16 (the path lifting property). Every path γ : pI, 0q Ñ pX, x0q has a unique lift
γ̃ : pI, 0q Ñ pY, y0q.

Proof. Since I is compact, we can find a finite partition 0 “: t0 ă t1 ă . . . ă tN´1 ă tN :“ 1

such that for each j “ 1, . . . , N , the image of γj :“ γ|rtj´1,tjs lies in an evenly covered open subset
Uj Ă X with p´1pUjq “ Ť

αPJ Vα. Now given any y P p´1pγptj´1qq, we have y P Vα for a unique
α P J , and γj has a unique lift γ̃j : rtj´1, tjs Ñ Y with γ̃jptj´1q “ y, defined by

γ̃j “ pp|Vα
q´1 ˝ γj .

With this understood, the unique lift γ̃ of γ with γ̃p0q “ y0 can be constructed by lifting γ̃1 as
explained above, then lifting γ̃2 with starting point γ̃2pt1q :“ γ̃1pt1q, and continuing in this way to
cover the entire interval. �

Lemma 15.17 (the homotopy lifting property). Suppose H : I ˆ A Ñ X is a homotopy with
Hp0, ¨q “ f : AÑ X, and f̃ : AÑ Y is a lift of f . Then there exists a unique lift rH : I ˆAÑ Y

of H satisfying rHp0, ¨q “ f̃ .

Proof. The previous lemma implies that each of the paths s ÞÑ Hps, aq P X for a P A

have unique lifts s ÞÑ rHps, aq P Y with rHp0, aq “ f̃paq. One should then check that the maprH : I ˆAÑ Y defined in this way is continuous; I leave this as an exercise. �

Proof of Theorem 15.11. We shall first define an appropriate map f̃ : A Ñ Y and then
show that the definition is independent of choices. Its uniqueness will be immediately clear, but its
continuity will not be: in the final step we will use the hypothesis that A is locally path-connected
in showing that f̃ is continuous.

21Since U Ă C˚ is open, it is locally path-connected, thus it will automatically be path-connected if it is
connected.
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Given a P A, choose a path a0
α
 a, giving a path x0

f˝α
 fpaq, which lifts via Lemma 15.16 to

a unique path Ćf ˝ α in Y that starts at y0. If a lift f̃ exists, it clearly must satisfy

f̃paq “ Ćf ˝ αp1q.
We claim that this point in Y does not depend on the choice of the path α, and thus gives a
well-defined (though not necessarily continuous) map f̃ : A Ñ Y . Indeed, suppose a0

β
 a is

another path. Then α ¨ β´1 is a loop based at a0 and thus represents an element of π1pA, a0q, and
f˚rα ¨β´1s P π1pX, x0q is represented by the loop pf ˝αq ¨ pf ˝β´1q. The hypothesis im f˚ Ă im p˚
then implies the existence of a loop y0

γ̃
 y0 in Y such that

rpf ˝ αq ¨ pf ˝ β´1qs “ p˚rγ̃s “ rp ˝ γ̃s,
so there is a homotopy H : I2 Ñ X with Hp0, ¨q “ γ :“ p ˝ γ̃, Hp1, ¨q “ pf ˝ αq ¨ pf ˝ β´1q,
and Hps, 0q “ Hps, 1q “ x0 for all s P I. Notice that γ̃ is a lift of γ : pI, 0q Ñ pX, x0q. Now
Lemma 15.17 provides a lift rH : I2 Ñ Y of H with rHp0, ¨q “ γ̃. In this homotopy, the paths
s ÞÑ rHps, 0q and s ÞÑ rHps, 1q are lifts of the constant path Hp¨, 0q “ Hp¨, 1q ” x0 starting at
γ̃p0q “ γ̃p1q “ y0, so the uniqueness in Lemma 15.16 implies that both are also constant paths,
hence rHps, 0q “ rHps, 1q “ y0 for all s P I. This shows that the unique lift of pf ˝ αq ¨ pf ˝ β´1q
to a path in Y starting at y0 is actually a loop, i.e. its end point is also y0: indeed, this lift isrHp1, ¨q. This lift is necessarily the concatenation of the lift Ćf ˝ α of f ˝ α starting at y0 with the
lift of f ˝ β´1 starting at Ćf ˝ αp1q. Since it ends at y0, we conclude that this second lift is simply
the inverse of Ćf ˝ β, implying that Ćf ˝ αp1q “ Ćf ˝ βp1q,
which proves the claim.

It remains to show that f̃ : A Ñ Y as defined by the above procedure is continuous. Given
a P A with x “ fpaq P X and y “ f̃paq P Y , choose any neighborhood V Ă Y of y that is small
enough for U :“ ppVq Ă X to be an evenly covered neighborhood of x, with p|V : V Ñ U a
homeomorphism. It will suffice to show that a has a neighborhood O Ă A with f̃pOq Ă V . Since
A is locally path-connected, we can choose O Ă f´1pUq to be a path-connected neighborhood of a,

fix a path a0
γ
 a in A and, for any a1 P O, choose a path a

β
 a1 in O. Now γ ¨ β is a path from

a0 to a1, so
f̃paq “ Ćf ˝ γp1q “ y P V and f̃pa1q “ Ćf ˝ γ ¨ Ćf ˝ βp1q,

where Ćf ˝ β is the unique lift of f ˝ β starting at y. Since f ˝ β lies entirely in the evenly covered
neighborhood U , this second lift is simply pp|Vq´1 ˝ pf ˝ βq, which lies entirely in V , proving
f̃pa1q P V . �

Example 15.18. If the local path-connectedness assumption on A is dropped, then the proof
above gives a procedure for defining a unique lift f̃ : AÑ Y , but it may fail to be continuous. A
concrete example is depicted in [Hat02, p. 79], Exercise 7. The idea is to define A as a space that
mostly consists of the usual circle S1 Ă R2, but replace a portion just to the right of the top point
p0, 1q with a curve resembling the graph of the function y “ sinp1{xq`1. The point p0, 1q is included
in A, along with every point of the usual circle just to the left of it, but on the right, A consists
of an infinitely long curve that is compressed into a compact space and has accumulation points
along an interval but no well-defined limit. This space is path-connected, because one can start
from p0, 1q and go around the circle to reach any other point, including any point on the infinitely
long compressed sine curve; it is also simply connected, due to the fact that continuous paths
along the compressed sine curve can never actually reach the end of it, but must instead go back
the other way around the circle before they can reach p0, 1q. But A is not locally path-connected,
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because sufficiently small neighborhoods of p0, 1q in A always contain many disjoint segments of
the compressed sine curve and thus cannot be path-connected. Now consider the covering map
R Ñ S1 : θ ÞÑ eiθ and a continuous map f : A Ñ S1 defined as the identity on most of A, but
projecting the graph of y “ sinp1{xq ` 1 to the circle in the obvious way near p0, 1q. One can
define a lift f̃ : AÑ R by choosing f̃p0, 1q to be any point in p´1pfp0, 1qq and then lifting paths to
define f̃ everywhere else. But since every neighborhood of p0, 1q contains some points that cannot
be reached except by paths rotating almost all the way around the circle, this neighborhood will
contain points a P A for which f̃paq differs from f̃p0, 1q by nearly 2π. In particular, f̃ cannot be
continuous at p0, 1q.

16. Classification of covers

Throughout this lecture, all spaces should be assumed path-connected and locally path-connected
unless otherwise noted. We will occasionally need a slightly stronger condition, which we will ab-
breviate with the word “reasonable”:22

Definition 16.1. We will say that a space X is reasonable if it is path-connected and locally
path-connected, and every point x P X has a simply connected neighborhood.

For the purposes of the theorems in this lecture, the definition of the term “reasonable” can
be weakened somewhat at the expense of making it more complicated, but we will stick with the
above definition since it is satisfied by almost all spaces we would ever like to consider. A popular
example of an “unreasonable” space is the so-called Hawaiian earring, see Exercise 13.2(c).

We will state several theorems in this lecture related to the problem of classifying covers of
a given space. All of them are in some way applications of the lifting theorem (Theorem 15.11).
Before stating them, we need to establish what it means for two covers of the same space to be
“equivalent”.

Definition 16.2. Given two covers pi : Yi Ñ X for i “ 1, 2, a map of covers from p1 to p2
is a map f : Y1 Ñ Y2 such that p2 ˝ f “ p1, i.e. the following diagram commutes:

(16.1)
Y1 Y2

X

f

p1
p2

Additionally, we call f an isomorphism of covers if there also exists a map of covers from p2 to
p1 that inverts f ; this is true if and only if the map f : Y1 Ñ Y2 is a homeomorphism, since its
inverse f´1 : Y2 Ñ Y1 is then automatically a map of covers from p2 to p1. If such an isomorphism
exists, we say that the two covers p1 and p2 are isomorphic (or equivalent). If base points
x P X and yi P Yi are specified such that pi : pYi, yiq Ñ pX, xq and f : pY1, y1q Ñ pY2, y2q are also
pointed maps, then we call f an isomorphism of pointed covers. In the case where p1 and p2
are both the same cover p : Y Ñ X , an isomorphism of covers from p to itself is called a deck
transformation23 (Decktransformation) of p : Y Ñ X .

The terms covering translation and automorphism are also sometimes used as synonyms
for “deck transformation”. The set of all deck transformations of a given cover p : Y Ñ X forms a

22This is not a universally standard term.
23This terminology gives you a hint that some portion of this subject was developed by German mathematicians

in the time before English was fully established as an international language. I don’t happen to know who invented
the term.
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Figure 10. A 3-fold cover of S1 _ S1 with trivial automorphism group.

group, called the automorphism group

Autppq :“  
f : Y Ñ Y

ˇ̌
f is a homeomorphism such that p ˝ f “ p

(
,

where the group operation is defined by composition of maps.

Example 16.3. For the cover p : RÑ S1 : θ ÞÑ eiθ, Autppq consists of all maps fk : RÑ R of
the form fkpθq “ θ ` 2πk for k P Z, so in particular, Autppq is isomorphic to Z.

Example 16.4. Figure 10 illustrates a covering map p : Y Ñ S1 _ S1 of degree 3. If we label
the base point of S1_S1 as x, then the three elements of p´1pxq Ă Y are the three dots in the top
portion of the diagram: label them y1, y2 and y3 from bottom to top. The covering map is defined
such that each loop or path beginning and ending at any of the points y1, y2, y3 is sent to the
loop in S1 _ S1 labeled by the same letter with the orientations of the arrows matching. Suppose
f : Y Ñ Y is a deck transformation satisfying fpy1q “ y2. Then since f is a homeomorphism, it
must map the loop labeled a based at y1 to a loop based at y2 that also must be labeled a. But no
such loop exists, so we conclude that there is no deck transformation sending y1 to y2. By similar
arguments, it is not hard to show that the only deck transformation of this cover is the identity
map, in other words, Autppq is the trivial group.

Almost everything we will be able to prove about maps of covers is based on the following
observation: if the diagram (16.1) commutes, it means that f : Y1 Ñ Y2 is a lift of the map
p1 : Y1 Ñ X to the cover Y2, i.e. in our previous notation for lifts, f “ p̃1. The fact that p1 itself is
a covering map is irrelevant for this observation. Now if all the spaces involved are path-connected
and locally path-connected, the lifting theorem gives us a condition characterizing the existence
and uniqueness of a map of covers: for any choices of base points x P X , y1 P p´1

1 pxq Ă Y1 and
y2 P p´1

2 pxq Ă Y2, a map of covers f : Y1 Ñ Y2 satisfying fpy1q “ y2 exists (and is unique) if and
only if

pp1q˚π1pY1, y1q Ă pp2q˚π1pY2, y2q.
This map will then be an isomorphism if and only if there exists a map of covers going the other
direction, and the latter exists if and only if the reverse inclusion holds. This proves:

Theorem 16.5. Two covers pi : Yi Ñ X for i “ 1, 2 are isomorphic if and only if for some
choice of base points x P X and yi P p´1

i pxq Ă Yi for i “ 1, 2, the subgroups pp1q˚π1pY1, y1q and
pp2q˚π1pY2, y2q in π1pX, xq are identical. �

Next we use the same perspective to study deck transformations of a single cover p : Y Ñ X .
Given x P X and y1, y2 P p´1pxq Ă Y , the uniqueness of lifts implies that there exists at most
one deck transformation f : Y Ñ Y sending y1 to y2. We’ve seen in Example 16.4 that this
transformation might not always exist.
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Definition 16.6. A cover p : Y Ñ X is called regular (or equivalently normal) if for every
x P X and all y1, y2 P p´1pxq Ă Y , there exists a deck transformation sending y1 to y2.

The following exercise says that in order to check whether a cover of a path-connected space is
regular, it suffices to choose a base point x P X and investigate whether deck transformations can
be used to relate arbitrary points in the preimage of that particular point. The proof is an easy
application of the path lifting property (Lemma 15.16).

Exercise 16.7. Show that if p : Y Ñ X is a covering map and X is path-connected, then
p is also regular if the following slightly weaker condition holds: for some fixed x P X , any two
elements y1, y2 P p´1pxq Ă X satisfy y2 “ fpy1q for some deck transformation f P Autppq.

If degppq ă 8, the previous remarks about uniqueness of deck transformations imply |Autppq| ď
degppq, and equality is satisfied if and only if p is regular. By the lifting theorem, the desired deck
transformation sending y1 to y2 will exist if and only if

(16.2) p˚π1pY, y1q “ p˚π1pY, y2q.
Let us try to translate this into a condition for recognizing when p is regular. Recall that any path
y1

γ̃
 y2 in Y determines an isomorphism

Φγ̃ : π1pY, y2q Ñ π1pY, y1q : rαs ÞÑ rγ̃ ¨ α ¨ γ̃´1s.
Since y1 and y2 are both in p´1pxq, the projection of this concatenation down to X gives a
concatenation of loops, i.e. γ :“ p˝ γ̃ is a loop x x and thus represents an element rγs P π1pX, xq.
Now in order to check whether (16.2) holds, we can represent an arbitrary element of π1pY, y1q as
Φγ̃rαs for some loop y2

α
 y2, and then observe

p˚Φγ̃rαs “ rp ˝ pγ̃ ¨ α ¨ γ̃´1qs “ rγ ¨ pp ˝ αq ¨ γ´1s “ rγsp˚rαsrγs´1.

This proves that the subgroup p˚π1pY, y1q Ă π1pX, xq is the conjugate of p˚π1pY, y2q Ă π1pX, xq
by the specific element rγs P π1pX, xq, so the desired deck transformation exists if and only if
p˚π1pY, y2q is invariant under conjugation with rγs. We could now ask the same question about
deck transformations sending yi to y2 for arbitrary yi P p´1pxq, and the answer in each case can be
expressed in terms of conjugation of p˚π1pY, y2q by some element rγs P π1pX, xq for which the loop

γ lifts to a path yi
γ̃
 y2. Now observe: any loop x

γ
 x can arise in this way for some choice of

yi P p´1pxq. Indeed, if γ is given, then γ´1 has a unique lift to a path from y2 to some other point
in p´1pxq, and the inverse of this path is then a lift of γ. Using Exercise 16.7 above, the question
of regularity therefore reduces to the question of whether p˚π1pY, y2q is invariant under arbitrary
conjugations, and we have thus proved:

Theorem 16.8. If Y and X are path-connected and locally path-connected, then a cover p :

pY, y0q Ñ pX, x0q is regular if and only if the subgroup p˚π1pY, y0q Ă π1pX, x0q is normal. �

Notice that while the algebraic condition in this theorem appears to depend on a choice of base
points, the condition of p being regular clearly does not. It follows that if p˚π1pY, y0q Ă π1pX, x0q
is a normal subgroup, then this condition will remain true for any other choice of base points x P X
and y P p´1pxq Ă Y .

The next two results require the restriction to “reasonable” spaces in the sense of Definition 16.1.

Theorem 16.9 (the Galois correspondence). If X is a reasonable space with base point x0 P X,
there is a natural bijection from the set of all isomorphism classes of pointed covers p : pY, y0q Ñ
pX, x0q to the set of all subgroups of π1pX, x0q: it is defined by

rp : pY, y0q Ñ pX, x0qs ÞÑ p˚π1pY, y0q.
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It is easy to verify from the definition of isomorphism for covers that the map in this theorem is
well defined, and we proved in Theorem 16.5 that it is injective. Surjectivity will be a consequence
of the following result, which will be proved in the next lecture.

Theorem 16.10. Every reasonable space admits a simply connected covering space.

Notice that if pi : pYi, yiq Ñ pX, x0q for i “ 1, 2 are two reasonable covers satisfying π1pY1q “
π1pY2q “ 0, then Theorem 16.5 implies that they are isomorphic covers. For this reason it is
conventional to abuse terminology slightly by referring to any simply connected cover of a given
space X as “the” universal cover (universelle Überlagerung) of X . It is often denoted by rX.

Examples 16.11. The universal coverĂS1 of S1 is R, due to the covering map RÑ S1 : θ ÞÑ eiθ.
Similarly, ĄRPn – Sn for n ě 2, and ĂTn – Rn.

A substantially less obvious class of examples is given by the surfaces Σg of genus g ě 2: these
have universal cover rΣg – R2. It would take us too far afield to explain why, but one standard way
of constructing this cover comes from hyperbolic geometry, where instead of R2 we consider the
open disk D̊2 with a Riemannian metric that has constant negative curvature. One can identify
each of the surfaces Σg with the quotient of D̊2 by a suitable group of isometries and then define
a covering map D̊2 Ñ Σg as the quotient projection.

For the remainder of this lecture, fix a base-point preserving covering map p : pY, y0q Ñ pX, x0q
where X and Y are assumed reasonable, and denote

G :“ π1pX, x0q, H :“ p˚π1pY, y0q Ă G.

If H is not a normal subgroup, then there is no natural notion of a quotient group G{H , but we
can still define G{H as the set of left cosets

G
M
H “  

gH Ă G
ˇ̌
g P G( ,

where gH denotes the subset tgh | h P Hu Ă G. One can similarly consider the set of right cosets

H
I
G “  

Hg Ă G
ˇ̌
g P G( .

These two sets are identical if and only if H is normal, in which case both are denoted by G{H
and they form a group. With or without this condition, G

M
H and H

I
G have the same number

(finite or infinite) of elements, which is called the index of H in G and denoted by

rG : Hs :“
ˇ̌̌
G
M
H
ˇ̌̌
“
ˇ̌̌
H
I
G
ˇ̌̌
.

In the following we will make repeated use of the fact that for any y P p´1px0q, any path y0
γ̃
 y

gives rise to a loop γ :“ p ˝ γ̃ based at x0, and conversely, any such loop gives rise to a path that
starts at y0 and ends at some point in p´1px0q.

Lemma 16.12. There is a natural bijection

Φ : p´1px0q Ñ H
I
G : y ÞÑ Hrγs,

where x0
γ
 x0 is any loop that lifts to a path y0

γ̃
 y.

Corollary 16.13. degppq “ rG : Hs. �
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Proof of Lemma 16.12. We first show that Φ is well defined. Given two choices of paths
α̃, β̃ from y0 to y, we have loops α :“ p ˝ α̃ and β :“ p ˝ β̃ based at x0, and α̃ ¨ β̃´1 is a loop based
at y0. We therefore have

rαsrβs´1 “ rp ˝ pα̃ ¨ β̃´1qs “ p˚rα̃ ¨ β̃´1s P H,
implying Hrαs “ Hrβs.

The surjectivity of Φ is obvious: given rγs P G, there exists a lift γ̃ of γ to a path from y0 to
some point y P p´1px0q, so Φpyq “ Hrγs.

To see that Φ is injective, suppose Φpyq “ Φpy1q, choose paths y0 α̃
 y and y0

β̃
 y1, giving rise

to loops α :“ p ˝ α̃ and β :“ p ˝ β̃ based at x0 such that

Hrαs “ Φpyq “ Φpy1q “ Hrβs,
thus rαsrβs´1 P H . It follows that there exists a loop y0

γ̃
 y0 projecting to γ :“ p ˝ γ̃ such that

rα ¨ β´1s “ rγs, hence rαs “ rγs ¨ rβs, so α is homotopic to γ ¨ β with fixed end points. Since γ lifts
to a loop γ̃ and homotopies can also be lifted, we conclude that α̃ is homotopic to γ̃ ¨ β̃ with fixed
end points, implying y “ α̃p1q “ β̃p1q “ y1. �

If the cover is regular so H Ă G is normal, then degppq “ |Autppq|, and Corollary 16.13
therefore implies that Autppq has the same order as the quotient group G{H . The next result
should then seem relatively unsurprising.

Theorem 16.14. For a regular cover p : pY, y0q Ñ pX, x0q of reasonable spaces with π1pX, x0q “
G and p˚π1pY, y0q “ H Ă G, there exists a group isomorphism

Ψ : Autppq Ñ G{H : f ÞÑ rγsH,
where x0

γ
 x0 is any loop that has a lift to a path from y0 to fpy0q.

Notice that the universal cover p : p rX, x̃0q Ñ pX, x0q is automatically regular since the trivial
subgroup of π1pX, x0q is always normal, so applying this theorem to the universal cover gives:

Corollary 16.15. For the universal cover p : p rX, x̃0q Ñ pX, x0q, there is an isomorphism
Autppq Ñ π1pX, x0q sending each deck transformation f to the homotopy class of any loop x0  x0
that lifts to a path x̃0  fpx̃0q. �

Proof of Theorem 16.14. Regularity implies that the map Autppq Ñ p´1px0q : f ÞÑ fpy0q
is bijective, so Ψ is then well defined and bijective due to Lemma 16.12. For the identity element
Id P Autppq, we have ΨpIdq “ rγsH for any loop γ that lifts to a loop from y0 to Idpy0q “ y0, which
means rγs P H , so rγsH is the identity element in G{H .

It remains to show that Ψpf ˝ gq “ ΨpfqΨpgq for any two deck transformations f, g P Autppq.
Choose loops α, β based at x0 which lift to paths y0

α̃
 fpy0q and y0 β̃

 gpy0q. Then f ˝ β̃ is a path
from fpy0q to f ˝ gpy0q and can thus be concatenated with α̃, forming a path

y0
α̃¨pf˝β̃q
 f ˝ gpy0q.

Now since f P Autppq, p ˝ f “ p implies p ˝ pf ˝ β̃q “ p ˝ β̃ “ β, thus

Ψpf ˝ gq “ rp ˝ pα̃ ¨ pf ˝ β̃qqs “ rαsrβs “ ΨpfqΨpgq.
�
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Corollary 16.15 says that we can compute the fundamental group of any reasonable space X if
we can understand the deck transformations of its universal cover. Combining this with the natural
bijection Autppq Ñ p´1px0q that sends each deck transformation to its image on the base point,
we also obtain from this an intuitively appealing interpretation of the meaning of π1pX, x0q: every
loop γ based at x0 lifts uniquely to a path starting at x̃0 and ending at some point in p´1px0q. As
far as π1pX, x0q is concerned, all that matters is the end point of the lift: two loops are equivalent
in π1pX, x0q if and only if their lifts to rX have the same end point, and a loop is trivial in π1pX, x0q
if and only if its lift to rX is also a loop.

Example 16.16. Applying Corollary 16.15 to the cover p : R Ñ S1 : θ ÞÑ eiθ reproduces the
isomorphism π1pS1, 1q – Z we discussed at the end of Lecture 9. The loop γkptq :“ e2πikt in S1

for each k P Z lifts to R with base point 0 as the path γ̃kptq “ 2πkt.

Example 16.17. For each n ě 2, Corollary 16.15 implies π1pRPnq – Z2, as this is the auto-
morphism group of the universal cover p : Sn Ñ RPn, defined as the natural quotient projection.
Concretely, after fixing base points x0 P RP

n and y0 P p´1px0q Ă Sn, each loop in RP
n based at

x0 lifts to Sn as a path that starts at y0 and ends at either y0 or its antipodal point ´y0. The
nontrivial element of π1pRPn, x0q is thus represented by any loop whose lift to Sn starts and ends
at antipodal points.

17. The universal cover and group actions

In Theorem 16.14, we saw a formula that can be used to compute the automorphism group of
any regular cover as a quotient of two fundamental groups. I want to mention how this generalizes
for non-regular covers, though I will leave most of the details as an exercise. One way to approach
the problem is as follows: any pointed covering map p : pY, y0q Ñ pX, x0q of reasonable spaces can
be fit into a diagram

(17.1) pZ, z0q pY, y0q pX, x0q,q

P

p

in which q and P are also pointed covering maps and are both regular. For example, if you already
believe that every reasonable space has a universal cover (and we shall prove this below), then we
can always take q : Z Ñ Y to be the universal cover of Y , which makes P : Z Ñ X the universal
cover of X since π1pZq “ 0, and universal covers are always regular because the trivial subgroup
is always normal. In this case, Corollary 16.15 gives us natural isomorphisms AutpP q – π1pX, x0q
and Autpqq – π1pY, y0q. This is not true if Z is not simply connected, and we will not assume
this in the following exercise, but it turns out that if P and q are nonetheless regular, then we can
derive a formula for Autppq in terms of the other two automorphism groups.

Exercise 17.1. Assuming the spaces in (17.1) are all reasonable, let us abbreviate the auto-
morphism groups of P and q by

G :“ AutpP q, and H :“ Autpqq.
(a) Use the path-lifting property to prove the following lemma: If Ψ P G and ψ P Autppq are

deck transformations for which the relation q ˝Ψ “ ψ ˝ q holds at the base point z0 P Z,
then it holds everywhere.
Hint: For any z P Z, choose a path from z0 to z, then use Ψ, ψ and the covering
projections to cook up other paths in Z, Y and X . Some of them are lifts of others, and
two important ones will turn out to be the same.
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(b) Deduce from part (a) that H is the subgroup of G consisting of all deck transformations
Ψ : Z Ñ Z for P that satisfy Ψpz0q P q´1py0q.

(c) Show that if P : Z Ñ X is regular then so is q : Z Ñ Y . Give two proofs: one using the
result of part (b), and another using the characterization of regularity in terms of normal
subgroups.

(d) The normalizer (Normalisator)NpHq Ă G of the subgroupH is by definition the largest
subgroup of G that contains H as a normal subgroup, i.e.

NpHq :“  
g P G ˇ̌

gHg´1 “ H
(
.

Show that if the cover q : Z Ñ Y is regular, then for any Ψ P NpHq, there exists a deck
transformation ψ : Y Ñ Y of p satisfying the relation q ˝ Ψ “ ψ ˝ q, and it is unique.
Moreover, the correspondence Ψ ÞÑ ψ defines a group homomorphism NpHq Ñ Autppq
whose kernel is H .

(e) Show that if the cover P : Z Ñ X is also regular, then the homomorphism NpHq Ñ
Autppq in part (d) is also surjective, and thus descends to an isomorphism

NpHq{H –ÝÑ Autppq.
Applying Exercise 17.1 with Z simply connected now gives:

Corollary 17.2. For any covering map p : pY, y0q Ñ pX, x0q of reasonable spaces with
π1pX, x0q “ G and p˚π1pY, y0q “ H Ă G, there is a natural isomorphism Autppq – NpHq{H. �

Notice that there always exists a subgroup of G in which H is normal, e.g. H itself is such a
subgroup, and it may well happen that no larger subgroup satisfies this condition, in which case
NpHq “ H and Autppq is therefore trivial. If H is normal in G, then NpHq “ G and the cover is
therefore regular, hence Corollary 17.2 reduces to Theorem 16.14.

Moving on from non-regular covers, we have some unfinished business from the previous lecture:
it remains to prove the surjectivity of the Galois correspondence (Theorem 16.9), and the existence
of the universal cover (Theorem 16.10). The latter is actually a special case of the former: recall
from Corollary 15.13 that the homomorphism p˚ : π1pY, y0q Ñ π1pX, x0q induced by a covering
map p : pY, y0q Ñ pX, x0q is always injective, thus the existence of a universal cover amounts to the
statement that the image of the Galois correspondence includes the trivial subgroup of π1pX, x0q.
We will prove this first, and then use it to deduce the Galois correspondence in full generality.

As before, we need to restrict our attention to “reasonable spaces,” meaning spaces that are
path-connected and locally path-connected, and in which every point has a simply connected
neighborhood. The first two conditions are needed in order to apply the lifting theorem, which we
used several times in the previous lecture. The third condition has not yet been used, but this is the
moment where we will need it. In constructing a universal cover p : p rX, x̃0q Ñ pX, x0q, the theorems
at the end of the previous lecture give some useful intuition on what to aim for: in particular,
there needs to be a one-to-one correspondence between p´1px0q Ă rX and π1pX, x0q. What we will
actually construct is a cover for which these two sets are not just in bijective correspondence but
are literally the same set. In set-theoretic terms, the construction is quite straightforward, but
giving it a topology that makes it a covering map is a bit subtle—that is where we will need to
assume that simply connected neighborhoods exist.

Proof of Theorem 16.10 (the universal cover). We will not give every detail but sketch
the main idea. Given a reasonable space X with base point x0 P X , define the setrX :“ tpaths γ : pI, 0q Ñ pX, x0qu L„

h`,
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i.e. it is the set of all equivalence classes of paths that start at the base point, with equivalence
defined as homotopy with fixed end points. Since this definition does not specify the end point of
any path but the equivalence relation leaves these end points unchanged, we obtain a natural map

p : rX Ñ X : rγs ÞÑ γp1q,
which is obviously surjective since X is path-connected. Notice that p´1px0q “ π1pX, x0q.

We claim that rX can be assigned a topology that makes p : rX Ñ X into a covering map. To
see this, suppose U Ă X is a path-connected subset and iU : U ãÑ X denotes its inclusion. For
any point x P U , the induced homomorphism iU˚ : π1pU , xq Ñ π1pX, xq is trivial if and only if every
loop S1 Ñ U based at x can be extended to a map D2 Ñ X . Notice that this is weaker in general
than demanding an extension D2 Ñ U ; the latter would mean that U is simply connected, but we
do not want to assume this. Notice also that if this condition holds for some choice of base point
x P U , then the usual change of base-point arguments imply that it will hold for any other base
point y P U , thus we can sensibly speak of the condition that iU˚ : π1pUq Ñ π1pXq is trivial. With
this understood, consider the collection of sets

B :“  
U Ă X

ˇ̌
U is open and path-connected and iU˚ : π1pUq Ñ π1pXq is trivial( .

It is a straightforward exercise to verify the following properties:

(1) U P B if and only if for every pair of paths α, β in U with the same end points, α and β
are homotopic in X with fixed end points (cf. Corollary 9.9).

(2) If U P B and V Ă U is a path-connected open subset, then V P B.
(3) B is a base for the topology of X .

In particular, the third property holds because X is reasonable: every point x P X has a simply
connected neighborhood, which contains an open neighborhood that necessarily belongs to B, and
it follows that every open subset of X is a union of such sets.

Now for any U P B with a point x P U and a path γ in X from x0 to x, let

Urγs :“
!
rγ ¨ αs P rX ˇ̌̌

α is a path in U starting at x
)
.

Notice that Urγs depends only on the homotopy class rγs P rX ; this relies on the fact that since
U P B, the path α in the definition above is uniquely determined up to homotopy in X by its end
point. It follows in fact that p : rX Ñ X restricts to a bijection

Urγs
pÑ U .

With all this in mind, one can now show thatrB :“
!
Urγs Ă rX ˇ̌̌

U P B and rγs P rX with γp1q P U
)

is a base for a topology on rX such that each U P B is evenly covered by p : rX Ñ X . We leave the
details of this as an exercise.

There is an obvious choice of base point in rX : define x̃0 P rX as the homotopy class of
the constant path at x0. It remains to prove that π1p rX, x̃0q “ 0. Since we now know that
p : p rX, x̃0q Ñ pX, x0q is a covering map, Corollary 15.13 implies that p˚ : π1p rX, x̃0q Ñ π1pX, x0q
is injective, thus it will suffice to show that the subgroup p˚π1p rX, x̃0q in π1pX, x0q is trivial. This
subgroup is the set of homotopy classes rγs P π1pX, x0q for which the loop γ lifts to a loop γ̃ based
at x̃0. The lift of γ to rX can be written as

γ̃ptq “ rγts P rX,
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where for each t P I we define

γtpsq :“
#
γpsq for 0 ď s ď t,

γptq for t ď s ď 1.

Then assuming γ̃ is a loop, we find γ̃p1q “ rγs “ γ̃p0q “ rconsts, which is simply the statement
that γ is homotopic with fixed end points to a constant loop, hence rγs P π1pX, x0q is the trivial
element. �

I do not have the energy to draw the picture myself, but I highly recommend looking at
the picture of the universal cover of S1 _ S1 on page 59 of [Hat02]. The idea here is that for
every homotopically nontrivial loop in S1 _ S1, one obtains a non-closed path in the universal
cover rX. One can thus construct rX one path at a time if one denotes by a and b the generators
of π1pS1 _ S1, xq – Fta,bu: at each step, the loops a, b, a´1 and b´1 furnish four homotopically
distinct choices of loops to traverse, which lift to four distinct paths in rX from one copy of the base
point to another. Starting at the natural base point x̃0 and following this procedure recursively
produces the fractal picture in [Hat02, p. 59].

The application to the Galois correspondence requires a brief digression on topological groups
and group actions.

Definition 17.3. A topological group (topologische Gruppe) is a group G with a topology
such that the maps

GˆGÑ G : pg, hq ÞÑ gh and GÑ G : g ÞÑ g´1

are both continuous.

Popular examples of topological groups include the various subgroups of the real or com-
plex general linear groups GLpn,Rq and GLpn,Cq, e.g. the orthogonal group Opnq and unitary
group Upnq, the special linear groups SLpn,Rq and SLpn,Cq, and so forth. We saw in Exercise 7.29
that for any locally compact and locally connected Hausdorff space X , the group of homeomor-
phisms HomeopXq is a topological group with the group operation defined by composition. Finally,
any group can be regarded as a topological group if we assign to it the discrete topology; this fol-
lows from the fact that every map on a space with the discrete topology is continuous. Topological
groups with the discrete topology are often referred to as discrete groups.

Definition 17.4. Given a topological group G and a space X , a (continuous) G-action
(Wirkung) on X is a (continuous) map

GˆX Ñ X : pg, xq ÞÑ g ¨ x
such that the identity element e P G satisfies e ¨ x “ x for all x P X and pghq ¨ x “ g ¨ ph ¨ xq holds
for all g, h P G and x P X .

Notice that for any G-action on X , there is a natural group homomorphism G Ñ HomeopXq
sending g P G to the homeomorphism ϕg : X Ñ X defined by ϕgpxq “ g ¨ x. If G is a discrete
group then the converse is also true: every group homomorphism G Ñ HomeopXq comes from a
G-action on X . This is true because as long as the topology of G is discrete, the map G ˆX Ñ
X : pg, xq ÞÑ g ¨ x is continuous if and only if the map X Ñ X : x ÞÑ g ¨ x is continuous for every
fixed g P G. If G has a more interesting topology, then continuity of the map pg, xq ÞÑ g ¨ x with
respect to g P G is also a nontrivial condition that would need to be checked—but we have no need
to worry about this right now, as most of the groups we will deal with below are discrete.

Example 17.5. For any covering map p : Y Ñ X , Autppq acts as a discrete group on Y by
f ¨ y :“ fpyq.
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Example 17.6. Regarding Z2 as a discrete group, a Z2-action on any space X is determined
by the homeomorphism ϕ1 : X Ñ X associated to the nontrivial element r1s P Z{2Z “: Z2, and
this is necessarily an involution, i.e. it is its own inverse. A frequently occurring example is the
action of Z2 on Sn defined via the antipodal map x ÞÑ ´x.

Example 17.7. Here is a non-discrete example: any subgroup of the orthogonal group Opnq
acts on Sn´1 Ă Rn by matrix-vector multiplication, A ¨ x “ Ax.

For any G-action on X and a subset U Ă X , we denote

g ¨ U :“ tg ¨ x | x P Uu Ă X.

Similarly, for each point x P X , we define its orbit (Bahn) as the subset

G ¨ x :“ tg ¨ x | g P Gu Ă X.

One can easily check that for any two points x, y P X , their orbits G ¨x and G ¨y are either identical
or disjoint, thus there is an equivalence relation „ on X such that x „ y if and only if G ¨x “ G ¨y.
The quotient topological space defined by this equivalence relation is denoted by

X{G :“ X{„ “ torbits G ¨ x Ă X | x P Xu.
Example 17.8. The quotient Sn{Z2 arising from the action in Example 17.6 is RPn.

Proposition 17.9. Regarding π1pX, x0q as a discrete group, any covering map p : pY, y0q Ñ
pX, x0q of reasonable spaces with π1pY q “ 0 gives rise to a natural action of π1pX, x0q on Y .

Proof. There are at least two ways to see the action of π1pX, x0q on a simply connected cover.
First, Corollary 16.15 identifies π1pX, x0q with Autppq, and the latter acts on Y as explained in
Example 17.5.

Alternatively, one can appeal to the uniqueness of the universal cover, so p : pY, y0q Ñ pX, x0q
is necessarily isomorphic to the specific cover rX “ tpaths x0  xu{„

h` that we constructed in the

proof of Theorem 16.10. Then the obvious way for homotopy classes of loops rαs P π1pX, x0q to
act on homotopy classes of paths rγs P rX is by concatenation:

rαs ¨ rγs :“ rα ¨ γs.
It is easy to verify that this also defines a group action. �

Exercise 17.10. Show that the two actions of π1pX, x0q on the universal cover constructed
in the above proof are the same.

Definition 17.11. A G-action on X is free (frei) if the only element g P G satisfying g ¨x “ x

for some x P X is the identity g “ e.
The action is called properly discontinuous (eigentlich diskontinuierlich) if every x P X has

a neighborhood U Ă X such that
pg ¨ Uq X U “ H

for every g P G with g ¨ x ‰ x.

Exercise 17.12. Show that if a G-action is free and properly discontinuous, then G is discrete.

Exercise 17.13. Show that for any covering map p : Y Ñ X , the action of Autppq on Y as in
Example 17.5 is free and properly discontinuous.

The observation that actions of deck transformation groups are free already has some nontrivial
consequences, for instance:

Proposition 17.14. There exists no covering map p : D2 Ñ X with degppq ą 1.
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Proof. If degppq ą 1, then since π1pD2q “ 0, we observe that the cover p : D2 Ñ X must be
regular and therefore has a nontrivial deck transformation group Autppq which acts freely on D2.
But the Brouwer fixed point theorem rules out the existence of any nontrivial free group action
on D2. �

The main purpose of the above definitions is that they lead to the following theorem, whose
proof is now an easy exercise.

Theorem 17.15. If G acts on X freely and properly discontinuously, then the quotient projec-
tion

q : X Ñ X{G : x ÞÑ G ¨ x
is a regular covering map with Autpqq “ G. �

Now we are ready to finish the proof of the Galois correspondence.

Proof of Theorem 16.9. We have already shown that the correspondence is well defined
and injective, so we need to prove surjectivity, in other words: given a reasonable space X with
base point x0 P X and any subgroup H Ă G :“ π1pX, x0q, we need to find a reasonable space Y
with a covering map p : pY, y0q Ñ pX, x0q such that p˚π1pY, y0q “ H . Since X is reasonable, there
exists a universal cover f : p rX, x̃0q Ñ pX, x0q, whose automorphism group is isomorphic to G, so
this isomorphism defines a free and properly discontinuous action of G on rX. It also defines a free
and properly discontinuous action of every subgroup of G on rX, and in particular an H-action.
Define

Y :“ rX{H and p : Y Ñ X : H ¨ x̃ ÞÑ fpx̃q.
It is straightforward to check that this is a covering map, and it is base-point preserving if we
define y0 :“ H ¨ x̃0 as the base point of Y . Moreover, the quotient projection q : p rX, x̃0q Ñ pY, y0q
is now the universal cover of Y , and it fits into the following commutative diagram:

p rX, x̃0q pX, x0q

pY, y0q

f

q
p

Given a loop γ in X based at x0, let γ1 denote its lift to a path in Y starting at y0, and let γ̃
denote the lift to a path in rX starting at x̃0, The subgroup p˚π1pY, y0q Ă π1pX, x0q is precisely
the set of all homotopy classes rγs P π1pX, x0q for which γ1 is a loop. Notice that since all maps in
the diagram are covering maps, γ̃ is also a lift of γ1 via the covering map q. Then rγs P H so that
γ1 is a loop if and only if the end point of γ̃ is in q´1py0q “ H ¨ x̃0. Under the natural bijection
between π1pX, x0q and f´1px0q “ G ¨ x̃0, this just means rγs P H , hence p˚π1pY, y0q “ H . �

18. Manifolds

I have mentioned manifolds already a few times in this course, but now it is time to discuss
them somewhat more precisely. While we do not plan to go to deeply into this subject this semester,
the goal is in part to understand what the main definitions are and why, forming the basis of the
subject known as “geometric topology”. In so doing, we will also establish an inventory of examples
and concepts that will serve as useful intuition when we start to talk about homology next week.

Definition 18.1. A topological manifold (Mannigfaltigkeit) of dimension n ě 0 (often
abbreviated with the term “n-manifold”) is a second countable Hausdorff space M such that every
point p PM has a neighborhood homeomorphic to Rn.
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More generally, a topological n-manifold with boundary (Mannigfaltigkeit mit Rand) is
a second countable Hausdorff space M such that every point p P M has a neighborhood homeo-
morphic to either Rn or the so-called “n-dimensional half-space”

Hn :“ r0,8qˆ Rn´1.

The third condition in each of these definitions is probably the most intuitive and is the
most distinguishing feature of manifolds: we abbreviate it by saying that manifolds are “locally
Euclidean”. It means in effect that sufficiently small open subsets of a manifold can be described via
local coordinate systems. The technical term for this is “chart”: a chart (Karte) on an n-manifold
with boundary is a homeomorphism

ϕ : U Ñ Ω

where U Ă M and Ω Ă Hn are open subsets. As special cases, Ω may be the whole of Hn, or an
open ball in Hn disjoint from

BHn :“ t0u ˆ Rn´1,

in which case Ω is also homeomorphic to Rn. It follows that on any n-manifold (with or without
boundary), every point is in the domain of a chart. Conversely, if we are given a collection of charts
tϕα : Uα Ñ ΩαuαPJ such thatM “ Ť

αPJ Uα, then after shrinking the domains and targets of these
charts if necessary, we can assume every point p PM is in the domain of some chart ϕα : Uα Ñ Ωα
such that Ωα is either an open ball in HnzBHn or a half-ball with boundary on BHn, so that Ω

is homeomorphic to either Rn or Hn. This means M is locally Euclidean, so both versions of the
third condition in our definition can be rephrased as the condition that M is covered by charts.
The boundary of a manifold M with boundary can now be defined as the subset

BM :“  
p PM ˇ̌

ϕppq P BHn for some chart ϕ
(
,

which is clearly an pn´ 1q-manifold (without boundary).
The word “topological” is included before “manifold” in order to make the distinction between

topological manifolds and smooth manifolds, which we will discuss a little bit below. By default
in this course, you should assume that everything we refer to simply as a “manifold” is actually
a topological manifold unless otherwise specified. (If this were a differential geometry course,
you would instead want to assume that “manifold” always means smooth manifold.) One can
regard manifolds without boundary as being special cases of manifolds M with boundary such
that BM “ H, so we shall also use “manifold” as an abbreviation for the term “manifold with
boundary” and will generally specify “without boundary” when we want to assume BM “ H. You
should be aware that some books adopt different conventions for such details, e.g. some authors
assume BM “ H always unless the words “with boundary” are explicitly included.

Remark 18.2. The following detail deserves emphasis: the way we have expressed the defini-
tion of the boundary BM Ă M above makes sense in part because when we defined the notion of
a chart ϕ : U Ñ Ω, we required24 its image Ω to be an open subset of the half-space Hn, and not
necessarily an open subset of Rn. If we were allowing arbitrary open subsets Ω Ă Rn, then every
point p P M would be a boundary point, because e.g. one could take any chart ϕ : U Ñ Ω with
p P U and compose it with a translation on Rn so that ϕppq “ 0 P BHn. Requiring Ω Ă Hn prevents
this in general, because if we start with a chart ϕ : U Ñ Ω whose image contains an open ball
around ϕppq, then translating it to achieve ϕppq “ 0 will produce something whose image cannot
be contained in Hn. In fact, the translation trick works only for points p P U with ϕppq P BHn, as

24This convention is not universal: many books allow charts to have images that are arbitrary open subsets
of Rn. The latter is a sensible convention especially if one only wants to consider manifolds with empty boundary,
and even if nonempty boundaries are allowed, one can work with charts defined in this way, but the definition of
BM ĂM would need to be expressed a bit differently.
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these are precisely the points for which Ω does not contain any ball around ϕppq. It can happen
that Ω Ă Hn is also an open subset of Rn: this is true if and only if ΩXBHn “ H, and in that case,
none of the points in the domain of the chart are boundary points. One can show that whenever
ϕppq P BHn for some chart ϕ : U Ñ Ω with p P U , the same must hold for all other charts whose
domains contain p; in other words, no point of M can be simultaneously a boundary point and an
interior point, where the latter means that some chart maps it into HnzBHn. For n ď 2, this can
be proved using methods that we have already developed (see Exercise 19.13); the proof for n ą 2

requires some other methods that we haven’t developed yet, but will soon, e.g. singular homology.

Manifolds are usually what we have in mind when we think of spaces that are “nice” or “rea-
sonable”. In particular, the following is an immediate consequence of the observation that every
point in Rn or Hn has a neighborhood homeomorphic to the closed n-disk:

Proposition 18.3. For an n-manifold M and a point p PM , every neighborhood of p contains
one that is homeomorphic to Dn. �

Corollary 18.4. Manifolds are locally compact and locally path-connected. They are also
locally contractible, meaning every neighborhood of every point in M contains a contractible
neighborhood. In particular, they are “reasonable” in the sense of Definition 16.1. �

It follows via Theorem 7.19 that a manifold M is connected if and only if it is path-connected.
More generally, the path-components ofM are the same as its connected components (cf. Prop. 7.18),
each of which are open and closed subsets, hence M is homeomorphic to the disjoint union of its
connected components. It is similarly easy to show that these connected components are also
manifolds.

Definition 18.5. A manifold M is closed (geschlossen) if it is compact and BM “ H. It is
open (offen) if none of its connected components are closed, i.e. all of them either are noncompact
or have nonempty boundary.

You need to be aware that these usages of the words “closed” and “open” are different from
the notions of closed or open subsets in a topological space. The distinction between a “closed
manifold” and a “closed subset” is at least more explicit in German: the former is a geschlossene
Mannigfaltigkeit, while the latter is an abgeschlossene Teilmenge. For openness there is the same
ambiguity in German and English, but it is rarely a problem: you just need to pay attention to the
context in which these adjectives are used and what kinds of nouns they are modifying. We will
not have much occasion to talk about open manifolds in this course, and many authors apparently
dislike seeing the word “open” used in this way, but it has some advantages, e.g. in differential
topology, there are some elegant theorems that can be stated most naturally for open manifolds
but are not true for manifolds that are not open.

Example 18.6. Any discrete space with only countably many points is a 0-manifold. (Dis-
crete spaces with uncountably many points are excluded because they are not second countable.)
Conversely, this is an accurate description of every 0-manifold, and the closed ones are those that
are finite. Note that a 0-manifold can never have boundary.

Example 18.7. The line R, the interval p´1, 1q and the circle S1 are all examples of 1-manifolds
without boundary, where S1 is closed and the others are open. Further examples without boundary
are obtained by taking arbitrary countable disjoint unions of these examples, e.g. S1 > R is a 1-
manifold without boundary, though it is neither closed nor open since it has one closed component
and one that is not closed. Some examples of 1-manifolds with nonempty boundary include the
interval I “ r0, 1s, whose boundary is the compact 0-manifold BI “ t0, 1u, and r0, 1q, whose
boundary is Br0, 1q “ t0u.



18. MANIFOLDS 109

Example 18.8. The word surface (Fläche) refers in general to a 2-dimensional manifold.
Examples without boundary include S2, T2 “ S1 ˆ S1, the surfaces Σg of genus g ě 0, RP2, R2,
and arbitrary countable disjoint unions of any of these. One can also take connected sums of these
examples to obtain more, though as we’ve seen, not all of the examples that arise in this way are
new, e.g. Σg for g ě 1 is the g-fold connected sum of copies of T2. Some compact examples with
boundary include D2 (with BD2 “ S1) and the surface Σg,m of genus g with m ě 1 holes cut out,
which has BΣg,m – šm

i“1 S
1. An obvious noncompact example with nonempty boundary is the

half-plane H2, with BH2 – R.

Example 18.9. Some examples of arbitrary dimension n without boundary are Sn, RPn,
Rn, Tn :“ S1 ˆ . . . ˆ S1, any open subset of any of these, and anything obtained from these by
(countable) disjoint unions or connected sums.25 Some obvious examples with nonempty boundary
are Dn (with BDn “ Sn´1), and r´1, 1sˆTn´1, whose boundary is the disjoint union of two copies
of Tn´1.

While we don’t plan to do very much with it in this course, we now make a brief digression on
the subject of smooth manifolds, which are the main object of study in differential geometry and
differential topology. As preparation, observe that if ϕα : Uα Ñ Ωα and ϕβ : Uβ Ñ Ωβ are two
charts on the same manifold M , then on any region Uα X Uβ where they overlap, we can think of
them as describing two alternative coordinate systems, so that there is a well-defined “coordinate
transformation” map switching from one to the other. To be more precise, ϕαpUα X Uβq and
ϕβpUα XUβq are open subsets of Ωα and Ωβ respectively, and there is a homeomorphism from one
to the other defined via the following diagram:

Uα X Uβ

ϕαpUα X Uβq ϕβpUα X Uβq
ϕα

ϕβ

ϕβ˝ϕ´1
α

The map ϕβ ˝ ϕ´1
α is called the transition map (Übergang) relating ϕα and ϕβ . The key point

about a transition map is that its domain and target are open subsets of a Euclidean space (or half-
space), thus we know what it means for such a map to be “differentiable”. This observation makes
it possible to do differential calculus on manifolds and to speak of functions f : M Ñ R as being
differentiable or not: the idea is that f should be called differentiable if it appears differentiable
whenever it is written in a local coordinate system. But for this to be well defined, we need to be
assured that the answer to the differentiability question will not change if we change coordinate
systems, i.e. if we compose our local coordinate expression for f with a transition map. If all
conceivable charts for M are allowed, then the answer will indeed sometimes change, because the
composition of a differentiable function with a non-differentiable map is not usually differentiable.
We therefore need to be able to assume that transition maps are always differentiable, and since
this is not true if all conceivable charts are allowed, we need to restrict the class of charts that
we consider. This restriction introduces a bit of structure on M that is not determined by its
topology, but is something extra:

Definition 18.10. A smooth structure (glatte Struktur) on an n-dimensional topological
manifold M is a maximal collection of charts tϕα : Uα Ñ ΩαuαPJ for which M “ Ť

αPJ Uα and the
corresponding transition maps ϕβ ˝ ϕ´1

α for all α, β P J are of class C8. A topological manifold
endowed with a smooth structure is called a smooth manifold (glatte Mannigfaltigkeit).

25Recall from Lecture 13 the connected sum of two n-manifoldsM and N : it is defined by deleting the interiors
of two embedded n-disks from M and N and then gluing them together along the spheres Sn´1 at the boundaries
of these disks.
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It is easy to see that a single topological manifold can have multiple distinct smooth structures,
e.g. on M “ R, the functions ϕαptq “ t and ϕβptq “ t3 are homeomorphisms RÑ R and can thus
be regarded as charts, but ϕα ˝ϕ´1

β is not everywhere differentiable, hence ϕα and ϕβ can each be
regarded as belonging to smooth structures on R, but they are distinct smooth structures. That
is a relatively uninteresting example, but there are also known examples of topological manifolds
admitting multiple smooth structures that are not even equivalent up to diffeomorphism (the
smooth version of homeomorphism), as well as topological manifolds that do not admit any smooth
structure at all. Such things are very hard to prove, but you should not worry about them right
now, because the basic fact is that most manifolds we encounter in nature have natural smooth
structures. A very high proportion of them come from the following geometric version of the
implicit function theorem.

Theorem 18.11 (implicit function theorem). Suppose U Ă Rn is an open subset, F : U Ñ Rk

is a C8-map and q P Rk is a point such that for all p P F´1pqq, the derivative dF ppq : Rn Ñ Rk

is surjective (we say in this case that q is a regular value of F ). Then F´1pqq Ă Rn is a smooth
manifold of dimension n´ k. �

The above theorem is provided “for your information,” meaning we do not plan to either prove
or use it in any serious way in this course, but you should be aware that it exists because it provides
many examples of manifolds that arise naturally in various applications. For instance:

Example 18.12. The n-sphere Sn “ F´1p1q, where F : Rn`1 Ñ R : x ÞÑ |x|2, which has 1 as
a regular value.

Example 18.13. The special linear group SLpn,Rq “ det´1p1q for the determinant map det :

Rnˆn Ñ R. One can show that 1 is a regular value of det by relating the derivative of the
determinants of a family of matrices passing through 1 to the trace of the derivative of that family
of matrices. Thus SLpn,Rq is a smooth manifold of dimension n2 ´ 1.

Now let’s look at a couple of non-examples.

Example 18.14. The wedge sum S1_S1 is not a manifold of any dimension. It does look like a
1-manifold in the complement of the base point x P S1_S1, but x does not have any neighborhood
homeomorphic to Euclidean space. Indeed, sufficiently small neighborhoods U Ă S1 _ S1 of x all
look like two line segments intersecting, so that if we delete the point x, we obtain a space Uztxu
with four path-components. This cannot happen in an n-manifold for any n, as deleting a point
from R produces two path-components, while deleting a point from Rn with n ě 2 leaves a space
that is still path-connected.

Example 18.15. Here is a space that is locally Euclidean and second countable, but not
Hausdorff: the line with two zeroes, i.e. X :“ pRˆt0, 1uq{„ with px, 0q „ px, 1q for all x ‰ 0. If we
endow X with the quotient topology induced by the natural topology of Rˆ t0, 1u – R > R, then
a subset U Ă X is open if and only if its preimage under the quotient projection Rˆ t0, 1u Ñ X

is open, and it follows in particular that the images of Rˆ t0u and Rˆ t1u under this projection
are open subsets of X that are each (in obvious ways) homeomorphic to R. The two zeroes
00 :“ rp0, 0qs and 01 :“ rp0, 1qs therefore each have neighborhoods homeomorphic to R, and so
(for more obvious reasons) does every other point, so the line with two zeroes would count as
a 1-manifold if we did not require manifolds to be Hausdorff. We should emphasize that we are
considering the quotient topology on X , not the pseudometric topology (cf. Example 6.12); X with
the pseudometric topology is not locally homeomorphic to R, because every neighborhood of 00
must also contain 01 and vice versa, so the two subsets described above would no longer be open.
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Example 18.16. The following is a compact variation on the previous example: writing X for
the line with two zeroes, its one point compactification X˚ is obtained by adding a single point
called 8, which is the limit of any sequence in X that has no bounded subsequence. Just as the
one point compactification RYt8u of R is homeomorphic to S1, we can think of X˚ as the result
of replacing one point 0 P R Ă S1 with a pair of points 00, 01 P X˚ that each have neighborhoods
homeomorphic to R, but with every neighborhood of 00 intersecting every neighborhood of 01.
This would also be a 1-manifold if manifolds were not required to be Hausdorff.

You probably don’t need much convincing by this point that spaces which are Hausdorff and
second countable are “good,” while those that lack either of these properties are “bad”. Nonetheless,
it’s worth taking a moment to consider why it would be bad if we dropped either of these conditions
from the definition of a manifold. The first answer is clearly that if we dropped the Hausdorff axiom,
then Example 18.15 would be a manifold, and we don’t like Example 18.15. But there are better
reasons. One of them is related to the implicit function theorem, Theorem 18.11 above, which
produces many examples of manifolds that are subsets of larger-dimensional Euclidean spaces.
Notice that in this situation, it is completely unnecessary to verify whether those subsets are
Hausdorff or second countable, because every subset of a finite-dimensional Euclidean space is
both. (See Exercise 5.9 if you’ve forgotten how we know that Rn is second countable.) Now, it is
reasonable to ask whether all conceivable manifolds arise from something similar to Theorem 18.11,
i.e. are all of them embeddable into RN for some N P N? The answer is yes, though clearly it
would not be if the Hausdorff and second countability conditions were not included:

Theorem 18.17. Every topological manifold is homeomorphic to a closed subset of RN for
N P N sufficiently large. �

This is another theorem that I am providing “for your information,” as I do not intend to
use it for anything and therefore will not prove it. A readable proof for the case of a compact
manifold appears in [Hat02, Corollary A.9]. The noncompact case is significantly harder and
proofs typically do not appear in textbooks, but the idea is outlined and some precise references
given in [Lee11, p. 116]. I would caution you in any case against taking this theorem more
seriously than it deserves: while it’s nice to know that all manifolds are in some sense submanifolds
of some RN , many of them do not come with any canonical choice of embedding into RN , so this
property is not in any way intrinsic to their structure and one should (and usually can) avoid using
it to prove things about manifolds. It might also be argued that Theorem 18.17 undermines my
point about the Hausdorff and second countability assumptions being indispensable, since it may
seem desirable to be able to consider “manifolds” that are more general than just submanifolds of
Euclidean spaces.

As a general principle, mathematicians consider a definition to be a “good” definition if it
appears as the hypothesis for a good theorem. I’m not sure if Theorem 18.17 truly qualifies as a
good theorem. But I want to talk about another one that I think is better.

Theorem 18.18. Every connected nonempty 1-manifold without boundary is homeomorphic to
either S1 or R.

If this statement sounds at first too restrictive, it makes up for it by being extremely useful. In
combination with the implicit function theorem, one can deduce from it e.g. the possible topologies
of regular level sets of arbitrary smooth functions F : Rn Ñ Rn´1. This ability has a surprising
number of beautiful applications in differential topology and related fields; one example is the
definition of the “mapping degree,” sketched in Exercise 19.14. Those applications are typically
based on the following corollary for compact manifolds with boundary.

Corollary 18.19. Every compact 1-manifold M with boundary is homeomorphic to a disjoint
union of finitely many copies of S1 and r0, 1s. In particular, BM consists of evenly many points.
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Proof. Since M is compact, it can have at most finitely many connected components (oth-
erwise we can find a noncompact closed subset by choosing one point from every component).
Restricting to connected components, it will therefore suffice to show that every connected com-
pact 1-manifoldM is either S1 or r0, 1s. Theorem 18.18 implies thatM – S1 if BM “ H, so assume
otherwise. Then BM is a closed subset and therefore is compact, and it is also a 0-manifold, which
means it is a nonempty finite set. Let us modifyM by attaching a half-line r0,8q to each boundary
point, that is, let

xM :“M YBM

˜ ž
pPBM

r0,8q
¸
.

This makes xM a noncompact connected 1-manifold with empty boundary, so by Theorem 18.18,xM – R. It follows that M Ă xM is homeomorphic to a path-connected compact subset of R. All
such subsets are compact intervals ra, bs, hence M – r0, 1s. �

The proof of Theorem 18.18 given below is based on a series of exercises outlined in [Gal87].
I will not go through every step in exhaustive detail, as my main objective is just to point out
explicitly where the Hausdorff and second countability conditions are needed. You saw already from
Examples 18.15 and 18.16 that the theorem becomes false if the Hausdorff condition is dropped,
and after the proof we will look at an even stranger example to see what can happen without
second countability.

Here is a lemma that depends explicitly on the Hausdorff property, e.g. you will find if you
look again at the line with two zeroes (Example 18.15) that it is not satisfied in that particular
example.

Lemma 18.20. Suppose M is a Hausdorff space with two overlapping open subsets Uα,Uβ ĂM

that are each homeomorphic to R, and neither is contained in the other. Then each connected
component W of Uα X Uβ is homeomorphic to R and has compact closure ĎW ĂM homeomorphic
to r0, 1s, whose boundary consists of a point pα P Uα that is not in Uβ and a point pβ P Uβ that is
not in Uα.

Proof. Choose explicit homeomorphisms ϕα : Uα Ñ R and ϕβ : Uβ Ñ R. The image
ϕβpWq Ă R is necesarily a connected open subset of R, and is therefore an open interval, implying
W – R. But ϕβpWq cannot be the entirety of R, as that would imply W “ Uβ since ϕβ is a
homeomorphism, and thus Uβ Ă Uα, which was excluded in the hypotheses. For the same reasons,
ϕαpWq is an open interval in R, but not the entirety of R.

Let us show that the closure ĎW Ă M contains two boundary points pα, pβ with the stated
properties. To find pα, choose a point t P R that is in the closure of ϕαpWq Ă R but not in
ϕαpWq. Since ϕα is a homeomorphism, there must then exist a sequence xn P W converging to
a point pα :“ ϕ´1

α ptq P Uα, and pα cannot belong to Uβ since this would imply pα P W and thus
t P ϕαpWq. We claim: |ϕβpxnq| Ñ 8. Indeed, if this does not hold, then after replacing xn with a
suitable subsequence, we can assume ϕβpxnq converges to some point y P R, in which case xn also
converges to x :“ ϕ´1

β pyq P Uβ since ϕβ is a homeomorphism. But we already know xn Ñ pα, so
the assumption that M is Hausdorff implies x “ pα and gives a contradiction, since pα R Uβ.

It follows from the claim above that ϕβpWq Ă R is an unbounded interval, and since it is not
the entirety of R, it is therefore an infinite half-interval of the form p´8, aq or pb,8q for some
a, b P R. Reversing the roles of α and β, a similar conclusion holds for ϕαpWq, so for concreteness,
let us suppose

ϕαpWq “ p´8, aq and ϕβpWq “ pb,8q,
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in which case the recipe described above for defining pα, pβ P ĎW gives

pα “ ϕ´1
α paq, pβ “ ϕ´1

β pbq.
(Only minor modifications to this discussion are necessary if ϕαpWq is instead bounded below or
ϕβpWq bounded above.) Moreover, the transition map

R Ą ϕαpWq “ p´8, aq ϕβ˝ϕ´1
αÝÑ pb,8q “ ϕβpWq Ă R,

being a homeomorphism between two open intervals in R, is a monotone function whose value
approaches ˘8 at the bounded end of its domain, and the same applies to its inverse, implying
that this transition map also has a finite limit at the unbounded end of its domain. Now if xn PW

is any sequence that has no subsequence converging to any point in W or to pβ , it follows that
|ϕβpxnq| Ñ 8 and thus ϕαpxnq Ñ a, implying xn Ñ pα. This proves that the union of W with the
two points pα, pβ is compact, as claimed. Putting the obvious topology on the extended interval
rb,8s, ϕβ now has a unique extension to a homeomorphism ĎW Ñ rb,8s that sends pα ÞÑ 8, soĎW has the topology of a compact interval. �

Note that in the setting of the lemma, Uα X Uβ may in general have multiple connected
components, but the proof showed that a homeomorphism ϕα : Uα Ñ R sends each of them to
an unbounded half-interval. Here’s a useful fact we know about R: you can’t fit more than two
disjoint unbounded half-intervals into it!

Corollary 18.21. In the setting of Lemma 18.20, Uα X Uβ has either one or two connected
components. �

Exercise 18.22. Show that the compact non-Hausdorff space in Example 18.16 admits an open
covering by two sets homeomorphic to R whose intersection with each other has three connected
components.

Proof of Theorem 18.18. Given a nonempty connected 1-manifold M without boundary,
every point has an open neighborhood homeomorphic to R, and since M is second countable,
we can cover M with a finite or countable collection tUn Ă MuNn“1 of such neighborhoods with
homeomorphisms ϕn : Un Ñ R; here N is either a natural number or 8. After removing some
of these sets from the collection, we can assume without loss of generality that none of them are
contained in any one of the others.

If N “ 1, then M is homeomorphic to R, and we are done.
If N ě 2, then since M is also Hausdorff and connected, we can appeal to Lemma 18.20 and

Corollary 18.21 in order to relabel the subsets tUnuNn“1 in the following manner. Choose U1 to be
an arbitrary set in the collection. By definition U1 is an open subset of M , but it might also be
a closed subset—if it is, then since M is connected, we can conclude that M “ U1 – R, so again
we are done. If however U1 ĂM is not a closed subset, then it is not the complement of any open
set, and in particular it is not the complement of the union of the rest of the sets in our collection,
which means at least one of them—which we shall now call U2—must intersect U1. There are now
three possibilities:

(1) If U1XU2 has two connected components, one can deduce from Lemma 18.20 that U1YU2 is
homeomorphic to S1, which is compact and is therefore (since M is Hausdorff) a closed
subset of M . Since it is clearly also an open subset and M is connected, this implies
M “ U1 Y U2 – S1, so we are done.

(2) If U1XU2 has only one connected component, then U1YU2 must be homeomorphic to R.
If U1YU2 is also a closed subset ofM , then connectedness again impliesM “ U1YU2 – R,
and we are done.
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(3) If U1 X U2 has only one connected component and the subset U1 Y U2 ĂM is not closed,
then appealing again to the fact that M is connected, U1 Y U2 must intersect one of the
remaining subsets in our collection, which we shall now call U3.

Now repeat the previous step like so: if pU1 Y U2q X U3 has two connected components, we can
concludeM “ U1YU2YU3 – S1, and if not, then U1YU2YU3 – R and either this is all ofM or it
has nonempty intersection with one of the remaining sets in the collection. If the latter happens,
repeat. And so on.

If N is finite, this process eventually exhausts all the sets U1, . . . ,UN and produces a homeo-
morphism of M to either S1 or R, the former if an intersection with two connected components
ever occurs, and the latter otherwise.

IfN is infinite, the process may still terminate if an intersection with two connected components
appears, implying that finitely many of the sets Un cover M and it is homeomorphic to S1.

The remaining possibility is that the process never terminates, but instead produces a countable
sequence of nested open subsets

I1 Ă I2 Ă I3 Ă . . .

8ď
n“1

In “M,

where each In :“ U1Y. . .YUn is homeomorphic to R and is obtained from In´1 by gluing two copies
of R together along a pair of connected half-intervals of infinite length. Up to homeomorphism,
we could instead describe this process as follows: identify I1 with p0, 1q, and by induction, if In´1

for some n ě 2 has been identified with a finite interval pa, bq, then In is identified with the union
of pa, bq and another finite open interval that contains either a or b in its interior and has an end
point in pa, bq. Up to homeomorphism, we can thus assume In´1 “ pa, bq and In is either pa´ 1, bq
or pa, b ` 1q. Continuing this process indefinitely, the union

Ť8
n“1 In gets identified with some

subinterval in R, and is thus homeomorphic to R. �

The second countability axiom became relevant in the last step of this proof because M was
presented as the union of a countable collection of intervals; if we had been forced to assume that
the collection of Euclidean neighborhoods covering M was uncountable, we would not have been
able to conclude in the same manner that M is homeomorphic to R. I would now like to describe
an example showing that this danger is serious, and that something other than S1 or R can indeed
arise if the second countability axiom is dropped. We will need to appeal to a rather non-obvious
result from elementary set theory. Recall that a totally ordered set pI,ăq consists of a set I
with a partial order ă such that for all pairs of elements x, y P I, at least one of the conditions
x ă y or y ă x holds. Such a set is said to be well ordered if every subset of I contains a smallest
element. The most familiar example of a well-ordered set is the natural numbers. For the purposes
of our example below, we need a well-ordered set that is uncountable.

Lemma 18.23. There exists an uncountable well-ordered set pω1,ďq such that for every x P ω1,
at most countably many elements y P ω1 satisfy y ď x.

Understanding this lemma requires some knowledge of the ordinal numbers (Ordinalzahlen),
which we do not have time to describe here in detail, but the intuitive idea is to think of any
well-ordered set as a “number,” call two such numbers equivalent if there exists an order-preserving
bijection from one to the other, and write x ď y whenever there exists an order-preserving injection
from x into y. Informally, an ordinal number can be regarded as an equivalence class of well-ordered
sets under this notion of equivalence. We can then think of each natural number n P N as an
ordinal number by identifying it with the set t1, . . . , nu, and this identification obviously produces
the correct ordering relation for the natural numbers. But there are also infinite ordinal numbers,
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e.g. the set N itself. Informally again, the set ω1 in the above lemma is defined to be the “smallest
uncountable ordinal”.

To see what this really means, we need a slightly more formal definition of the ordinal
numbers—the informal description above is a bit hard to make precise in formal set-theoretic
terms. A more concrete description of the ordinal numbers was introduced by Johann von Neu-
mann, and the idea is to regard each ordinal number as a set whose elements are also sets, namely
each ordinal is the set of all ordinals that precede it. In particular, we label the empty set H as 0,
identify the natural number 1 with the set t0u “ tHu, identify 2 with the set t0, 1u “ tH, tHuu,
identify

3 “ t0, 1, 2u “ tH, tHu, ttHuuu
and so forth. Although the notation quickly becomes confusing, one can make sense of von Neu-
mann’s general definition:

Definition 18.24. A set S is an ordinal number if and only if S is well ordered with respect
to set membership and every element of S is also a subset of S.

If this definition makes your head spin, rest assured that I have the same reaction, but the
concept of the ordinal numbers does not rely on anything other than the standard axioms of set
theory. With this definition in place, one can define ω1 as the union of all countable ordinals,
which is necessarily uncountable since it would otherwise contain itself.

We now use this to construct a Hausdorff space that is path-connected and locally homeomor-
phic to R but is not second countable. This space and various related constructions are sometimes
referred to as the long line. Let

L “ ω1 ˆ r0, 1q,
and define a total order on L such that px, sq ď py, tq whenever either x ď y or both x “ y and
s ď t hold. Writing x ă y to mean x ď y and x ‰ y for x, y P L, the total order determines
a natural topology on L, called the order topology, whose base is the collection of all “open”
intervals

pa, bq :“ tx P L | a ă x ă bu
for arbitrary values a, b P L. The proof of the following statement is an amusing exercise for a
rainy day.

Proposition 18.25. Every point of L has a neighborhood homeomorphic to either R or (in the
case of p0, 0q P L) the half-interval r0,8q. Moreover, L is Hausdorff and is sequentially compact,
but not compact; in particular the set tpx, 1{2q | x P ω1u Ă L is an uncountable discrete subset of
L, implying that L cannot be second countable. �

I’m guessing you find it especially surprising that this enormous space L is sequentially com-
pact, but that has to do with a peculiar property built into the definition of the set ω1: every
sequence in ω1 has an upper bound. This is almost immediate from the definition of the ordinal
numbers, as for any given sequence xn P ω1, the elements xn are also (necessarily countable) sets
of ordinal numbers, hence their union

Ť
n xn is another ordinal number and is countable, meaning

it is an element of ω1, and it clearly bounds the sequence from above.
In dimensions n ě 2, there are further constructions of non-second countable but locally

Euclidean Hausdorff spaces which do not rely on anything so exotic as the ordinal numbers. An
example is the Prüfer surface; see the exercise below. But I’m only talking about these things now
in order to explain why I will never mention them again.

Exercise 18.26. The Prüfer surface is an example of a space that would be a connected
2-dimensional manifold if we did not require manifolds to be second countable. It is defined as
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follows: let H “ tpx, yq P R2 | y ą 0u, and associate to each a P R a copy of the plane Xa :“ R2.
The Prüfer surface is then

Σ :“ H >
˜ž
aPR

Xa

¸N
„

where the equivalence relation identifies each point px, yq P Xa for y ą 0 with the point pa`yx, yq P
H. Notice that H and Xa for each a P R can be regarded naturally as subspaces of Σ.

(a) Prove that Σ is Hausdorff.
(b) Prove that Σ is path-connected.
(c) Prove that every point in Σ has a neighborhood homeomorphic to R2.
(d) Prove that a second countable space can never contain an uncountable discrete subset.

Then find an uncountable discrete subset of Σ.

19. Surfaces and triangulations

As far as I’m aware, dimension one is the only case in which the problem of classifying arbitrary
(compact or noncompact) manifolds up to homeomorphism has a reasonable solution. In this
lecture we will do the next best thing in dimension two: we will classify all compact surfaces. We
will focus in particular on closed and connected surfaces. The classification of compact connected
surfaces with boundary can easily be derived from this (see Exercise 20.13), and of course compact
disconnected surfaces are all just disjoint unions of finitely many connected surfaces, so we lose no
generality by restricting to the connected case.

Let us first enumerate the closed connected surfaces that we are already familiar with.

Examples 19.1. The sphere S2 “ Σ0 and torus T2 “ Σ1 are both examples of “oriented
surfaces of genus g,” which can be defined for any nonnegative integer g ě 0 and denoted by Σg.
In particular, we’ve seen that for each g ě 1, Σg is homeomorphic to the g-fold connected sum of
copies of T2, and we have also computed its fundamental group

π1pΣgq –
#
a1, b1, . . . , ag, bg

ˇ̌̌̌ gź
i“1

rai, bis “ e

+
,

whose abelianization is isomorphic to Z2g.

Examples 19.2. An analogous sequence of surfaces can be defined by taking repeated con-
nected sums of copies of RP2, e.g. RP2#RP

2 is homeomorphic to the Klein bottle. By the same
trick that we used in Lecture 13 to understand Σg, the g-fold connected sum #

g
i“1RP

2 is homeo-
morphic to a space obtained from a polygon with 2g edges by identifying them in pairs according
to the sequence a1, a1, . . . , ag, ag, thus

π1
`
#
g
i“1RP

2
˘ –  

a1, . . . , ag
ˇ̌
a21 . . . a

2
g “ e

(
.

Exercise 19.3. For i “ 1, . . . , g´ 1, let ei P Zg´1 denote the ith standard basis vector. Show
that there is a well-defined homomorphism G :“ ta1, . . . , ag | a21 . . . a2g “ eu Ñ Zg´1‘Z2 such that

ai ÞÑ
#
pei, 0q for i “ 1, . . . , g ´ 1,

p´1, . . . ,´1, 1q for i “ g,

and that it descends to an isomorphism of the abelianization of G to Zg´1 ‘ Z2.

Appealing to the standard classification of finitely generated abelian groups, we deduce from
the above exercise that all of our examples so far are topologically distinct:
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Lemma 19.4. No two of the closed surfaces listed in Examples 19.1 and 19.2 are homeomorphic.
�

You might now be wondering whether new examples can be constructed by taking the con-
nected sum of a surface from Example 19.1 with some surface from Example 19.2. The answer is
no:

Proposition 19.5. RP
2#T2 is homeomorphic to the connected sum of RP2 with the Klein

bottle.26

Proof. Given any surface Σ with two disjoint disks removed, one can construct a new surface
by attaching a “handle” of the form r´1, 1s ˆ S1:

Σ1 :“
´
ΣzpD̊2 > D̊2q

¯
YS1>S1

`r´1, 1s ˆ S1
˘
.

This operation is essentially the same as the connected sum, except we allow the two disks to be
embedded (disjointly) into a single surface Σ rather than two separate surfaces; we sometimes call
this a “self-connected sum”. As with the connected sum, it depends on a choice of embedding

i1 > i2 : D2 > D2 ãÑ Σ,

but only up to homotopy through embeddings, i.e. modifying the embedding through a continuous
1-parameter family of embeddings will change Σ1 into something homeomorphic to the original Σ1.

Let us now shift our perspective on the operation that changes Σ into Σ1. For this it would be
helpful to have some pictures, and I do not have time to draw them, but I recommend having a
look at Figure 1 in [FW99]. Suppose the two holes you’re drilling in Σ are right next to each other,
but before you drill them, you push the surface up a bit from underneath, creating a disk-shaped
lump. Now pick two smaller disk-shaped areas within that lump and push those up even further.
Then drill the holes in those two places and attach the handle. We haven’t changed any of the
topology in creating these “lumps,” but we have changed the picture, and if you’re imagining it the
way that I intended, it now looks like instead of cutting out two holes and attaching a handle, you
cut out one hole (the base of the original lump) and attached Σ1,1, the torus with a disk removed.
In other words, you performed the connected sum of Σ with T2:

Σ1 – Σ#T2.

So far so good. . . now let’s modify the procedure once more. Viewing D2 as the unit disk in C, let’s
replace one of our embeddings i1 : D2 Ñ Σ with another one that has the same image but changes
the parametrization by complex conjugation:

i11 : D2 ãÑ Σ : z ÞÑ i1pz̄q.
While we will now be cutting out the same two holes in Σ, the way that we attach the handle at
the first hole needs to change because i11|BD2 parametrizes the circle in the opposite direction from
i1|BD2 . The effect is the same as if you were to cut open Σ1 along the circle at the boundary of the
first hole, flip it’s orientation and then glue it back together. Unfortunately you cannot do this in
3-dimensional space—for the same reasons that you cannot embed a Klein bottle into R3—but it’s
easy to define the topological space that results from this modification. The effect is precisely to
replace the torus in the above description of a connected sum with the Klein bottle; if we call Σ2
the space that results from attaching the handle along this modified gluing map, we have

Σ2 – Σ#K2,

where K2 denotes the Klein bottle.

26This proposition has its very own Youtube video, see https://www.youtube.com/watch?v=aBbDvKq4JqE&t=20s.
Maybe you’ll find it helpful. . . I’m not entirely sure if I did.

https://www.youtube.com/watch?v=aBbDvKq4JqE&t=20s
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Finally, let’s specify this to the case Σ “ RP
2. The projective plane has a special property that

many surfaces don’t: it contains an embedded Möbius band, call it M. Now suppose we construct
RP2#T2 by embedding two small disks disjointly into M Ă RP2, then cutting both out and gluing
in a handle. By the previous remarks, the homeomorphism type of the resulting surface will not
change if we now move the first hole continuously along a circle traversing M, and the orientation
reversal as we traverse M thus allows us to deform i1 : D2 ãÑ RP2 to i11 : D2 ãÑ RP2 through a
continuous family of embeddings disjoint from the second disk. This proves that if Σ “ RP2, then
the two surfaces Σ1 and Σ2 described above are homeomorphic. �

It is sometimes useful to make a distinction between two types of handle attachment that were
described in the above proof. In one case, the two holes D2 ãÑ Σ are embedded “right next to each
other” and with opposite orientations—in precise terms, this means we focus on the domain of a
single chart on Σ, assume both holes are in this domain, define i11 by translating the image of i2
in some direction to make it disjoint, and then define i1pzq “ i11pz̄q. The handle attachment that
results is straightforward to draw, see e.g. Figure 1 in [FW99]. If we then leave the positions of the
two holes the same but reverse an orientation by replacing i1 with i11, the handle attachment can
no longer be embedded in R3, though this does not stop some authors from trying to draw pictures
of it anyway (see Figure 2 in [FW99]). This type of handle attachment is sometimes referred to
as a cross-handle. One should not take this terminology too seriously since the main point of the
above prove was that in certain cases such as Σ “ RP

2, there is no globally meaningful distinction
between ordinary handles and cross-handles, i.e. if the two holes do not lie in the same chart, it
is not always possible to say that we are dealing with one type of handle and not the other. The
distinction does make sense however if both holes are in the same chart, so we will occasionally
also use the term “cross-handle” in this situation.

Proposition 19.5 told us that the most obvious way to produce new examples of closed con-
nected surfaces out of the inventory in Examples 19.1 and 19.2 does not actually give anything
new. The reason for this turns out to be that there are no others:

Theorem 19.6. Every closed connected surface is homeomorphic to either Σg for some g ě 0

or #
g
i“1RP

2 for some g ě 1, where the integer g is in each case unique.

The uniqueness in this statement already follows from the computations of fundamental groups
explained above, so in light of Proposition 19.5, we only still need to show that every closed
connected surface other than the sphere is homeomorphic to something constructed out of copies
of T2 and RP

2 by connected sums. (Note that whenever both T2 and RP
2 appear in this collection,

Prop. 19.5 allows us to replace T2 with two copies of RP2, as RP2#RP
2 is the Klein bottle.) We

will sketch a proof of this below that is due to John Conway and known colloquially as Conway’s
“ZIP proof”. Another readable account of it is given in [FW99].

To frame the problem properly, let us say that for Σ a compact (but not necessarily closed or
connected) surface, Σ is ordinary if there is a finite sequence of compact surfaces

Σp0q,Σp1q, . . . ,Σpmq “ Σ

such that Σp0q is a finite disjoint union of spheres
šN
i“1 S

2, and each Σpj`1q is homeomorphic to
something obtained from Σpjq by performing one of the following operations:

(1) Removing an open disk from the interior, i.e.

Σpj`1q – ΣpjqzD̊2

for some embedding D2 ãÑ ΣpjqzBΣpjq;
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(2) Attaching a handle (or “cross-handle”) to connect two separate boundary components
ℓ1, ℓ2 Ă BΣpjq, i.e.

Σpj`1q – Σpjq Yℓ1>ℓ2 pr´1, 1s ˆ S1q
for some choice of homeomorphism Bpr´1, 1s ˆ S1q “ S1 > S1 Ñ ℓ1 > ℓ2;

(3) Attaching a disk (called a cap) to a boundary component ℓ Ă BΣpjq, i.e.
Σpj`1q – Σpjq Yℓ D2

for some choice of homeomorphism BD2 “ S1 Ñ ℓ;
(4) Attaching a Möbius band (called a cross-cap) M to a boundary component ℓ Ă BΣpjq,

i.e.
Σpj`1q – Σpjq Yℓ M

for some choice of homeomorphism BM – S1 Ñ ℓ.
The classification of 1-manifolds is implicitly in the background of the last three operations: since
Σpjq is a compact 2-manifold, BΣpjq is a closed 1-manifold and is therefore always a finite disjoint
union of circles. Observe now that each of the operations can be reinterpreted in terms of connected
sums, e.g. cutting out two holes and then attaching a handle or cross-handle is equivalent to taking
the connected sum with T2 or RP2#RP2, while attaching a cap or cross-cap gives connected sums
with S2 or RP2 respectively. It follows that any ordinary surface that is also closed and connected
necessarily belongs to our existing inventory of closed and connected surfaces, thus it will suffice
to prove:

Lemma 19.7. Every closed surface is ordinary.

At this point in almost every topology class, it becomes necessary to cheat a bit and appeal to a
fundamental result about surfaces that is believable and yet far harder to prove than we have time
to discuss in any detail. I’m referring to the existence of triangulations. This is not only a useful
tool in classifying surfaces, but also will play a large motivational role when we introduce homology.
The following is thus simultaneously a necessary digression behind the proof of Lemma 19.7 and
also a preview of things to come.

The idea of a triangulation is to decompose a topological n-manifold into many homeomorphic
pieces that we think of as “n-dimensional triangles”. More precisely, the standard n-simplex is
defined as the set

∆n :“  pt0, . . . , tnq P In`1
ˇ̌
t0 ` . . .` tn “ 1

(
for each integer n ě 0. This makes ∆0 the one-point space t1u Ă R, while ∆1 is a compact line
segment in R2 homeomorphic to the interval I, ∆2 is the compact region in a plane bounded by
a triangle, ∆3 is the compact region in a 3-dimensional vector space bounded by a tetrahedron,
and so forth. For a surface Σ, we would now like to view copies of ∆2 as fundamental building
blocks of Σ, arranged in such a way that the intersection between any two of those building blocks
is either empty or is a copy of ∆1 or ∆0. One can express this condition in purely combinatorial
terms by thinking of ∆n as the convex hull of its n ` 1 vertices, which are the standard basis
vectors of Rn`1. In this way, an n-simplex is always determined by n ` 1 vertices, and this idea
can be formalized via the notion of a simplicial complex.

Definition 19.8. A simplicial complex (Simplizialkomplex) K consists of two sets V and
S, called the sets of vertices (Eckpunkte) and simplices (Simplizes) respectively, where the
elements of S are nonempty finite subsets of V , and σ P S is called an n-simplex of K if it has
n` 1 elements. We require the following conditions:

(1) Every vertex v P V gives rise to a 0-simplex in K, i.e. tvu P S;
(2) If σ P S then every subset σ1 Ă σ is also an element of S.
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For any n-simplex σ P S, its subsets are called its faces (Seiten or Facetten), and in particular the
subsets that are pn ´ 1q-simplices are called boundary faces (Seitenflächen) of σ. The second
condition above thus says that for every simplex in the complex, all of its boundary faces also
belong to the complex. With this condition in place, the first condition is then equivalent to the
requirement that every vertex in the set V belongs to at least one simplex.

The complex K is said to be finite if V is finite, and it is n-dimensional if

sup
σPS

|σ| “ n` 1,

i.e. n is the largest number for which K contains an n-simplex.

Though the definition above is purely combinatorial, there is a natural way to associate a
topological space |K| to any simplicial complex K. We shall describe it only in the case of a
finite complex,27 since that is what we need for our discussion of compact surfaces. Given K “
pV, Sq, choose a numbering of the vertices V “ tv1, . . . , vNu and associate to each k-simplex
σ “ tvi0 , . . . , viku the set

∆σ :“
!
pt1, . . . , tNq P IN

ˇ̌̌
ti0 ` . . .` tik “ 1 and tj “ 0 for all vj R σ

)
.

Notice that ∆σ is homeomorphic to the standard k-simplex ∆k, but lives in the subspace of RN

spanned by the specific coordinates corresponding to its vertices. The polyhedron (Polyeder) of
K is then the compact space

|K| :“ ď
σPS

∆σ Ă RN .

While the definition above makes |K| a subset of a Euclidean space that may have very large
dimension in general, it is not so hard to picture |K| in a few simple examples.

Example 19.9. Suppose V “ tv0, v1, v2u and S is defined to consist of all subsets of V . Then
|K| is just the standard 2-simplex ∆2.

Example 19.10. Suppose V “ tv0, v1, v2, v3u and S contains the subsets A :“ tv0, v1, v2u and
B :“ tv1, v2, v3u, plus all of their respective subsets. Then |K| contains two copies of the triangle
∆2, which we can label A and B, and they intersect each other along a single common edge
connecting the vertices labeled v1 and v2. In particular, |K| is homeomorphic to a 2-dimensional
square I2, formed by gluing two triangles together along one edge.

Definition 19.11. A triangulation (Triangulierung) of a compact topological n-manifold
M is a homeomorphism of M to the polyhedron of a finite n-dimensional simplicial complex.

In particular, this makes precise the notion of decomposing a surface Σ into triangles (copies
of ∆2) whose intersections with each other are always simplices of lower dimension. Observe that
in a triangulated surface Σ with BΣ “ H, the fact that every point in one of the 1-simplices σ has
a neighborhood homeomorphic to R2 implies that σ is a boundary face of exactly two 2-simplices
in the triangulation. One can say the same about the pn ´ 1q-simplices in any triangulation of
a closed n-manifold. This is not a property that arbitrary simplicial complexes have, but it is a
general property of the complexes that appear in triangulations of closed manifolds.

Theorem 19.12. Every closed surface admits a triangulation.

27The polyhedron of a finite simplicial complex has an obvious topology because it comes with an embedding
into some finite-dimensional Euclidean space. For infinite complexes this is not true, and thus more thought is
required to define the right topology on |K|. We would need to talk about this if we wanted to define triangulations
of noncompact spaces, but since we don’t want that right now, we will not. The correct topology on infinite
complexes will be discussed next semester; see 29.
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This theorem is old enough for the first proof to have been published in German [Rad25],
and it was not the main result of the paper in which it appeared, yet it is in some sense far harder
than it has any right to be—it seems to be one of the rare instances in mathematics where learning
cleverer high-powered techniques does not really help. I can at least sketch what is involved. Since
a closed surface Σ can be covered by finitely many charts, it can also be covered by a finite collection
of regions homeomorphic to D2, which is homeomorphic to the standard 2-simplex ∆2. Of course
the interiors of these 2-simplices overlap, which is not allowed in a triangulation, but the idea is to
examine each of the overlap regions and subdivide it further into simplices. By “overlap region,”
what I mean is the following: if D1, . . . , DN Ă Σ denote the finite collection of disks Di – ∆2

covering Σ, whose boundaries are loops BDi, then the closure of each connected component of
ΣzŤi BDi is a region that needs to be subdivided into triangles. After perturbing each of the disks
Di so that its boundary intersects the other boundaries only finitely many times, we can arrange
for each of these overlap regions to be bounded by embedded circles, and notice that since each of
the regions is contained in at least one of the disks Di, we can view them as subsets of R2. Now, I
don’t know about you, but I find it not so hard to believe that regions in R2 bounded by embedded
circles can be subdivided into triangles in a reasonable way—I would imagine that writing down
a complete algorithm to do this is a pain in the neck, but it sounds plausible. It may surprise you
however to know that it is very far from obvious what the region bounded by an embedded circle
in R2 can look like in general. Actually the answer is simple and is what you would expect: the
region is homeomorphic to a disk, but this is not at all easy to prove, it is an important theorem
in classical topology known as the Schönflies theorem. With this result in hand, one can formulate
an algorithm for triangulating surfaces as sketched above by triangulating the disk-like overlap
regions. Complete accounts of this are given in [Moi77] and [Tho92].

Note that if Σ is not just a topological 2-manifold but also has a smooth structure, then one
can avoid the Schönflies theorem by appealing to some basic facts from Riemannian geometry.
Choosing a Riemannian metric allows us to define the notion of a “straight line” (geodesic) on
the manifold, and one can arrange in this case for the disks Di to be convex, so that the overlap
regions are also convex and therefore obviously homeomorphic to disks. This trick actually works
in arbitrary dimensions, leading to the result that smooth manifolds can be triangulated in any
dimension. For topological manifolds this is not true in general: it is true in dimension three (see
[Moi77]), but from dimension four upwards there are examples of topological manifolds that do
not admit triangulations. The case of dimension five has only been understood since 2013—see
[Man14] for a readable survey of this subject and its history.

But enough about triangulations: let’s just assume that surfaces can be triangulated and use
this to finish the classification theorem.

Proof of Lemma 19.7. Assume Σ is a closed surface homeomorphic to the polyhedron |K|
of a finite 2-dimensional simplicial complex K “ pV, Sq with 2-simplices σ1, . . . , σN . By abuse of
notation, we shall also denote by σ1, . . . , σN the corresponding subsets of Σ homeomorphic to the
standard 2-simplex ∆2. The latter is homeomorphic to D2 – S2zD̊2, thus

Σp0q :“ σ1 > . . . > σN
is ordinary. The idea now is to reconstruct Σ from this disjoint union by gluing pairs of 2-simplices
together along corresponding boundary faces one at a time, producing a sequence of compact
surfaces Σpjq, each of which may be disconnected and have nonempty boundary except for the last
in the sequence, which is Σ. The operation changing Σpjq to Σpj`1q is performed by gluing together
two arcs ℓ1, ℓ2 Ă BΣpjq, i.e. we can write

Σpj`1q “ Σpjq
L„ where „ identifies ℓ1 with ℓ2,
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with ℓ1 and ℓ2 assumed to be individual boundary faces of two distinct 2-simplices. These boundary
faces are each homeomorphic to the compact interval I, and their interiors are disjoint subsets
of Σpjq, but they may have boundary points (vertices of the triangulation) in common if some
neighboring pair of corresponding boundary faces has already been glued together in the process
of turning Σp0q into Σpjq. One can now imagine various scenarios, based on the knowledge (thanks
to the classification of 1-manifolds) that every connected component of BΣpjq is a circle:

Case 1 : ℓ1 Y ℓ2 forms a single connected component of BΣpjq. Gluing them together is then
equivalent to attaching either a cap or a cross-cap to that boundary component, depending on the
orientation of the homeomorphism that identifies them.

Case 2 : ℓ1 and ℓ2 form part of a single connected component of BΣpjq, but not all of it,
i.e. their boundary vertices are not exactly the same, so that there are either one or two gaps
between them forming additional arcs on some circle in BΣpjq. Gluing them together then is
equivalent to attaching a cap or cross-cap as in case 1, except that it leaves one or two holes where
the gaps were, so we can realize this operation by attaching the cap/cross-cap and drilling holes
afterward.

Case 3 : ℓ1 and ℓ2 lie on different connected components of BΣpjq. Then neither can be the
entirety of a boundary component since both are homeomorphic to I instead of S1, though it’s
useful to imagine what would happen if both really were the entirety of a boundary component:
gluing them together would then be equivalent to attaching a handle. The useful way to turn this
picture into reality is to imagine both ℓ1 and ℓ2 as making up most of their respective boundary
components, each leaving a very small gap where their end points fail to come together. Gluing ℓ1
to ℓ2 is then equivalent to attaching a handle but then drilling a small hole in it.

In all of these cases, the operation that converts Σpjq into Σpj`1q can be realized by a finite
sequence of operations from our stated list, so carrying out this procedure as many times as
necessary to convert Σp0q into Σ produces a surface that is ordinary. �

Exercise 19.13. Recall that if Σ is a surface with boundary, the boundary BΣ is defined as
the set of all points p P Σ such that some chart ϕ : U

–Ñ Ω Ă H2 defined on a neighborhood U Ă Σ

of p satisfies ϕppq P BH2. Here H2 :“ r0,8q ˆ R Ă R2, BH2 :“ t0u ˆ R Ă H2, and Ω is an open
subset of H2. One can analogously define p P Σ to be an interior point of Σ of some chart maps it
to H2zBH2. Prove that no point on BΣ is also an interior point of Σ.
Hint: If you have two charts defined near p such that one sends p to BH2 while the other sends it to
H2zBH2, then a transition map relating these two charts maps some neighborhood in H2 of a point
x P H2zBH2 to a neighborhood in H2 of a point y P BH2. What happens to this homeomorphism
if you remove the points x and y? Think about the fundamental group.
Remark: A similar result is true for topological manifolds of arbitrary dimension, but you do not
yet have enough tools at your disposal to prove this. A proof using singular homology will be
possible before the end of the semester.

Exercise 19.14. This exercise concerns manifolds with smooth structures, which were dis-
cussed briefly in Lecture 18 (see especially Definition 18.10 and Theorem 18.11). We will need the
following additional notions:

‚ For two smooth manifolds M and N , a map f : M Ñ N is called smooth if for every
pair of smooth charts ψβ on N and ϕα onM , the map fβα :“ ψβ ˝f ˝ϕ´1

α is C8 wherever
it is defined. (In other words, f is “C8 in local coordinates”.)

‚ For f : M Ñ N a smooth map between smooth manifolds, a point q P N is a regular
value of f if for all charts ϕα onM and ψβ on N such that q is in the domain of ψβ , ψβpqq
is a regular value of fβα. (In other words, q is a “regular value of f in local coordinates”.)
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An easy corollary of the usual implicit function theorem (Theorem 18.11) then states that if M is
a smooth m-manifold without boundary, N is a smooth n-manifold and f : M Ñ N is a smooth
map that has q P N as a regular value, the preimage f´1pqq Ă M is a smooth submanifold28 of
dimension m´n. IfM has boundary, then one should assume additionally that q is a regular value
of the restricted map f |BM : BM Ñ N , and the conclusion is then that Q :“ f´1pqq is a smooth
manifold of dimension m´ n with boundary BQ “ QX BM .

We will use the following perturbation lemma as a block box: ifM and N are compact smooth
manifolds, q P N and f : M Ñ N is continuous, then every neighborhood of f in CpM,Nq with
the compact-open topology (cf. Exercise 7.28) contains a smooth map fǫ : M Ñ N for which q is
a regular value of both fǫ and fǫ|BM . Moreover, if f |BM is already smooth and has q as a regular
value, then the perturbation can be chosen such that fǫ|BM “ f |BM . Proofs of these statements
can be found in standard books on differential topology such as [Hir94].

If you take all of this as given, then you can use it to define something quite beautiful. Assume
M and N are closed connected smooth manifolds of the same dimension n. Then for any smooth
map f : M Ñ N with regular value q P N , the implicit function theorem implies that f´1pqq is a
compact 0-manifold, i.e. a finite set of points. Define the mod 2 mapping degree deg2pfq P Z2

of f by
deg2pfq :“ |f´1pqq| (mod 2),

i.e. deg2pfq is 0 P Z2 if the number of points in f´1pqq is even, and 1 P Z2 if it is odd.
(a) Prove that for any given choice of the point q P N , the degree deg2pfq P Z2 depends only

on the homotopy class of the map f :M Ñ N .
Hint: If you have a homotopy H : IˆM Ñ N between two maps, perturb it as necessary
and look at H´1pqq. Use the classification of compact 1-manifolds.
Remark: One can show with a little more effort that deg2pfq also does not depend on the
choice of the point q, and moreover, it has a well-defined extension to continuous (but
not necessarily smooth) maps f :M Ñ N , defined by setting deg2pfq :“ deg2pfǫq for any
sufficiently close smooth perturbation fǫ that has q as a regular value.

(b) Prove that every continuous map f : S2 Ñ S2 homotopic to the identity is surjective.
(c) What goes wrong with this discussion of we allow M to be a noncompact manifold?

Describe two homotopic maps f, g : R Ñ S1 for which deg2pfq and deg2pgq can be
defined in the manner described above but are not equal.

(d) Prove that if n ą m, every continuous map Sm Ñ Sn is homotopic to a constant map.
Hint: What does it mean for a point q P Sn to be a regular value of f : Sm Ñ Sn if
n ą m?

20. Orientations

This lecture is in part an addendum to the classification of surfaces, though it will also introduce
some concepts that will be useful to have in mind when we discuss homology.

I have used the word “orientation” many times in this course without giving any precise expla-
nation of what it means. I want to do that now, at least for manifolds of dimensions one and two.
The canonical example to have in mind is the Klein bottle:

28A subset Y ĂM of a smoothm-manifoldM is called a smooth submanifold (glatte Untermannigfaltigkeit)
of dimension k if every point p P Y has a neighborhood U Ă M admitting a so-called slice chart (Bügelkarte),
meaning a smooth chart ϕ : U Ñ Rn with the property that Y X U “ ϕ´1pRk ˆ t0uq. Covering Y with slice
charts then gives Y the structure of a smooth k-manifold for which the inclusion Y ãÑM is a smooth map. As an
important special case: the boundary BM Ă M of a smooth m-manifold is always a smooth pm ´ 1q-dimensional
submanifold.
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This standard picture of the Klein bottle is unfortunately the image of a non-injective map i :

K2 Ñ R3 into 3-dimensional Euclidean space from a certain closed 2-manifold K2: in differential
geometry, one would call i : K2 Ñ R3 an immersion, which fails to be an embedding (and its image
is therefore not a submanifold of R3) because one can see a pair of disjoint circles C1, C2 Ă K2

such that ipC1q “ ipC2q. For the following informal discussion, however, let us ignore this detail
and pretend that i : K2 Ñ R3 is an embedding, with no self-intersections.29 Now, aside from
the fact that it cannot be embedded into R3, what most of us really find strange about the Klein
bottle is that we cannot make a meaningful distinction between the “inside” and the “outside” of
the surface. If, for instance, you were an insect and somebody tried to trap you inside a glass Klein
bottle, then you could just walk along the surface until you are standing on the opposite side of the
glass, and you are free. In mathematical terms, this means that the Klein bottle K2 Ă R3 admits
an embedded loop γ : I Ñ K2 along which a continuous family of nonzero vectors V ptq P R3 can
be found which are orthogonal to the surface at each γptq and satisfy V p1q “ ´V p0q. By contrast,
if you take any embedded loop γ : I Ñ T2 Ă R3 on the torus in its standard representation as
a tube-like subset of R3, and choose a normal vector field V ptq along this loop, V p1q will always
need to be a positive multiple of V p0q. That’s because there is a meaningful distinction between
the outside and inside of the torus T2 Ă R3.30

But this discussion of “inside” vs. “outside” is not really satisfactory, because whenever we talk
about normal vectors, we are referring to a piece of data that is not intrinsic to the spaces T2

or K2. It depends rather on how we choose to embed or immerse them in R3. So how can we talk
about orientations without mentioning normal vectors?

To answer this, imagine again that you are an insect standing on the surface of the Klein
bottle, and while standing in place, you turn around in a circle, rotating 360 degrees to your left.
An observer from the outside will see you turn, but the direction of the turn that observer sees
will depend on which side of the glass you are standing on. In particular, if you turn around like
this and then follow the aforementioned path to come back to the same point but on the other side
of the glass, then when you turn again 360 degrees to the left, the outside observer will see you
turning the other way. We can use this turning idea to formulate a precise notion of orientation
without mentioning normal vectors.

Informally, let us agree that an orientation of a surface should mean a choice of which kinds of
rotations at each point are to be labeled “clockwise” as opposed “counterclockwise”. This is still not
a precise mathematical definition, but now we are making progress. The term “counterclockwise
rotation” has a precise and canonical definition in R2, for instance, thus we can agree that R2

has a canonical orientation. The natural thing to do is then to use charts to define orientations

29Notice that if we were willing to map K2 into R4 instead of R3, then we could easily turn i into an injective
map K2 ãÑ R4 just by slightly perturbing the fourth coordinate along C1 but not along C2.

30The fancy way of saying this in differential-geometric language is that the normal bundle of the standard
immersion K2 í R3 is nontrivial, whereas the standard embedding T2 ãÑ R3 has trivial normal bundle. If you
don’t know what that means, don’t worry about it for now.
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on a surface Σ via their local identifications with R2. There’s just one obvious problem with this
idea: if all charts are allowed, then the definition of an orientation at some point might depend on
our choice of chart to use near that point, because the transition map relating two charts might
interchange counterclockwise and clockwise rotations. It therefore becomes important to restrict
the class of allowed charts so that transition maps do not change orientations, i.e. so that they are
orientation preserving. Our main task is to give the latter term a precise definition, and this can
be done in terms of winding numbers.

Recall the following notion from Exercise 10.27. For z P C and ǫ ą 0, define a counterclockwise
loop about z by

γz,ǫ : S
1 ãÑ C : eiθ ÞÑ z ` ǫeiθ.

Note that for fixed z P C, varying the value of ǫ ą 0 does not change the homotopy class of this
loop in Cztzu, and for a suitable choice of base point it is always a generator of π1pCztzuq – Z.
For k P Z, define also the loop

γkz,ǫ : S
1 Ñ C : eiθ ÞÑ z ` ǫekiθ,

which covers γz,ǫ exactly k times if k ą 0, covers it |k| times with reversed orientation if k ă 0,
and is constant if k “ 0. Now for any other loop α : S1 Ñ Cztzu, the winding number
(Windungszahl) of α about z is an integer characterized uniquely by the condition

windpα; zq “ k ðñ α „
h
γkz,ǫ in Cztzu.

If U ,V Ă C are open subsets and f : U Ñ V is a homeomorphism, then for any z P U with
fpzq “ w P V , we can assume the loop γz,ǫ lies in U for all ǫ ą 0 sufficiently small, and the fact
that f is bijective makes f ˝ γz,ǫ a loop in Cztwu. It follows that there is a well-defined winding
number windpf ˝ γz,ǫ;wq P Z, and shrinking ǫ ą 0 to a smaller number ǫ1 ą 0 obviously will not
change it since γz,ǫ and γz,ǫ1 are homotopic in Uztzu, so that f ˝ γz,ǫ and f ˝ γz,ǫ1 are homotopic
in Cztwu.

Lemma 20.1. In the situation described above, windpf ˝ γz,ǫ;wq is always either 1 or ´1.
Proof. Choose ǫ ą 0 small enough so that the image of f ˝ γz,ǫ lies in a ball Brpwq about

w with radius r ą 0 sufficiently small such that Brpwq Ă V . Then for δ P p0, rq, the homotopy
class of γw,δ generates π1pBrpwqztwuq – π1pCztwuq – Z, and k :“ windpf ˝ γz,ǫ;wq is the unique
integer such that f ˝ γz,ǫ is homotopic in Brpwqztwu to γkw,δ. Since γz,ǫ generates π1pCztzuq, there
is also a unique integer ℓ P Z such that f´1 ˝ γw,δ is homotopic in Cztzu to γℓz,ǫ. This implies

γz,ǫ “ f´1 ˝ f ˝ γz,ǫ „
h
f´1 ˝ γkw,δ „

h
γkℓz,ǫ in Cztzu,

hence kℓ “ 1. Since k and ℓ are both integers, we conclude both are ˘1. �

Exercise 20.2. Show that in the setting of Lemma 20.1, the subsets U˘ “ tz P U | windpf ˝
γz,ǫ; fpzqq “ ˘1u are each both open and closed, so in particular, the sign of this winding number
is constant on each connected component of U .
Hint: Since the two sets are complementary, it suffices to prove both are open. What happens to
windpf ˝ γz,ǫ;wq if you perturb z and w independently of each other by very small amounts?

One can define winding numbers just as well for loops in R2 by identifying R2 with C via
px, yq Ø x ` iy. We have been using complex numbers purely for notational convenience, but
in the following we will refer instead to domains in R2 or the half-plane H2. The discussion also
makes sense for homeomorphisms between open subsets of H2 as long as we only consider points
z in the interior H2zBH2, since the loop γz,ǫ is then contained in H2 for ǫ sufficiently small. Note
that by Exercise 19.13, a homeomorphism between open subsets of H2 always maps points in BH2

to BH2 and points in H2zBH2 to H2zBH2.
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Definition 20.3. Given open subsets U ,V Ă H2, a homeomorphism f : U Ñ V is called
orientation preserving (orientierungserhaltend) if windpf ˝ γz,ǫ; fpzqq “ 1 for all z P H2zBH2

and ǫ ą 0 sufficiently small. It is called orientation reversing (orientierungsumkehrend) if
windpf ˝ γz,ǫ; fpzqq “ ´1 for all z P H2zBH2 and ǫ ą 0 sufficiently small.

Lemma 20.1 and Exercise 20.2 together imply that a homeomorphism is always either orienta-
tion preserving or orientation reversing on each individual connected component. Similar notions
can also be defined in all positive dimensions, not only dimension two, though one needs to replace
winding numbers with a different way of measuring the local behavior of a homeomorphism in
higher dimensions. In dimension one, the proper definition is fairly obvious:

Definition 20.4. Given open subsets U ,V in R or H :“ r0,8q, a homeomorphism f : U Ñ V

is called orientation preserving if it is an increasing function, and orientation reversing if it
is a decreasing function.

I will refrain for now from stating the definition for dimensions n ě 3, since it requires a certain
amount of language (involving degrees of maps between spheres) that we have not yet adequately
defined. A more straightforward definition is available however if you are willing to restrict from
homeomorphisms to diffeomorphisms, i.e. bijections that are C8 and have C8 inverses. Actually,
C1 is good enough: the point is that the derivative dfpxq : Rn Ñ Rn of such a map at any point
x is guaranteed to be an invertible linear map, so it has a nonzero determinant. One then calls
the map orientation preserving if the determinant of its derivative is everywhere positive, and
orientation reversing if that determinant is everywhere negative. We will not worry about this in
the following since we will almost exclusively talk about orientations for manifolds of dimension
at most two. Nonetheless, there is no harm in stating a definition of orientation that is valid for
topological manifolds of arbitrary dimension, and the definition will look slightly familiar if you
recall our discussion of smooth structures in Lecture 18.

Definition 20.5. An orientation (Orientierung) of an n-manifoldM for n ě 1 is a maximal
collection of charts tϕα : Uα Ñ ΩαuαPJ such that M “Ť

αPJ Uα and all transition maps ϕβ ˝ ϕ´1
α

are orientation preserving. If M is a 0-manifold, we define an orientation on M to be a function
ǫ : M Ñ t1,´1u, which partitions M into sets of positively/negatively oriented points M˘ :“
ǫ´1p˘1q.

We say that M is orientable (orientierbar) if it admits an orientation, and refer to any
manifold endowed with the extra structure of an orientation as an oriented manifold (orientierte
Mannigfaltigkeit).

Specializing again to dimension 2, an orientation of M allows you to draw small loops around
arbitrary points in M and label them “counterclockwise” or “clockwise” in a consistent way, where
consistency means in effect that you can never deform a counterclockwise loop continuously through
small loops around other points and end up with a clockwise loop. The actual definition of
counterclockwise comes from the special collection of charts that an orientation provides: we call
these oriented charts, and define a small loop about a point in M to be counterclockwise if and
only if it looks counterclockwise in an oriented chart.

If M is a 1-manifold, then instead of talking about loops or rotations, we can simply label
orientations with arrows: the orientation defines which paths in M can be called “increasing” as
opposed to “decreasing”.

Remark 20.6. One can show that any orientation-preserving homeomorphism between open
subsets of H2 restricts to the boundary as an orientation-preserving homeomorphism between open
subsets of BH2 – R. It follows that there is a natural notion of induced boundary orientation,
i.e. on any orientable surface Σ with boundary, a choice of orientation on Σ induces a natural
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orientation on BΣ by taking the oriented charts on the latter to be restrictions of the oriented
charts on Σ. An analogous statement is true for manifolds with boundary in all dimensions.
For dimM “ 1, one defines the boundary orientation of BM by setting ǫppq “ 1 whenever the
“increasing” direction of M points from the interior of M toward the boundary point p P BM , and
ǫppq “ ´1 whenever this direction points from p P BM toward the interior. (Different authors may
define this in slightly different ways, but it usually doesn’t matter: the point is just to choose a
convention and be consistent about it.)

Let us specialize this discussion to manifolds with triangulations, i.e. manifolds that are home-
omorphic to the polyhedron of a simplicial complex. The latter is an essentially combinatorial
notion, so orientations of such objects can also be defined in combinatorial terms. Recall that
if J is any finite set, any bijection π : J Ñ J is a permutation of its elements, that is, one can
identify π with some element of the symmetric SN group on N objects after choosing a numbering
v1, . . . , vN for the elements in J . The symmetric group SN is generated by flips, meaning permu-
tations that interchange two elements of J while leaving the rest fixed, and we say that π P SN
is an even permutation if it can be written as a composition of evenly many flips; otherwise it is
an odd permutation. If we represent π by an N -by-N matrix permuting the N standard basis
vectors of RN , then we can recognize the even/odd permutations as those for which this matrix
has positive/negative determinant respectively; in fact, the matrices of even permutations always
have determinant `1, and those of odd permutations have determinant ´1. To motivate the next
definition, recall the definition of the standard n-simplex ∆n “ tpt0, . . . , tnq | t0 ` . . . ` tn “ 1u.
Any element of the symmetric group on n ` 1 objects can be regarded as a permutation of the
vertices of ∆n numbered from 0 to n, and the matrix representation of this permutation then
defines a linear map on Rn`1 that permutes the standard basis vectors accordingly. That linear
map preserves the subset ∆n Ă Rn`1, and it is an orientation-preserving transformation on Rn`1

if and only if its determinant is positive, which is equivalent to requiring the permutation to be
even.

Definition 20.7. For a simplicial complex K “ pV, Sq, an orientation of an n-simplex σ P S
for n ě 1 is an equivalence class of orderings of the vertices v P σ, where two orderings are defined
to be equivalent if and only if they are related to each other by an even permutation. An orientation
of a 0-simplex is defined simply as an assignment of the number `1 or ´1 to that vertex.

For simplices of dimension 1 or 2 there are easy ways to illustrate in pictures what this definition
means; see Figure 11. The figure shows the six possible ways of ordering the three vertices of a 2-
simplex, where the individual choices in each row are related to each other by even permutations and
thus define equivalent orientations, whereas each choice is related to the one directly underneath
it by a single flip, which is an odd permutation. We can represent the orientation itself by drawing
a circular arrow that follows the direction of the sequence of vertices labeled 0, 1, 2, and this
arrow depends only on the orientation since even permutations of three objects are also cyclical
permutations.

Another intuitive fact you can infer from Figure 11 is that an orientation of a 2-simplex
induces a natural boundary orientation for each of its 1-dimensional boundary faces. The latter
orientations are represented in the picture by arrows pointing from one vertex to another, meant
to indicate the ordering of the two vertices, and the visual recipe is simply that the arrows of
all three edges together should describe the same kind of rotation as the circular arrow on the
2-simplex. This can also be reduced to a purely combinatorial algorithm, and it makes sense in
every dimension. For an n-simplex σ “ tv0, . . . , vnu, the kth boundary face Bpkqσ of σ is the
pn´1q-simplex whose vertices include all the v0, . . . , vn except vk. Clearly if the vertices v0, . . . , vn
come with an ordering, then the vertices of Bpkqσ inherit an ordering from this, though here we
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Figure 11. The six distinct orderings that define the two possible orientations
of a 2-simplex.

have to be a bit careful because applying an even permutation to v0, . . . , vn and then eliminating
vk may produce a sequence that differs from v0, . . . , vk´1, vk`1, . . . , vn by an odd permutation. To
get a well-defined orientation on Bpkqσ, one can instead do the following: notice that the sequence
v0, . . . , vk can be reordered as vk, v0, . . . , vk´1, vk`1, . . . , vn by a sequence of k flips. Permutations
of this new sequence that fix the first object vk are then equivalent to permutations of the vertices
of Bpkqσ, so the even/odd parity of the permutation does not change if we remove vk from the list.
We must not forget however that in order to produce the list with vk at the front, we performed k
flips, meaning a permutation that is even if and only if k is even. This discussion implies that the
following notion of boundary orientation is well defined.

Definition 20.8. Given an oriented n-simplex for n ě 2 with vertices v0, . . . , vn ordered
accordingly, the induced boundary orientation of its kth boundary face Bpkqσ is defined as the
same ordering of its vertices (with vk removed) if k is even, and otherwise it is defined by any odd
permutation of this ordering. For n “ 1, the boundary orientations are defined by assigning the
sign `1 to Bp0qσ “ tv1u and ´1 to Bp1qσ “ tv0u.

You should now take a moment to stare again at Figure 11 and assure yourself that the
boundary orientations indicated there are consistent with this definition.

Definition 20.9. An oriented triangulation of a closed surface Σ is a triangulation Σ – |K|
together with a choice of orientation for each 2-simplex in the complex K such that for every 1-
simplex σ in K, the two induced boundary orientations that it inherits as a boundary face of two
distinct 2-simplices are opposite.

The point of the condition on 1-simplices is to ensure that the orientations of any two neigh-
boring 2-simplices are “compatible” in the sense that each of the circular arrows can be pushed
continuously into the other. Figure 12 (left) shows an example of an oriented triangulation of T2.
The arrows on 1-simplices in this picture are not meant to represent boundary orientations, but
are just the usual indications of which 1-simplices on the boundary of the square should be glued
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Figure 12. An oriented triangulation of the 2-torus (left) and a failed attempt
to orient a triangulation of the Klein bottle (right).

together and how. We see in particular that the orientations indicated by these arrows on sim-
plices c and d are the right boundary orientation on the right hand side but the wrong one on
the left hand side. According to Definition 20.9, this is exactly what we want. Figure 12 (right)
then shows what goes wrong if we try to do the same thing with a Klein bottle. If we imagine
that this triangulation admits an orientation, then it will be represented by either clockwise or
counterclockwise loops in each 2-simplex in the picture, all of them the same because they must
induce opposite orientations on all the 1-dimensional boundary faces between them. In the picture
they are all drawn counterclockwise. But notice that in both copies of each of the 1-simplices c
and d, the arrow matches the induced boundary orientation, so this picture does not define a valid
oriented triangulation. The next theorem implies in fact that no triangulation of the Klein bottle
can be oriented.

Theorem 20.10. The following conditions are equivalent for any closed connected surface Σ.
(1) Σ is orientable.
(2) Σ admits an oriented triangulation.
(3) Σ does not contain any subset homeomorphic to the Möbius band.

Corollary 20.11. Every closed, connected and orientable surface is homeomorphic to Σg for
some g ě 0. �

All of the ideas required for proving Theorem 20.10 have been discussed already, so let us merely
sketch how they need to be put together. The equivalence of (1) and (2) is easy to understand by
drawing small loops: clearly a choice of “counterclockwise loops” around points in the interior of
any 2-simplex σ Ă Σ determines a cyclic ordering of the vertices of that simplex, and conversely.
Notice that this correspondence has a slightly non-obvious corollary: if some triangulation of Σ
can be oriented, then so can all others. It should also be intuitively clear why (1) implies (3): if
Σ contains a Möbius band, then no globally consistent notion of counterclockwise loops can be
defined, since deforming it continuously along certain closed paths around the Möbius band would
reverse it. For the converse, we can appeal to the classification of surfaces and observe that any
surface Σ satisfying the third condition is homeomorphic to one of the surfaces Σg, which can be
represented by a polygon with 4g sides. In the polygon picture, it is an easy exercise to construct
an oriented triangulation for Σg. Alternatively, one can understand the relationship between (2)
and (3) in terms of the presence of cross-caps or cross-handles in our proof of the classification
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of surfaces: the orientable surfaces are precisely those which can be constructed without any
cross-caps or cross-handles, which turns out to work if and only if the 2-simplices can be assigned
orientations for which the gluing maps between matching 1-simplices are orientation reversing.

Exercise 20.12. Construct an explicit oriented triangulation of Σg for each g ě 0. Then, just
for fun, count how many k-simplices it has for each k “ 0, 1, 2. You will find that the number of
0-simplices minus the number of 1-simplices plus the number of 2-simplices is 2 ´ 2g. (Someday
next semester we’ll discuss the Euler characteristic, and then you’ll see why this is true.)

Exercise 20.13. In Exercise 14.13 we considered the space Σg,m, defined by cutting the
interiors of m ě 0 disjoint disks out of the oriented surface Σg of genus g ě 0.

(a) Prove that every compact, orientable, connected surface with boundary is homeomorphic
to Σg,m for some values of g,m ě 0.
Hint: If Σ is a compact 2-manifold, then BΣ is a closed 1-manifold, and we classified all of
the latter. With this knowledge, there is a cheap trick by which you can turn any compact
surface with boundary into a closed surface, and then apply what you have learned about
the classification of closed surfaces. Don’t forget to keep track of orientations.

(b) Prove that Σg,m is homeomorphic to Σh,n if and only if g “ h and m “ n.

This concludes our discussion of surfaces.

21. Higher homotopy, bordism, and simplicial homology

The rest of this semester’s course will be about homology, but before defining it, I want to
discuss some related ideas that should help motivate the definition. In some sense, all of the
algebraic topological invariants we discuss in this course can be viewed as methods for “detecting
holes” in a topological space. Let me start by describing a few concrete examples in which the
fundamental group either does or does not succeed in this task.

Example 21.1. If we replace R2 with R2zD̊2, then the fundamental group changes from 0

to Z, with the boundary of D2 representing a generator of π1pR2zD̊2q, so this is one type of hole
that π1 detects very well.

Example 21.2. A 3-dimensional generalization of Example 21.1 is to replace R3 by pR2zD̊2qˆ
R, which amounts to cutting the neighborhood of a line t0uˆR Ă R2ˆR out of R3. Since the extra
factor R is contractible, this example essentially admits a deformation retraction to the previous
one, so we still find a generator of π1ppR2zD̊2q ˆ Rq – π1pR2zD̊2q – Z which detects the removal
of the tube D̊2 ˆ R.

Example 21.3. A different type of generalization of Example 21.1 is to remove a 3-dimensional
ball from R3, and here the fundamental group performs less well: π1pR3q is 0, and π1pR3zD̊3q is
still zero since R3zD̊3 is homotopy equivalent to S2 and the latter is simply connected. There
clearly is a “hole” here, but π1 does not see it.

Example 21.4. There are also examples in which π1 seems to detect something other than a
hole. Let Σg,m denote the surface of genus g with m holes cut out, so Σ2 is homeomorphic to a
surface constructed by gluing together two copies of Σ1,1 along their common boundary:

Σ2 – Σ1,1 YBΣ1,1
Σ1,1.

Let γ : S1 Ñ Σ2 denote a loop parametrizing the common boundary of these copies of Σ1,1. As we
saw in Exercise 14.13, γ represents a nontrivial element in π1pΣ2q, though it is in the kernel of the
natural homomorphism of π1pΣ2q to its abelianization. The latter will turn out to be related to
the following geometric observation: while γ cannot be extended to any map D2 Ñ Σ2, it can be



21. HIGHER HOMOTOPY, BORDISM, AND SIMPLICIAL HOMOLOGY 131

extended to a map on some surface with boundary S1, e.g. it admits an extension to the inclusion
Σ1,1 ãÑ Σ2. In this sense, there is no actual hole there for γ to detect; it is instead detecting a
different phenomenon that has to do with the distinction between “disk-shaped” holes and “holes
with genus”.

I’m now going to start suggesting possible remedies for the drawbacks encountered in the last
two examples. We will have to try a few times before we can point to the “right” remedy, but all
of the objects we discuss along the way are also interesting and worthy of study.

Remedy 1: Higher homotopy groups. For any integer k ě 0, fix a base point t0 P Sk and
associate to any pointed space pX, x0q the set

πkpX, x0q “  
f : pSk, t0q Ñ pX, x0q(L „

h`,

where the equivalence relation „
h` here means base-point preserving homotopy. This clearly repro-

duces the fundamental group when k “ 1. When k “ 0, S0 “ BD1 “ t1,´1u is a discrete space
with two points, one of which must be the base point and is thus constrained to map to x0, but
the other can move freely within each path-component of X , so π0pX, x0q is in bijective correspon-
dence with the set of path-components of X . This set does not naturally have any group structure,
though it does naturally have a “neutral” element, represented by the map that sends both points
in S0 to the base point x0. It turns out that for k ě 2, πkpX, x0q can always be given the structure
of an abelian group whose identity element is represented by the constant map

0 :“ rpSk, t0q Ñ pX, x0q : t ÞÑ x0s.
The precise definition of the group operation is a bit less obvious than for k “ 1, so I will not
go into it in this brief sketch. As with the fundamental group, one can show that πkpX, x0q is
independent of the base point up to isomorphism whenever X is path-connected, and it is also
isomorphic for any two spaces that are homotopy equivalent. We will prove these statements next
semester in Topologie II, but feel free to have a look at [Hat02, §4.1] if you can’t bear to wait.

Here are a couple of things that can be proved about the higher homotopy groups using
something resembling our present state of knowledge in this course:

Example 21.5. The identity map Sk Ñ Sk represents a nontrivial element of πkpSkq for every
k ě 1. This follows from Exercise 19.14, which sketches the notion of the mod 2 mapping degree
in order to show that every map Sk Ñ Sk homotopic to the identity is surjective (and therefore
nonconstant). More generally, one can use the integer-valued mapping degree for maps Sk Ñ Sk

to prove that πkpSkq – Z, just like the case k “ 1. A very nice account of this is given in [Mil97].

Example 21.6. For every pair of integers k, n P N with n ą k, πkpSnq “ 0. This follows easily
from a general result in differential topology that allows us to approximate any continuous map
between smooth manifolds by a smooth map for which any given point in the target space can be
assumed to be a regular value. When n ą k, the latter means that for any given q P Sn and a
continuous map f : Sk Ñ Sn, we can approximate f with a map whose image does not contain q
and is thus contained in Snztqu – Rn. The latter admits a deformation retraction to any point it
contains, so composing the perturbed map Sk Ñ Snztqu with a deformation retraction of Snztqu
to the base point gives a homotopy of f to the constant map.

Now here is the first piece of bad news about πk: in general it is rather hard to compute. So
hard, in fact, that the answers to certain basic questions about πk remain unknown, e.g. one of the
most popular open questions in modern topology is how to compute πkpSnq in general when k ą n.
Various special cases are known, but the as-yet incomplete effort to extend these special cases to a
general theorem has played a large role in motivating the development of modern homotopy theory.
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We will need to have more and easier techniques at our disposal before we can discuss such things
in earnest.

Remedy 2: Bordism groups. The higher homotopy groups do remedy one of the drawbacks
of π1 that I pointed out above: e.g. π2 can be used to detect the hole in R3zD̊3 since, by homotopy
invariance,

π2pR3zD̊3q – π2pS2q – Z,

with the inclusion S2 ãÑ R3zD̊3 representing a generator. But there’s another drawback here:
while πk can detect higher-dimensional holes, they are still holes of a fairly specific type which one
might call “sphere-shaped” holes. What kind of hole is not sphere-shaped, you ask? Is there such
a thing as a “torus-shaped” hole? How about this one:

Example 21.7. Let X “ S1ˆR2 and X0 “ S1ˆ D̊2, so XzX0 “ S1ˆpR2zD̊2q admits a defor-
mation retraction to B sX0 “ S1ˆS1 “ T2. By homotopy invariance, we have π1pXq – π1pS1q – Z

and π1pXzX0q – π1pT2q – Z2, so π1 does at least partly detect the removal of X0 from X . But
since XzX0 is homotopy equivalent to a surface, there is also an intrinsically 2-dimensional phe-
nonomenon going on in this picture, and it seems natural to ask: does XzX0 contain any surface
detecting the fact that X0 has been removed from X? We can almost immediately give the fol-
lowing answer: if such a surface exists, it is not a sphere, in fact π2pXq “ π2pXzX0q “ 0. To see
this, we can use the homotopy invariance of π2: the spaces X and XzX0 are homotopy equivalent
to S1 and T2 respectively, so it suffices to prove π2pS1q “ π2pT2q “ 0. Now observe that both
S1 and T2 are spaces whose universal covers (R and R2 respectively) happen to be contractible.
In general, suppose p : rY Ñ Y denotes the universal cover of some reasonable space Y , and rY is
contractible. Since S2 is simply connected, any map f : S2 Ñ Y can be lifted to f̃ : S2 Ñ rY ,
but the contractibility of rY then implies that f̃ is homotopic to a constant map. Composing that
homotopy with p : rY Ñ Y gives a corresponding homotopy of f “ p ˝ f̃ : S2 Ñ Y to a constant
map, proving π2pY q “ 0.

The preceding example is meant to provide motivation for a new invariant that might be able
to detect holes that are not “sphere-shaped”. The idea is to forget about the special roll played by
spheres in the definition of πk, but remember the fact that Sk is a closed k-dimensional manifold.
Similarly, if M is a k-manifold, the homotopy relation for maps defined on M is defined in terms
of maps on I ˆM , which gives a special status to a very particular class of pk ` 1q-manifolds
with boundary. Since we are now allowing arbitrary closed k-manifolds in place of spheres, it also
seems natural to allow arbitrary compact pk`1q-manifolds with boundary for defining equivalence,
instead of just manifolds of the form IˆM . Following this train of thought to its logical conclusion
leads to bordism theory.31

For any space X and each integer k ě 0, let

ΩkpXq :“ tpM, fqu L„,
31In the older literature, “bordism theory” was usually called “cobordism theory,” and it is still common in

most subfields of geometry and topology to refer to manifolds whose boundaries are disjoint unions of a given pair
of closed manifolds as “cobordisms” instead of “bordisms”. The elimination of the “co-” in “cobordism” is presumably
motivated by the fact that bordism groups define a covariant functor instead of a contravariant functor, which
makes it more analogous to homology than to cohomology. I promise you this footnote will make more sense after
Topologie II.
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where M is any closed (but not necessarily connected or nonempty)32 k-manifold, f :M Ñ X is a
continuous map, and we write pM`, f`q „ pM´, f´q if and only if there exists a compact pk ` 1q-
manifold W with BW –M´ >M` and a map F :W Ñ X such that F |M˘ “ f˘. You should take
a moment to think about why „ defines an equivalence relation. Any two pairs that are equivalent
in this sense are said to be bordant, and the pair pW,F q is called a bordism between them.

Example 21.8. pM, fq „ pM, gq whenever f and g are homotopic maps M Ñ X , as the
homotopy H : I ˆM Ñ X defines a bordism pI ˆM,Hq.

Example 21.9. Recall from Example 21.4 the loop γ : S1 Ñ Σ2 whose image separates Σ2

into two pieces both homeomorphic to Σ1,1. Either of the two inclusions Σ1,1 ãÑ Σ2 in this picture
can be viewed as a bordism between pS1, γq and pH, ¨q, where ¨ denotes the unique map H Ñ X .
Hence rpS1, γqs “ rpH, ¨qs P Ω1pΣ2q.

Since the manifolds representing elements of ΩkpXq need not be connected, the disjoint union
provides an obvious definition for a group operation on ΩkpXq. This operation is necessarily
commutative since X >Y has a natural identification with Y >X for any two spaces X and Y . Now
would be a good moment to mention the following notational convention: whenever a group G is
known a priori to be abelian, we shall from now on denote the group operation in G as addition
(with a “`” sign) rather than multiplication.

Definition 21.10. We give ΩkpXq the structure of an abelian group by defining

rpM1, f1qs ` rpM2, f2qs :“ rpM1 >M2, f1 > f2qs,
where f1 > f2 :M1 >M2 Ñ X denotes the unique map whose restriction to Mi ĂM1 >M2 is fi for
i “ 1, 2. The identity element is

0 :“ rpH, ¨qs,
with ¨ : HÑ X denoting the unique map. The group ΩkpXq is called the k-dimensional unori-
ented bordism group of X . We say that a pair pM, fq is null-bordant whenever rpM, fqs “ 0,
meaning there exists a compact pk ` 1q-manifold W with BW – M and a map F : W Ñ X with
F |M “ f .

Referring back to Example 21.7, one can now show that the bordism class represented by the
inclusion T2 “ B sX0 ãÑ XzX0 is nontrivial in Ω2pXzX0q. One way to prove this uses the mod 2

mapping degree (cf. Exercise 19.14) for maps f : T2 Ñ T2: by an argument similar to the proof
that deg2pfq depends only on the homotopy class of f , one can show that degpfq “ 0 whenever
pT2, fq is null-bordant. It follows that rpT2, Idqs ‰ 0 P Ω2pT2q since deg2pIdq “ 1, and this element
of Ω2pT2q can be identified with the aforementioned inclusion using the homotopy equivalence
between T2 and XzX0. In summary, Ω2 does indeed detect “T2-shaped” holes.

The algebraic structure of ΩkpXq is also extremely simple, one might even say too simple, in
light of the following result saying that every element in ΩkpXq is its own inverse:

Proposition 21.11. For every rpM, fqs P ΩkpXq, rpM, fqs ` rpM, fqs “ 0.

Proof. Let W “ I ˆM and F : W Ñ X : ps, xq ÞÑ fpxq. Then BW – H > pM >Mq and
F |M>M “ f > f , hence pW,F q is a bordism between pM >M, f > fq and pH, ¨q.33 �

32Note that the empty set is a k-manifold for every k P Z. Look again at the definition of manifolds, and you
will see that this is true.

33One of the slightly confusing things about ΩkpXq is that there is always some ambiguity about how to split
up the various connected components of BW into M´ and M`. For the bordism in the proof of Prop. 21.11, one
can equally well view it as a bordism between pM,fq and pM, fq, but we are ignoring this because it does not give
us any information beyond the fact that the bordism relation is reflexive.



134 FIRST SEMESTER (TOPOLOGIE I)

One obtains a slightly more interesting algebraic structure by restricting to orientable manifolds
and keeping track of orientations. Recall from the previous lecture that a manifold endowed with
the extra structure of an orientation is called an oriented manifold ; we will continue to denote
such objects by single letters such as M , but you should keep in mind that they include slightly
more data than just a set with its topology. If M is an oriented manifold, we shall denote by
´M the same manifold with its orientation reversed: this can always be defined by replacing each
of the oriented charts on M by their compositions with an orientation-reversing homeomorphism
Hn Ñ Hn such as px1, . . . , xn´1, xnq ÞÑ px1, . . . , xn´1,´xnq. Recall also from Remark 20.6 that any
oriented manifold W with boundary determines a natural boundary orientation on BW . Whenever
we write expressions like BW – M in the context of oriented manifolds, we will always mean
there is a homeomorphism BW Ñ M that matches the given orientation of M to the boundary
orientation of BW induced by the given orientation of W .

Definition 21.12. The k-dimensional oriented bordism group of X is34

ΩSO
k pXq :“ tpM, fqu L„,

whereM is a closed (but not necessarily connected or nonempty) oriented k-manifold, f :M Ñ X

is continuous, and the oriented bordism relation pM`, f`q „ pM´, f´q means that there exists a
compact oriented pk ` 1q-manifold W and a map F :W Ñ X such that

BW – ´M´ >M`
and F |M˘ “ f˘. The group operation on ΩSO

k pXq is defined via disjoint union as with ΩkpXq.
Proposition 21.11 is not true for oriented bordism groups: its proof fails due to the fact that

the oriented boundary of I ˆM is ´M >M , not M >M .
Let us compare both groups in the case k “ 0. We claim that

Ω0pXq –
à
π0pXq

Z2,

while
ΩSO

0 pXq – à
π0pXq

Z,

where π0pXq is an abbreviation for the set of path-components of X . For concreteness, consider a
case where X has exactly three path-components X1, X2, X3 Ă X , so the claim is that Ω0pXq – Z3

2

and ΩSO
0 pXq – Z3. An element of Ω0pXq is an equivalence class of pairs pM, fq, where M is a

closed 0-manifold, i.e. a finite discrete set, and f : M Ñ X . Let us number the elements of
M as x1, . . . , xN , and suppose there are two elements that are mapped by f to the same path-
component, say fpx1q, fpx2q P X1. Then there exists a path γ : I12 Ñ X , where I12 :“ I, satisfying
γp0q “ fpx1q and γp1q “ fpx2q. Now define W :“ I12 > I3 > . . . > IN where each Ij for j “ 3, . . . , N

is another copy of I, and decompose the boundary BW “ M´ >M` so that M` contains BI12
and 1 P BIj for every j “ 3, . . . , N , while M´ contains 0 P BIj for every j “ 3, . . . , N . Defining
F : W Ñ X such that F |I12 :“ γ and F sends Ij to the constant fpxjq for each j “ 3, . . . , N , we
now have a bordism between pM, fq and pM 1, f 1q whereM 1 :“Mztx1, x2u and f 1 is the restriction
of f . One can do this for any pair of points in M that are mapped to the same path-component,
so that whenever pM, fq and pN, gq have the same number of points (mod 2) mapped into each
path-component, there exists a bordism between them. Conversely, any bordism between two
pairs pM, fq and pN, gq is of the form pW,F q where W is a compact 1-manifold with boundary,

34The “SO” in the notation ΩSO

k
pXq stands for the group SOpkq, the special orthogonal group. This has to

do with the fact that SOpkq is precisely the subgroup of Opkq consisting of orthogonal transformations that are
orientation preserving.
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and by the classification of 1-manifolds, this can only mean a finite disjoint union of circles and
compact intervals. Since each of these components individually can only be mapped into one of
the path-components X1, X2, X3 and each has either zero or two boundary points, it follows that
for each i “ 1, 2, 3, the number of points of M or N that are mapped into Xi can only differ by an
even number. We have just proved the following: given rpM, fqs P Ω0pXq, let fi P Z2 for i “ 1, 2, 3

denote the number (mod 2) of points in M that f maps into Xi. Then

Ω0pXq Ñ Z3
2 : rpM, fqs ÞÑ pf1, f2, f3q

is an isomorphism.
To understand ΩSO

0 pXq, we need to keep in mind that an oriented 0-manifold M is not just a
finite set of points, but it also comes with a map ǫ :M Ñ t1,´1u telling us which points are to be
regarded as “positively oriented” as opposed to “negatively oriented” (cf. Definition 20.5). It is now
no longer possible to cancel arbitrary pairs as in the unoriented case, but supposeM “ tx1, . . . , xN u
and f sends both x1 and x2 into X1, and also that ǫpx1q “ ´1 while ǫpx2q “ `1. We can again
choose a path γ : I12 Ñ X1 with γp0q “ fpx1q and γp1q “ fpx2q, and define W “ I12 > I3 > . . .> IN
and F : W Ñ X as before. Before we can call pW,F q an oriented bordism, we need to specify
the orientation of W . Let us assume I12 is oriented so that ǫp1q “ `1 and ǫp0q “ ´1, while for
j “ 3, . . . , N , orient Ij such that ǫp1q “ ǫpxjq and ǫp0q “ ´ǫpxjq. We now have BW “ ´M 1 >M
where M 1 “ Mztx1, x2u with the same orientations on the points x3, . . . , xN , hence pW,F q is
an oriented bordism between pM, fq and pM 1, f 1q. It is possible to construct such a bordism to
eliminate any pair of points in M that have opposite signs and are mapped to the same path-
component of X . Thus if we define fi P Z for each i “ 1, 2, 3 by

fi :“
ÿ

xPf´1pXiq
ǫpxq,

it follows that any two pairs pM, fq and pN, gq for which fi “ gi for every i must admit an oriented
bordism. Conversely, the classification of 1-manifolds again implies that an arbitrary oriented
bordism pW,F q between two pairs pM, fq and pN, gq is a map defined on a finite disjoint union
of oriented intervals and circles, and since the two boundary points of an oriented interval I are
always oriented with opposite signs, any component of W whose boundary lies entirely in one of
M or ´N contributes zero to the counts defining the numbers fi and gi, while components that
have one boundary point in M and one in ´N make the same contribution ˘1 to fi and gi. This
proves that the map

ΩSO
0 pXq Ñ Z3 : rpM, fqs ÞÑ pf1, f2, f3q

is well defined and is also an isomorphism.
While computing the 0-dimensional bordism groups is not hard, we run into a serious (though

interesting!) difficulty with the higher-dimensional bordism groups: they can be nontrivial even if
X is only a one-point space. When X “ tptu, we abbreviate

Ωk :“ Ωkptptuq, ΩSO
k :“ ΩSO

k ptptuq,
and notice that since there is only one map from each manifold to tptu, the elements of ΩSO

k

are equivalence classes of oriented closed manifolds M where M „ N whenever BW – ´M > N
for some compact oriented manifold W ; elements of Ωk can be described in the same way after
deleting the word “oriented” everywhere. In particular, we have rM s “ 0 P Ωk if and only if M
is homeomorphic to the boundary of some compact pk ` 1q-manifold. The question of whether a
given manifold can be the boundary of another compact manifold is interesting, and the answer
is often not obvious. For k “ 1 it is not so hard: the classification of 1-manifolds implies that
every bordism class rM s in Ω1 or ΩSO

1 is represented by a finite disjoint union of circles, and since
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S1 “ BD2, all of these are (oriented) boundaries, hence

Ω1 “ ΩSO
1 “ 0.

It is similarly easy to see that all closed oriented surfaces are boundaries of compact oriented 3-
manifolds: just take your favorite embedding of Σg into R3 and consider the region bounded by that
embedded surface. For the oriented 3-dimensional case, we do not have any simple classification
result to rely upon, but one can instead appeal to a standard (though not so trivial) result from low-
dimensional topology known as the Dehn-Lickorish theorem, which can be interpreted as presenting
arbitrary closed oriented 3-manifolds as boundaries of compact oriented 4-manifolds obtained by
attaching “2-handles” to D4. We can therefore say

ΩSO
2 “ ΩSO

3 “ 0.

However, in the unoriented case there is already trouble in dimension two: it is known that there
does not exist any compact 3-manifold whose boundary is homeomorphic to RP

2. This can be
proved using methods that we will cover in Topologie II, notably the Poincaré duality isomorphism
between the homology and cohomology groups of closed manifolds. A similar argument implies that
the complex counterpart of RP2, the complex projective space CP2, is a closed oriented 4-manifold
that never occurs as the boundary of any compact oriented 5-manifold. This implies

rRP2s ‰ 0 P Ω2, and rCP2s ‰ 0 P ΩSO
4 .

This reveals that in general, the k-dimensional bordism groups of a one-point space contain a lot
more information than one might expect: instead of just telling us something about the rather
boring space tptu, they tell us something about the classification of closed k-manifolds, namely
which ones can appear as boundaries of other compact manifolds and which ones cannot. That is
an interesting question, and one that is very much worth studying at some point, but as with the
higher homotopy groups, we will need to have a much wider range of simpler techniques at our
disposal before we are equipped to tackle it.

Remedy 3: Simplicial homology (AKA “triangulated bordism”). The first version of
homology theory that we will now discuss can be regarded as an attempt to capture much of the
same information about X that is seen by the bordism groups ΩnpXq and ΩSO

n pXq, but without
requiring us to know anything about the (generally quite hard) problem of classifying closed n-
manifolds. The first idea is that instead of allowing arbitrary closed manifolds as domains, we
consider manifolds with triangulations, so that all the data can be expressed in terms of simplices.
The followup idea is that now that everything is expressed in terms of simplices, there is no need
to mention manifolds at all.

Consider a simplicial complex K “ pV, Sq with associated polyhedron X :“ |K|, and for each
integer n ě 0, let Spnq Ă S denote the set of n-simplices. As auxiliary data, we also fix an abelian
group G, which in principle can be arbitrary, but for reasons related to the distinction between
oriented and unoriented bordism, we will typically want to choose G to be either Z or Z2.

Definition 21.13. The group of n-chains in K (with coefficients in G) is the abelian group

CnpK;Gq :“ à
σPSpnq

G,

whose elements can be written as finite sums
ř
i aiσi with ai P G and σi P Spnq, with the group

operation defined by ÿ
i

aiσi `
ÿ
i

biσi “
ÿ
i

pai ` biqσi.
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An n-chain is in some sense an abstract algebraic object, but if we chooseG “ Z and consider an
n-chain

ř
i aiσi whose coefficients are all ai “ ˘1, then you can picture the chain geometrically as

the union of the n-simplices in X corresponding to each σi in the sum, with orientations determined
by the signs ai. These subsets are always compact, and if the particular set of n-simplices is chosen
appropriately, then they will sometimes look like n-dimensional manifolds embedded in X . Our
goal is now to single out a special class of n-chains that are analogous to closed n-dimensional
manifolds embedded in X , i.e. the n-chains that have “empty boundary”. This can be done by
writing down an algebraic operation that describes the boundary of each individual simplex. To
define this properly, we need to choose an orientation for every simplex in S; note that this has
nothing intrinsically to do with oriented triangulations, as it is a completely arbitrary choice with
no compatibility conditions required, so it can always be done. With this choice in place, for each
σ “ tv0, . . . , vnu P Spnq, set

Bσ :“
nÿ
k“0

ǫkBpkqσ P Cn´1pK;Zq,

where as usual Bpkqσ “ tv0, . . . , vk´1, vk`1, . . . , vnu denotes the kth boundary face of σ, and ǫk P
t1,´1u is defined to be `1 if the chosen orientation of the pn ´ 1q-simplex Bpkqσ matches the
boundary orientation it inherits from σ (see Definition 20.8), and ´1 if these two orientations are
opposite. There is now a uniquely determined group homomorphism

Bn : CnpK;Gq Ñ Cn´1pK;Gq : ÿ
i

aiσi ÞÑ
ÿ
i

aipBσiq,

where the multiplication of each coefficient ai P G by a sign ǫk “ ˘1 is defined in the obvious way
as an element of G. (Notice that if G “ Z2, the signs ǫk become irrelevant because every coefficient
ai then satisfies ai “ ´ai.) Strictly speaking, the definition above only makes sense for n ě 1 since
there are no p´1q-simplices; in light of this, we set

B0 :“ 0.

We call the subgroup ker Bn Ă CnpK;Gq the group of n-cycles, or equivalently, the closed
n-chains. The elements of the subgroup im Bn`1 Ă CnpK;Gq are called boundaries.

Lemma 21.14. Bn´1 ˝ Bn “ 0 for all n P N.

Proof. You should think of this as an algebraic or combinatorial expression of the geometric
fact that the boundary of any n-manifold with boundary is always an pn´ 1q-manifold with empty
boundary. On a more mundane level, the result holds due to cancelations, e.g. suppose A is an
oriented 2-simplex whose oriented 1-dimensional boundary faces are denoted by a, b, c, giving

B2A “ a` b` c.

Suppose further that the vertices of A are denoted by α, β, γ, all oriented with positive signs, but
the arrow determined by the orientation of a points toward α and away from γ, while b points
toward β and away from α, and c points toward γ but away from β. This gives the three relations

B1a “ α´ γ, B1b “ β ´ α, B1c “ γ ´ β,

thus B1 ˝ B2A “ B1pa` b` cq “ pα´ γq` pβ´αq` pγ´βq “ 0. Similar cancelations occur in every
dimension. �

Lemma 21.14 is often abbreviated with the formula

B2 “ 0,
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and we will sometimes abbreviate B :“ Bn when there is no chance of confusion. The formula
implies in particular that im Bn`1 is a subgroup of Bn for every n ě 0. Since all these groups are
abelian and subgroups are therefore normal, we can now consider quotients:

Definition 21.15. The nth simplicial homology group of the complex K (with coefficients
in G) is

H∆
n pK;Gq :“ ker BnL im Bn`1.

It is worth comparing this definition to the bordism groups ΩnpXq and ΩSO
n pXq, as the extra

layer of algebra involved in the definition of homology obscures a fairly direct analogy. Instead of
closed n-manifolds M with maps f :M Ñ X , homology considers n-cycles, meaning formal linear
combinations of n-simplices c :“ ř

i aiσi with Bc “ 0. The bordism relation pM`, f`q „ pM´, f´q
is now replaced by the conditition that two cycles c, c1 P ker Bn represent the same homology class
rcs “ rc1s P H∆

n pK;Gq if c ´ c1 P im Bn`1, i.e. their difference is the boundary of an pn ` 1q-chain
(analogous to a map defined on a compact pn` 1q-manifold with boundary). When this holds, we
say that the cycles c and c1 are homologous. Finally, we will see that the distinction between
ΩSO
n pXq and ΩnpXq now corresponds to the distinction between H∆

n pK;Zq and H∆
n pK;Z2q.

Let’s compute an example. Figure 13 shows an oriented triangulation of T2 with eighteen
2-simplices, twenty-seven 1-simplices, and nine vertices labeled as follows:

S2 “ tσ1, τ1, . . . , σ9, τ9u,
S1 “ ta1, a2, a3, b1, b2, b3, . . . , f1, f2, f3, g1, . . . , g9u,
S0 “ tP1, P2, P3, Q1, Q2, Q3, R1, R2, R3u.

In addition to the orientations of the 2-simplices that come from this being an oriented trian-
gulation, the figure shows (via arrows) an arbitrary choice of orientations for all 1-simplices, and
we shall assume all the 0-simplices are oriented with a positive sign. One can now begin writing
down relations such as

Bσ1 “ g1 ´ a1 ´ d3, Bτ1 “ b1 ` e3 ´ g1, Ba1 “ P2 ´ P1

and so forth, but writing down all such relations would be rather tedious, so let us instead try to
reason more geometrically. The computation of H∆

0 pK;Zq is not hard in any case: all 0-chains
are cycles since B0 “ 0, including the nine generators Pi, Qi, Ri for i “ 1, 2, 3, but all nine of them
are also homologous to each other since any pair of them can be connected by a path of oriented
1-simplices leading from one to the other, e.g. Ba1 “ P2´P1 implies rP1s “ rP2s, and Be3 “ P2´R2

implies rP2s “ rR2s. The result is
H∆

0 pK;Zq – Z,

with a canonical generator represented by any of the vertices in the complex. Notice that this
matches the oriented bordism group ΩSO

0 pT2q since T2 is path-connected.
Let’s look at the 1-cycles. There is a 1-cycle for every continuous loop we can find that follows

a path through 1-simplices—we just have to insert minus signs wherever there is an arrow pointing
the wrong way, in order to ensure the necessary cancelation of 0-simplices. For example, traversing
the boundary of the lower-right square gives

Bpa3 ` d1 ´ c3 ´ f1q “ 0,

so a3` d1´ c3´ f1 is a 1-cycle, but not a very interesting one, since it is also the boundary of the
region filled by the 2-simplices σ9 and τ9: in particular,

Bpσ9 ` τ9q “ pg9 ´ c3 ´ f1q ` pa3 ` d1 ´ g9q “ a3 ` d1 ´ c3 ´ f1,

hence ra3 ` d1 ´ c3 ´ f1s “ 0 P H∆
1 pK;Zq. To find more interesting 1-cycles, it helps to remember

what we already know about π1pT2q – Z2. We can easily find two loops through 1-simplices that
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Figure 13. A simplicial complex with |K| “ T2.

represent the two distinct generators of this fundamental group: one of them is a1 ` a2 ` a3, and
we easily see that

Bpa1 ` a2 ` a3q “ pP2 ´ P1q ` pP3 ´ P2q ` pP1 ´ P3q “ 0.

Another is b1`b2`b3, but notice that the loops corresponding to these two 1-cycles are homotopic
in T2, and relatedly, they form the boundary of the region filled by the six 2-simplices σi, τi for
i “ 1, 2, 3,

Bpσ1 ` σ2 ` σ3 ` τ1 ` τ2 ` τ3q “ pb1 ` b2 ` b3q ´ pa1 ` a2 ` a3q,
implying ra1`a2`a3s “ rb1`b2`b3s P H∆

1 pK;Zq. Similar reasoning shows that c1`c2`c3 is yet
another 1-cycle representing the same homology class as both of these. One can show however that
this homology class really is nontrivial, and it is not the only one: the other generator of π1pT2q
corresponds to any of the three homologous 1-cycles d1` d2` d3, e1` e2` e3 or f1` f2` f3. The
end result is

H∆
1 pK;Zq – Z2,

the same as the fundamental group.
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As observed at the beginning of this lecture, the fact that T2 has a contractible universal
cover implies that π2pT2q “ 0, so if there are any interesting 2-cycles in T2, they will not look like
spheres. But if you think that H2pK;Zq should have something to do with the oriented bordism
group ΩSO

2 pT2q, then there is a fairly obvious candidate for a 2-cycle in this picture: T2 itself is a
closed oriented manifold, and the oriented triangulation we have chosen turns it into a 2-cycle:

Bpσ1 ` τ1 ` . . .` σ9 ` τ9q “ 0.

The point is that since the triangulation is oriented, writing down each individual term in this
sum would produce a linear combination of 1-simplicies in which every 1-simplex in the complex
appears exactly twice, but with opposite signs, thus adding up to 0. It should be easy to convince
yourself that no nontrivial 2-chain that does not include all eighteen of the 2-simplices can ever be
a cycle, as its boundary will have to include some 1-simplices that have nothing to cancel with. It
follows easily that all 2-cycles in this complex are integer multiples of the one found above, and
none of them are boundaries, since there are no 3-simplices, thus

H∆
2 pK;Zq – Z.

I can now state a theorem that is really rather amazing, though I’m sorry to say that we will
not be able to prove it until next semester:

Theorem 21.16. For any simplicial complex K, the simplicial homology groups H∆
n pK;Gq

depend (up to isomorphism) on the topological space X “ |K|, i.e. the polyhedron of K, but not on
the complex K itself.

This theorem seems to have been known for quite a while before the reasons behind it were
properly understood. At the dawn of homology theory, the subject had a very combinatorial
flavor, and the use of triangulations as a tool for understanding manifolds proved to be very
successful. A fairly natural strategy for proving Theorem 21.16 was formulated near the beginning
of the 20th century and was based on a conjecture called the Hauptvermutung:35 it claims
essentially that any two triangulations of the same topological space can be turned into the same
triangulation by a process of subdivision. Subdivision replaces each individual simplex σ with a
triangulation by smaller simplices, so it makes the chain groups CnpK;Gq much larger, but it is not
too hard to show that the homology resulting from these enlarged chain groups is isomorphic to the
original, hence if the Hauptvermutung is true, Theorem 21.16 follows. The only trouble is that the
Hauptvermutung is false, as was discovered in the 1960’s; moreover, we now also know examples
of closed topological manifolds that cannot be triangulated at all, so that simplicial complexes do
not provide the ideal framework for understanding manifolds in general. But in the mean time,
the mathematical community discovered much better ways of proving Theorem 21.16, namely by
defining another invariant for arbitrary topological spaces X that manifestly only depends on the
topology of X without any auxiliary structure, but also can be shown to match simplicial homology
whenever X is a polyhedron. That invariant is singular homology, and it will be our topic for the
rest of this semester.

22. Singular homology

So here’s the challenge: how do we define a topological invariant that captures the same
information as simplicial homology, but without ever referring to a simplicial complex? The answer
to this turns out to be fairly simple, but speaking for myself, the first time I heard it, I thought
it sounded crazy. There seemed to be no way that one could ever compute such a thing, or if one
could, then it was hard to imagine what geometric insight would be gained from the computation.

35This is what the conjecture was called in English—one does not translate the word Hauptvermutung.
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I’ve been leading up to this definition gradually over the last few lectures in order to give you some
intuition about what kind of invariant we are looking for and why. The hope is that, equipped
with this intuition, your first reaction to seeing the definition of singular homology might be that
it has a fighting chance of answering some question you actually care about.

It will be convenient to first establish some basic principles of the subject known as homological
algebra. We have already seen an example of the first definition in our discussion of simplicial
homology.

Definition 22.1. A (Z-graded) chain complex (Kettenkomplex) of abelian groups pC˚, Bq
consists of a sequence tCnunPZ of abelian groups together with homomorphisms Bn : Cn Ñ Cn´1

for each n P Z such that Bn´1 ˝ Bn : Cn Ñ Cn´2 is the trivial homomorphism for every n.

We sometimes denote the direct sum of all the chain groups Cn in a chain complex by

C˚ :“à
nPZ

Cn,

whose elements can all be written as finite sums
ř
i ai with ai P Cni

for some integers ni P Z.
An element x P C˚ is said to have degree (Grad) n if x P Cn. The individual homomorphisms
Bn : Cn Ñ Cn´1 extend uniquely to a homomorphism B : C˚ Ñ C˚ which has degree ´1, meaning
it maps elements of any given degree to elements of one degree less. We sometimes indicate this
by abusing notation and writing

B : C˚ Ñ C˚´1.

The collection of relations Bn´1 ˝ Bn “ 0 for all n can now be abbreviated by the single relation

B2 “ 0,

which is equivalent to the condition that im Bn`1 Ă ker Bn for every n. We call B the boundary
map (Randoperator) in the complex. Elements in ker B Ă C˚ are called cycles (Zykel), while
elements in im B Ă C˚ are called boundaries (Ränder).

Definition 22.2. The homology (Homologie) of a chain complex pC˚, Bq is the sequence of
abelian groups

HnpC˚, Bq :“ ker BnL im Bn`1

for n P Z. We sometimes denote

H˚pC˚, Bq :“
à
nPZ

HnpC˚, Bq,

which makes H˚pC˚, Bq a Z-graded abelian group.

Every element ofHnpC˚, Bq can be written as an equivalence class rcs for some n-cycle c P ker Bn,
and we call rcs the homology class (Homologieklasse) represented by c. Two cycles a, b P ker Bn
are called homologous (homolog) if ras “ rbs P HnpC˚, Bq, meaning a´ b P im Bn`1.

Remark 22.3. For the examples of chain complexes pC˚, Bq we consider in this course, Cn is
always the trivial group for n ă 0, mainly because the degree n typically corresponds to a geometric
dimension and dimensions cannot be negative. But there is no need to assume this in the general
algebraic definitions. In other settings, there are plenty of interesting examples of chain complexes
that have nontrivial elements of negative degree.

The next definition will be needed when we want to show that continuous maps between
topological spaces induce homomorphisms of their singular homology groups.
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Definition 22.4. Given two chain complexes pA˚, BAq and pB˚, BBq, a chain map (Ketten-
abbildung) from pA˚, BAq to pB˚, BBq is a sequence of homomorphisms fn : An Ñ Bn for n P Z

such that the following diagram commutes:

(22.1)
. . . An`1 An An´1 . . .

. . . Bn`1 Bn Bn´1 . . .

BAn`1

fn`1

BAn

fn

BAn´1

fn´1

BBn`1 BBn BBn´1

In other words, a chain map is a homomorphism f : A˚ Ñ B˚ of degree zero satisfying BB ˝ f “
f ˝ BA.

Proposition 22.5. Any chain map f : pA˚, BAq Ñ pB˚, BBq determines homomorphisms
f˚ : HnpA˚, BAq Ñ HnpB˚, BBq for every n P Z via the formula

f˚ras :“ rfpaqs.
Proof. There are two things to prove: first, that whenever a P An is a cycle, so is fpaq P Bn.

This is clear since BAa “ 0 implies BBpfpaqq “ fpBAaq “ 0 by the chain map condition. Second,
we need to know that f maps boundaries to boundaries, so that it descends to a well-defined
homomorphism ker BAn { im BAn`1 Ñ ker BBn { im BBn`1. This is equally clear, since a “ BAx implies
fpaq “ fpBAxq “ BBfpxq. �

With these algebraic preliminaries out of the way, we now proceed to define the chain complex
of singular homology. As in simplicial homology, we fix an arbitrary abelian group G as auxiliary
data, called the coefficient group; in practice it will usually be either Z or Z2, occasionally Q.
Recall that for integers n ě 0, the standard n-simplex is the set

∆n “ tpt0, . . . , tnq P In`1 | t0 ` . . .` tn “ 1u.
For each k “ 0, . . . , n, the kth boundary face of ∆n is the subset

Bpkq∆n :“ ttk “ 0u Ă ∆n,

which is canonically homeomorphic to ∆n´1 via the map

(22.2) Bpkq∆n Ñ ∆n´1 : pt0, . . . , tk´1, 0, tk`1, . . . , tnq ÞÑ pt0, . . . , tk´1, tk`1, . . . , tnq.
Definition 22.6. Given a topological space X , a singular n-simplex in X is a continuous

map σ : ∆n Ñ X .

Let KnpXq denote the set of all singular n-simplices in X , and define the singular n-chain
group with coefficients in G by

CnpX ;Gq “ à
σPKnpXq

G.

Note that this definition also makes sense for n ă 0 if we agree that KnpXq is then empty since
there is no such thing as a simplex of negative dimension, hence the groups CnpX ;Gq are trivial
in these cases. In general, elements in CnpX ;Gq can be written as finite sums Σiaiσi where ai P G
and σi P KnpXq. This clearly looks similar to the simplicial chain groups, but if you’re paying
attention properly, you may at this point be feeling nervous about the fact that CnpX ;Gq is a
bloody enormous group: algebraically it is very simple, but the set KnpXq that generates it is
usually uncountably infinite. It’s probably even larger than you are imagining, because a singular
n-simplex is not just a “simplex-shaped” subset of X , but it is also the parametrization of that
subset, so any two distinct parametrizations σ : ∆n Ñ X , even if they have exactly the same image,
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define different elements of KnpXq and thus different generators of CnpX ;Gq.36 If this makes you
nervous, then you are right to feel nervous: it is a minor miracle that we will eventually be able
to extract useful and computable information from groups as large as CnpX ;Gq. You will see.

The next step is to define a boundary map CnpX ;Gq Ñ Cn´1pX ;Gq. As in simplicial ho-
mology, this is done by writing a formula for Bσ for each generator σ P KnpXq, and the formula
follows the same orientation convention that we saw in our discussion of oriented triangulations,
cf. Definition 20.8: set

Bσ :“
nÿ
k“0

p´1qk `σ|Bpkq∆n

˘ P Cn´1pX ;Zq,

where each σ|Bpkq∆n is regarded as a singular pn´1q-simplex using the identification Bpkq∆n “ ∆n´1

from (22.2).
This uniquely determines a homomorphism

B : CnpX ;Gq Ñ Cn´1pX ;Gq : ÿ
i

aiσi ÞÑ
ÿ
i

ai Bσi,

and the usual cancelation phenomenon implies:

Lemma 22.7. B2 “ 0. �

The nth singular homology group (singuläre Homologiegruppe) with coefficients in G is
now defined by

HnpX ;Gq :“ Hn pC˚pX ;Gq, Bq .
In the case G “ Z, this is often abbreviated by

HnpXq :“ HnpX ;Zq.
The direct sum of these groups for all n is denoted by H˚pX ;Gq, though informally, this notation
is also sometimes used with the symbol “˚” acting as an integer-valued variable just like n.

I encourage you to compare the following result with our computation of the bordism groups
Ω0pXq and ΩSO

0 pXq in Lecture 21.

Proposition 22.8. For any space X and any coefficient group G, H0pX ;Gq – À
π0pXqG,

i.e. it is a direct sum of copies of G for every path-component of X.

Proof. Since ∆0 is a one-point space, the set K0pXq of singular 0-simplices σ : ∆0 Ñ X

can be identified naturally with X , and we shall write 0-chains accordingly as finite sums
ř
i aixi

with ai P G and xi P X . Similarly, ∆1 is homeomorphic to the unit interval I “ r0, 1s, and if we
choose a homeomorphism r0, 1s Ñ ∆1 sending 1 to Bp0q∆1 and 0 to Bp1q∆1, we can think of each
σ P K1pXq as a path σ : I Ñ X and write the boundary operator as

Bσ “ σp1q ´ σp0q P C0pX ;Zq.
Since there are no p´1q-chains, every a P G and x P X then define a 0-cycle ax P C0pX ;Gq, but
ax and ay are homologous whenever x and y belong to the same path-component since then any
path σ : I Ñ X from x to y gives Bpaσq “ ay ´ ax. Choosing a point xα in each path-component
Xα, we can now say that every 0-cycle is homologous to a unique 0-cycle of the form

ř
α cαxα,

where the sum ranges over all the path-components of X but only finitely many of the coefficients
cα P G are nonzero. If two cycles of this form are homologous, then they differ by the boundary of
a 1-chain, which is a finite linear combination of paths, and since each path is confined to a single

36The word “singular” in this context refers to the fact that there is no condition beyond continuity required
for the maps σ : ∆n Ñ X, i.e. they need not be injective, nor differentiable (even if X happens to be a smooth
manifold), and so their images might not look “simplex-shaped” at all, but could instead be full of singularities.
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path-component and has two end points with opposite orientations, the conclusion is that both
0-cycles have the same coefficients. �

The next result is a straightforward exercise based on the definitions, and you should also
compare it with our previous discussion of the bordism groups of a point, if only to observe that
the result is very different: while bordism groups require some information about the classification
of manifolds which has nothing to do with the one-point space, the singular homology of tptu is
much simpler.

Exercise 22.9. Show that for the 1-point space tptu and any coefficient group G, singular
homology satisfies

Hnptptu;Gq –
#
G for n “ 0,

0 for n ‰ 0.

Hint: For each integer n ě 0, there is exactly one singular n-simplex ∆n Ñ tptu, so the chain
groups Cnptptu;Gq are all naturally isomorphic to G. What is B : Cnptptu;Gq Ñ Cn´1ptptu;Gq?

Let us discuss the group H1pX ;Zq for an arbitrary space X . As noted above in our proof of
Proposition 22.8, ∆1 is homeomorphic to the interval I, thus there is a bijection

(22.3) tpaths I Ñ Xu Ø K1pXq
which identifies each path γ with a singular 1-simplex (denoted by the same symbol) such that,
under the canonical identification of K0pXq with X ,

Bγ “ γp1q ´ γp0q.
Notice in particular that if γ is a loop, then it also defines a 1-cycle. More generally, let us write
elements of C1pX ;Zq as finite sums

ř
imiγi where mi P Z and the γi are understood as singular

1-simplices via the above bijection, so

Bÿ
i

miγi “
ÿ
i

mi pγip1q ´ γip0qq P C0pX ;Zq.

Now observe that since the coefficients mi are integers, we are free to assume they are all ˘1 at
the cost of allowing repeats in the finite list of paths γi. It will then be convenient to think of ´γi
as the reversed path γ´1

i , which makes sense if you look at the boundary formula since

Bp´γiq “ ´pγip1q ´ γip0qq “ γip0q ´ γip1q “ γ´1
i p1q ´ γ´1

i p0q “ Bpγ´1
i q.

Thinking in these terms and continuing to assume mi “ ˘1, řimiγi will now be a cycle if and
only if the finite set of paths γmi

i can be arranged in some order so that they form a loop, i.e. each
can be concatenated with the next in the list, and the last can be concatenated with the first. This
is precisely what is needed in order to ensure that every 0-simplex in Břimiγi cancels out. This
suggests a relationship between H1pX ;Zq and π1pXq, but notice that there is some ambiguity in
the correspondence: in general there may be multiple ways that the paths γmi

i can be ordered to
produce a loop, and different loops produced in this way need not always be homotopic to each
other. In fact, one should not expect H1pX ;Zq and π1pXq to be the same, sinceH1pX ;Zq is abelian
by definition, but π1pXq usually is not. It turns out that the next best thing is true.

Theorem 22.10. For any path-connected space X with base point x0 P X, the bijection (22.3)
determines a group homomorphism

h : π1pX, x0q Ñ H1pX ;Zq
which descends to an isomorphism of the abelianization π1pX, x0q{rπ1pX, x0q, π1pX, x0qs to H1pX ;Zq.
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We say that a cycle c P C˚pX ;Gq is nullhomologous if rcs “ 0 P H˚pX ;Gq, or equivalently,
c is a boundary. According to the discussion above, every loop γ : I Ñ X with γp0q “ γp1q “ x0
can be viewed as a 1-cycle, and that cycle is nullhomologous if and only if rγs belongs to the
commutator subgroup of π1pX, x0q.

Example 22.11. Recall from Exercise 14.13 the embedded loop γ : S1 Ñ Σg for g ě 2 whose
image separates Σg into two surfaces of genus h ě 1 and k ě 1 respectively with one boundary
component each:

PSfrag replacements

–
γ

We computed in that exercise that rγs is a nontrivial element of the commutator subgroup of
π1pΣgq, thus by Theorem 22.10, γ represents the trivial class in H1pΣg;Zq. This should not be
surprising, since γ also parametrizes the boundary of a compact oriented submanifold of Σg, e.g. for
this same reason, γ also represents the trivial bordism class in ΩSO

1 pΣgq. One can find an explicit
2-chain whose boundary is γ by decomposing the surface Σh,1 into 2-simplices so as to reinterpret
the inclusion Σh,1 ãÑ Σg as a linear combination of singular 2-simplices in Σg.

The proof of Theorem 22.10 is not trivial, but it is simple enough to leave as a guided homework
problem (see Exercise 22.12 below). The homomorphism h : π1pXq Ñ H1pX ;Zq is called the
Hurewicz map. There exists a similar Hurewicz homomorphism πkpXq Ñ HkpX ;Zq for every
k ě 1, which we will discuss near the end of Topologie II if time permits. Note that for k ě 2,
πkpXq is always abelian, so it is reasonable in those cases to hope that the Hurewicz map might
be an honest isomorphism. A result called Hurewicz’s theorem gives conditions under which this
turns out to hold, thus providing a nice way to compute higher homotopy groups in some cases
since, as we will see, computing homology is generally easier. But there are also simple examples
in which πkpXq and HkpX ;Zq are totally different. We saw for instance in the previous lecture
that π2pT2q “ 0 due to the lifting theorem, but one can use any oriented triangulation of T2 to
produce a singular 2-cycle that can be shown to be nontrivial in H2pT2;Zq. Homology classes in
the image of the Hurewicz map are sometimes called spherical homology classes. The example of
T2 shows that for n ě 2, one cannot generally expect all classes in HnpX ;Zq to be spherical.

Exercise 22.12. Let us prove Theorem 22.10. AssumeX is a path-connected space, fix x0 P X
and abbreviate π1pXq :“ π1pX, x0q, so elements of π1pXq are represented by paths γ : I Ñ X with
γp0q “ γp1q “ x0. Identifying the standard 1-simplex

∆1 :“  pt0, t1q P R2
ˇ̌
t0 ` t1 “ 1, t0, t1 ě 0

(
with I :“ r0, 1s via the homeomorphism ∆1 Ñ I : pt0, t1q ÞÑ t1, every path γ : I Ñ X corresponds
to a singular 1-simplex ∆1 Ñ X , which we shall denote by h̃pγq and regard as an element of the
singular 1-chain group C1pX ;Zq. Show that h̃ has each of the following properties:

(a) If γ : I Ñ X satisfies γp0q “ γp1q, then Bh̃pγq “ 0.
(b) For any constant path e : I Ñ X , h̃peq “ Bσ for some singular 2-simplex σ : ∆2 Ñ X .
(c) For any paths α, β : I Ñ X with αp1q “ βp0q, the concatenated path α ¨ β : I Ñ X

satisfies h̃pαq ` h̃pβq ´ h̃pα ¨ βq “ Bσ for some singular 2-simplex σ : ∆2 Ñ X .
Hint: Imagine a triangle whose three edges are mapped to X via the paths α, β and α ¨β.
Can you extend this map continuously over the rest of the triangle?
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(d) If α, β : I Ñ X are two paths that are homotopic with fixed end points, then h̃pαq´h̃pβq “
Bf for some singular 2-chain f P C2pX ;Zq.
Hint: If you draw a square representing a homotopy between α and β, you can decompose
this square into two triangles.

(e) Applying h̃ to paths that begin and end at the base point x0, deduce that h̃ determines
a group homomorphism h : π1pXq Ñ H1pX ;Zq : rγs ÞÑ rh̃pγqs.

We call h : π1pXq Ñ H1pX ;Zq the Hurewicz homomorphism. Notice that since H1pX ;Zq
is abelian, kerh automatically contains the commutator subgroup rπ1pXq, π1pXqs Ă πpXq (see
Exercise 12.21), thus h descends to a homomorphism on the abelianization of π1pXq,

Φ : π1pXq
M
rπ1pXq, π1pXqs Ñ H1pX ;Zq.

We will now show that this is an isomorphism by writing down its inverse. For each point p P X ,
choose arbitrarily a path ωp : I Ñ X from x0 to p, and choose ωx0

in particular to be the constant
path. Regarding singular 1-simplices σ : ∆1 Ñ X as paths σ : I Ñ X under the usual identification
of I with ∆1, we can then associate to every singular 1-simplex σ P C1pX ;Zq a concatenated pathrΨpσq :“ ωσp0q ¨ σ ¨ ω´1

σp1q : I Ñ X

which begins and ends at the base point x0, hence rΨpσq represents an element of π1pXq. Let Ψpσq
denote the equivalence class represented by rΨpσq in the abelianization π1pXq{rπ1pXq, π1pXqs. This
uniquely determines a homomorphism37

Ψ : C1pX ;Zq Ñ π1pXqLrπ1pXq, π1pXqs : ÿ
i

miσi ÞÑ
ÿ
i

miΨpσiq.

(f) Show that ΨpBσq “ 0 for every singular 2-simplex σ : ∆2 Ñ X , and deduce that Ψ

descends to a homomorphism Ψ : H1pX ;Zq Ñ π1pXq{rπ1pXq, π1pXqs.
(g) Show that Ψ ˝Φ and Φ ˝Ψ are both the identity map.
(h) For a closed surface Σg of genus g ě 2, find an example of a nontrivial element in the

kernel of the Hurewicz homomorphism π1pΣgq Ñ H1pΣgq. Hint: See Exercise 14.13.

23. Relative homology and long exact sequences

The above results for H0pX ;Gq and H1pX ;Zq provide some evidence that in spite of being
defined as quotients of groups with uncountably many generators, the singular homology groups
HnpX ;Gq might turn out to be computable more often than we’d expect. In this lecture we’ll
introduce a powerful computational tool that is also a fundamental concept in homological algebra.
But before that, let us clarify in what sense singular homology is a topological invariant.

Lemma 23.1. Every continuous map f : X Ñ Y determines a chain map f˚ : C˚pX ;Gq Ñ
C˚pY ;Gq via the formula f˚σ :“ f ˝ σ for singular n-simplices σ : ∆n Ñ X.

Proof. It is straightforward to check that Bpf˚σq “ f˚pBσq P Cn´1pY ;Zq for all σ : ∆n Ñ X ,
thus the uniquely determined homomorphism

f˚ : CnpX ;Gq Ñ CnpY ;Gq : ÿ
i

aiσi ÞÑ
ÿ
i

aipf ˝ σiq

defines a chain map. �

37Since π1pXq{rπ1pXq, π1pXqs is abelian, we are adopting the convention of writing its group operation as ad-
dition, so the multiplication of an integer m P Z by an element Ψpσq P π1pXq{rπ1pXq, π1pXqs is defined accordingly.
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Notice that the chain maps in the above lemma also satisfy pf ˝gq˚ “ f˚ ˝g˚ whenever f and g
are composable continuous maps, and the chain map induced by the identity map onX is simply the
identity homomorphism on C˚pX ;Gq. Applying Proposition 22.5 thus gives the following result,
which implies that homeomorphic spaces always have isomorphic singular homology groups:

Corollary 23.2. Continuous maps f : X Ñ Y determine group homomorphisms f˚ :

HnpX ;Gq Ñ HnpY ;Gq for every n and G such that pf ˝ gq˚ “ f˚ ˝ g˚ whenever f and g can
be composed, and the identity map satisfies pIdq˚ “ 1. �

Remark 23.3. Recall that in the analogue of Corollary 23.2 for the fundamental group, the
map f : X Ñ Y is required to be base-point preserving, due to the fact that the definitions of
π1pXq and π1pY q require choices of base points in X and Y respectively. In most applications,
base points are an extra piece of data that one doesn’t actually care about but needs to keep track
of anyway. One of the advantages of singular homology in comparison with the fundamental group
is that its definition does not require any choice of base point, and Corollary 23.2 thus holds for
arbitrary continuous maps f : X Ñ Y .

We will show in the next lecture that the homomorphisms f˚ induced by continuous maps f
only depend on f up to homotopy, which has the easy consequence that H˚pX ;Gq only depends
on the homotopy type of X .

But first, let us generalize the discussion somewhat. Algebraic gadgets often have the feature
that they become easier to compute if you add more structure to them, sometimes at the cost of
making the basic definitions slightly more elaborate. We will now do that with singular homology
by introducing the relative homology groups of pairs. A pair of spaces pX,Aq, often abbreviated
as simply a “pair,” (topologisches Paar) consists of a topological space X and a subset A Ă X .
Given two pairs pX,Aq and pY,Bq, a map f : X Ñ Y is called a map of pairs if fpAq Ă B, and
in this case we write

f : pX,Aq Ñ pY,Bq.
This is an obvious generalization of the definition of a pointed map, where arbitrary subsets have
now replaced base points. Similarly, two maps of pairs f, g : pX,Aq Ñ pY,Bq are homotopic if
there exists a homotopy H : I ˆX Ñ Y between f and g such that Hps, ¨q : pX,Aq Ñ pY,Bq is a
map of pairs for every s P I, or equivalently,

HpI ˆAq Ă B.

Two pairs pX,Aq and pY,Bq are homeomorphic if there exist maps of pairs f : pX,Aq Ñ pY,Bq
and g : pY,Bq Ñ pX,Aq such that g ˝ f and f ˝ g are the identity maps on pX,Aq and pY,Bq
respectively, and f and g are in this case called homeomorphisms of pairs. If g ˝ f and f ˝ g
are not necessarily equal but are homotopic (as maps of pairs) to the respective identity maps,
then we call each of them a homotopy equivalence of pairs and say that pX,Aq and pY,Bq are
homotopy equivalent, written

pX,Aq »
h.e.

pY,Bq.
One can regard every individual space X as a pair by identifying it with pX,Hq, in which case the
above definitions reproduce the usual ones for maps between ordinary spaces.

The relative homology of a pair pX,Aq is based on the trivial observation that since every
singular simplex in A is also a singular simplex in X whose boundary faces are all contained in A,
CnpA;Gq is naturally a subgroup of CnpX ;Gq for each n, and the boundary map B : CnpX ;Gq Ñ
Cn´1pX ;Gq sends CnpA;Gq to Cn´1pA;Gq. It follows that B descends to a sequence of well-defined
homomorphisms on the quotients

CnpX,A;Gq :“ CnpX ;GqLCnpA;Gq,
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and since B2 is still zero, pC˚pX,A;Gq, Bq is a chain complex, called the relative singular chain
complex of the pair pX,Aq with coefficients in G. Its homology groups are the relative singular
homology (relative singuläre Homologie),

HnpX,A;Gq :“ Hn pC˚pX,A;Gq, Bq .
The case A “ H reproduces HnpX ;Gq as we defined it in the previous lecture, and these are
sometimes called the absolute homology groups of X so as to distinguish them from relative
homology groups. As in absolute homology, we may sometimes abbreviate the case of integer
coefficients by

HnpX,Aq :“ HnpX,A;Zq.
Lemma 23.1 extends in an obvious way to the relative chain complex: if f : pX,Aq Ñ pY,Bq

is a map of pairs, then the absolute chain map f˚ : C˚pX ;Gq Ñ C˚pY ;Gq sends the subgroup
C˚pA;Gq into C˚pB;Gq and thus descends to a chain map

f˚ : C˚pX,A;Gq Ñ C˚pY,B;Gq,
implying the relative version of Corollary 23.2:

Theorem 23.4. Maps of pairs f : pX,Aq Ñ pY,Bq determine group homomorphisms f˚ :

HnpX,A;Gq Ñ HnpY,B;Gq for every n and G such that pf ˝gq˚ “ f˚˝g˚ whenever f and g can be
composed, and the identity map on pX,Aq induces the identity homomorphism on HnpX,A;Gq. �

Since CnpX,A;Gq is a quotient, its elements are technically equivalence classes, but in order
to avoid having too many equivalence relations floating around in the same discussion, let us
instead think of them as ordinary n-chains c P CnpX ;Gq, keeping in mind that two such n-chains
a, b P CnpX ;Gq define the same element of CnpX,A;Gq whenever a´ b P CnpA;Gq, meaning a and
b differ by a linear combination of simplices that are all contained in A. A chain c P CnpX ;Gq can
then be called a relative cycle if the element of CnpX,A;Gq it determines is a cycle, which means
Bc belongs to Cn´1pA;Gq. Notice that a relative cycle need not be an absolute cycle in general
(meaning Bc “ 0), though absolute cycles also define relative cycles. Relative cycles c P CnpX ;Gq
define relative homology classes rcs P CnpX,A;Gq, and two relative cycles b, c P CnpX ;Gq are
homologous (meaning rbs “ rcs P HnpX,A;Gq) if and only if

b´ c “ a` Bx for some a P CnpA;Gq, x P Cn`1pX ;Gq.
In particular, a relative cycle is nullhomologous if and only if it is the sum of a boundary plus
a chain contained in A. If you find these algebraic relations overly abstract and would like some
advice on how to actually visualize relative cycles, see the extended digression at the end of this
lecture.

The reason for introducing the relative homology groups H˚pX,A;Gq was not that we wanted
a tool for distinguishing non-homeomorphic pairs—the relative homology is such a tool, but our
primary interest remains the space X on its own, rather than the pair pX,Aq. The usefulness
of relative homology lies in the fact that there is a relation between the three groups H˚pX ;Gq,
H˚pA;Gq and H˚pX,A;Gq for any pair pX,Aq, and indeed, one might hope to encounter situations
in which two out of these three groups are easy to compute, so that a computation of the third
one then comes for free. Let’s make this idea more precise.

We begin with a seemingly trivial observation: let i : A ãÑ X and j : X “ pX,Hq ãÑ pX,Aq
denote the natural inclusions,38 and consider the sequence of chain maps

(23.1) 0 ÝÑ C˚pA;Gq i˚ÝÑ C˚pX ;Gq j˚ÝÑ C˚pX,A;Gq Ñ 0,

38Strictly speaking, j in this context is just the identity map on X, but we cannot call it that since we are
viewing it as a map between two non-identical pairs of spaces. It is a map of pairs due to the trivial fact that
H Ă A.
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where the first and last maps are each trivial. The map j˚ is obviously surjective, as it is actually
just the quotient projection

C˚pX ;Gq Ñ C˚pX,GqLC˚pA;Gq “ C˚pX,A;Gq.
The map i˚ is similarly the inclusion C˚pA;Gq ãÑ C˚pX ;Gq and is thus injective, and its image is
precisely the kernel of j˚. This means that every term in this sequence has the property that the
image of the preceding map equals the kernel of the next one. In general, a sequence of abelian
groups with homomorphisms

. . . ÝÑ An´2
fn´2ÝÑ An´1

fn´1ÝÑ An
fnÝÑ An`1

fn`1ÝÑ An`2 ÝÑ . . .

is called exact (exakt) if ker fn “ im fn´1 for every n P Z. If all the groups except for two
neighboring groups in the sequence are trivial, then it suffices to look at a sequence of four groups
with only one nontrivial homomorphism

0 ÝÑ A1
fÝÑ A2 ÝÑ 0,

and the exactness of the sequence then simply means that f : A1 Ñ A2 is both injective and surjec-
tive, i.e. it is an isomorphism. In this sense, one can think of an exact sequence as a generalization
of the notion of an isomorphism between two abelian groups. The next simplest case is what is
called a short exact sequence (kurze exakte Sequenz), in which all except three of the groups
and two of the homomorphisms are trivial,

0 ÝÑ A1
f1ÝÑ A2

f2ÝÑ A3 ÝÑ 0.

Exactness in this case means three things: f1 is injective, f2 is surjective, and im f1 “ ker f2.
The sequence in (23.1) is what we call a short exact sequence of chain maps, because the
abelian groups in each term are also chain complexes and the homomorphisms between them are
chain maps. One can now wonder what happens if we replace these chain complexes with their
homology groups and the chain maps with the induced homomorphisms on homology: will the
resulting sequence be exact? The answer is no, but what is actually true is much better and more
useful than this:

Theorem 23.5. Suppose pA˚, BAq, pB˚, BBq and pC˚, BCq are chain complexes and

0 ÝÑ A˚
fÝÑ B˚

gÝÑ C˚ ÝÑ 0

is a short exact sequence of chain maps. Then there exists a natural homomorphism B˚ : HnpC˚, BCq Ñ
Hn´1pA˚, BAq for each n P Z such that the sequence

. . .
B˚ÝÑ Hn`1pA˚, BAq f˚ÝÑ Hn`1pB˚, BBq g˚ÝÑ Hn`1pC˚, BCq

B˚ÝÑ HnpA˚, BAq f˚ÝÑ HnpB˚, BBq g˚ÝÑ HnpC˚, BCq
B˚ÝÑ Hn´1pA˚, BAq f˚ÝÑ Hn´1pB˚, BBq g˚ÝÑ Hn´1pC˚, BCq B˚ÝÑ . . .

(23.2)

is exact.

The sequence of homology groups in this theorem is called a long exact sequence (lange
exakte Sequenz), and the maps B˚ : HnpC˚, BCq Ñ Hn´1pA˚, BAq are called the connecting
homomorphisms in this sequence. In particular, this result turns (23.1) into the so-called long
exact sequence of the pair pX,Aq,
(23.3) . . .Ñ Hn`1pX,A;Gq B˚Ñ HnpA;Gq i˚Ñ HnpX ;Gq j˚Ñ HnpX,A;Gq B˚Ñ Hn´1pA;Gq Ñ . . .

To see why this might be useful, notice what it implies if we happen to know for some reason that
one of the three groups HnpX ;Gq, HnpA;Gq or HnpX,A;Gq is trivial for every n; for concreteness,
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let’s suppose it is known that H˚pX,A;Gq “ 0. This knowledge turns the long exact sequence
(23.3) into an infinite collection of two-term exact sequences

0 ÝÑ HnpA;Gq i˚ÝÑ HnpX ;Gq ÝÑ 0,

implying that for every n, the map i˚ : HnpA;Gq Ñ HnpX ;Gq is an isomorphism. If we are
also lucky enough to know already what H˚pA;Gq is, then the computation of H˚pX ;Gq is thus
complete. An argument of this type will be used in Lecture 25 as the final step in computing
H˚pSn;Zq for every n ě 1.

Theorem 23.5 is a purely algebraic statement, and it is proved by a straightforward but nonethe-
less slightly surprising procedure known as “diagram chasing”. I will not give the full argument
here, because that would bore you to tears, but I will explain the first couple of steps, and I highly
recommend that you work through the rest yourself the next time you are half-asleep and in need
of amusement on an airplane, or recovering from surgery on heavy pain medication, as the case
may be.39 The basic idea is to write down a great big commutative diagram, examine at each
step exactly what information you can deduce from exactness and commutativity, and then let the
diagram tell you what to do.

Here is the diagram we need—it commutes because f and g are chain maps, and each of its
rows is an exact sequence of abelian groups:

...
...

...

0 An`1 Bn`1 Cn`1 0

0 An Bn Cn 0

0 An´1 Bn´1 Cn´1 0

0 An´2 Bn´2 Cn´2 0

...
...

...

BA BB BC
f

BA

g

BB BC
f

BA

g

BB BC
f

BA

g

BB BC
f

BA

g

BB BC

We start by writing down a reasonable candidate for the map B˚ : HnpC˚, BCq Ñ Hn´1pA˚, BAq.
Given rcs P HnpC˚, BCq, c P Cn is necessarily a cycle, and exactness tells us that g : Bn Ñ Cn is
surjective, hence c “ gpbq for some b P Bn. Then using commutativity,

0 “ BCc “ BCgpbq “ gpBBbq,
so BBb P ker g Ă Bn´1, and using exactness again, this implies BBb “ fpaq for some a P An´1.
Notice that a is uniquely determined by b since (using exactness again) f is injective. Applying
commutativity again, we now observe that

fpBAaq “ BBpfpaqq “ BBBBb “ 0

39I first learned about exact sequences around the same time that I had all four of my wisdom teeth removed
in a complicated procedure that left me drowsily dependent on prescription pain medication for about three weeks
afterward. It turns out that that was exactly the right frame of mind in which to work through diagram chasing
arguments without getting bored.



23. RELATIVE HOMOLOGY AND LONG EXACT SEQUENCES 151

since pBBq2 “ 0, and the injectivity of f then implies BAa “ 0. So just by chasing the diagram
from Cn to An´1, we found a cycle a P An´1, and it seems reasonable to define

B˚rcs :“ ras P Hn´1pA, BAq.
We need to check that this is well defined, as two arbitrary choices were made in the procedure
going from rcs to ras. One was the choice of an element b P Bn with gpbq “ c, so we could get a
different cycle a1 P An´1 by choosing a different element b1 P g´1pcq and requiring fpa1q “ BBb1.
But then b1´ b belongs to ker g “ im f , hence we can write b1´ b “ fpxq for some x P An, implying

fpa1 ´ aq “ fpa1q ´ fpaq “ BBpb1 ´ bq “ BBpfpxqq “ fpBApxqq,
and since f is injective, a1 ´ a “ BAx, implying that a and a1 are homologous cycles. The other
choice we made was the cycle c P Cn, which in principle we are free to replace by any homologous
cycle c1 P Cn and then follow the same procedure to produce a different cycle a1 P An´1. If we do
this, then c1 ´ c “ BCz for some z P Cn`1, and since g is surjective, z “ gpyq for some y P Bn`1.
We then have

c1 ´ c “ BCpgpyqq “ gpBBpyqq,
and since we now know that we are free to choose any b P g´1pcq and b1 P g´1pc1q, we can set

b1 :“ b` BBpyq.
This implies BBb1 “ BBb, thus the condition fpa1q “ BBb1 produces a1 “ a, and we have finished
the proof that B˚ is well defined.

It remains to prove that B˚ really is a homomorphism, and that the long exact sequence really
is exact, i.e. that ker B˚ “ im g˚, ker g˚ “ im f˚ and ker f˚ “ im B˚. This can all be done by the
same kinds of straightforward arguments as above, but I’m sure you can see now why I’m not going
to write down the complete details here.

I have one final remark however about the long exact sequence of a pair pX,Aq. If you redo
the diagram chase above for the particular short exact sequence (23.1), you end up with a precise
and very natural formula for the connecting homomorphisms

B˚ : HnpX,A;Gq Ñ Hn´1pA;Gq.
The procedure starts with a relative n-cycle c P CnpX,A;Gq, from which we need to pick b P
j´1˚ pcq Ă CnpX ;Gq, but if we apply the usual convention of regarding relative cycles in pX,Aq as
chains in X , then c is already in CnpX ;Gq and we can pick b to be exactly the same chain c. Next
we look at Bc P Cn´1pX ;Gq and find the unique cycle a P Cn´1pA;Gq that is sent to Bc under the
inclusion Cn´1pA;Gq ãÑ Cn´1pX ;Gq. In other words, a “ Bc, so the “obvious” formula is the right
one:

(23.4) B˚rcs “ rBcs.
This looks more trivial than it is, e.g. you might think that rBcs should automatically be 0 because
Bc is a boundary, but the point is that c is a chain in X , it might not be confined to A, so Bc is
certainly a cycle in A (as a consequence of the fact that c is a relative chain in pX,Aq) but it need
not be the boundary of any chain in A, and rBcs may very well be a nontrivial homology class in
Hn´1pA;Gq.

Exercise 23.6. Use the formula (23.4) to give a direct proof that the sequence (23.3) is exact.

Remark 23.7. Exercise 23.6 is straightforward and doable in a much shorter time than the
proof of Theorem 23.5, so we could have skipped the abstract homological algebra discussion
without losing anything that is essential for the current semester. However, I wanted to make the
point that the long exact sequence of a pair is not just an isolated topological phenomenon—it is a



152 FIRST SEMESTER (TOPOLOGIE I)

special case of a much more general algebraic principle, and that principle reappears in many other
contexts in various branches of mathematics. We will see it again several times in Topologie II.

The following extended digression is not logically necessary for our development of basic
homology theory, but you might still appreciate some intuition on the following question: what do
relative n-cycles actually look like? Actually, that’s also a valid question when applied to absolute
n-cycles, and we’ve only really addressed it so far for n “ 0 and n “ 1. The best way I know for
visualizing absolute cycles is via the analogy with bordism theory. Recall that elements of ΩSO

n pXq
are equivalence classes of maps f :M Ñ X where M is a closed oriented n-manifold. If M admits
an oriented triangulation, then after choosing an ordering for all the vertices in this triangulation
and assigning orientations accordingly to each simplex in the triangulation, one can identify each k-
simplex σ ĂM with a map ∆k ÑM that parametrizes it, thus defining a singular k-simplex inM .
For k “ n in particular, the condition in Definition 20.9 relating the orientations of neighboring
n-simplices implies that the sum

ř
i ǫiσi of all the singular n-simplices in the triangulation—with

appropriate signs ǫi “ ˘1 attached in order to describe their orientations in the triangulation—is
a cycle in CnpM ;Zq. This is true because in Bři ǫiσi, every pn ´ 1q-simplex of the triangulation
appears exactly twice, but the orientation condition requires these two instances to appear with
opposite signs. The resulting singular homology class is denoted by

rM s :“
«ÿ
i

ǫiσi

ff
P HnpM ;Zq

and called the fundamental class (Fundamentalklasse) of M . We cannot prove it right now,
but we will see in Topologie II that rM s does not depend on the choice of triangulation, and it
can even be defined for arbitrary closed and oriented topological manifolds, which need not admit
triangulations. The map f : M Ñ X then determines a corresponding cycle

ř
i ǫipf˝σiq P CnpX ;Zq

and an n-dimensional homology class f˚rM s P HnpX ;Zq.
How can we recognize when two n-cycles in X defined in this way are homologous, or equiva-

lently, when
ř
i ǫipf ˝ σiq is nullhomologous? A nice answer can again be extracted from bordism

theory. If rpM, fqs “ 0 P ΩSO
n pXq, it means there exists a compact oriented pn ` 1q-manifold W

with BW –M and a map F :W Ñ X with F |M “ f . SupposeW admits an oriented triangulation
that restricts to BW as an oriented triangulation of M . Identifying the pn` 1q-simplices τj in this
triangulation with singular pn ` 1q-simplices in W and then adding them up with suitable signs
ǫj “ ˘1 as in the previous paragraph produces an pn ` 1q-chain in X of the form

ř
j ǫjpF ˝ τjq,

whose boundary is the n-cycle representing f˚rM s. Thus if oriented triangulations can always
be assumed to exist, then f˚rM s “ 0 P HnpX ;Zq whenever pM, fq is nullbordant, and similarly,
f˚rM s “ g˚rN s P HnpX ;Zq will hold whenever pM, fq and pN, gq are related by an oriented
bordism. We will also see in Topologie II that these statements remain true without mentioning
triangulations.

You may be wondering how general this discussion really is, i.e. does every integral homology
class in X arise from a map of a closed manifold into X? The answer is in general no, but if X is
a nice enough space like the polyhedron of a finite simplicial complex, then something almost as
good is true. The proof of the following famous result of Thom would be far beyond the scope of
this course, and we will not make use of it, but it is nice to know that it exists.

Theorem 23.8 (R. Thom [Tho54]). If X is a compact polyhedron, then for every n ě 0 and
A P HnpX ;Zq, there exists a closed n-manifold M , a map f : M Ñ X and a number k P N such
that kA “ f˚rM s. �

To talk about relative homology classes, we could now allow M to be a compact oriented
n-manifold with boundary and assume that its oriented triangulation also defines an oriented
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triangulation of BM . The chain
ř
i ǫiσi P CnpM ;Zq is then no longer a cycle, because pn ´ 1q-

simplices on BM are not canceled, they each appear exactly once. Instead, Bři ǫiσi is an pn´ 1q-
cycle representing the fundamental class of BM , and

ř
i ǫiσi is therefore a relative cycle in pM, BMq,

defining a relative fundmental class

rM s P HnpM, BM ;Zq.
Given a pair pX,Aq, any map f : pM, BMq Ñ pX,Aq now determines a relative cycle

ř
i ǫipf ˝σiq P

CnpX,A;Zq and relative homology class f˚rM s P HnpX,A;Zq. For intuition, it is usually helpful
to assume that f is an embedding, so a relative n-cycle in pX,Aq then looks like an oriented and
triangulated compact n-dimensional submanifold in X whose boundary lies in A.

Finally, note that one can drop the orientations from this entire discussion at the cost of
replacing Z coefficients with Z2. Indeed, if M is closed and has a triangulation but not one that
is orientable, then the n-chain defined by adding up the n-simplices may not be a cycle because
its boundary may include some pn ´ 1q-simplex that appears twice without canceling. But since
2 “ 0 P Z2, this sum still defines a cycle in CnpM ;Z2q and therefore also a fundamental class

rM s P HnpM ;Z2q.
This reveals that unoriented bordism classes in ΩnpXq determine homology classes in HnpX ;Z2q,
and the analogue of Theorem 23.8 remains true in this case without any need for the multiplicative
factor k P N.

24. Homotopy invariance and excision

We need to prove two more theorems about singular homology before it becomes a truly useful
tool. Both will require a bit of work, but the almost immediate payoff will be that we can then
compute the homology of spheres in every dimension. This has several important applications,
including the general case of the Brouwer fixed point theorem, and the basic fact that open sets in
Rn are never homeomorphic to open sets in Rm unless n “ m. It is also the first step in developing
an algorithm to compute the singular homology of any CW-complex, a general class of “reasonable”
spaces that includes all smooth manifolds and all simplicial complexes.

Our first task for today is homotopy invariance.

Theorem 24.1. The map f˚ : HnpX,A;Gq Ñ HnpY,B;Gq induced for each n P Z by a map
of pairs f : pX,Aq Ñ pY,Bq depends only on the homotopy class of f (as a map of pairs).

The obvious corollary about homotopy equivalent spaces is a result of tremendous theoretical
importance, and I would like to point out how much simpler its proof is than that of the corre-
sponding statement about fundamental groups (Theorem 10.23). The complication in the case of
π1 was that its definition depends on a choice of base point, but the notion of homotopy equivalence
does not—as a result, we had to find a workaround to cope with the fact that homotopy inverses
need not be base-point preserving. In homology, one can also allow for base points by considering
pairs pX,Aq where A Ă X is a single point, but homotopies between maps of pairs are required
to respect this extra data, which makes the proofs easier. And unlike the fundamental group,
homology also makes sense for pairs pX,Aq with A “ H, in which case the terms “homotopy” and
“homotopy equivalence” mean the same thing that they always did.

Corollary 24.2. If f : pX,Aq Ñ pY,Bq is a homotopy equivalence of pairs, then the induced
maps f˚ : HnpX,A;Gq Ñ HnpY,B;Gq are isomorphisms.

Proof. Suppose f : pX,Aq Ñ pY,Bq is a homotopy equivalence, so it has a homotopy inverse
g : pY,Bq Ñ pX,Aq. Then f ˝ g and g ˝ f are homotopic to the identity maps on pY,Bq and pX,Aq
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respectively, so that Theorem 24.1 gives f˚ ˝ g˚ “ 1 and g˚ ˝ f˚ “ 1 for the induced maps on
homology, implying that both are isomorphisms. �

The proof of Theorem 24.1 requires another fundamental notion from homological algebra. It
should be clear that if f, g : X Ñ Y are two non-identical maps, then the induced chain maps
f˚, g˚ : C˚pX ;Gq Ñ C˚pY ;Gq will not be identical, even if f and g are homotopic. It is still possible
however for two distinct chain maps to descend to exactly the same map between homology groups.
What we need for Theorem 24.1 is an algebraic mechanism to recognize when this happens, and
that mechanism is called chain homotopy.

Definition 24.3. A chain homotopy (Kettenhomotopie) between two chain maps f, g :

pA˚, BAq Ñ pB˚, BBq is a sequence of homomorphisms hn : An Ñ Bn`1 such that for every n P Z,

fn ´ gn “ BBn`1 ˝ hn ` hn´1 ˝ BAn .
In other words, a chain homotopy between f and g is a homomorphism h : A˚ Ñ B˚ of degree `1
such that f ´ g “ BB ˝ h` h ˝ BA. We sometimes abuse notation and write

h : A˚ Ñ B˚`1

to emphasize that a chain homotopy is a homomorphism of degree 1.

Two chain maps that admit a chain homotopy between them are called chain homotopic
(kettenhomotop), and it is not hard to show that this defines an equivalence relation on chain maps.
You can picture a chain homotopy as a sequence of down-left diagonal arrows in the diagram (22.1),
though you need to be a little careful with that diagram since a chain homotopy does not make it
commute. The main importance of chain homotopies comes from the following result.

Proposition 24.4. If there exists a chain homotopy between two chain maps f and g from
pA˚, BAq to pB˚, BBq, then they induce the same homomorphisms

f˚ “ g˚ : HnpA˚, BAq Ñ HnpB˚, BBq
for all n P Z.

Proof. If h : A˚ Ñ B˚`1 is a chain homotopy, then given any ras P HnpA˚, BAq, we have
BAa “ 0 and thus

fpaq ´ gpaq “ BBhpaq ` hpBAaq “ BB phpaqq ,
hence fpaq and gpaq are homologous cycles. �

If you’re seeing the notion of chain homotopies for the first time, you might think that the
definition above looks a bit unmotivated—it is not obvious for instance whether this is the only
reasonable algebraic condition that makes two chain maps induce the same map on homology.
However, the following lemma and its proof provide convincing evidence that this definition is the
right one: it turns out that chain homotopies are the natural algebraic structure that arises in the
singular chain complex from a homotopy between continuous maps. We will see that they arise
naturally in many other contexts as well.

Lemma 24.5. If there exists a homotopy between the maps of pairs f, g : pX,Aq Ñ pY,Bq,
then there also exists a chain homotopy between the induced chain maps f˚, g˚ : C˚pX,A;Gq Ñ
C˚pY,B;Gq.

Theorem 24.1 is an immediate consequence of this lemma and Proposition 24.4, so our remain-
ing task is to prove the lemma. For notational simplicity, let us start under the assumption

A “ B “ H,
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as the general case will only require a few extra remarks beyond this. Suppose H : I ˆX Ñ Y is a
homotopy between f “ Hp0, ¨q and g “ Hp1, ¨q. Associate to each singular n-simplex σ : ∆n Ñ X

the map
hσ : I ˆ∆n Ñ Y : ps, tq ÞÑ Hps, σptqq,

so hσp0, ¨q “ f ˝ σ and hσp1, ¨q “ g ˝ σ. If we pretend for a moment that the maps in this picture
are all embeddings, then we can picture hσ as tracing out a “prism-shaped” region in Y whose
boundary consists of three pieces, two of which are the n-simplices traced about by f˚σ and g˚σ.
If we pay proper attention to orientations, then f˚σ will get a negative orientation because the
boundary orientation for BpI ˆ∆nq induces opposite orientations on t0u ˆ∆n and t1u ˆ∆n. But
there is a third piece of BpI ˆ∆nq that we haven’t mentioned yet, namely I ˆ B∆n. If we regard
I ˆ∆n as a compact oriented pn ` 1q-manifold with boundary, then its oriented boundary turns
out to be40

(24.1) BpI ˆ∆nq “ p´t0u ˆ∆nq Y pt1u ˆ∆nq Y p´I ˆ B∆nq .
This relation will be the geometric motivation behind the chain homotopy formula.

The idea now is to define a chain homotopy h : C˚pX ;Gq Ñ C˚`1pY ;Gq by associating to each
singular n-simplex σ : ∆n Ñ X a linear combination of singular pn` 1q-simplices in Y determined
by the prism map hσ : I ˆ∆n Ñ Y . Unfortunately, I ˆ∆n is not a simplex, but there are various
natural ways to decompose it into simplices, i.e. to triangulate it. In principle, the result should
not depend on how this is done, so long as the triangulation has reasonable properties, thus we
will not explain the details here except to state what properties are needed:

Lemma 24.6. There exists a sequence of oriented triangulations of the sequence of spaces Iˆ∆n

for n “ 0, 1, 2, . . . satisfying the following properties:
(1) t0u ˆ ∆n and t1u ˆ ∆n are boundary faces of pn ` 1q-simplices in the triangulation of

I ˆ∆n;
(2) Under the natural identification of each boundary face Bpkq∆n with ∆n´1, the triangulation

of I ˆ∆n restricts to I ˆ Bpkq∆n as the triangulation of I ˆ∆n´1.

A precise algorithm to produce such triangulations of I ˆ∆n is described in [Hat02, p. 112].
I recommend taking a moment to draw pictures of how it might be done for n “ 1 and n “ 2.
In the following, we will assume that parametrizations τi : ∆n`1 Ñ I ˆ ∆n of the finite set of
pn ` 1q-simplices in these triangulations have also been chosen such that for a suitable choice of
signs ǫi “ ˘1 determined by their orientations,ÿ

i

ǫiτi P Cn`1pI ˆ∆n;Zq

defines a relative cycle in pI ˆ ∆n, BpI ˆ ∆nqq; in other words, all interior n-simplices in the
triangulation of I ˆ∆n appear twice with opposite signs in Bři ǫiτi, so that what remains is an
n-chain in the boundary. The stated conditions on the triangulation guarantee in fact that Bři ǫiτi
will consist of the following terms:

(1) A single term for the obvious parametrization ∆n Ñ t1uˆ∆n, whose attached coefficient
we can assume without loss of generality is `1;

(2) Another term for the obvious parametrization ∆n Ñ t0uˆ∆n, whose attached coefficient
must now be ´1 for orientation reasons;

40One can deduce the signs in (24.1) from things that were said in Lecture 20, though it’s a bit tedious, and
for now I would encourage you to just believe me that the signs are correct. There is an easier way to see it using
the notion of orientation for smooth manifolds and their tangent spaces, which we do not have space to talk about
here, but you’ll likely see things like this again in differential geometry at some point.
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(3) Linear combinations (with coefficients ˘1) of the n-simplices triangulating I ˆ Bpkq∆n “
I ˆ∆n´1 for each boundary face of ∆n.

With this in hand, there is a unique homomorphism h : CnpX ;Gq Ñ Cn`1pY ;Gq defined on
each singular n-simplex σ : ∆n Ñ X by the formula

hpσq :“ÿ
i

ǫiphσ ˝ τiq P Cn`1pY ;Zq,

where the sum is over all the parametrized pn`1q-simplices τi : ∆n`1 Ñ Iˆ∆n in our triangulation
from Lemma 24.6, and the ǫi “ ˘1 are determined by their orientations as outlined above. In light
of (24.1), we then have

Bhpσq “ g˚σ ´ f˚σ ´ hpBσq,
where the third term comes from the restriction of hσ to the triangulated subset ´I ˆ B∆n in the
oriented boundary of I ˆ∆n. It follows that h : C˚pX ;Gq Ñ C˚`1pY ;Gq satisfies B ˝ h` h ˝ B “
g˚ ´ f˚, i.e. h is a chain homotopy.

This concludes the proof of Lemma 24.5 in the case A “ B “ H. In the general case, the given
homotopy satisfies the additional assumption

HpI ˆAq Ă B,

thus following through with the above construction, hσ has image contained in B whenever σ has
image in A. It follows that the chain homotopy we constructed sends CnpA;Gq into Cn`1pB;Gq
and thus descends to the quotients as a chain homotopy

h˚ : C˚pX,A;Gq Ñ C˚`1pY,B;Gq
between the relative chain maps f˚, g˚ : C˚pX,A;Gq Ñ C˚pY,B;Gq. The proof of the lemma is
now complete, and with it, the proof of the homotopy invariance of singular homology.

Let us pick some low-hanging fruit from this result.

Corollary 24.7 (via Exercise 22.9). For any contractible space X and any coefficient group G,
HnpX ;Gq is isomorphic to G for n “ 0 and vanishes for n ‰ 0. �

Corollary 24.8 (via Theorem 22.10). If X is homotopy equivalent to S1, then H1pX ;Zq –
Z. �

The second big theorem for today is called the excision property. It is based on the intuition
that since H˚pX,A;Gq is supposed to ignore anything that happens entirely inside the subset A,
removing smaller subsets B Ă A should not change the relative homology, i.e. we expect

H˚pXzB,AzB;Gq – H˚pX,A;Gq.
This works under a mild assumption on what it means for a subset B to be “smaller” than A.

Theorem 24.9 (excision). For any pair pX,Aq, if B Ă A is a subset with closure contained
in the interior of A, then the inclusion of pairs i : pXzB,AzBq ãÑ pX,Aq induces isomorphisms

i˚ : HnpXzB,AzB;Gq –ÝÑ HnpX,A;Gq
for all n and G.

The assumption B Ă sB Ă Å Ă A Ă X means essentially that the two open subsets Å
and Xz sB cover X . In this setting, let us say that a chain c P CnpX ;Gq is decomposable if c
can be written as a sum of a chain in A plus a chain in XzB, i.e. c belongs to the subgroup
CnpA;Gq ` CnpXzB;Gq Ă CnpX ;Gq. The excision theorem is closely related to the observation
that every relative n-cycle in pX,Aq is homologous to one that is decomposable. Indeed, if this is
true and every rcs P HnpX,A;Gq can be written without loss of generality as c “ cA ` cXzB for
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some cA P CnpA;Gq and CXzB P CnpXzB;Gq, then since c is a relative cycle, Bc P Cn´1pA;Gq,
implying BcXzB is also in Cn´1pA;Gq since BcA must be as well, thus BcXzB P Cn´1pAzB;Gq. This
proves that cXzB is a relative n-cycle for the pair pXzB,AzBq, so it represents a homology class
in HnpXzB,AzB;Gq, and obviously

i˚rcXzBs “ rcs
since cA P CnpA;Gq represents the trivial element of CnpX,A;Gq. This proves surjectivity in The-
orem 24.9, modulo the detail about why we are allowed to restrict our attention to decomposable
chains. The latter is where most of the hard work is hidden.

Let us reframe the discussion slightly and suppose U ,V Ă X are two subsets whose interiors
form an open cover of X ,

X “ Ů Y V̊ .

We would like to develop a procedure for replacing any given chain c P CnpX ;Gq with one that
is in the subgroup CnpU ;Gq ` CnpV ;Gq Ă CnpX ;Gq but represents the same homology class in
cases where c is a (relative) cycle. If you followed the extended digression on how to visualize
n-cycles at the end of the previous lecture, then you can imagine an intuitive reason why this
should be possible: consider a homology class that is presented in the form f˚rM s P HnpX ;Zq for
some triangulated oriented n-manifold M and a map f :M Ñ X . In this case, the definition of a
cycle representing f˚rM s depends on a choice of oriented triangulation forM , but we do not really
expect the homology class f˚rM s to depend on this triangulation, and in particular, we should
be free to replace the triangulation by a finer one, which has more simplices but each one small
enough to be contained in either U or V (or both). It is not hard to imagine that one could achieve
this simply by triangulating each individual simplex in M to decompose it into strictly smaller
simplices, and the process could then be repeated finitely many times to make the simplices as
small as we like. This process is called subdivision. We shall now describe an inductive algorithm
that makes the idea precise.

The barycentric subdivision of the standard n-simplex ∆n is an oriented triangulation of
∆n defined as follows. If n “ 0, then ∆0 is only a single point, so it cannot be subdivided any
further and our triangulation of ∆0 will consist only of that single 0-simplex. Now by induction,
assume the desired triangulation of ∆m has already been defined for all m ď n ´ 1. Under the
natural identification of each boundary face Bpkq∆n with ∆n´1, this means in particular that a
triangulation of Bpkq∆n has been chosen for each k “ 0, . . . , n. Now for each pn´ 1q-simplex σ in
that triangulation, define σ1 to be the n-simplex in ∆n that is linearly spanned by the n vertices
of σ plus one extra vertex that is in the interior of ∆n, the so-called barycenter

bn :“
ˆ

1

n` 1
, . . . ,

1

n` 1

˙
P ∆n.

It is straightforward to check that the collection of all n-simplices σ1 defined in this way from
pn´ 1q-simplices σ in boundary faces Bpkq∆n forms a triangulation of ∆n, and one can also assign
it an orientation based on the orientations of the triangulations of Bpkq∆n. Some pictures for
n “ 1, 2, 3 are shown in [Hat02, p. 120].

As usual with triangulations of manifolds, one can assign to each n-simplex σ1 Ă ∆n in the
barycentric subdivision of ∆n a parametrization τ : ∆n –Ñ σ1 Ă ∆n such that the sum over all
such parametrized simplices τi with attached signs ǫi “ ˘1 determined by their orientations in the
triangulation produces a relative n-cycle in p∆n, B∆nq,ÿ

i

ǫiτi P Cnp∆n;Zq, Bÿ
i

ǫiτi P Cn´1pB∆n;Zq,

where pn´ 1q-simplices in the interior of ∆n do not appear in Bři ǫiτi because each is a boundary
face of two n-simplices whose induced boundary orientations cancel. We can then use this to define
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a homomorphism
S : CnpX ;Gq Ñ CnpX ;Gq

via the formula
Spσq :“ÿ

i

ǫipσ ˝ τiq

for each n ě 0 and σ : ∆n Ñ X . Essentially, S replaces each singular n-simplex σ by a linear
combination (with coefficients ˘1) of the restrictions of σ to the subdivided pieces of its domain.

Lemma 24.10. S : C˚pX ;Gq Ñ C˚pX ;Gq is a chain map.

Proof. This follows from the relation BSpσq “ SpBσq for each σ : ∆n Ñ X , which is a
direct consequence of the inductive nature of the subdivision algorithm: boundary faces of the
smaller simplices in the subdivision are also the simplices in a subdivision of the original boundary
faces. �

Lemma 24.11. S : C˚pX ;Gq Ñ C˚pX ;Gq is chain homotopic to the identity map.

Proof. As in the proof of Lemma 24.5, the chain homotopy here comes from a particular
choice of oriented triangulation of the prism I ˆ∆n. A picture of this triangulation and a precise
algorithm to construct it are given in [Hat02, p. 122]. We want it in particular to have the
following properties:

(1) Its restriction to t1u ˆ∆n is the barycentric subdivision of ∆n;
(2) Its restriction to t0u ˆ∆n consists only of that one n-simplex, with no subdivision;
(3) Its restriction to each I ˆ Bpkq∆n matches the chosen triangulation of I ˆ∆n´1.

The third property means that the construction is again inductive: we start with n “ 0 by choosing
the trivial triangulation of I ˆ∆0 “ I, and then increase the dimension one at a time such that
the triangulation already defined for I ˆ∆n´1 determines the triangulation of I ˆ∆n. Since it is
an oriented triangulation, one can now define a relative pn` 1q-cycle in pI ˆ∆n, BpI ˆ∆nqq of the
form ÿ

i

ǫiτi P Cn`1pI ˆ∆n;Zq,

where τi : ∆n`1 Ñ I ˆ∆n are parametrizations of the simplices in the triangulation and the signs
ǫi “ ˘1 are determined by their orientations. Let

π : I ˆ∆n Ñ ∆n

denote the obvious projection map. The desired chain homotopy h : CnpX ;Gq Ñ Cn`1pX ;Gq is
then determined by the formula

hpσq “ÿ
i

ǫi pσ ˝ π ˝ τiq .

In computing Bhpσq, n-simplices in the interior of I ˆ∆n make no contribution due to the usual
cancelations, but there are contributions from the induced triangulation of BpI ˆ ∆nq, and the
chain homotopy relation again follows from the geometric formula (24.1) for the oriented boundary
of I ˆ∆n. Namely, restricting to t1u ˆ∆n gives the barycentric subdivision Spσq, restricting to
´t0u ˆ∆n gives ´σ, and restricting to ´I ˆ B∆n gives the same operator applied to Bσ, hence

Bhpσq “ Spσq ´ σ ´ hpBσq,
proving S ´ 1 “ Bh` hB. �
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The chain homotopy result implies that our subdivision map S : C˚pX ;Gq Ñ C˚pX ;Gq has
the main property we want, namely it induces the identity homomorphism H˚pX ;Gq Ñ H˚pX ;Gq,
and since S clearly also preserves C˚pA;Gq for any A Ă X , the same is also true for the relative
homology groups of pX,Aq. It then remains true if we replace S by any iteration Sm for integers
m ě 1, thus we can apply S repeatedly in order to make the individual simplices in a chain as
small as we like. In particular, for any c P C˚pX ;Gq, we will have Smc P C˚pU ;Gq ` C˚pV ;Gq for
m sufficiently large. This is enough information to prove the excision theorem, so let’s go ahead
and do that.

Proof of Theorem 24.9. The hypotheses of the theorem imply that X is the union of the
interiors of XzB and A, so given any class rcs P HnpX,A;Gq with a relative n-cycle c P CnpX ;Gq
representing it, c can be replaced by an iterated subdivision Smc for large m P N that represents
the same relative homology class rSmcs “ rcs P HnpX,A;Gq but is also decomposable, meaning it
is the sum of a chain in XzB with a chain in A. Let’s assume that c has already been replaced
with Smc in this way, so that without loss of generality,

c “ cA ` cXzB for some cA P CnpA;Gq, cXzB P CnpXzB;Gq.
Having made this assumption, the reason why i˚ : HnpXzB,AzB;Gq Ñ HnpX,A;Gq is surjective
was explained already in the paragraph after the statement of the theorem: the fact that c P
CnpX,A;Gq is a relative n-cycle means Bc P CnpA;Gq and therefore also BcXzB P CnpA;Gq, so
that cXzB is a relative n-cycle in pXzB,AzBq, thus representing a class rcXzBs P HnpXzB,AzB;Gq
that satisfies

i˚rcXzBs “ rcs.
The proof that i˚ : HnpXzB,AzB;Gq Ñ HnpX,A;Gq is injective uses subdivision in a slightly

different way. Suppose c P CnpXzB;Gq is a relative n-cycle representing a homology class rcs P
HnpXzB,AzB;Gq with i˚rcs “ 0 P HnpX,A;Gq. Since i is just an inclusion map, i˚rcs “ 0 means
that after reinterpreting c as an n-chain in X instead of just in XzB, c is a boundary of some
pn` 1q-chain in X , modulo one that is contained in A, i.e. we have

c “ Bb` a for some b P Cn`1pX ;Gq and a P CnpA;Gq.
Applying B to both sides of this equation gives Bc “ Ba, which implies since c is a relative n-cycle
in pXzB,AzBq that Ba P CnpAzB;Gq, i.e. none of the singular simplices that make up the pn´ 1q-
cycle Ba intersect B. If we happened to know that the chains b P Cn`1pX ;Gq and a P CnpA;Gq also
have that property, i.e. that they are made up only of singular simplices that do not intersect B,
then we would be done: indeed, we could then interpret b as an pn ` 1q-chain in XzB and a as
an n-chain in AzB, so that the relation c “ Bb ` a also implies rcs “ 0 P HnpXzB,AzB;Gq. As
it stands, each of b and a might very well intersect B, but we can now use subdivision to replace
them with chains that do not. Indeed, the homology class rcs P HnpXzB,AzB;Gq does not change
if we replace c with Smc for any m ě 1, and since S is a chain map, the relation c “ Bb ` a

then implies Smc “ SmpBbq ` Sma “ BpSmbq ` Sma. Choosing m sufficiently large and replacing
each of a, b, c with their m-fold subdivisions, we can now assume without loss of generality that all
three are decomposable; for c P CnpXzB;Gq and a P CnpA;Gq this is not new information since
we already assumed them to be contained in XzB or A respectively, but for b P Cn`1pX ;Gq we
can now write

b “ bA ` bXzB for some bA P Cn`1pA;Gq, bXzB P Cn`1pXzB;Gq.
The relation c “ Bb` a thus becomes

c “ BbXzB ` pBbA ` aq ,
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and we observe that since c and BbXzB are both n-chains in XzB, the same must therefore be true
for BbA`a, meaning it is actually contained in AzB. This proves rcs “ 0 P HnpXzB,AzB;Gq. �

The remainder of this lecture should be considered optional for now, as it is not needed for
the purposes of this semester’s course. However, when we study cohomology next semester, we
will need a slightly better version of the excision result than Theorem 24.9. One thing you’ve
probably gathered by now is that a chain homotopy is always a useful thing to have, so when
one exists, we should take note of it. Theorem 24.9 can be seen as a consequence of the stronger
result that the inclusion i : pXzB,AzBq ãÑ pX,Aq induces a chain homotopy equivalence
(Kettenhomotopieäquivalenz)

i˚ : C˚pXzB,AzB;Gq Ñ C˚pX,A;Gq.
In case the meaning of this terminology is not obvious, this means there exists a chain map
ψ : C˚pX,A;Gq Ñ C˚pXzB,AzB;Gq such that ψ ˝ i˚ and i˚ ˝ ψ are each chain homotopic to the
identity; we call ψ a chain homotopy inverse of i˚.

The following statement turns our previous discussion of subdivision into an actual chain ho-
motopy equivalence that has several applications in the further development of the theory, e.g. we
will use it again next semester when we discuss the homology analogue of the Seifert-van Kampen
theorem, known as the Mayer-Vietoris exact sequence. To understand the statement, it is impor-
tant to be aware that for any subsets U ,V Ă X , the subgroup C˚pU ;Gq `C˚pV ;Gq Ă C˚pX ;Gq is
also a chain complex in a natural way. Indeed, the boundary operator on C˚pX ;Gq maps each of
C˚pU ;Gq and C˚pV ;Gq to themselves, thus it also preserves their sum.

Lemma 24.12. For any subsets U ,V Ă X with X “ Ů Y V̊, the inclusion map

j : C˚pU ;Gq ` C˚pV ;Gq ãÑ C˚pX ;Gq
admits a chain homotopy inverse

ρ : C˚pX ;Gq Ñ C˚pU ;Gq ` C˚pV ;Gq
such that ρ ˝ j “ 1, and moreover, there is a chain homotopy h : C˚pX ;Gq Ñ C˚`1pX ;Gq of j ˝ ρ
to the identity such that h vanishes on C˚pU ;Gq ` C˚pV ;Gq.

Proof. Let me first point out how one would intuitively wish to prove this, and why it will
not work. As observed above, any chain c P C˚pX ;Gq can be mapped into C˚pU ;Gq ` C˚pV ;Gq
via Sm if the integer m is sufficiently large, so Sm seems like a good candidate for the chain
homotopy inverse ρ. The problem however is that we don’t know in general how large m needs
to be, and in fact the answer depends on the chain c: for any fixed integer m, one can always
find a singular n-simplex σ : ∆n Ñ X whose boundary is close enough to the boundary of U or V
so that the m-fold subdivision Smpσq includes some simplex that is not fully contained in either
one. This means that regardless of how large we make m, Sm can never map all of C˚pX ;Gq into
C˚pU ;Gq ` C˚pV ;Gq, and it will require a bit more cleverness to come up with a candidate for
a map ρ that does this. Our approach will be somewhat indirect: instead of writing down ρ, we
will first write down a (somewhat naive) candidate for the chain homotopy h in terms of the chain
homotopies between Sm and 1 for varying values of m. We will then be able to verify that h really
is a chain homotopy between 1 and something; that so-called “something” will be defined to be ρ,
whose further properties we can then verify.

Let h1 : C˚pX ;Gq Ñ C˚`1pX ;Gq denote the chain homotopy provided by Lemma 24.11 for
the barycentric subdivision chain map S : C˚pX ;Gq Ñ C˚pX ;Gq, i.e. it satisfies S´1 “ Bh1`h1B.
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We claim that for all integers m ě 0, the map

hm :“ h1

m´1ÿ
k“0

Sk : C˚pX ;Gq Ñ C˚`1pX ;Gq

then satisfies

(24.2) Sm ´ 1 “ Bhm ` hmB,
so hm is a chain homotopy between Sm and the identity. Note that the casem “ 0 is included here,
with S0 “ 1 and h0 “ 0, so the claim is trivial in that case, and the definition of h1 establishes
it for m “ 1. If we now use induction and assume that the claim holds for powers of S up to
m´ 1 ě 1, then since S commutes with B,
Sm ´ 1 “ pSm´1 ´ 1qS ` pS ´ 1q “ pBhm´1 ` hm´1BqS ` Bh1 ` h1B

“
˜
Bh1

m´2ÿ
k“0

Sk ` h1

m´2ÿ
k“0

SkB
¸
S ` Bh1 ` h1B “ Bh1

m´1ÿ
k“1

Sk ` h1

m´1ÿ
k“1

SkB ` Bh1 ` h1B

“ Bh1
m´1ÿ
k“0

Sk ` h1

m´1ÿ
k“0

SkB “ Bhm ` hmB.

For any given σ : ∆n Ñ X , the iterated subdivision maps Sm can be assumed to satisfy

(24.3) Smpσq P C˚pU ;Gq ` C˚pV ;Gq
if m is large enough, so for each each n ě 0 and σ : ∆n Ñ X , let mσ ě 0 denote the smallest
integer for which (24.3) holds with m “ mσ. We can then define a homomorphism h : CnpX ;Gq Ñ
Cn`1pX ;Gq for each n ě 0 via

hpσq :“ hmσ
pσq.

Let us see whether this is a chain homotopy. We have

pBh` hBqpσq “ Bhmσ
pσq ` hmσ

pBσq ` ph´ hmσ
qpBσq

“ pSmσ ´ 1qpσq ` ph´ hmσ
qpBσq “ prSmσ ` ph´ hmσ

qBs ´ 1q pσq.
Use this to define ρ : C˚pX ;Gq Ñ C˚pX ;Gq by

ρpσq :“ Smσ pσq ` ph´ hmσ
qpBσq,

so the relation

(24.4) Bh` hB “ ρ´ 1

is satisfied. The latter implies that ρ is a chain map since applying B from either the left or right
on the left hand side of (24.4) gives BhB, thus on the right hand side we obtain pρ´1qB “ Bpρ´1q.
To understand ρ better, we need to observe that each boundary face τ appearing in Bσ satisfies
mτ ď mσ since mσ is clearly enough (but need not be the minimal number of) iterations of S
to put σ (and therefore also τ) in C˚pU ;Gq ` C˚pV ;Gq. Now if σ P C˚pU ;Gq ` C˚pV ;Gq, then
Smσpσq “ σ since mσ “ 0, and the above remarks imply hpBσq “ h0pBσq “ 0 as well, thus ρpσq “ σ

and we conclude
ρ ˝ j “ 1.

It remains to show that for all σ : ∆n Ñ X , ρpσq is a linear combination of simplices that are
each contained in either U or V . We have Smσpσq P C˚pU ;Gq `C˚pV ;Gq by the definition of mσ,
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so it suffices to inspect the other term ph´ hmσ
qpBσq. Here again we observe that Bσ is a sum of

singular pn´ 1q-simplices τ for which mτ ď mσ, and

ph´ hmσ
qτ “ phmτ

´ hmσ
qτ “ ´h1

mσ´1ÿ
k“mτ

Skpτq P CnpU ;Gq ` CnpV ;Gq.

This last conclusion requires you to recall how h1 was constructed in the proof of Lemma 24.11:
in particular, it maps any simplex that is contained in either U or V to a linear combination of
simplices that have this same property.

One last detail: the chain homotopy h : C˚pX ;Gq Ñ C˚`1pX ;Gq vanishes on C˚pU ;Gq `
C˚pV ;Gq since every singular n-simplex σ : ∆n Ñ X with image in either U or V satisfies mσ “ 0,
thus hpσq “ hmσ

pσq “ h0pσq “ 0. �

Now we can prove the “chain level” result that implies Theorem 24.9.

Lemma 24.13. If A,B Ă X are subsets with sB Ă Å, then the inclusion i : pXzB,AzBq ãÑ
pX,Aq induces a chain homotopy equivalence i˚ : C˚pXzB,AzB;Gq Ñ C˚pX,A;Gq.

Proof. Consider the quotient chain complex pC˚pXzB;Gq ` C˚pA;Gqq {C˚pA;Gq, which has
a natural identification with the group of all finite sums

ř
i aiσi with coefficients ai P G and

singular simplices σi : ∆n Ñ X that have image in XzB but not contained in A. The point here
is that while simplices with σp∆nq Ă A are also generators of C˚pXzB;Gq ` C˚pA;Gq, they are
all equivalent to zero in the quotient. As it happens, the quotient complex C˚pXzB,AzB;Gq “
C˚pXzB;Gq{C˚pAzB;Gq can be described in exactly the same way, with the same set of generators:
singular simplices that are contained in XzB but not contained in A. Since the obvious inclusion
C˚pXzB;Gq ãÑ C˚pXzB;Gq ` C˚pA;Gq sends C˚pAzB;Gq into C˚pA;Gq, it follows that this
inclusion descends to a chain map of quotient complexes

C˚pXzB,AzB;Gq Ñ pC˚pXzB;Gq ` C˚pA;Gqq LC˚pA;Gq
which is in fact an isomorphism of chain complexes, i.e. it has an inverse, which is also a chain
map. This is a trivial observation; we have not done anything interesting yet.

But in light of this identification of two quotient chain complexes, it will suffice to prove that
the chain map

(24.5) pC˚pXzB;Gq ` C˚pA;Gqq LC˚pA;Gq jÝÑ C˚pX ;Gq{C˚pA;Gq “ C˚pX,A;Gq
induced on these quotients by the obvious inclusion

C˚pXzB;Gq ` C˚pA;Gq jãÑ C˚pX ;Gq
is a chain homotopy equivalence. SinceXz sB and Å form an open cover ofX , Lemma 24.12 provides
a chain homotopy inverse for j, namely the map ρ : C˚pX ;Gq Ñ C˚pXzB;Gq `C˚pA;Gq, defined
in terms of subdivision. That map satisfies ρ˝j “ 1, thus ρ restricts to the identity on the subgroup
C˚pA;Gq Ă C˚pX ;Gq and therefore descends to a map on quotients going the opposite direction
to j in (24.5). It also satisfies j ˝ρ´1 “ Bh`hB for a chain homotopy h : C˚pX ;Gq Ñ C˚`1pX ;Gq
that vanishes on C˚pA;Gq, thus h also descends to the quotient C˚pX ;Gq{C˚pA;Gq as a chain
homotopy h : C˚pX,A;Gq Ñ C˚`1pX,A;Gq satisfying j ˝ ρ ´ 1 “ Bh ` hB on the quotient
complexes. �

Remark 24.14. We will not need it this semester, but since the notions of chain maps and
chain homotopies did not appear in our discussion of simplicial homology, you might wonder if they
nonetheless have some role to play in that context. Chain maps arise for instance from simplicial
maps : given two simplicial complexes K “ pV, Sq and K 1 “ pV 1, S1q, a map f : V Ñ V 1 is called a
simplicial map if for every simplex σ of K, the images under f of the vertices of σ form the vertices
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(possibly with repetition) of a simplex of K 1. A simplicial map naturally determines a continuous
map of the associated polyhedra |K| Ñ |K 1| which maps each n-simplex in |K| linearly to a k-
simplex in |K 1| for some k ď n. It is not hard to show that f also naturally induces a chain map
f˚ : C˚pK;Gq Ñ C˚pK 1;Gq, defined by sending each n-simplex σ in K to its image k-simplex in
K 1 if k “ n and otherwise sending σ to 0. In light of this, Proposition 22.5 implies (unsurprisingly)
that any bijective simplicial map from K to K 1 induces an isomorphism of the simplicial homology
groups H∆˚ pK;Gq Ñ H∆˚ pK 1;Gq. Chain homotopies play an important role when one considers
subdivisions of a simplicial complex, e.g. one can adapt the notion of barycentric subdivision so that
it naturally associates to any simplicial complex K a larger complex K 1 with a homeomorphism
of |K 1| to |K| such that the simplices in K 1 triangulate the individual simplices of K into smaller
pieces. This defines a chain map S : C˚pK;Gq Ñ C˚pK 1;Gq sending each simplex of K to the
linear combination of simplices of K 1 that triangulate it, and importantly, S turns out to be a
chain homotopy equivalence, so it follows from Proposition 24.4 that the induced homomorphism
S˚ : H∆˚ pK;Gq Ñ H∆˚ pK 1;Gq is an isomorphism. This was historically considered one of the major
motivations to believe that simplicial homology depends only on the underlying space |K| and not
on the simplicial complex itself (cf. Theorem 21.16). We saw a closely analogous phenomenon
in our proof of the excision property above, though in the simplicial context, one usually has to
consult some of the older textbooks (e.g. [Spa95] is quite nice) to find adequate discussions of such
topics.

25. The homology of the spheres, and applications

It is time to put the results of the last few lectures together and compute H˚pSn;Zq. The
computation proceeds by induction on the dimension n, making use of the convenient fact that
the suspension of Sn is homeomorphic to Sn`1. Suspensions, in fact, provide us with our first
interesting example of a homotopy equivalence of pairs.

Example 25.1. Recall from Lecture 11 that the suspension (Einhängung) SX of a space X
is defined by gluing together two copies of its cone,

(25.1) SX “ C`X YX C´X,

where C`X :“ pr0, 1sˆXq{pt1uˆXq, C´X :“ pr´1, 0sˆXq{pt´1uˆXq, and we identify X with
the subset t0u ˆX in each. Let p˘ P SX denote the points at the tips of the two cones, defined
by collapsing t˘1u ˆX . Then the inclusion

pC`X,Xq ãÑ pSXztp´u, C´Xztp´uq
is a homotopy equivalence of pairs. Indeed, one can define a deformation retraction H : I ˆ
pSXztp´uq Ñ SXztp´u by pushing points in C´Xztp´u continuously upward toward X while
leaving C`X fixed, so thatHp1, ¨q is the identity whileHp0, ¨q retracts SXztp´u to C`X andHps, ¨q
preserves C´Xztp´u for every s P I. The resulting retraction of pairs pSXztp´u, C´Xztp´uq Ñ
pC`X,Xq is a homotopy inverse for the inclusion. Let us spell this out more explicitly in the
special case where X “ Sn´1, so SX is then homeomorphic to Sn. The decomposition (25.1)
then becomes a splitting of Sn into two hemispheres Dn` – Dn – Dn´ glued along an “equator”
homeomorphic to Sn´1,

Sn – Dn` YSn´1 Dn´,
and our homotopy equivalence of pairs is now the resulting inclusion map

pDn`, Sn´1q ãÑ pSnztp´u,Dn´ztp´uq,
where p´ is now the “south pole,” i.e. the center of Dn´.
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The homotopy equivalence in Example 25.1 gives rise to an interesting relationship between
H˚pX ;Gq and H˚pSX ;Gq for any space X . Ponder the following diagram:

(25.2)
HkpX ;Gq Hk`1pSX ;Gq

Hk`1pC`X,X ;Gq Hk`1pSXztp´u, C´Xztp´u;Gq Hk`1pSX,C´X ;Gq
ϕ˚B˚

i˚ j˚

Here B˚ denotes the connecting homomorphism from the long exact sequence of the pair pC`X,Xq,
while the maps j˚ and ϕ˚ are induced by the obvious inclusions of pairs

pSXztp´u, C´Xztp´uq jãÑ pSX,C´Xq,
pSX,Hq ϕãÑ pSX,C´Xq.

Since tp´u Ă C´X is a closed subset in the interior of C´X , excision (Theorem 24.9) implies that
j˚ is an isomorphism. We claim that if k ě 1, then B˚ and ϕ˚ are both also isomorphisms. For
the first, consider the long exact sequence of the pair pC`X,Xq:

. . . ÝÑ Hk`1pC`X ;Gq ÝÑ Hk`1pC`X,X ;Gq B˚ÝÑ HkpX ;Gq ÝÑ HkpC`X ;Gq ÝÑ . . .

Since C`X is contractible, homotopy invariance implies that the first and last of these four terms
vanish, as Hnptptu;Gq “ 0 for all n ą 0. The sequence thus becomes

0 ÝÑ Hk`1pC`X,X ;Gq B˚ÝÑ HkpX ;Gq ÝÑ 0

for each k ě 1, so exactness implies that B˚ is an isomorphism. For ϕ˚, we instead take an exerpt
from the long exact sequence of pSX,C´Xq:

. . . ÝÑ Hk`1pC´X ;Gq ÝÑ Hk`1pSX ;Gq ϕ˚ÝÑ Hk`1pSX,C´X ;Gq ÝÑ HkpC´X ;Gq ÝÑ . . .

The contractibility of C´X again makes the first and last terms vanish if k ě 1, leaving

0 ÝÑ Hk`1pSX ;Gq ϕ˚ÝÑ Hk`1pSX,C´X ;Gq ÝÑ 0,

so that ϕ˚ is also an isomorphism. We have proved:

Theorem 25.2. For all spaces X, abelian groups G and integers k ě 1, the diagram (25.2)
defines an isomorphism

S˚ “ ϕ´1˚ ˝ j˚ ˝ i˚ ˝ B´1˚ : HkpX ;Gq Ñ Hk`1pSX ;Gq.
�

Exercise 25.3. Show that for any k-cycle b P CkpX ;Gq Ă CkpSX ;Gq, there exists a pair of
pk ` 1q-chains c˘ P Ck`1pC˘X ;Gq Ă Ck`1pSX ;Gq satisfying
(25.3) Bc` “ ´Bc´ “ b

and

(25.4) S˚rbs “ rc` ` c´s.
Note that c`` c´ P Cn`1pSX ;Gq is automatically a cycle since Bc` “ ´Bc´. Show moreover that
(25.4) is satisfied for any pair of chains c˘ satisfying (25.3).

For the spheres Sn with n ě 1, we already know H0pSn;Gq and H1pSn;Zq; the former is G
because Sn is path-connected (Proposition 22.8), and the latter is the abelianization of π1pSnq by
Theorem 22.10. Since SSn – Sn`1, we can now compute H˚pSn;Zq inductively for every n ě 1:
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Theorem 25.4. For every n P N,

HkpSn;Zq –
#
Z for k “ 0, n,

0 for all other k.

Proof. Proposition 22.8 gives H0pSn;Zq – Z. For k “ n, HnpSn;Zq – Z follows by an
inductive argument starting from H1pS1;Zq – π1pS1q – Z and applying Theorem 25.2. For any
k “ 1, . . . , n ´ 1, a similar inductive argument starting from H1pSn´k`1;Zq “ π1pSn´k`1q “ 0

gives HkpSn;Zq “ 0. For k ą n, repeatedly applying Theorem 25.2 identifies HkpSn;Zq with
Hk´npS0;Zq, where k ´ n ą 0 and S0 is a discrete space of two points. But one can easily adapt
Exercise 22.9 to prove by direct computation that HmpX ;Gq “ 0 for any m ą 0 whenever X is a
discrete space. �

We can now extend our proof of the Brouwer fixed point theorem to all dimensions. The basic
ingredients are the same as before: first, if a map f : Dn Ñ Dn has no fixed point, then we can
use it to define a retraction g : Dn Ñ Sn´1 “ BDn. In Lecture 10, we used the fundamental group
to prove that no such retraction exists when n “ 2. The argument for this did not require many
specific properties of the fundamental group: the key point was just the fact that continuous maps
X Ñ Y induce homomorphisms π1pXq Ñ π1pY q in a way that is compatible with composition of
maps, and the homology groups have this same property. In particular:

Exercise 25.5. Show that if f : X Ñ A is a retraction to a subset A Ă X with inclusion
i : A ãÑ X , then for all n P Z and abelian groups G, f˚ : HnpX ;Gq Ñ HnpA;Gq is surjective,
while i˚ : HnpA;Gq Ñ HnpX ;Gq is injective.

Proof of the Brouwer fixed point theorem. Arguing by contradiction, assume a map
f : Dn Ñ Dn without fixed points exists, and therefore also a retraction g : Dn Ñ Sn´1. We may
assume n ě 2 since the case n “ 1 follows already from the intermediate value theorem for
continuous functions on r´1, 1s. By Exercise 25.5, g induces a surjective homomorphism

g˚ : Hn´1pDn;Zq Ñ Hn´1pSn´1;Zq.
But this is impossible since Hn´1pDn;Zq – Hn´1ptptu;Zq “ 0 and Hn´1pSn´1;Zq – Z. �

Here is another easy application.

Theorem 25.6. A topological manifold of dimension n is not also a topological manifold of
dimension m ‰ n.

Proof. Let us assume m and n are both at least 2, as the result can otherwise be proved via
easier methods. (Hint: removing a point from Rmakes it disconnected.) We argue by contradiction
and assumeM is a manifold with an interior point admitting a neighborhood homeomorphic to Rn

and also a neighborhood homeomorphic to Rm for m ‰ n. By choosing a suitable pair of charts
and writing down their transition maps, we can produce from this a pair of open neighborhoods
of the origin Ωn Ă Rn and Ωm Ă Rm admitting a homeomorphism f : Ωn Ñ Ωm with fp0q “ 0.
Choose ǫ ą 0 small enough so that f maps the ǫ-ball Bnǫ p0q Ă Ωn about the origin into the δ-ball
Bmδ p0q Ă Rm for some δ ą 0, where the latter is also small enough so that Bmδ p0q Ă Ωm. Now pick
a generator

A P Hn´1pBnǫ p0qzt0u;Zq – Hn´1pSn´1;Zq – Z.

Since m ‰ n,
Hn´1pBmδ p0qzt0u;Zq – Hn´1pSm´1;Zq “ 0,



166 FIRST SEMESTER (TOPOLOGIE I)

so restricting f to a map Bnǫ p0qzt0u Ñ Bmδ p0qzt0u gives f˚A “ 0 P Hn´1pBmδ p0qzt0u;Zq. But f´1

is also defined on Bmδ p0q, and restricting both f and f´1 to maps on punctured neighborhoods
with the origin removed, we deduce

A “ pf´1 ˝ fq˚A “ f´1˚ f˚A “ 0,

which is a contradiction since A was assumed to generate Hn´1pBnǫ p0qzt0u;Zq ‰ 0. �

26. Axioms, cells, and the Euler characteristic

At this point, I believe I’ve proved everything that I promised to prove in earlier lectures, so
the course Topologie I is officially over. Since we nonetheless have a bit of time left, the present
lecture is included partly just for fun: none of what it contains should be considered examinable
in the current semester, though some of it may provide a useful wider perspective on the material
we’ve previously covered. All of it will also be treated in much more detail in next semester’s
Topologie II course.

The Eilenberg-Steenrod axioms. First a bit of good news: while the proofs of homotopy
invariance and excision in Lecture 24 may have seemed somewhat unpleasant, we will hardly ever
need to engage in such hands-on constructions via subdivision of simplices in the future. That is
because almost everything one actually needs to know in order to use homology in applications
follows from a small set of results that we’ve spent the last few lectures proving. These results form
an axiomatic description of general “homology theories,” which was first codified by Eilenberg-
Steenrod [ES52] and Milnor [Mil62] around the middle of the 20th century. An axiomatic
homology theory can be thought of as a function

pX,Aq ÞÑ h˚pX,Aq
that associates to each pair of spaces a sequence of abelian groups thnpX,AqunPZ, and has some
additional properties that make it computable for nice spaces and useful for applications in the
same way that singular homology is. Identifying each single space X with the pair pX,Hq as usual,
one abbreviates

hnpXq :“ hnpX,Hq.
Besides the actual groups hnpX,Aq, the theory h˚ comes with some additional data: first, it should
also associate to each map of pairs f : pX,Aq Ñ pY,Bq a sequence of homomorphisms

f˚ : hnpX,Aq Ñ hnpY,Bq, n P Z

with the properties that pf ˝gq˚ “ f˚˝g˚ whenever the composition of f and g makes sense, and the
identity map Id : pX,Aq Ñ pX,Aq gives rise to the identity homomorphism Id˚ “ 1 : hnpX,Aq Ñ
hnpX,Aq. Category theory has a technical term for things like this: we call h˚ a functor from the
category of pairs of topological spaces to the category of Z-graded abelian groups. There is one
additional piece of data: since the long exact sequences of pairs in singular homology were very
useful in the computation of H˚pSnq, we would like to have similar exact sequences for h˚, and
one of the ingredients required for this is a sequence of connecting homomorphisms

B˚ : hnpX,Aq Ñ hn´1pAq, n P Z.

Aside from fitting into an exact sequence as described below, we want these maps to be compatible
with the homomorphisms induced on h˚ by maps of pairs, in the following sense: any map of
pairs f : pX,Aq Ñ pY,Bq restricts to a continuous map A Ñ B, so it induces homomorphisms
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f˚ : hnpX,Aq Ñ hnpY,Bq and f˚ : hnpAq Ñ hnpBq, which we would like to fit together with B˚
into the following commutative diagram for each n:

hnpX,Aq hn´1pAq

hnpY,Bq hn´1pBq

B˚

f˚ f˚
B˚

The fancy category-theoretic term for this condition is “naturality“: more specifically, B˚ defines
for each n P Z a so-called natural transformation from the functor pX,Aq ÞÑ hnpX,Aq to the
functor pX,Aq ÞÑ hnpAq :“ hnpA,Hq. The precise meanings of these terms from category theory
will be discussed in the first lecture of next semester’s course.

The original list of axioms stated in [ES52] included the properties described above, but
they are usually not regarded as actual axioms in modern treatments, since they can instead
be summarized with category-theoretic terminology such as “h˚ is a functor and B˚ is a natural
transformation”. The further conditions we want these things to satisfy are then the following:

‚ (homotopy) f˚ : h˚pX,Aq Ñ h˚pY,Bq depends only on the homotopy class of f :

pX,Aq Ñ pY,Bq.
‚ (exactness) For the inclusions i : A ãÑ X and j : pX,Hq ãÑ pX,Aq, the sequence

. . . ÝÑ hn`1pX,Aq B˚ÝÑ hnpAq i˚ÝÑ hnpXq j˚ÝÑ hnpX,Aq B˚ÝÑ hn´1pAq ÝÑ . . .

is exact.
‚ (excision) If B Ă sB Ă Å Ă A Ă X , then the inclusion pXzB,AzBq ãÑ pX,Aq induces
an isomorphism h˚pXzB,AzBq Ñ h˚pX,Aq.

‚ (dimension) hnptptuq “ 0 for all n ‰ 0. The potentially nontrivial abelian group

G :“ h0ptptuq
is then called the coefficient group of h˚.

‚ (additivity) For any collection of spaces tXαuαPJ with inclusion maps iα : Xα ãÑš
βPJ Xβ , the homomorphisms iα˚ : h˚pXαq Ñ h˚pšβ Xβq determine an isomorphismà

αPJ
h˚pXαq Ñ h˚

´ž
αPJ

Xα

¯
.

Put together, these properties of an axiomatic homology theory h˚ are known as the Eilenberg-
Steenrod axioms, and they were first written down in [ES52] with the exception of the additivity
axiom, which was added later by Milnor [Mil62].41 We have already done most of the work of
proving that for any given abelian group G, the singular homology H˚p¨;Gq defines an axiomatic
homology theory with coefficient group G. The next two exercises fill the remaining gaps in proving
this.

Exercise 26.1. Assume G is any abelian group and abbreviate the singular homology of a
pair pX,Aq with coefficients in G by H˚pX,Aq :“ H˚pX,A;Gq.

(a) Show that the connecting homomorphisms B˚ : HnpX,Aq Ñ Hn´1pAq in singular ho-
mology satisfy naturality, i.e. for any map f : pX,Aq Ñ pY,Bq and every n P Z, the

41One can show that for finite disjoint unions, the additivity axiom follows from the others—it was thus
unnecessary from the perspective of Eilenberg and Steenrod because they were mainly interested in compact spaces,
in particular the polyhedra of finite simplicial complexes. The extra axiom becomes important however as soon as
the discussion is extended to include noncompact spaces with infinitely many connected components.
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diagram

HnpX,Aq Hn´1pAq

HnpY,Bq Hn´1pBq

B˚

f˚ f˚
B˚

commutes.
(b) Deduce that for any map f : pX,Aq Ñ pY,Bq, the long exact sequences of pX,Aq and

pY,Bq in singular homology form the rows of a commutative diagram

. . . HnpAq HnpXq HnpX,Aq Hn´1pAq . . .

. . . HnpBq HnpY q HnpY,Bq Hn´1pBq . . .

f˚ f˚ f˚ f˚

Exercise 26.2. Prove directly from the definition of singular homology H˚p¨;Gq with any
coefficient group G that it satisfies the additivity axiom.

If you look again at our computation of H˚pSn;Zq, you’ll see that it mostly only used the
axioms listed above—I say “mostly” because we did cheat slightly in using the isomorphism
H1pSn;Zq – π1pSnq, the proof of which is a fairly hands-on argument with singular simplices
and does not follow from the axioms. But actually, we could have gotten around this with a little
more effort, and it is even possible to compute H1pSn;Gq for arbitrary coefficient groups G without
knowing anything about the fundamental group. The reason we had to appeal to the fundamental
group was that Theorem 25.2 is not true for k “ 0, and it fails for a very specific reason: since H0

of a contractible space does not vanish, the exact sequences do not always give isomorphisms when
this term appears. But there is a formal trick to avoid this problem, called reduced homology:
it is a variant rH˚ of the usual singular homologyH˚ that fits into all the same exact sequences, but
is defined in a slightly more elaborate way so that rHnptptuq “ 0 for all n, not just for n ‰ 0. If we
had used this, we could have done an inductive argument reducing the homology of every sphere
Sn to the homology of S0, which is the disjoint union of two one-point spaces, so the dimension
and additivity axioms then provide the answer. This version of the argument eliminates any need
for specifying the coefficients G “ Z, and it also works for any axiomatic homology theory, thus
giving:

Theorem. For every n P N and any theory h˚ satisfying the Eilenberg-Steenrod axioms with
coefficient group G,

hkpSnq –
#
G for k “ 0, n,

0 for all other k.

Now a word of caution: in the last few lectures, we proved two things about singular homology
that cannot be deduced merely from the formal properties codified in the Eilenberg-Steenrod
axioms, and they are in fact not true for arbitrary axiomatic homology theories. One of these was
Proposition 22.8, which related H0 of an arbitrary space X to the set π0pXq of path-components
of X via the formula

(26.1) H0pX ;Gq – à
π0pXq

G.

This looks at first like it should be related to the additivity axiom: if X is homeomorphic to the
disjoint union of its path-components Xα Ă X , then additivity gives H0pX ;Gq –À

αH0pXα;Gq,
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but there is unfortunately nothing in the axioms to imply H0pXα;Gq – G for an arbitrary path-
connected space Xα, unless Xα happens to be contractible. There is also a more serious problem,
though you may have forgotten about it since we started focusing only on “nice” spaces after
Lecture 7: not every space is homeomorphic to the disjoint union of its path-components. Manifolds
have this property, and so do locally path-connected spaces in general—the latter follows from a
combination of Exercise 7.12, Proposition 7.18 and Theorem 7.19. But not every space is locally
path-connected, and no such assumption was imposed on X when we computed H0pX ;Gq.

Another important result that does not follow from the axioms is Theorem 22.10, on the
natural homomorphism

(26.2) π1pXq Ñ H1pX ;Zq
for any path-connected spaceX , and the isomorphism it induces betweenH1pX ;Zq and the abelian-
ization of π1pXq. Its proof (carried out in Exercise 22.12) similarly required a hands-on examination
of the chain complex C˚pX ;Zq that underlies the definition of H˚pX ;Zq. In this context, allow me
to point out an odd detail that you may or may not have noticed about the Eilenberg-Steenrod
axioms: they never mention any chain complex at all. Homology theories in the sense of Eilenberg-
Steenrod need not generally come from chain complexes—in practice, most of them do, though
often in less direct ways than singular homology, and one cannot derive from the axioms any direct
intuition about the geometric meaning of elements in the groups h0pXq and h1pXq. Part of the
point of the axioms is that for most of the interesting applications of homology, it should suffice to
know that a homology theory exists and satisfies the right formal properties, because if those prop-
erties hold, then one can typically carry out the applications one wants without even knowing how
the theory itself is defined. This “highbrow” perspective does not suffice however for computations
like (26.1) and (26.2), which are unique to singular homology and its underlying chain complex.

A sketch of Čech homology. Singular homology is not the only theory that satisfies the
Eilenberg-Steenrod axioms, though it has been the standard one that people use for over half a
century. While the alternatives have gone out of fashion, a few of them do still occasionally resurface
in research articles. I would like to give a quick sketch of one of them, if only to demonstrate how
two completely different ideas can sometimes lead to invariants that detect more-or-less the same
information.

While singular homology tries to understand spaces by viewing singular n-simplices as basic
building blocks of n-dimensional objects, the Čech homology theory studies them instead via the
combinatorial properties of their open coverings. Suppose in particular that O :“ tUα Ă XuαPJ
is an open covering of a space X . One can associate to any such covering an abstract simplicial
complex KO “ pV, Sq, called the nerve of the covering: its set of vertices V is the index set J , or
equivalently the set of open sets that belong to the covering, and a subset σ :“ tα0, . . . , αnu Ă V

is defined to be an n-simplex σ P S of the complex KO if and only if

Uα0
X . . .X Uαn

‰ H.
This easily satisfies the required conditions for a simplicial complex: each vertex α P V defines
a 0-simplex tαu P S since Uα ‰ H, and each face of σ “ tα0, . . . , αnu P S is also a simplex in
the complex since every nontrivial subcollection of the sets Uα0

, . . . ,Uαn
must still have nonempty

intersection. As with all simplicial complexes, KO gives rise to a topological space, its polyhe-
dron |KO|, but that space need not look at all similar to X : for example, if X is something as
simple as S1, then even if the open covering tUαuαPJ is finite, the simplicial complex KO may have
arbitrarily large dimension, namely the largest number n ě 0 such that n ` 1 of the sets in the
covering have a nonempty intersection.
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Figure 14. Three examples of open coverings of S1 and their nerves, with
vertices labeled k P t1, 2, 3, 4, 5u in correspondence with the open sets Uk Ă S1.
The rightmost example includes two 2-simplices in addition to vertices and 1-simplices.

The example X “ S1 is quite instructive, however, if one compares what KO looks like for a
few simple choices of open coverings. Figure 14 shows three such choices, two of which give rise to
1-dimensional simplicial complexes, and in the third case, the simplicial complex is 2-dimensional.
The polyhedra of these three simplicial complexes are all different spaces, none homeomorphic
to any of the others, but you may notice that the last two have something in common: they
are homotopy equivalent, and not just to each other, but also to the original space, X “ S1. The
polyhedron in the first example is not homotopy equivalent to S1, but the other two open coverings
also happen to have a nice property that this one does not: in the other two, the intersection sets
Uα0

X . . . X Uαn
are always contractible, whereas in the first covering, U1 X U2 is a disconnected

set. Open coverings in which the sets Uα0
X . . .XUαn

are always contractible have a special status:
they are called good covers, and for sufficiently nice spaces such as smooth manifolds, one can show
that every open covering has a refinement that is a good cover. Figure 14 hints at an intriguing
general phenomenon: for sufficiently nice open coverings of sufficiently nice spaces X , the nerve of
the cover can be viewed as a simplicial model for X itself, up to homotopy type. This suggests that
the simplicial homologyH∆˚ pKO;Gq of the nerve should encode interesting topological information
about X , and that is how Čech homology is defined: for sufficiently nice open coverings O of X ,
the Čech homology of X with coefficient group G isqH˚pX ;Gq :“ H∆˚ pKO;Gq.
I am being deliberately vague now, because making this definition more precise would require a
discussion of inverse limits and chain homotopy equivalences which we do not have time for right
now: in particular, some serious work would be required in order to show that H∆˚ pKO;Gq up to
isomorphism is independent of the choice of (sufficiently nice!) open covering O. The examples
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on the circle in Figure 14 are intended to convince you that this idea might not be completely
outlandish.

Since the definitions of H˚pX ;Gq and qH˚pX ;Gq seem very different, it is somewhat remarkable
that for a wide class of spaces that includes all compact manifolds, they are isomorphic. One way
to explain this is by ignoring the definitions of these two invariants and concentrating instead on
their formal properties: after extending Čech homology to an invariant of pairs pX,Aq rather than
just individual spaces X , one can show (under one or two extra assumptions) that it satisfies the
Eilenberg-Steenrod axioms, just like singular homology. As a consequence, any computation that
relies only on the formal properties of homology theories—homotopy invariance, excision, long
exact sequences and so forth—applies equally well to H˚pX ;Gq and qH˚pX ;Gq.

It is not true thatH˚pX ;Gq and qH˚pX ;Gq are always isomorphic, but one has to consider fairly
ugly spaces in order to see the difference. A hint of where to look comes from our computation
H0pX ;Gq – À

π0pXqG: as mentioned above, this result does not follow from the axioms. As

it turns out, qH0pX ;Gq does not care whether the space X is path-connected, but cares instead
whether it is connected:

Exercise 26.3. Show that if X is a connected space, then for any open cover O of X , the
polyhedron |KO| of its nerve is path-connected.

Way back in Lecture 7, we saw examples of spaces that are connected but not path-connected.
One can deduce from Exercise 26.3 that whenever X is such a space, qH0pX ;Gq – G, but according
to (26.1), H0pX ;Gq is larger. Using suspensions, one can also derive from this examples of path-
connected spaces X for which qH1pX ;Zq is not isomorphic to the abelianization of π1pXq. But
again: spaces like this are ugly, they are not the kinds of spaces that arise naturally in most
applications.

Remark 26.4. In the discussion above, I have swept an uncomfortable fact about qH˚pX ;Gq
under the rug: most versions of Čech homology satisfy most of the Eilenberg-Steenrod axioms,
but not quite all of them. For technical reasons having to do with the formal properties of inverse
limits in homological algebra, qH˚pX ;Gq does not generally satisfy the exactness axiom unless
one restricts to compact pairs pX,Aq and a restrictive class of coefficient groups G, e.g. any finite
abelian group or finite-dimensional vector space over a field will do. This shortcoming is one reason
why Čech homology has not been used very much in the past half-century. On the other hand,
another major topic for next semester’s course will be cohomology, which is a kind of dualization
of homology that has its own closely related set of axioms. The most popular cohomology theory
is singular cohomology, but there is also a Čech cohomology theory, which has strictly better
formal properties than its undualized counterpart, i.e. it satisfies all of the conditions required
for an axiomatic cohomology theory, and even has one or two desirable properties that singular
cohomology does not. The ability of Čech cohomology to relate local and global properties of
spaces via the combinatorics of their open coverings makes it an essential and frequently used tool
in certain branches of mathematics, especially in algebraic geometry.

Cell complexes. We’ve seen that all axiomatic homology theories are isomorphic on the
spaces Sn, though they need not be isomorphic in peculiar examples such as connected spaces that
are not path-connected. It is natural to wonder: how large is the class of spaces X for which the
Eilenberg-Steenrod axioms completely determine their homologies h˚pXq? The spaces with this
property happen to be the spaces for which most of the more advanced techniques of algebraic
topology have something interesting to say, so they play a starring role in the subject from this
point forward.
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A plausible first guess for the class of spaces we want to consider would be polyhedra: the
topological spaces associated to abstract simplicial complexes. But there is a larger class of spaces
called, cell complexes (or the fancier term “CW-complexes”), which are actually easier to work with
and much more general. It is known that all smooth manifolds or simplicial complexes are also
cell complexes, and all topological manifolds are at least homotopy equivalent to cell complexes.
We saw one concrete example in Lecture 14: when we proved that every finitely presented group
occurs as the fundamental group of some compact Hausdorff space (Theorem 14.20), the space we
constructed was a wedge of circles with a finite set of disks attached. The general idea of a cell
complex is to build up a space inductively as a nested sequence of “skeleta” of various dimensions,
where the n-skeleton is always constructed by attaching n-disks to the pn ´ 1q-skeleton. In this
language, the space constructed in the proof of Theorem 14.20 was a 2-dimensional cell complex,
because it had a 1-skeleton (the wedge of circles) and a 2-skeleton (the attached disks). Here is
the general definition in the case where there are only finitely many cells.

Definition 26.5. A space X is called a (finite) cell complex (Zellenkomplex) of dimension
n if it contains a nested sequence of subspaces X0 Ă X1 Ă . . . Ă Xn´1 Ă Xn “ X such that:

(1) X0 is a finite discrete set;
(2) For each m “ 1, . . . , n, Xm is homeomorphic to a space constructed by attaching finitely

many m-disks Dm to Xm´1 along maps BDm Ñ Xm´1.

In general, the collection of m-disks attached to Xm´1 at each step need not be nonempty; if it is
empty, then Xm “ Xm´1, but we implicitly assume Xn ‰ Xn´1 when we call X “n-dimensional”.

We call Xm Ă X the m-skeleton of X . The definition implies that for each m “ 1, . . . , n,
there is a finite set KmpXq and a so-called attaching map ϕα : Sm´1 Ñ Xm´1 associated to each
α P KmpXq such that

Xm –
¨̋ ž
αPKmpXq

Dm‚̨Yϕm
Xm´1,

where ϕm :
š
αPKmpXq BDm Ñ Xm´1 denotes the disjoint union of the maps ϕα : Sm´1 Ñ Xm´1,

each defined on the boundary of the disk indexed by α. As a set, Xm is the union of Xm´1 with
a disjoint union of open disks

emα – D̊m for each α P KmpXq,
called the m-cells of the complex. For m “ 0, we call the discrete points of the 0-skeleton X0 the
0-cells and denote this set by K0pXq.

Since ∆n – Dn, it is easy to see that polyhedra are also cell complexes: the n-cells are the
interiors of the n-simplices, while the n-skeleton is the union of all simplices of dimension at most
n and the attaching maps Sn´1 – B∆n Ñ Xn´1 are each homeomorphisms onto their images.
In general, the attaching maps in a cell complex do not need to be injective, they only must
be continuous, so while the m-cells emα look like open m-disks, their closures in X might not be
homeomorphic to closed disks. For instance, here is an example with an n-cell whose boundary is
collapsed to a point, so its closure is not a disk, but a sphere:

Example 26.6. Consider a cell complex that has one 0-cell and no cells of dimensions 1, . . . , n´
1, so its m-skeleton for every m ă n is a one-point space, but there is one n-cell enα attached via
the unique map ϕα : Sn´1 Ñ tptu. The resulting space X “ Xn is homeomorphic to Sn.
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The cellular homology of a cell complex X “ Ť
ně0X

n is now defined as follows. Given an
abelian coefficient group G, let

CCW
n pX ;Gq :“ à

αPKnpXq
G “

#
finite sums

ÿ
i

cie
n
αi

ˇ̌̌
ci P G, αi P KnpXq

+
denote the abelian group of finite linear combinations of generators enα corresponding to the n-
cells in the complex, with coefficients in G. A boundary map B : CCW

n pX ;Gq Ñ CCW
n´1pX ;Gq is

determined by the formula
Benα “

ÿ
βPKn´1pXq

ren´1
β : enαsen´1

β ,

where the incidence numbers ren´1
β : enαs P Z are determined as follows. For each α P KnpXq

and β P Kn´1pXq, let
Xβ :“ Xn´1

LpXn´1zen´1
β q,

i.e. it is a space obtained by collapsing everything in the pn´ 1q-skeleton except for the individual
cell en´1

β to a point. Since en´1
β is an open pn´ 1q-disk with a canonical homeomorphism to D̊n´1,

there is a canonical homeomorphism

Xβ “ Dn´1{BDn´1 – Sn´1.

There is also a quotient projection q : Xn´1 Ñ Xβ , so composing this with the attaching map
ϕα : Sn´1 Ñ Xn´1 gives a map between two pn´ 1q-dimensional spheres

q ˝ ϕα : Sn´1 Ñ Xβ – Sn´1.

This induces a homomorphism

Z – Hn´1pSn´1;Zq pq˝ϕαq˚ÝÑ Hn´1pXβ ;Zq – Z,

and all homomorphisms Z Ñ Z are of the form x ÞÑ dx for some d P Z. The integer d appearing
here is called the degree of q ˝ ϕα, and that is how we define the incidence number:

ren´1
β : enαs :“ degpq ˝ ϕαq.

Strictly speaking, this definition only makes sense for n ě 2 since our computation of the homology
of spheres does not apply to S0, but this is a minor headache that can easily be fixed with an extra
definition, as in simplicial homology.

It would take a lot more time than we have right now to explain why this definition of B is the
right one, and why it implies B2 “ 0 in particular. But if you are willing to accept that for now,
then we can define the cellular homology (zelluläre Homologie) groups

HCW
n pX ;Gq :“ Hn

`
CCW˚ pX ;Gq, B˘ ,

and we can almost immediately carry out a surprisingly easy computation:

Example 26.7. The cell decomposition of Sn in Example 26.6 gives

HCW
k pSn;Gq –

#
G for k “ 0, n,

0 for all other k.

Indeed, for n ě 2 we can see this without doing any work, because CCW
0 pSn;Gq – CCW

n pSn;Gq – G

are the only nontrivial chain groups, so B simply vanishes and the homology groups are the chain
groups. For n “ 1 you need a little bit more information that I haven’t given you, but one can
show also in this case that B “ 0, so the result is the same.



174 FIRST SEMESTER (TOPOLOGIE I)

In reality, cellular homology is not a new homology theory as such, it is just an extremely
efficient way of computing any axiomatic homology theory for spaces that are nice enough to have
cell decompositions. The following result has been the main tool used for computations of singular
homology for most of its history, and it implies in particular the fact that simplicial homology is a
topological invariant (cf. Theorem 21.16). We will work through a complete proof next semester,
and the first step in that proof will be the computation of h˚pSnq.

Theorem. For any cell complex X and any axiomatic homology theory h˚ with coefficient
group G, HCW˚ pX ;Gq – h˚pXq.

This theorem is the real reason why homology is considered one of the “easier” invariants to
work with in algebraic topology: for most of the spaces that arise in practice, and all compact
manifolds in particular, H˚pXq can be computed after replacing the unmageably large singular
chain complex with the cellular chain complex, which is finitely generated. Having only finitely
many generators means that in principle, one can always just feed all the information from the
chain complex into a computer program, then press a button and get an answer.

The Euler characteristic. Here is a remarkable application of cellular homology. To make
our lives algebraically a bit easier, let’s choose the coefficient group G to be a field K, e.g. Q or R
will do. This has the advantage of making our chain complexes naturally into vector spaces over K,
and the boundary maps are K-linear, so the homology groups are also K-vector spaces. Whenever
H˚pX ;Kq is finite dimensional, we then define the Euler characteristic of X as the integer

χpXq :“
8ÿ
n“0

p´1qn dimKHnpX ;Kq P Z.

Although each individual term dimKHnpX ;Kq may in general depend on the choice of field K, one
can show that their alternating sum does not.42 This fact admits a purely algebraic proof, but if X
is a finite cell complex, then it also follows from the following much more surprising observation.
It is not difficult to prove that whenever pC˚, Bq is a finite-dimensional chain complex of K-vector
spaces, the alternating sum of the dimensions of its homology groups can be computed without
computing the homology at all: in fact,

(26.3)
ÿ
nPZ
p´1qn dimKHnpC˚, Bq “

ÿ
nPZ

p´1qn dimK Cn.

This follows essentially from the fact that for each n P Z, writing Zn :“ ker Bn Ă Cn and Bn :“
im Bn`1 Ă Cn, the map Bn : Cn Ñ Cn´1 descends to an isomorphism Cn{Zn Ñ Bn´1, implying

dimK Cn ´ dimK Zn “ dimKBn´1.

Since HnpC˚, Bq “ Zn{Bn, we also have dimKHnpC˚, Bq “ dimK Zn´dimKBn, so combining these
two relations and adding things up with alternating signs produces lots of cancelations leading to
(26.3). Now apply this to the cellular chain complex, in which each CCW

n pX ;Kq is a K-vector space
whose dimension is the number of n-cells in the complex. What we learn is that we don’t need to
know anything about homology in order to compute χpXq—all we have to do is count cells and
add up the counts with signs. The isomorphism H˚pX ;Kq – HCW˚ pX ;Kq now implies that the
result of this counting game only depends on the space, and not on our choice of how to decompose
it into cells:

42One can also define χpXq using integer coefficients in terms of the ranks of the abelian groups HnpX;Zq.
This is one of the algebraic details I wanted to avoid by using field coefficients.
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Theorem. For any finite cell complex X,

χpXq “
8ÿ
n“0

p´1qn pthe number of n-cellsq .

In particular this applies to simplicial complexes, e.g. if you build a 2-sphere by gluing together
triangles along common edges, then no matter how you do it or how many triangles are involved,
the number of triangles minus the number of glued edges plus the number of glued vertices will
always be

χpS2q “ dimRH0pS2;Rq ´ dimRH1pS2;Rq ` dimRH2pS2;Rq “ 1´ 0` 1 “ 2.

It is not much harder to work out the result for Σg with any g ě 0: the answer is

χpΣgq “ 2´ 2g,

and off the top of my head, I can think of two completely different ways to prove this by decomposing
Σg into cells and counting them with signs: regardless of the choices in the decomposition, the
answer will always be the same. Go ahead. Try it.





Second semester (Topologie II)

27. Categories and functors

The general approach of algebraic topology is to associate to each topological space some
algebraic object that can be used to tell “different” spaces apart. One important example we saw
last semester was the fundamental group π1, which assigns to every pair pX, pq consisting of a
topological space X with a choice of base point p P X a group π1pX, pq. Another—which will play
a major role in this course from the next lecture onward—is singular homology H˚, which assigns
to each space X a whole sequence of abelian groups HnpXq indexed by the nonnegative integers
n ě 0. It is reasonable to think of these in some sense as “functions” with domains consisting of
the collection of all topological spaces (possibly with extra data such as a base point), and targets
consisting of the collection of all groups. The first semester of this course did not yet develop the
right language to make this notion of a “function” precise, so it is time to do so now.

27.1. Some remarks on set theory. One reason why π1 cannot actually be called a “func-
tion” is that its domain, strictly speaking, is not a set (Menge). I encourage you to skip the rest
of this paragraph if you are not interested in the finer points of axiomatic set theory or the classic
set-theoretic paradoxes. . . but for those who are still reading, let us agree that there is no such
thing as the “set of all topological spaces”. Indeed, every set can be made into a topological space
by assigning it the discrete topology, so if one can talk about the set of all topological spaces, then
one must also be able to talk about the set of all sets, and it is a short step from there to the “set
of all sets that do not contain themselves”—at which point we may find ourselves asking whether
that particular set contains itself, and promptly jumping off the nearest bridge. The architects of
abstract set theory dealt with this dilemma by coming up with a set of axioms that tell you how
to construct new sets from old ones, together with a short list of examples of sets (e.g. the empty
set) whose existence clearly needs to be assumed, and insisting that only collections of objects
that arise by applying the given axioms to the given examples should be called sets. Of course, we
do sometimes also need to discuss collections of objects that do not arise from the axioms of set
theory, and the collection of all topological spaces is an example. Such collections are generally
called (proper) classes (Klassen), but since I do not wish to go any further into the subtleties of
set theory in this course, I shall continue to refer to them via the informal word collections. You
should just keep in mind that while such things can be defined, they are not considered equivalent
to sets, and thus cannot be used for all the same purposes that sets can: in particular, an arbitrary
“collection” cannot serve as the domain of a function according to the standard definitions. This
doesn’t make it impossible to define something that intuitively resembles a function on the collec-
tion of all topological spaces—it only means that when we define such an object, we are not strictly
allowed to call it a “function”. This problem is easy to solve: we shall simply call it something else.

27.2. Categories. Leaving set theory aside, we now introduce some basic notions from cat-
egory theory. As the examples below should make clear, a category can often be thought of as an
answer to the question, “which field of mathematics are we working in?”

177
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Definition 27.1. A category (Kategorie) C consists of the following data:
‚ A collection (i.e. class) ObC , whose elements are called the objects (Objekte) of C ;
‚ For each X,Y P ObC a set HomC pX,Y q, which we shall often abbreviate as

HompX,Y q :“ HomC pX,Y q
when there is no danger of confusion, whose elements are called the morphisms from
X to Y (Morphismen von X nach Y ). For each X P ObC , there is a distinguished43

element IdX P HompX,Xq called the identity morphism of X ;
‚ For each X,Y, Z P ObC , a function

(27.1) HompX,Y q ˆHompY, Zq Ñ HompX,Zq : pf, gq ÞÑ g ˝ f
such that pf ˝ gq ˝ h “ f ˝ pg ˝ hq, and whenever two of the objects match and Id denotes
the corresponding distinguished morphism, f ˝ Id “ f “ Id ˝f .

Notation. For a category C , we will often abuse notation and use the symbol C to indicate
not only the category itself but also its collection of objects, hence

X P C actually means X P ObC .

A morphism f P HompX,Y q from X to Y will often be denoted with the same arrow notation that
is standard for maps between sets, so

f : X Ñ Y or X
fÝÑ Y actually means f P HompX,Y q.

The notation HompX,Y q for a set of morphisms is inspired by Example 27.5 below and similar
algebraic examples, in which morphisms are actually homomorphisms respecting given algebraic
structures. One also often sees this set denoted by MorpX,Y q or C pX,Y q, though we will not use
that notation here.

Example 27.2. The category Top has ObTop “ ttopological spacesu and HompX,Y q “ tf :

X Ñ Y | f a continuous mapu, with IdX defined for each space X as the identity map and
the function (27.1) defined as the usual composition of maps. This defines a category since the
identity map is always continuous and the composition of two continuous maps is also continuous.
In accordance with the notation convention described above, the statement

X P Top
thus means that X is a topological space.

Example 27.3. The category Set has ObSet “ tsetsu and HompX,Y q “ tf : X Ñ Y u, meaning
that morphisms are simply maps between sets, with no continuity requirement since there is no
topology.

Example 27.4. The objects of Diff are the smooth finite dimensional manifolds, and its mor-
phisms are smooth maps. (As in Example 27.2, the identity is always smooth and the composition
of two smooth maps is smooth.)

Example 27.5. The category Grp has ObGrp “ tgroupsu, with HompG,Hq defined as the set
of all group homorphisms GÑ H for each G,H P Grp.

43The word “distinguished” appears here because part of the structure of the category C is the knowledge of
which morphism should be called “IdX ” for each object X. If we simply required the existence of a morphism that
satisfies the conditions stated in the third bullet point, then there might be more than one such element and we
would not know which one to call IdX . But the structure of C requires each set HompX,Xq to contain a specific
element that carries that name; there might in theory exist additional morphisms that have the same properties,
but only one is called IdX .
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Example 27.6. There is a subcategory (Unterkategorie) Ab of Grp whose objects consist of
all abelian groups, with morphisms defined the same way as in Grp.

The examples above might give you the impression that in every category, a morphism is just
a map that may be required to satisfy some specific properties. But nothing in Definition 27.1 says
either that an object must be a kind of set or that a morphism is a map. Here is an example in
which the objects are still sets, but the morphisms are equivalence classes of maps.

Example 27.7. Let hTop denote the category whose objects are the same as in Top, but
with HompX,Y q defined as the set of homotopy classes of continuous maps X Ñ Y and IdX P
HompX,Xq as the homotopy class of the identity map. The function (27.1) is defined in terms of
the usual composition of continuous maps f : X Ñ Y and g : Y Ñ Z by

rgs ˝ rf s :“ rg ˝ f s.
(Exercise: check that this is well defined!) We call hTop the homotopy category of topological
spaces.

For some interesting examples in which objects are not sets and the function (27.1) has nothing
to do with composition of maps, see Exercises 27.3 and 27.4.

Definition 27.8. In any category, a morphism f P HompX,Y q is called an isomorphism
(Isomorphismus) if there exists a morphism f´1 P HompY,Xq such that f´1 ˝ f “ IdX and
f ˝ f´1 “ IdY . If an isomorphism exists in HompX,Y q, we say that the objects X and Y are
isomorphic (isomorph).

According to this definition, the word “isomorphism” no longer has a strictly algebraic meaning,
but will mean whatever is considered to be the notion of “equivalence” in whichever category we
are working with. Let’s run through the list: an isomorphism in Top is a homeomorphism, in Set

it is simply a bijection, in Diff a diffeomorphism, and in Grp or Ab it is the usual notion of group
isomorphism. The most interesting case so far is hTop: two objects in hTop are isomorphic if and
only if they are homotopy equivalent!

The proof of the following is an easy exercise in applying the axioms of a category:

Proposition 27.9. For any isomorphism f : X Ñ Y between two objects of a category, the
inverse morphism f´1 : Y Ñ X is unique. �

Remark 27.10. It is possible to relax Definition 27.1 by allowing HompX,Y q for eachX,Y P C
to be an arbitrary class rather than a set, in which case we are not strictly allowed to call the
composition map HompX,Y qˆHompY, Zq Ñ HompX,Zq a “function,” but the definition still makes
sense. In this more general framework, the notion described in Definition 27.1 with morphisms
forming sets instead of proper classes is called a locally small category. All of the categories we
deal with in this course will be locally small, and it takes some nontrivial effort to think up an
example of one that is not, so we will not worry about this level of generality any further.

27.3. Functors. The next definition gives us a way of relating two categories to each other.
As inspiration, you can think of π1, a “function” that associates groups to pointed topological
spaces, and in fact does so in a way that makes the groups into topological invariants. This
results mainly from the fact that continuous maps of spaces induce homomorphisms between the
corresponding fundamental groups, implying in particular that homeomorphisms induce group
isomorphisms. The notion of a functor is meant as a form of abstract packaging for this idea.

Definition 27.11. Given two categories C and D , a functor (Funktor) F : C Ñ D from C
to D assigns to each object X P C an object FpXq P D and to each morphism f P HompX,Y q
between any two objects X,Y P C a morphism Fpfq P HompFpXq,FpY qq such that:
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(1) FpIdXq “ IdFpXq for all X P C ;
(2) Fpf ˝ gq “ Fpfq ˝ Fpgq for all g P HompX,Y q and f P HompY, Zq, X,Y, Z P C .

Example 27.12. Denote by Top˚ the category whose objects are the pointed spaces pX, pq,
i.e. a topological space X together with a point p P X , with morphisms defined as continuous
pointed maps, also known as base point preserving maps,

HomppX, pq, pY, qqq :“  
f : X Ñ Y

ˇ̌
f continuous and fppq “ q

(
.

The fundamental group then defines a functor π1 : Top˚ Ñ Grp; indeed, it associates to each
pointed space pX, pq the group π1pX, pq and to each pointed map f : pX, pq Ñ pY, qq the group
homomorphism

π1pfq :“ f˚ : π1pX, pq Ñ π1pY, qq
such that Id˚ is the identity homomorphism and pf ˝ gq˚ “ f˚ ˝ g˚.

Example 27.13. There is an obvious functor TopÑ hTop that sends each object X P Top to
itself and sends each continuous map f : X Ñ Y to its homotopy class. This is sometimes called a
forgetful functor, since it is defined by forgetting some (but not all) of the information carried
by the morphisms in Top, i.e. it forgets the actual maps X Ñ Y , but remembers their homotopy
classes.

Example 27.14. The fundamental group also defines a functor π1 : hTop˚ Ñ Grp where
hTop˚ is defined to have the same objects as Top˚, but with HomppX, pq, pY, qqq defined as the set
of pointed homotopy classes of maps pX, pq Ñ pY, qq. (See Theorem 8.11 in Lecture 8 from last
semester.) A slightly fancier way to say this is that the functor π1 : Top˚ Ñ Grp in Example 27.12
is the composition of two functors

Top˚ hTop˚ Grp

π1

π1
,

in which the first is the pointed analogue of the forgetful functor described in Example 27.13.
We say in this situation that the functor π1 : Top˚ Ñ Grp descends to the (pointed) homotopy
category hTop˚.

We will later encounter several algebraic constructions and related topological invariants that
satisfy most of the conditions of a functor, but differ in one crucial respect: the morphisms they
induce go the other way. In practice, this phenomenon often arises from the algebraic notion of
dualization, and we’ll give an example of this kind immediately after the definition.

Definition 27.15. Given two categories C and D , a contravariant functor (kontravarianter
Funktor) F : C Ñ D from C to D assigns to each X P C some FpXq P D and to each f P
HompX,Y q for X,Y P C a morphism Fpfq P HompFpY q,FpXqq such that

(1) FpIdXq “ IdFpXq for all X P C ;
(2) Fpf ˝ gq “ Fpgq ˝ Fpfq for all g P HompX,Y q and f P HompY, Zq, X,Y, Z P C .

A functor that satisfies the original Definition 27.11 instead of Definition 27.15 can be called
covariant (kovariant) when we want to emphasize that it is not contravariant.

Example 27.16. Let K-Vect denote the category of vector spaces over a fixed field K, so
HompV,W q :“ HomKpV,W q is the space of K-linear maps V Ñ W . There is a contravariant
functor ∆ : K-Vect Ñ K-Vect which sends each vector space V to its dual space ∆pV q :“ V ˚ :“
HomKpV,Kq and sends each morphism A : V Ñ W to its transpose ∆pAq :“ A˚ : W˚ Ñ V ˚,
defined by A˚pλqv “ λpAvq for λ P W˚ and v P V . It satisfies the conditions of a functor since
pABq˚ “ B˚A˚ and the transpose of the identity V Ñ V is the identity V ˚ Ñ V ˚.



27. CATEGORIES AND FUNCTORS 181

Remark 27.17. It is possible to avoid Definition 27.15 by instead defining for each category
C the opposite category C op, which has the same collection of objects but reverses the arrows
for all morphisms, meaning HomC oppX,Y q :“ HomC pY,Xq. A contravariant functor C Ñ D is
then the same thing as a covariant functor C op Ñ D .

Example 27.18. One can speak of “functors of multiple variables” in much the same way as
with functions. It is not difficult to show for instance that on the category Ab of abelian groups
and homomorphisms,

Hom : Abˆ AbÑ Ab

defines a functor that is contravariant in the first variable and covariant in the second, assigning
to each pair of abelian groups pG,Hq the group HompG,Hq of homomorphisms GÑ H .

27.4. Natural transformations. We have one more piece of abstract language to add to
this story before we can get back to studying topology. You’ve often seen the words “natural” or
“naturally” appearing in statements of theorems, in order to emphasize that something does not
depend on any arbitrary choices. In category theory, these words can be given a precise definition.

Definition 27.19. Given two covariant functors F ,G : C Ñ D , a natural transforma-
tion (natürliche Transformation) T from F to G associates to each X P C a morphism TX P
HompFpXq,GpXqq such that for all X,Y P C and f P HompX,Y q, the following diagram com-
mutes:

(27.2)
FpXq GpXq

FpY q GpY q

TX

Fpfq Gpfq
TY

The statement that T is a natural transformation from F to G for two functors F ,G : C Ñ D is
sometimes written with the notation

T : F ñ G, or F
Tùñ G, or C D

F

G

T .

A natural transformation between two contravariant functors can be defined analogously.

Remark 27.20. The meaning of commutative diagrams such as (27.2) in an abstract category-
theoretical framework should hopefully be obvious: in the case at hand, the diagram means the
relation

Gpfq ˝ TX “ TY ˝ Fpfq,
i.e. it specifies that two specific compositions of morphisms give rise to the same morphism FpXq Ñ
GpY q. A very large portion of the important definitions and results in category theory can be
expressed in terms of commutative diagrams, which make sense due to the axioms of a category,
without needing to assume that objects are sets or that morphisms are maps between them.

We will see some nice topological examples of natural transformations in the context of bordism
theory in §27.7 below. Here is an algebraic example that you may have heard of before:

Example 27.21. Consider again the category K-Vect of vector spaces over a fixed field K as
in Example 27.16. There is a covariant functor

∆2 : K-VectÑ K-Vect,
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assigning to each V P K-Vect the dual of its dual space pV ˚q˚. Let Id : K-Vect Ñ K-Vect denote
the identity functor on K-Vect, which sends each object and morphism to itself. There is then a
natural transformation from Id to ∆2 that assigns to every V P K-Vect a vector space isomorphism
V Ñ pV ˚q˚; see Exercise 27.5.

Remark 27.22. Whenever a vector space V is finite dimensional, the map V Ñ pV ˚q˚ given
by the natural transformation in Example 27.21 is an isomorphism, and a large part of the reason
why it turns out to define a natural transformation is that the definition of this map does not
depend on any choices. By contrast, every finite-dimensional vector space is isomorphic to its
dual space V ˚, but there is no canonical way to define such isomorphisms for all vector spaces at
once. Notice that since Id : K-Vect Ñ K-Vect is a covariant functor while the dualization functor
∆ : K-Vect Ñ K-Vect from Example 27.16 is contravariant, there is no sensible notion of natural
transformations from Id to ∆.

27.5. Bordism groups. It would be too ambitious to attempt a serious discussion of bordism
theory in this course, but there are two good reasons to introduce the basic definitions now. First,
they give us some elegant new topological examples of functors besides π1, including some obviously
interesting examples of natural transformations. Second, the geometric idea behind bordism groups
will give us motivation for the somewhat less straightforward definition of homology groups in the
lectures to come.

Notation. This is a convenient moment to mention a notational convention that will be in
force throughout the semester: we abbreviate the compact unit interval by

I :“ r0, 1s.
This will be the meaning of the symbol I in any context that involves homotopies.

For some initial motivation, you can think of π1 in the following terms: first, elements of
π1pXq are represented by base-point preserving maps γ : S1 Ñ X defined on a specific closed
1-dimensional manifold, namely the circle S1. Two such maps γ, γ1 : S1 Ñ X represent the same
element if there exists a pointed homotopy

h : S1 ˆ I Ñ X,

between them, so in this situation, the disjoint union γ > γ1 : S1 >S1 Ñ X of the two maps admits
a continuous extension to a map S1 ˆ I Ñ X , whose domain is a specific compact 2-dimensional
manifold with boundary naturally homeomorphic to S1 > S1. This way of describing homotopies
ignores base points, but base points are not important for our present purposes: what’s important
rather is that we are talking about maps into X defined on compact 2-manifolds bounded by closed
1-manifolds. If you take this picture and ask what happens when you allow the domains to be
arbitrary compact manifolds of arbitrary dimension, bordism theory is what you get.

For the following definition, recall that an n-dimensional manifold M is called closed if it is
compact and the pn ´ 1q-dimensional manifold BM defined as the boundar of M is empty. We
will generally use the term “manifold” as a synonym for “manifold with boundary,” so all manifolds
M are allowed to have a nonempty boundary BM , but we shall make no overriding assumptions
about whether BM is nonempty unless extra words such as “closed” are included. It is useful to
note however that for any manifold M , the boundary BM is a manifold whose own boundary is
always empty:

BpBMq “ H.
Definition 27.23. For a space X P Top and an integer n ě 0, the nth unoriented bordism

group ΩO
n pXq of X consists of equivalence classes rpM,ϕqs of pairs pM,ϕq in which M is a closed

smooth n-manifold and ϕ :M Ñ X is a continuous map. We call two such pairs pM,ϕq and pN,ψq
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equivalent (or bordant) if there exists a bordism between them, meaning a pair pW,Φq in which
W is a compact smooth pn ` 1q-manifold, Φ : W Ñ X is a continuous map, and there exists a
diffeomorphism

BW –M >N
such that

Φ|BW “ ϕ > ψ.
We make ΩO

n pXq into an abelian group by using disjoint unions to define addition, thus

rpM,ϕqs ` rpN,ψqs :“ rpM >N,ϕ > ψqs,
with the additive identity element defined by

0 :“ rpH, ¨qs P ΩO
n pXq,

where the empty set H is understood as a smooth manifold of arbitrary dimension, and ¨ denotes
the unique map HÑ X .

A few observations are needed before this definition fully makes sense. First, we should check
that the bordism relation described above satisfies the conditions of an equivalence relation: for
instance, it is reflexive because for any closed n-manifold M and map ϕ : M Ñ X , the compact
pn` 1q-manifold M ˆ I and map

(27.3) M ˆ I Ñ X : px, tq ÞÑ ϕpxq
define a bordism between pM,ϕq and itself. The symmetry of the relation is obvious; the most
interesting detail is transitivity, which requires some rudimentary knowledge of smooth manifolds
and collar neighborhoods, so that two pn` 1q-manifolds with diffeomorphic boundary components
can be glued together along those components to form a new pn`1q-manifold. Since this discussion
is not intended as a comprehensive introduction to bordism theory, I will leave that detail to your
imagination for now. Once the bordism relation is understood, it is straightforward to check
that the addition operation defined via disjoint unions is well defined on equivalence classes. The
remaining question to answer is why ΩO

n pXq is a group, i.e. why every element has an additive
inverse. This also comes from the map (27.3), because there is another way to interpret it: the
boundary ofM ˆ I is naturally diffeomorphic to the disjoint union ofM >M with H, which makes
pM >M,ϕ > ϕq bordant to pH, ¨q and thus proves

rpM,ϕqs ` rpM,ϕqs “ 0 P ΩO
n pXq.

This not only makes ΩO
n pXq a group, but also gives it an especially simple algebraic structure:

all of its nontrivial elements have order 2, so the abelian group ΩO
n pXq can also be regarded as a

vector space over the field Z2.

Remark 27.24. The domains in Definition 27.23 were all assumed to be smooth manifolds
rather than just topological manifolds, but there is an equally sensible variation on this definition
that requires only topological manifolds and replaces the word “diffeomorphism” (in the definition
of the bordism relation) with “homeomorphism”. The main reason to include smoothness in the
definition is that methods from differential topology make ΩO

n pXq easier to compute than its purely
topological counterpart. But for our present purposes, this detail will make no difference at all
and can safely be ignored.

The following observation makes ΩO
n into a covariant functor

ΩO
n : TopÑ Ab,
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or equivalently (in light of the fact that all nontrivial elements have order two), a functor ΩO
n :

TopÑ Z2-Vect. Each continuous map f : X Ñ Y induces a map f˚ : ΩO
n pXq Ñ ΩO

n pY q defined by

f˚rpM,ϕqs :“ rpM, f ˝ ϕqs.
It is straightforward to check that this map is well defined and is a group homomorphism. It clearly
also sends the identity map X Ñ X to the identity homomorphism ΩO

n pXq Ñ ΩO
n pXq and satisfies

the relation pf ˝gq˚ “ f˚g˚ for any two continuous maps f, g that are composable. In other words:
ΩO
n : TopÑ Ab is a functor.
A less obvious but very useful observation is that ΩO

n : Top Ñ Ab descends (in the sense of
Example 27.14) to the corresponding homotopy category, and thus also defines a functor

ΩO
n : hTopÑ Ab.

This is an immediate consequence of the following result:

Proposition 27.25. For any two homotopic maps f, g : X Ñ Y , the induced homomorphisms
f˚, g˚ : ΩO

n pXq Ñ ΩO
n pY q are identical.

Proof. Assume H : X ˆ I Ñ Y is a homotopy with Hp¨, 0q “ f and Hp¨, 1q “ g. Given
rpM,ϕqs P ΩO

n pXq, the map
M ˆ I Ñ Y : px, tq ÞÑ Hpϕpxq, tq

then defines a bordism between pM, f ˝ ϕq and pM, g ˝ ϕq, proving f˚rpM,ϕqs “ g˚rpM,ϕqs P
ΩO
n pY q. �

27.6. Oriented bordism. In case you had hoped for a more interesting group in which not
all nontrivial elements have order 2, there is a remedy: one can add a bit of extra data to the
domain manifolds that are used to represent bordism classes, namely an orientation. If you know
already what it means to equip a smooth manifold with an orientation, then great—if not, then this
is not the place to discuss it, though we will give a detailed treatment of orientations for topological
manifolds later in this semester. For present purposes, it will suffice to take the following facts
about orientations on faith:

(1) Many familiar manifolds such as S1 and the compact surfaces Σg of genus g for each g ě 0

are orientable, but not all manifolds are, e.g. the projective plane RP2 and the Klein bottle
are not. More generally, no manifold that contains a Möbius band (or equivalently, that is
the connected sum of something with RP

2) can admit an orientation, because the Möbius
band contains a loop such that any choice of orientation at one point gets reversed by
moving it continuously along the loop.

(2) For every orientation of a manifold M , there is another orientation called the opposite
orientation, and if M is connected, then it admits exactly two orientations, which are
opposites of each other. For an oriented manifold M , we sometimes denote by ´M the
same manifold with the opposite orientation.44

(3) For every manifoldM with nonempty boundary, an orientation ofM naturally determines
an orientation of BM , called the boundary orientation. The opposite orientation ofM
then determines the opposite boundary orientation, or in symbols,

Bp´Mq “ ´pBMq.
44Another popular way of denoting the oriented manifold ´M is ĎM , especially in certain situations where M

comes with a canonical choice of orientation. This is true for instance if M is a complex manifold, e.g. the complex
projective space CPn, which inherits a canonical orientation from its complex structure, and ĎCPn then denotes the
same real manifold with an orientation opposite to the one determined by the complex structure.
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(4) For any two oriented manifolds M,N with dimM “ m and dimN “ n, the Cartesian
product M ˆ N is an pm ` nq-manifold that inherits a product orientation, which
depends in general on the order of the factors, though only if both m and n are odd. In
symbols,

N ˆM – p´1qmnpM ˆNq,
meaning that the obvious diffeomorphism M ˆN

–ÝÑ N ˆM is orientation reversing if
m and n are both odd, and is otherwise orientation preserving.

(5) For M a 0-manifold (also known as a discrete set with at most countably many points),
an orientation is simply a function M Ñ t1,´1u, and for any choice of orientation on the
unit interval I “ r0, 1s, the boundary orientation assigns opposite signs to the two points
of BI “ t0, 1u.

Definition 27.26. The nth oriented bordism group

ΩSO
n pXq

of a space X is defined by modifying Definition 27.23 as follows: the manifold M in each repre-
sentative pM,ϕq is equipped with an orientation, and the manifold W in an oriented bordism
pW,Φq between pM,ϕq and pN,ψq is also oriented and equipped with an orientation-preserving
diffeomorphism

BW – ´M >N,
where BW is assumed to carry the boundary orientation.

Let us clarify why reversing the orientation of eitherM or N in the oriented bordism relation is
the right thing to do. For any oriented manifoldM , assigning the product orientation toMˆI and
then the boundary orientation to BpM ˆ Iq gives a natural orientation-preserving diffeomorphism

BpM ˆ Iq – ´M >M.

The trivial homotopy (27.3) thus implies again that the bordism relation satisfies pM,ϕq „ pM,ϕq,
but in the oriented setting, it does not imply rpM,ϕqs ` rpM,ϕqs “ 0, so that elements of ΩSO

n pXq
do not need to have order two. Instead, the additive inverse of any given rpM,ϕqs P ΩSO

n pXq is
obtained by reversing the orientation of M ,

´rpM,ϕqs “ rp´M,ϕqs P ΩSO
n pXq.

Remark 27.27. The letters “O” and “SO” appearing in the notation ΩO
n pXq and ΩSO

n pXq
refer to the orthogonal group Opnq and special orthogonal group SOpnq respectively, which makes
some sense if you recall that SOpnq is precisely the subgroup of Opnq consisting of transformations
Rn Ñ Rn that preserve orientation. A fuller explanation of this notation would be too much
of a digression for now, but suffice it to say there also exist other versions of bordism groups
corresponding to other families of Lie groups that act linearly on Euclidean space, in which the
manifoldM in representatives pM,ϕq of bordism classes is equipped with extra structure respected
by those group actions.

The following easy computation (see Exercise 27.7) demonstrates that, indeed, elements of
ΩSO
n pXq need not have order 2 in general.

Proposition 27.28. For any space X, there are natural isomorphisms

ΩO
0 pXq –

à
π0pXq

Z2, and ΩSO
0 pXq – à

π0pXq
Z,

i.e. ΩO
0 pXq is a vector space over Z2 with a canonical basis in bijective correspondence with the set

π0pXq of path-components of X, and ΩSO
0 pXq is a free abelian group with the same basis. �
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Beyond the case n “ 0, computations of ΩO
n pXq and ΩSO

n pXq are generally doable, but too
difficult to attempt before learning about homology and cohomology, which will be the main
objectives of this semester’s course. One sees a revealing symptom of the difficulty when one tries
to compute either of these groups for the simplest possible nonempty topological space, namely a
one-point space.

Notation. We will frequently denote by

t˚u P Top
a topological space consisting of only one point, with the point in this space denoted by

˚ P t˚u.
The symbol ˚ P X is sometimes also used to denote the base point of a pointed space X P Top˚,
if it has not been given any other name.

Remark 27.29. We sometimes abuse terminology by speaking of “the” one-point space, but of
course one-point spaces are not unique, since the one element in the space can literally be anything,
e.g. the sets t1u and t2u are not identical since 1 ‰ 2, and they are also different from the set
whose only element is the banana you ate for breakfast this morning. In light of the fact that set
theory has no way of defining a “set of all things,” the collection of all possible one-point spaces
forms a proper class rather than a set. However, one does have a strong form of uniqueness up to
isomorphism in the category Top or Top˚: there exists a unique homeomorphism between any two
one-point spaces, and this is why referring to them all as “the” one-point space does not do any
harm.

For a one-point space t˚u and any given manifoldM , there is only one possible mapM Ñ t˚u,
so elements of the groups45

ΩO
n :“ ΩO

n pt˚uq, ΩSO
n :“ ΩSO

n pt˚uq
can be regarded simply as equivalence classes rM s of closed n-manifolds, and the information
encoded in these groups is therefore a coarse version of the classification of closed n-manifolds,
subject to an equivalence relation in which boundaries of compact manifolds are equated with the
empty set. The classification problem up to homeomorphism or diffeomorphism is well understood
for manifolds of dimension at most two, but already from dimension three upward, complete
classifications are not known, and the problem is not generally considered tractable. From this
perspective, it seems slightly surprising that ΩO

n and ΩSO
n can in fact be computed, and the answers

are often not difficult to write down, but proving them usually takes quite a bit of work. By the
end of this semester, we will at least be able to fill in all the gaps in the following special case:

Proposition 27.30. The group ΩO
2 “ ΩO

2 pt˚uq is isomorphic to Z2, and its unique nontrivial
element is the bordism class of the projective plane RP2.

Proof sketch. The nontriviality of rRP2s P ΩO
2 pt˚uq means that RP

2 is not diffeomorphic
to the boundary of any compact 3-manifold. If you take this on faith for a moment, the rest of the
computation follows easily from the classification of surfaces, as described in Lecture 19 from last
semester. Indeed, every closed and orientable surface can be presented as the smooth boundary
of a compact region in R3, and thus represents the trivial element in ΩO

2 . The closed, connected

45The symbols ΩSO
n and ΩO

n now each have two possible interpretations, either as functors Top Ñ Ab or as the
groups obtained by plugging a one-point space into these functors. It depends on the context.
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and non-orientable surfaces, in turn, are all homeomorphic (and in fact also diffeomorphic46) to
connected sums of N copies of RP2 for some N P N. A convenient fact to use in this situation is
that for any two closed manifolds M,N of the same dimension n, there exists a compact pn` 1q-
manifold whose boundary is diffeomorphic to the disjoint union of M , N and the connected sum
M#N . This can be proved with a picture, and I will leave it as an exercise, but if you need a
hint, try looking up some information on handle attachment in geometric topology—the key trick
is to “attach a 1-handle” to pM > Nq ˆ I. With this understood, one now sees that every closed
and connected surface is bordant to some disjoint union of copies of RP2, and therefore so is every
closed and disconnected surface.

So, why is RP2 not the boundary of any compact 3-manifold? This is harder to explain, but
it will follow easily from some computations of homological invariants carried out later in this
course. In particular, the Poincaré duality isomorphism implies that the Euler characteristic (an
integer-valued invariant that is defined for a wide class of topological spaces including all compact
manifolds) of every closed odd-dimensional manifold is zero. If RP2 were the boundary of some
compact 3-manifold Y , then by gluing Y to a copy of itself along the boundary, one would obtain
a closed 3-manifold

X :“ Y YRP2 Y

whose Euler characteristic χpXq satisfies χpXq “ 2χpY q´χpRP2q “ 2χpY q´1, and therefore could
not be zero. �

27.7. More examples of natural transformations. The bordism groups provide us with
some examples of natural transformations that are quite easy to write down. Proving the required
naturality property, i.e. that the required diagrams commute, is a straightforward exercise in each
case.

Example 27.31. For every space X and n ě 0, there is an obvious forgetful homomorphism

ΩSO
n Ñ ΩO

n : rpM,ϕqs ÞÑ rpM,ϕqs
defined by forgetting the orientation of the manifold M . Regarding both ΩSO

n and ΩO
n as covariant

functors TopÑ Ab, this defines a natural transformation from ΩSO
n to ΩO

n .

Example 27.32. Since S1 is a closed orientable 1-manifold, one can associate to any pointed
space pX, pq a map

(27.4) π1pX, pq hÝÑ ΩSO
1 pXq : rγs ÞÑ rpS1, γqs,

defined by regarding representatives of elements in π1pX, pq as maps γ : S1 Ñ X . This map
is well defined because a homotopy between two maps γ, γ1 : S1 Ñ X gives rise to a bordism
between pS1, γq and pS1, γ1q. The lemma below shows that h : π1pX, pq Ñ ΩSO

1 pXq is also a
group homomorphism; it is a variation on what is known in homology theory as the Hurewicz
homomorphism, and we will later see another version of it in that context.

Lemma 27.33. For any two base-point preserving loops α, β : S1 Ñ X and their concatenation
α ¨ β : S1 Ñ X, pS1, α ¨ βq is bordant to pS1 > S1, α > βq.

Proof. See Exercise 27.8. �

46It is a nontrivial fact that for n ď 3 (though emphatically not for n ě 4), every topological n-manifold
admits a smooth structure, and two smooth n-manifolds are homeomorphic if and only if they are diffeomorphic.
For closed surfaces, the easiest way to prove this is probably by reproving the standard classification of surfaces
in the smooth category. In fact, this is easier than working only with topological surfaces and continuous maps,
because Riemannian geometry makes the existence of triangulations on smooth manifolds easier to prove.
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Continuing with Example 27.32, the following “naturality” property of the map h : π1pX, pq Ñ
ΩSO

1 pXq is nearly immediate from the definitions: for any pointed map f : pX, pq Ñ pY, qq, the
diagram

π1pX, pq ΩSO
1 pXq

π1pY, qq ΩSO
1 pY q

h

f˚ f˚

h

commutes. This almost amounts to the statement that h defines a natural transformation from π1
to ΩSO

1 , though before we can say this in precise terms, we have a minor bookkeeping issue to deal
with, as π1 : Top˚ Ñ Grp and ΩSO

1 : TopÑ Ab are not functors between exactly the same pairs of
categories, strictly speaking. The distinction between Grp and Ab is easy to erase since the latter
is a subcategory of the former, i.e. we can equally well regard ΩSO

1 as a functor TopÑ Grp. For the
distinction between Top˚ and Top, the obvious thing to do is define ΩSO

1 as a functor Top˚ Ñ Grp

by composing the usual ΩSO
1 : TopÑ Grp with the obvious forgetful functor Top˚ Ñ Top, replacing

each pointed space pX, pq with the unpointed space X . With this understood, the commuting
diagram above shows that h defines a natural transformation from π1 to ΩSO

1 if both are regarded
as functors Top˚ Ñ Grp. For a slightly different variation, we could observe that since ΩSO

1 pXq is
abelian, the map h : π1pX, pq Ñ ΩSO

1 pXq always vanishes on the commutator subgroup

rπ1pX, pq, π1pX, pqs Ă π1pX, pq,
and thus descends to a well-defined homomorphism on the abelianization of the fundamental group,

π1pX, pqLrπ1pX, pq, π1pX, pqs hÝÑ ΩSO
1 pXq.

By now you should be unsurprised to learn that abelianization can also be regarded as a functor

Grp
abÝÑ Ab : G ÞÑ abpGq :“ G

M
rG,Gs,

and we can then also regard h as a natural transformation from ab ˝ π1 : Top˚ Ñ Ab to Ω1
SO :

Top˚ Ñ Ab.

Example 27.34. Let Ω‚n : TopÑ Ab denote either the unoriented or oriented bordism functor.
For any two spaces X,Y and integers m,n ě 0, one can define a product operation

Ω‚mpXq b Ω‚npY q Ý̂Ñ Ω‚m`npX ˆ Y q,
rpM,ϕqs b rpN,ψqs ÞÝÑ rpM,ϕqs ˆ rpN,ψqs :“ rpM ˆN,ϕˆ ψqs.

I will leave it as an exercise to convince yourself that this operation is well defined, and to clarify
precisely what it means to say that it is natural : in particular, for each fixed pair of integers
m,n ě 0, this product defines a natural transformation between two functors from the product
category Topˆ Top to Ab.

27.8. Exercises.

Exercise 27.1. Prove Proposition 27.9 (isomorphisms have unique inverses).

Exercise 27.2. Verify the claim in Example 27.18 that Hom : Ab ˆ Ab Ñ Ab defines a
contravariant functor in its first variable and a covariant functor in its second variable.

Exercise 27.3. Suppose A is a category whose objects form a set X , such that for each pair
x, y P X , the set of morphisms Hompx, yq contains either exactly one element or none. We can
turn this into a binary relation by writing x ’ y for every pair such that Hompx, yq ‰ H.
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(a) What properties does the relation ’ need to have in order for it to define a category in
the way indicated above?

(b) If B is another category whose objects form a set Y with morphisms determined by a
binary relation ’ as indicated above, what properties does a map f : X Ñ Y need to
have in order for it to define a functor from A to B?

Exercise 27.4. In any category C , each object X has an automorphism group (also called
isotropy group) AutpXq, consisting of all the isomorphisms in HompX,Xq. A groupoid is a
category in which all morphisms are also isomorphisms.

(a) Show that if G is a groupoid and Grp denotes the usual category of groups with ho-
momorphisms, there exists a contravariant functor from G to Grp that assigns to each
object X of G its automorphism group AutpXq. How does this functor act on morphisms
X Ñ Y ? Could you alternatively define it as a covariant functor? Conclude either way
that wheneverX and Y are isomorphic objects in G (meaning there exists an isomorphism
in HompX,Y q), the groups AutpXq and AutpY q are isomorphic.

(b) Given a topological spaceX and two points x, y, let Hompx, yq denote the set of homotopy
classes (with fixed end points) of paths r0, 1s Ñ X from x to y, and define a composition
function Hompx, yq ˆ Hompy, zq Ñ Hompx, zq : pα, βq ÞÑ α ¨ β by the usual notion of
concatenation of paths. Show that this notion of morphisms defines a groupoid whose
objects are the points in X .47 In this case, what are the automorphism groups Autpxq
and the isomorphisms Autpyq Ñ Autpxq given by the functor in part (a)?

Exercise 27.5. Consider the category K-Vect of vector spaces over a fixed field K.
(a) Show that there is a covariant functor ∆2 from K-Vect to itself, assigning to each V P

K-Vect the dual of its dual space pV ˚q˚. Describe how this functor acts on morphisms.
(b) Construct a natural transformation from the identity functor Id : K-VectÑ K-Vect to ∆2

that assigns to every V P K-Vect a linear injection V Ñ pV ˚q˚, which is an isomorphism
whenever V is finite dimensional.

Exercise 27.6. The conjugate sV of a complex vector space V is defined as the same setsV :“ V with the same notion of vector addition but with multiplication by scalars λ “ a` ib P C

defined as multiplication by the complex conjugate sλ “ a´ ib. In other words, if V Ñ sV : v ÞÑ sv
denotes the identity map, then scalar multiplication on sV is defined so as to make this map complex
antilinear, giving the formula

λv̄ :“ sλv P sV for λ P C, v P V.
(a) Show that there is a covariant functor κ : C-Vect Ñ C-Vect that sends each V P C-Vect

to its conjugate sV , and describe how this functor acts on morphisms.
(b) Show that if T is a natural transformation from Id : C-Vect Ñ C-Vect to κ : C-Vect Ñ

C-Vect, then T assigns to each V P C-Vect the zero map V Ñ sV .
Hint: What does the naturality of T imply about the specific morphism V Ñ V : v ÞÑ iv?

Comment: The map V Ñ sV : v ÞÑ sv is always a real-linear isomorphism, but it is not complex
linear and is thus not a morphism in C-Vect. Every finite-dimensional complex vector space is
of course complex-linearly isomorphic to its conjugate, simply because both spaces have the same
dimension, but the lack of any nontrivial natural transformation IdÑ κ is a symptom of the fact
that there is generally no canonical way to define such isomorphisms.

Exercise 27.7. Prove Proposition 27.28 on the computation of ΩO
0 pXq and ΩSO

0 pXq for any
space X .

47It is called the fundamental groupoid of X.
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Exercise 27.8. Prove Lemma 27.33, showing that the natural map h : π1pX, pq Ñ ΩSO
1 pXq is

a group homomorphism.
Hint: You are looking for an oriented bordism pΣ,Φq in which Σ is a compact surface with three
boundary components—the simplest surface of this kind is a so-called “pair of pants,” which has the
topology of a disk with two holes cut out. Assuming Σ is a pair of pants, try to define Φ : ΣÑ X

by first thinking about which subset of Σ should be mapped to the base point of X . If you know
anything about Morse theory, there is a relatively simple Morse-theoretic picture that will almost
immediately lead to the construction you need: it involves the gradient flow of a Morse function
f : Σ Ñ R that is constant on each boundary component and has exactly one critical point of
index 1 in the interior.

28. Axioms for homology theories

We will not yet define any specific homology theory in this lecture, but we shall introduce
the standard set of axioms satisfied by homology theories, and demonstrate their usefulness in
computations. Along the way, we encounter a fundamental tool from homological algebra: exact
sequences.

28.1. The category of R-modules. The bordism theories ΩO
n and ΩSO

n in the previous
lecture were defined as functors from Top to the category Ab of abelian groups, though we saw
that the groups ΩO

n pXq can also be regarded as vector spaces over Z2. For homology theory, it is
also possible to work entirely in the category Ab, but it is sometimes profitable to generalize this to
a category that includes both abelian groups and vector spaces as special cases. This generalization
does not require any extra effort, so we might as well work in the more general setting from the
beginning.

Notation. For the rest of this course, unless otherwise noted, the symbol

R

will always denote a fixed commutative ring with unit, the choice of which will often not matter.
We then denote by

R-Mod

the category of modules over R, whose morphisms are the R-module homomorphisms. For
two modules G,H P R-Mod, we will denote the set of R-module homomorphisms G Ñ H (which
is also an R-module) by

HomRpG,Hq :“ HomR-ModpG,Hq
whenever there is a need to specify R, but the abbreviated notation

HompG,Hq :“ HomRpG,Hq
can also be used when the context is clear. Similarly, we can denote the tensor product of two
R-modules by GbR H whenever R needs to be specified, but we will otherwise abbreviate it as

GbH :“ GbR H.
A trivial R-module48 is denoted by

0 P R-Mod.

For our purposes, abelian groups will be the most important special case of R-modules (see
Example 28.1 below), and for that reason, we will sometimes abuse terminology and use the word
“group” in places where the word “module” would be more appropriate.

48As with one-point spaces, there is not a unique trivial R-module, but there is a unique R-module isomorphism
between any two of them.
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Example 28.1. All abelian groups G P Ab can equivalently be regarded as modules over the
commutative ring Z, with scalar multiplication nx for n P Z and x P G determined in the obvious
way by the addition operation. Group homomorphisms are then automatically also Z-module
homomorphisms, and in this sense, the categories Ab and Z-Mod are completely equivalent.

Example 28.2. If R is a field K, then an R-module is the same thing as a vector space over K,
and R-Mod is in this case equivalent to the category K-Vect of vector spaces.

In this course, we will in practice almost exclusively be interested in the special cases where R
is either Z or a field (most often either Z2, Q, R or K), and the category of R-modules will thus
serve mainly as a single umbrella that encompasses both abelian groups and vector spaces.

One subtlety worth noting is that for any choice of the ring R, an R-module can always also
be regarded as an abelian group, just by forgetting its scalar multiplication while keeping the
addition operation, but doing this changes the definitions of tensor products GbH and the set of
homomorphisms HompG,Hq. For instance, if G,H P R-Vect are real vector spaces, then they are
also abelian groups and thus Z-modules G,H P Z-Mod, but their tensor product in the sense of
real vector spaces satisfies the relation

rg b h “ g b rh P GbR H for all g P G, h P H, r P R,

whereas the tensor product G bZ H in the sense of abelian groups only satisfies this when r P Z.
Similarly, every R-linear map GÑ H is also a homomorphism of abelian groups, but the converse
is quite false.

Definition 28.3. A basis of an R-module G is a subset B Ă G such that every element g P G
can be written in the form

g “ ÿ
bPB

gbb

for some coefficients gb P G that are uniquely determined by g, at most finitely-many of which are
nonzero. An R-module is called free if it admits a basis.

A choice of basis B Ă G for a free R-module is equivalent to a choice of R-module isomorphismà
bPB

R
–ÝÑ G,

so for instance, an abelian group (i.e. Z-module) is free if and only if it is isomorphic to a direct
sum of copies of Z. Obviously, not every abelian group G has this property, e.g. it is never true
if G is finite. On the other hand, a standard argument in linear algebra (using Zorn’s lemma for
the infinite-dimensional case) shows that every vector space admits a basis, so when R is a field,
all R-modules are free. This basic fact is one of the key advantages of having the freedom to work
with vector spaces instead of just abelian groups.

28.2. Exact sequences and splittings. In homological algebra, exact sequences play a role
comparable to that of Cauchy sequences in analysis; that is to say, the entire subject would be
impossible without them.

By a sequence (Sequenz) of R-modules, we mean a linearly ordered collection of modules An
for n P Z, together with R-modules homomorphisms αn : An Ñ An`1. Depending on the context
in which sequences arise, we can allow n to vary over any contiguous subset of the integers, which
may be unbounded, or bounded above and/or below, so the sequence itself may have finitely or
infinitely many terms, with or without a starting or end point. Let us call An an interior term of
the sequence if the sequence also includes both An´1 and An`1, thus giving rise to a three-term
subsequence

An´1
αn´1ÝÑ An

αnÝÑ An`1.
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In this situation, we say that the sequence is exact (exakt) at the term An if

imαn´1 “ kerαn.

We do not define exactness for non-interior terms, i.e. terms that are at the beginning or end of
the sequence. An exact sequence (exakte Sequenz) of R-modules is a sequence that is exact at
all of its interior terms.

Example 28.4. A sequence of the form 0 ÝÑ A
fÝÑ B ÝÑ 0 is exact if and only if f is an

isomorphism.

Example 28.5. An exact sequence with five terms that begins and ends with trivial modules

0 ÝÑ A
fÝÑ B

gÝÑ C ÝÑ 0

is called a short exact sequence (kurze exakte Sequenz). Exactness means in this case that f is
injective, g is surjective, and im f “ ker g. A popular class of examples is the sequence

0Ñ A ãÑ B
qÑ B

L
AÑ 0

for any submodule A Ă B, where q denotes the quotient projection. Another is

(28.1) 0Ñ A
iãÑ A‘ C

pÑ C Ñ 0

for any two modules A and C, with the obvious inclusion map ipaq :“ pa, 0q and projection map
ppa, cq :“ c.

Definition 28.6. A short exact sequence 0Ñ AÑ B Ñ C Ñ 0 is said to split, and is then
called a split exact sequence, if there exists an isomorphism B – A‘ C identifying it with the
sequence in (28.1).

In the category of abelian groups, there are easy examples of short exact sequences that do
not split, e.g. writing q : ZÑ Z{2Z “: Z2 for the quotient projection,

0 ÝÑ Z
¨2ÝÑ Z

qÝÑ Z2 ÝÑ 0

is such an example, since Z is not isomorphic to Z ‘ Z2. The next result, whose proof is a
straightforward exercise, gives a useful practical criterion for short exact sequences to split, and
its corollary implies in particular that they always split if R is a field.

Theorem 28.7. The following conditions on a short exact sequence 0 Ñ A
fÑ B

gÑ C Ñ 0

are equivalent:
(i) The sequence splits;
(ii) The injective homomorphism f : AÑ B admits a left-inverse B Ñ A;
(iii) The surjective homomorphism g : B Ñ C admits a right-inverse C Ñ B.

�

Corollary 28.8. If C is a free R-module, then every short exact sequence 0 Ñ A Ñ B Ñ
C Ñ 0 splits.

Proof. Use a basis of C to define a right-inverse for the surjective map B Ñ C. �

Here is another popular application of exactness whose proof is an easy exercise.

Theorem 28.9. For an exact sequence of the form

. . . ÝÑ An
fnÝÑ Bn Ñ Cn Ñ An`1

fn`1ÝÑ Bn`1 ÝÑ Cn`1 ÝÑ . . . ,

the following conditions are equivalent:
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(i) The modules Cn are trivial for every n;
(ii) The maps fn : An Ñ Bn are isomorphisms for every n.

�

28.3. Relative bordism groups. For a first real-life example of an exact sequence that
arises naturally in topology, we can generalize the previous lecture’s discussion and define relative
bordism groups

ΩO
n pX,Aq

for every so-called pair of spaces pX,Aq, meaning a space X together with a choice of subset
A Ă X . Given two pairs of spaces pX,Aq and pY,Bq, a map of pairs

f : pX,Aq Ñ pY,Bq or pX,Aq fÝÑ pY,Bq
is a continuous map f : X Ñ Y such that fpAq Ă B, thus if we assign subspace topologies to A
and B, the restriction f |A becomes a continuous map AÑ B. Let us focus the discussion for now
on unoriented bordism theory; the oriented case is completely analogous. Elements of ΩO

n pX,Aq
are equivalence classes rpM,ϕqs in which M is a compact smooth n-manifold that is allowed to
have nonempty boundary, and ϕ is a map of pairs

pM, BMq ϕÝÑ pX,Aq.
Two such pairs pM,ϕq and pN,ψq are equivalent if there is a relative bordism between them:
this means a pair pW,Φq consisting of a compact smooth pn ` 1q-manifold W equipped with a
smooth embedding

M >N ãÑ BW,
and a map of pairs

pW, BW zpM >Nqq ΦÝÑ pX,Aq
such that Φ|M>N “ ϕ > ψ. Note that while the domain of ϕ : M Ñ X in this definition is allowed
to have nonempty boundary, it may also be closed, thus the definition still makes sense if A “ H
and just reproduces the so-called absolute bordism groups defined in the previous lecture,

ΩO
n pX,Hq “ ΩO

n pXq.
The group structure of ΩO

n pX,Aq is again defined via disjoint unions, and there is a straightforward
way of associating to each map of pairs f : pX,Aq Ñ pY,Bq a group homomorphism

ΩO
n pX,Aq f˚ÝÑ ΩO

n pY,Bq,
so that ΩO

n becomes a functor

Toprel
ΩO

nÝÑ Ab,

defined on the category Toprel of pairs of spaces, whose morphisms are maps of pairs. We can
identify Top with the subcategory of Toprel whose objects are pairs of the form pX,Hq, and then
interpret ΩO

n : Toprel Ñ Ab as an extension of the previously-defined functor ΩO
n : TopÑ Ab.

For any pair pX,Aq and n ě 1, there is also a group homomorphism

ΩO
n pX,Aq B˚ÝÑ ΩO

n´1pAq,
rpM,ϕqs ÞÝÑ rpBM,ϕ|BMqs,

which is well defined because if pW,Φq is a relative bordism between two representatives pM,ϕq
and pN,ψq, then restricting Φ to the compact n-manifold obtained by removing the interiors of
M and N from BW defines an absolute bordism between pBM,ϕ|BM q and pBN,ψ|BNq. One can
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interpret B˚ as a natural transformation between two functors Toprel Ñ Ab, the details of which I
will leave to the reader. What I really want to point out about B˚ is the following:

Theorem 28.10. Given a pair of spaces pX,Aq, let i : A ãÑ X and j : pX,Hq ãÑ pX,Aq
denote the obvious inclusions. Then the sequence of abelian groups

. . . ÝÑ ΩO
n pAq i˚ÝÑ ΩO

n pXq j˚ÝÑ ΩO
n pX,Aq B˚ÝÑ ΩO

n´1pAq i˚ÝÑ ΩO
n´1pXq ÝÑ . . .

. . . ÝÑ ΩO
1 pX,Aq B˚ÝÑ ΩO

0 pAq i˚ÝÑ ΩO
0 pXq j˚ÝÑ ΩO

0 pX,Aq ÝÑ 0

is exact.

Corollary 28.11 (via Theorem 28.9). For a pair of spaces pX,Aq, the map ΩO
n pAq Ñ ΩO

n pXq
induced by the inclusion A ãÑ X is an isomorphism for every n ě 0 if and only if ΩO

n pX,Aq “ 0

for every n ě 0. �

We will later see an analogue of Theorem 28.10 in singular homology that plays a major role
in that theory, and whose proof requires some elementary but non-obvious ideas from homological
algebra. It’s worth noting that the proof of Theorem 28.10, by comparison, is much more direct
and straightforward; see Exercise 28.2.

28.4. The Eilenberg-Steenrod axioms. In the early history of homology, multiple pack-
ages of invariants were proposed that were easier to compute than the bordism groups, while
seeming to measure similar topological information. The resulting theories differ in the details of
their definitions—some of them drastically—but turn out to be naturally isomorphic if one restricts
them to a “nice” class of spaces, which in practice includes all of the spaces that one is typically
interested in, such as manifolds. Eventually, singular homology settled into a special role as the
“standard” homology theory that everyone needs to learn, but in fact, one usually doesn’t need
to know its precise definition in order to use it. What’s much more important are the formal
properties that it satisfies, which are common to all homology theories, and were codified in the
middle of the 20th century as a set of axioms due to Eilenberg and Steenrod [ES52], with a bit of
extra input from Milnor [Mil62].

Definition 28.12. Fix as usual a commutative ring R with unit. An axiomatic homology
theory h˚ valued in the category of R-modules is a collection thnunPZ of covariant functors

Toprel
hnÝÑ R-Mod : pX,Aq ÞÑ hnpX,Aq

defined for each n P Z, which also determine functors hn : TopÑ R-Mod by defining

hnpXq :“ hnpX,Hq.
For a map of pairs f : pX,Aq Ñ pY,Bq, the R-module homomorphism induced by the functor hn
is denoted by

hnpX,Aq f˚ÝÑ hnpY,Bq.
The data of a homology theory also includes natural transformations B˚ from the functor Toprel Ñ
R-Mod : pX,Aq ÞÑ hnpX,Aq to the functor Toprel Ñ R-Mod : pX,Aq ÞÑ hn´1pAq for each n P Z,
and we require the following axioms:

‚ (Homotopy) For any two homotopic maps of pairs f, g : pX,Aq Ñ pY,Bq, the induced
morphisms f˚, g˚ : hnpX,Aq Ñ hnpY,Bq are identical. (See Remark 28.14 below for the
notion of a homotopy of maps of pairs.)
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‚ (Exactness) For all pairs pX,Aq with inclusion maps i : A ãÑ X and j : pX,Hq ãÑ
pX,Aq, the sequence
. . . ÝÑ hn`1pX,Aq B˚ÝÑ hnpAq i˚ÝÑ hnpXq j˚ÝÑ hnpX,Aq B˚ÝÑ hn´1pAq ÝÑ . . .

is exact.
‚ (Excision) For any pair pX,Aq and any subset B Ă A such that there exists a continuous
function u : X Ñ I equal to 0 on B and 1 on XzA, the map induced by the inclusion
pXzB,AzBq ãÑ pX,Aq is an isomorphism

hnpXzB,AzBq –ÝÑ hnpX,Aq for every n P Z.

‚ (Dimension) For any one-point space t˚u, hnpt˚uq “ 0 for all n ‰ 0. The group h0pt˚uq
is then called the coefficient group of the homology theory.49

‚ (Additivity) For any collection of spaces tXαuαPJ with inclusion maps iα : Xα ãÑš
βPJ Xβ , the map determined by the induced homomorphisms

iα˚ : hnpXαq Ñ hn

˜ž
βPJ

Xβ

¸
is an isomorphism à

αPJ
iα˚ :

à
αPJ

hnpXαq –ÝÑ hn

˜ž
βPJ

Xβ

¸
.

You should be able to convince yourself without much trouble that the bordism functors
ΩO
n : Toprel Ñ Ab “ Z-Mod and their oriented counterparts ΩSO

n each satisfy four out of the five
Eilenberg-Steenrod axioms; see in particular Exercises 28.2 and 28.3. They do not satisfy the
dimension axiom: this follows from Proposition 27.30 in the case of unoriented bordism theory,
and there is a similar result for the oriented theory involving complex (instead of real) projective
spaces. We call h˚ a generalized homology theory if it satisfies all of the Eilenberg-Steenrod
axioms except for dimension. In some contexts, the word “generalized” is removed, so that homology
theories are typically assumed to satisfy four axioms instead of five, and those which also satisfy the
dimension axiom are called ordinary homology theories. We will generally assume the dimension
axiom in this semester and will not make use of any theories that don’t satisfy it, but some of the
results we prove about homology theories will be equally valid for generalized theories, since they
do not depend on the dimension axiom.

A few further comments on the axioms are in order.

Remark 28.13. The original list in [ES52] included three additional axioms at the beginning
of the list, but the first two of these are equivalent to the statement that the hn are functors, and
the third simply requires B˚ to be a natural transformation.

Remark 28.14. The following definition is hopefully intuitive: a homotopy between two
maps of pairs f, g : pX,Aq Ñ pY,Bq is a homotopy H : X ˆ I Ñ Y between f and g such that
Hp¨, tq is also a map of pairs pX,Aq Ñ pY,Bq for every t P I, so in other words, H satisfies the
condition

HpAˆ Iq Ă B.

49There is a slightly awkward semantic issue in this definition: strictly speaking, what we are calling “t˚u”
is not a unique space, but simply any choice of space that happens to contain only one element. It follows that
the coefficient group h0pt˚uq is not a uniquely defined group, but is an isomorphism class of groups. Any two
choices of one-point spaces P0 and P1 are related by a unique homeomorphism P0 Ñ P1, which induces a canonical
isomorphism h0pP0q Ñ h0pP1q, and the coefficient group of a homology theory is unique in this sense.
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We could also have chosen to hide the homotopy axiom by calling the hn functors

hToprel
hnÝÑ R-Mod

instead of Toprel Ñ R-Mod, where hToprel denotes the homotopy category of pairs of spaces,
having the same objects as Toprel, but with homotopy classes of maps of pairs as morphisms. Note
that a homotopy of maps of pairs pX,Hq Ñ pY,Hq is just a homotopy of maps X Ñ Y , making
hTop naturally a subcategory of hToprel.

Remark 28.15. The additivity axiom did not appear in [ES52], but was added later by Milnor
[Mil62]. One can show in fact that for finite disjoint unions, additivity follows as a consequence
of the other axioms (see Exercise 28.4), thus Eilenberg and Steenrod did not need it, because they
were mainly concerned with computations for compact polyhedra—compactness precludes infinite
disjoint unions.

Remark 28.16. One often sees the excision axiom stated under a weaker hypothesis on the
sets B Ă A Ă X , namely that the closure of B is contained in the interior of A. You might find it a
challenge to think up an example in which that hypothesis is satisfied but the one we stated is not,
and I don’t encourage you to try, because within the class of spaces that are typically considered
interesting to study, the two are fully equivalent; moreover, in all interesting situations I’m aware
of, it is as easy to verify the stronger hypothesis as the weaker one. Singular homology does satisfy
excision under the weaker hypothesis, but the existence of a function u : X Ñ I separating B
from XzA is a more natural condition from other points of view, especially in homotopy-theoretic
reformulations of homology. The hypotheses originally stated in [ES52] also required B to be
open, which is another detail that makes no meaningful difference for the class of spaces typically
of interest.

Remark 28.17. The reason the dimension axiom has the name that it does is that if it were not
included in the list of axioms, then for every homology theory h˚, one could use arbitrary degree
shifts to define new homology theories such as k˚ with knpX,Aq :“ hn`1pX,Aq. The dimension
axiom prevents this, in the hope that the value of the subscript n in hnpX,Aq will then have some
geometric meaning. The reason for calling h0pt˚uq a “coefficient group” will become clearer when
we write down concrete examples of homology theories.

Remark 28.18. It is sometimes useful to expand the definition and allow an axiomatic ho-
mology theory to be a functor C Ñ R-Mod defined on a suitable subcategory C of Toprel, so
that we need not define h˚pX,Aq for all pairs pX,Aq, but only a subclass. One useful example is
the category of compact pairs, which are simply pairs of spaces pX,Aq such that X is compact
Hausdorff and A Ă X is closed. Others include the categories of polyhedra and CW-complexes,
which we’ll have more to say about in future lectures. When allowing restrictions of this type,
one must take care so that all of the maps needed for expressing the axioms—e.g. the inclusions
A ãÑ X and pX,Hq ãÑ pX,Aq—are actually morphisms in the category C . In [ES52], this concern
motivates the definition of the notion of an admissible category of pairs, though we have no need
to reproduce that definition here.

28.5. Reduced homology. Assume h˚ is a collection of functors as in Definition 28.12
satisfying at least the homotopy and exactness axioms. For technical reasons that will become
clearer in the next section, it is sometimes useful to replace the groups hnpXqwith certain subgroupsrhnpXq Ă hnpXq called reduced homology groups. To define them, we denote by

X
ǫÝÑ t˚u
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the unique map from any given space X to a one-point space. We then use the induced homomor-
phisms ǫ˚ : hnpXq Ñ hnpt˚uq to definerhnpXq :“ ker

´
hnpXq ǫ˚ÝÑ hnpt˚uq

¯
Ă hnpXq.

Observe that if h˚ satisfies the dimension axiom, then rhnpXq “ hnpXq for all n ‰ 0. If n “ 0 or the
dimension axiom is not satisfied, then we can typically expect rhnpXq and hnpXq to be different,
and the best way to relate them to each other is through a split exact sequence. Indeed, observe
that the map ǫ : X Ñ t˚u is not only trivially surjective, but also admits a right-inverse, defined
by choosing any embedding

t˚u iãÑ X.

It then follows from functoriality that the homomorphism ǫ˚ : hnpXq Ñ hnpt˚uq likewise is surjec-
tive and admits a right-inverse, thus by Theorem 28.7,

0Ñ rhnpXq ãÑ hnpXq ǫ˚Ñ hnpt˚uq Ñ 0

is a split exact sequence, implying the existence of an isomorphism

hnpXq – rhnpXq ‘ hnpt˚uq.
If h˚ satisfies the dimension axiom and has coefficient group G “ h0pt˚uq, this becomes

hnpXq –
#rhnpXq if n ‰ 0,rhnpXq ‘G if n “ 0.

One should keep in mind however that this isomorphism is not generally canonical: it depends on
the choice of inclusion i : t˚u ãÑ X , which determines the splitting of the exact sequence relatingrhnpXq and hnpXq.

Let us clarify why rhn for each n P Z is naturally also a functor TopÑ R-Mod.

Proposition 28.19. The homomorphisms f˚ : hnpXq Ñ hnpY q induced by any continuous
map f : X Ñ Y send rhnpXq into rhnpY q.

Proof. Denote ǫX : X Ñ t˚u and ǫY : Y Ñ t˚u for the unique maps, and notice that
ǫY ˝ f “ Id ˝ǫX , thus the following diagram commutes.

hnpXq hnpY q

hnpt˚uq hnpt˚uq

f˚

ǫX˚ ǫY˚
1

This implies that f˚pker ǫX˚ q Ă ker ǫY˚ . �

The next result reveals the main advantage of using rh˚ in place of h˚ for certain applications.

Proposition 28.20. If X is a contractible space, then rhnpXq “ 0 for every n.

Proof. Contractibility implies that the map ǫ : X Ñ t˚u is a homotopy equivalence, thus by
the homotopy axiom, ǫ˚ : hnpXq Ñ hnpt˚uq is an isomorphism, and its kernel rhnpXq is therefore
trivial. �

Remark 28.21. If h˚ also satisfies the dimension axiom, then we also have hnpXq “ 0 for
all n ‰ 0 whenever X is contractible, but h0pXq is typically nontrivial, as it is isomorphic to the
coefficient group. As a consequence, some of the standard applications of reduced homology can
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also be carried out with unreduced homology, but only if the degree 0 groups are excluded from
consideration.

The relative version of reduced homology is defined in a trivial way: we setrhnpX,Aq :“ hnpX,Aq whenever A ‰ H.
This seemingly naive definition is justified by the following considerations. Note first that the
functors rhn : TopÑ R-Mod now extend to pairs as functors Toprel Ñ R-Mod; here there is nothing
to check since the existence of a map of pairs pX,Aq Ñ pY,Bq with A ‰ H implies B ‰ H, so
that both reduced relative homology groups match the unreduced case. Next, observe that for any
space X , the relative homology groups hnpX,Xq all vanish; this follows from the exactness axiom
and Theorem 28.9, as we have an exact sequence

. . . ÝÑ hnpXq 1ÝÑ hnpXq ÝÑ hnpX,Xq B˚ÝÑ hn´1pXq 1ÝÑ hn´1pXq ÝÑ . . .

It follows that rhnpX,Aq for A ‰ H is in fact the kernel of the map

hnpX,Aq ǫ˚ÝÑ h˚pt˚u, t˚uq “ 0

induced by the unique map of pairs ǫ : pX,Aq Ñ pt˚u, t˚uq. Moreover, the naturality of the
connecting homomorphisms B˚ gives a commutative diagram

hn`1pX,Aq hnpAq

hn`1pt˚u, t˚uq hnpt˚uq

B˚

ǫ˚ ǫ˚
B˚

Since the term hn`1pt˚u, t˚uq is trivial, this diagram proves that the image of B˚ : hn`1pX,Aq Ñ
hnpAq is always in the subgroup rhnpAq. We can therefore write down a well-defined sequence of
homomorphisms

. . . ÝÑ rhn`1pX,Aq B˚ÝÑ rhnpAq i˚ÝÑ rhnpXq j˚ÝÑ rhnpX,Aq B˚ÝÑ rhn´1pAq ÝÑ . . .

using the usual inclusions i : A ãÑ X and j : pX,Hq ãÑ pX,Aq. It is not immediately obvious
whether this sequence is exact, but consider the commutative diagram

0 0 0 0

. . . rhnpAq rhnpXq rhnpX,Aq rhn´1pAq . . .

. . . hnpAq hnpXq hnpX,Aq hn´1pAq . . .

. . . hnpt˚uq hnpt˚uq 0 hn´1pt˚uq . . .

0 0 0 0

i˚ j˚ B˚

i˚

ǫ˚

j˚

ǫ˚

B˚

ǫ˚ ǫ˚

Here the bottom two nontrivial rows are exact due to the exactness axiom, and all columns in the
diagram are short exact sequences by construction. The rest is algebra:
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Proposition 28.22. Assume the following diagram of R-modules commutes, all its columns
are exact sequences, and the bottom two nontrivial rows are also exact sequences:

0 0 0 0 0

. . . An`2 An`1 An An´1 An´2 . . .

. . . Bn`2 Bn`1 Bn Bn´1 Bn´2 . . .

. . . Cn`2 Cn`1 Cn Cn´1 Cn´2 . . .

0 0 0 0 0

ιn`2 ιn`1 ιn ιn´1 ιn´2

gn`2

ǫn`2

gn`1

ǫn`1

gn

ǫn

gn´1

ǫn´1 ǫn´2

hn`2 hn`1 hn hn´1

Then the top nontrivial row can be endowed uniquely with maps fn : An Ñ An´1 such that the
diagram still commutes, and these make that row into an exact sequence.

Proof. The method behind this proof is commonly known as diagram chasing, and we will
later see several other examples of it. The basic idea is straightforward: at every step, we examine
a particular term in the diagram, consider what is already known about the maps going into and
out of that term, and then deduce whatever we can from given conditions such as exactness. In
typical situations, whatever can be deduced tells you which term to examine in the next step.

If fn : An Ñ An´1 can be defined so that the diagram commutes, then for a P An we need
fnpaq P ι´1

n´1pgnιnpaqq, and this condition will fully determine fnpaq P An´1 since ιn´1 is injective
due to the exactness of columns. To see that the condition can be achieved, notice

ǫn´1gnιn “ hnǫnιn “ 0,

thus gnιnpaq P ker ǫn´1 “ im ιn´1. This gives an element x P An´1 such that ιn´1pxq “ gnιnpaq,
so we can set fnpaq “ x.

The goal is now to show that . . . An`1
fn`1Ñ An

fnÑ An´1 Ñ . . . is an exact sequence. For each
n, commutativity of the diagram gives

ιn´2fn´1fn “ gn´1gnιn “ 0

since the middle row is exact, and the exactness of the columns implies in turn that ιn´2 is injective,
thus fn´1fn “ 0. To finish, we need to prove that every a P An satisfying fnpaq “ 0 also satisfies
a “ fn`1pxq for some x P An`1. Using commutativity, we have

0 “ ιn´1fnpaq “ gnιnpaq,
thus the exactness of the middle row gives an element b P Bn`1 such that gn`1pbq “ ιnpaq. If we
knew ǫn`1pbq “ 0, then we could at this point appeal to the exactness of the columns and write
b “ ιn`1pxq for some x P An`1, which would then satisfy ιnfn`1pxq “ gn`1ιn`1pxq “ gn`1pbq “
ιnpaq and therefore fn`1pxq “ a since ιn is injective. But ǫn`1pbq might not be 0, so to finish the
proof, we claim instead that b can be replaced by another element b1 P Bn`1 that satisfies both
gn`1pb1q “ ιnpaq and ǫn`1pb1q “ 0.

To find b1, observe that by commutativity and the exactness of the columns,

hn`1ǫn`1pbq “ ǫngn`1pbq “ ǫnιnpaq “ 0,
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thus by the exactness of the bottom row, ǫn`1pbq “ hn`2pcq for some c P Cn`2. Appealing again
to the exactness of the columns, ǫn`2 is surjective, so we have c “ ǫn`2pyq for some y P Bn`2. Set

b1 :“ b´ gn`2pyq.
This satisfies gn`1pb1q “ gn`1pbq ´ gn`1gn`2pyq “ gn`1pbq “ ιnpaq, and using commutativitiy
again,

ǫn`1pb1q “ ǫn`1pbq ´ ǫn`1gn`2pyq “ ǫn`1pbq ´ hn`2ǫn`2pyq “ ǫn`1pbq ´ hn`2pcq “ 0.

�

We have proved:

Theorem 28.23. For any pair of spaces pX,Aq and any homology theory h˚, there is an exact
sequence of reduced homology groups

. . . ÝÑ rhn`1pX,Aq B˚ÝÑ rhnpAq i˚ÝÑ rhnpXq j˚ÝÑ rhnpX,Aq B˚ÝÑ rhn´1pAq ÝÑ . . . ,

where i : A ãÑ X and j : pX,Hq ãÑ pX,Aq are the obvious inclusions and B˚ : rhnpX,Aq Ñ rhn´1pAq
is the same map as the usual connecting homomorphism hnpX,Aq Ñ hn´1pAq. �

28.6. Suspension isomorphisms. The following general construction leads easily to a com-
plete computation of h˚pSnq for any axiomatic homology theory. We assume in this section that
h˚ is a generalized homology theory, so it satisfies all the conditions in Definition 28.12 except
possibly the dimension axiom.50

Recall that for an arbitrary space X , the suspension (Einhängung) of X is a space ΣX

formed by gluing together two cones C`X :“ CX :“ pX ˆ r0, 1sqLpX ˆ t1uq and C´X :“ pX ˆ
r´1, 0sqLpX ˆ t´1uq along X “ X ˆ t0u Ă C˘X , in short,

ΣX :“ C`X YX C´X.

Theorem 28.24. For every space X, integer k P Z and generalized homology theory h˚, the
diagram (28.2) below gives rise to a natural isomorphism

Σ˚ :“ ϕ´1˚ ˝ j˚ ˝ i˚ ˝ B´1˚ : rhkpXq Ñ rhk`1pΣXq.
Proof. Let

p` P C`X Ă ΣX and p´ P C´X Ă ΣX

denote the summits of the two cones that are glued together to form the suspension, e.g. if we
write C`X “ pX ˆ r0, 1sqLpX ˆ t1uq, then p` P C`X is the point that results from collapsing
X ˆ t1u. We then consider the diagram

(28.2)

rhkpXq rhk`1pΣXq

rhk`1pC`X,Xq rhk`1pΣXztp´u, C´Xztp´uq rhk`1pΣX,C´Xq
ϕ˚B˚

i˚ j˚

in which three of the maps are determined by the obvious inclusions of pairs,

pC`X,Xq iãÑ pΣXztp´u, C´Xztp´uq,
pΣXztp´u, C´Xztp´uq jãÑ pΣX,C´Xq,

pΣX,Hq ϕãÑ pΣX,C´Xq.
50In fact, the additivity axiom is also not strictly necessary for this discussion, since by Exercise 28.4, it follows

from the other axioms in the case of finite disjoint unions.
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The first of these is a homotopy equivalence, as there exists a deformation retraction of the pair
pΣXztp´u, C´Xztp´uq to pC`X,Xq, thus i˚ is an isomorphism by the homotopy axiom. Since
one can easily define a function u : ΣX Ñ I that vanishes at p´ and equals 1 on C`X , the excision
axiom implies that j˚ is also an isomorphism. For the other two maps, we consider the exact
sequences provided by Theorem 28.23 for the pairs pΣX,C´Xq and pC`X,Xq, that is

. . . ÝÑ rhk`1pC´Xq ÝÑ rhk`1pΣXq ϕ˚ÝÑ rhk`1pΣX,C´Xq ÝÑ rhkpC´Xq ÝÑ . . .

and
. . . ÝÑ rhk`1pC`Xq ÝÑ rhk`1pC`X,Xq B˚ÝÑ rhkpXq ÝÑ rhkpC`Xq ÝÑ . . .

The contractibility of C˘X implies via Proposition 28.20 thatrhkpC˘Xq – rhkpt˚uq “ 0, and rhk`1pC˘Xq – rhk`1pt˚uq “ 0,

thus the exactness of these two sequences implies that ϕ˚ and B˚ are both isomorphisms.
The naturality of the map Σ˚ : rhkpXq Ñ rhk`1pΣXq has a precise meaning, because the

suspension operation can be understood as a functor Σ : Top Ñ Top, and the statement is then
that Σ˚ defines a natural transformation between two functors Top Ñ R-Mod, namely rhk andrhk`1 ˝ Σ. This follows in a straightforward way using the naturality of the homomorphisms B˚;
the details are an exercise. �

28.7. Homology groups of spheres. Recall that the suspension of a sphere is also a sphere,
but one dimension higher:

ΣpSnq – Sn`1.

This fact and Theorem 28.24 make possible an inductive computation of h˚pSnq for every axiomatic
homology theory and every n ě 0, using the fact that S0 is the disjoint union of two one-point
spaces. Here is the statement; the proof is Exercise 28.6.

Theorem 28.25. Assume h˚ is an axiomatic homology theory with coefficient group h0pt˚uq “
G. Then for each pair of integers k P Z and n ě 1,

hkpSnq –
#
G if k “ 0 or k “ n,

0 otherwise.

�

28.8. Exercises.

Exercise 28.1 (*). Prove Theorem 28.7 on split exact sequences, and Theorem 28.9 on long
exact sequences with every third term vanishing.

Exercise 28.2. Prove that the sequence of relative and absolute bordism groups in Theo-
rem 28.10 is exact. Here are a couple of hints:

‚ For exactness at ΩO
n pXq: j˚rpM,ϕqs “ 0 means ϕ : M Ñ X can be extended over a

compact pn`1q-manifoldW with M Ă BW such that the extension maps BW zM into A.
In this situation, M is a closed manifold—what does that imply about BW zM?

‚ For exactness at ΩO
n pX,Aq: B˚rpM,ϕqs “ 0 means that ϕ|BM : BM Ñ A extends to a map

V Ñ A on some compact n-manifold V whose boundary is identified with BM . Build a
closed n-manifold out of V and M .

Exercise 28.3. Prove that the bordism theories ΩO˚ and ΩSO˚ satisfy the homotopy, excision,
and additivity axioms.
Hint for excision: Suppose u : X Ñ I is a function as specified in the excision axiom, and
ϕ : pM, BMq Ñ pX,Aq is a map of pairs so that pM,ϕq represents a bordism class. By standard
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results about smooth manifolds, the function u ˝ ϕ : M Ñ I can be perturbed to a function
v : M Ñ I such that for some r P p0, 1q, both v´1prq Ă M and pv|BM q´1prq Ă BM are smooth
submanifolds.

Exercise 28.4. Assume h˚ is a collection of functors hn : Toprel Ñ R-Mod for n P Z satisfying
the exactness and excision axioms of Eilenberg-Steenrod. Given two spaces X,Y and the natural
inclusions iX : X ãÑ X > Y and iY : Y ãÑ X > Y , show that the map

iX˚ ‘ iY˚ : hnpXq ‘ hnpY q Ñ hnpX > Y q : px, yq ÞÑ iX˚ x` iY˚ y

is an isomorphism, and deduce that h˚ also satisfies the additivity axiom for all finite disjoint
unions.
Hint: Apply exactness and excision to the pairs pX > Y,Xq and pX > Y, Y q.

Exercise 28.5 (*). Assume h˚ is an axiomatic homology theory with coefficient group h0pt˚uq “
G. For any two spaces X and Y with maps ǫX : X Ñ t˚u and ǫY : Y Ñ t˚u, show that the
natural isomorphism hnpX > Y q – hnpXq ‘ hnpY q identifies rhnpX > Y q with kerpǫX˚ ‘ ǫY˚ q Ă
hnpX ;Gq ‘ hnpY ;Gq. Then apply this in the case X “ Y “ t˚u to identify rh0pt˚u > t˚uq with the
kernel of the map

1‘ 1 : G‘GÑ G : pg, hq ÞÑ g ` h,

which is isomorphic to G.

Exercise 28.6 (*). Given an axiomatic homology theory h˚ with coefficient group G, use
Theorem 28.24, Exercise 28.5 and an inductive argument to derive a general formula for rhkpSnq
for all k P Z and n ě 0, and then deduce from it Theorem 28.25.

Exercise 28.7. One of the most popular simple applications of homology is the Brouwer fixed
point theorem, which states that for the closed disk Dn Ă Rn of any dimension n P N, every
continuous map f : Dn Ñ Dn has a fixed point.

(a) Deduce the Brouwer fixed point theorem from the following statement: For each n P N,
the disk Dn does not admit any retraction to its boundary BDn “ Sn´1.
Hint: If f : Dn Ñ Dn has no fixed points, then there is a unique line through x and fpxq
for every x P Dn.

(b) Assuming the existence of an axiomatic homology theory h˚ with a nontrivial coefficient
group, deduce from the computation of h˚pSn´1q that retractions Dn Ñ Sn´1 cannot
exist.

Exercise 28.8 (*). The subject of this exercise is a standard tool in homological algebra
known as the five-lemma.

(a) Suppose the following diagram commutes and that both of its rows are exact, meaning
im f “ ker g, im g1 “ kerh1 and so forth:

A B C D E

A1 B1 C 1 D1 E1

f

α

g

β

h

γ

i

δ ε

f 1 g1 h1 i1

Prove that if α, β, δ and ε are all isomorphisms, then so is γ.
(b) Here is an application: given a homology theory h˚ and a map of pairs f : pX,Aq Ñ

pY,Bq, show that if any two of the induced maps f˚ : hnpXq Ñ hnpY q, f˚ : hnpAq Ñ
hnpBq and f˚ : hnpX,Aq Ñ hnpY,Bq are isomorphisms for every n, then so is the third.
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(c) Prove that every homology theory h˚ also satisfies a relative version of the additivity
axiom, involving disjoint unions of pairs of spacesž

βPJ
pXβ , Aβq :“

˜ž
βPJ

Xβ ,
ž
βPJ

Aβ

¸
.

29. Simplicial homology

As mental preparation for the definition of singular homology, it will be helpful to start with
a different theory that is similar but more restrictive. Simplicial homology requires strictly more
data for its definition than just a topological space, and thus can only be defined on spaces that
are “nice” enough to admit such data. What it lacks in generality, it makes up for in computability
and geometric transparency. One can think of simplicial homology as a combinatorial variant of
bordism theory, one that is based on simpler building blocks than manifolds, and can thus be
studied without any understanding of the (generally difficult) problem of classifying manifolds.

29.1. Simplicial complexes and polyhedra. The spaces on which simplicial homology
is defined are called polyhedra, and they are much more restrictive than arbitrary topological
spaces, but nonetheless include most of the typical examples of interest, e.g. all smooth manifolds.
Intuitively, a polyhedron is a space that can be constructed by gluing together “triangles” of various
dimensions, and the resulting decomposition of a polyhedron into “triangular” pieces is therefore
known as a triangulation. The first necessary step is to define the n-dimensional generalization of
a triangle.

Definition 29.1. For an integer n ě 0, the standard n-simplex is the topological space

∆n :“  pt0, . . . , tnq P In`1
ˇ̌
t0 ` . . .` tn “ 1

(
,

endowed with the subspace topology as a subset of Rn`1. The n`1 standard basis vectors of Rn`1

are called the vertices (Eckpunkte) of ∆n, and for arbitrary subsets J Ă t0, . . . , nu, the sets of
the form  pt0, . . . , tnq P ∆n

ˇ̌
tj “ 0 for all j P J(

are called the faces (Seiten or Facetten) of ∆n; these include in particular the n ` 1 boundary
faces (Seitenflächen)

Bpjq∆n :“  pt0, . . . , tnq P ∆n
ˇ̌
tj “ 0

(
, j “ 0, . . . , n.

This definition makes∆0 the one-point space t1u Ă R, while∆1 is a compact line segment in R2

homeomorphic to the interval I, ∆2 is the compact region in a plane bounded by a triangle,∆3 is the
compact region in a 3-dimensional vector space bounded by a tetrahedron, and so forth. Observe
that every face of ∆n is homeomorphic to ∆k for some k ď n, and since the coordinates of Rn`1

come with a canonical ordering, there is even a canonical choice of homeomorphism. For instance,
the boundary faces Bpjq∆n are all homeomorphic to ∆n´1, and the canonical homeomorphisms
take the form

(29.1) ∆n´1 –ÝÑ Bpjq∆n : pt0, . . . , tn´1q ÞÑ pt0, . . . , tj´1, 0, tj, . . . , tn´1q.
We will make frequent use of these canonical homeomorphisms to identify each face of a standard
simplex with another standard simplex.

In order to explain how copies of ∆n for various n ě 0 can be glued together to form a
polyhedron, we need to define simplicial complexes, which are fundamentally combinatorial objects.
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Definition 29.2. A simplicial complex (Simplizialkomplex) K “ pV, Sq consists of two sets
V and S, called the sets of vertices (Eckpunkte) and simplices (Simplizes) respectively, where
the elements of S are finite subsets of V , and σ P S is called an n-simplex of K if it has n ` 1

elements. We require the following conditions:
(1) Every vertex v P V gives rise to a 0-simplex in K, i.e. tvu P S;
(2) If σ P S then every subset σ1 Ă σ is also an element of S.

For any n-simplex σ P S, its subsets are called its faces (Seiten or Facetten), and in particular the
subsets that are pn ´ 1q-simplices are called boundary faces (Seitenflächen) of σ. The second
condition above thus says that for every simplex in the complex, all of its faces also belong to the
complex. With this condition in place, the first condition is then equivalent to the requirement
that every vertex in the set V belongs to at least one simplex.

The complex K is said to be finite if V (and therefore also S) is finite, and its dimension is

dimK :“ sup
σPS

dimσ P t0, 1, 2, . . . ,8u,
where we write dimσ “ n whenever σ is an n-simplex.

Definition 29.3. A subcomplex K 1 Ă K of a simplicial complex K “ pV, Sq is a simplicial
complex K 1 “ pV 1, S1q such that V 1 Ă V and S1 Ă S.

The polyhedron (Polyeder) of a simplicial complex K “ pV, Sq is a topological space |K|
defined as follows. We denote by IV the set of all functions V Ñ I, i.e. each element t P IV is
determined by a set of real numbers tv P r0, 1s associated to the vertices v P V , which we can think
of as the coordinates of t. For each n-simplex σ “ tv0, . . . , vnu in K, we define the set

|σ| :“
#
t P IV

ˇ̌̌̌
ˇ ÿ
vPσ

tv “ 1 and tv “ 0 for all v R σ
+
.

This set is a copy of the standard n-simplex living in the finite-dimensional vector space Rσ – Rn`1,
and we shall assign it the topology that it inherits naturally from this finite-dimensional vector
space. As a set, the polyhedron |K| is then defined by

|K| :“ ď
σPS

|σ| Ă IV .

If K is finite, then |K| lives inside the finite-dimensional vector space RV , and therefore has an
obvious topology for which the topology we already defined on each of the subsets |σ| Ă |K|
matches the subspace topology. A bit more thought is required at this step if K is infinite. One
possible choice would be to endow IV with the product topology (via its obvious identification
with

ś
vPV I) and then take the subspace topology on |K| Ă IV , but the product topology turns

out not to be the most useful choice here. We will instead let the topology of |K| be determined
by that of the individual simplices:

Definition 29.4. Given a simplicial complex K “ pV, Sq, the topology of its polyhedron
|K| Ă IV is defined such that a subset U Ă |K| is open if and only if U X |σ| is an open subset of
|σ| for every simplex σ P S.

In other words, |K| is equipped with the strongest51 topology for which the inclusions |σ| ãÑ |K|
are continuous for all σ. You should take a moment to convince yourself that this matches what

51For some unfathomable reason, the topology on |K| has traditionally been referred to in the literature as
the “weak” topology, and the same strange choice of nomenclature plagues the theory of CW-complexes, which we
will discuss in a few weeks. It is a question of perspective: since |K| has a lot of open sets, it is fairly difficult for
sequences in |K| to converge, or for maps into |K| to be continuous, but on the flip side, it is relatively easy for
functions defined on |K| to be continuous (see Exercise 29.1).
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was already said for the case where K is finite, and you should then prove the following proposition
as an exercise:

Proposition 29.5. For any simplicial complex K “ pV, Sq and any space X, a map f : |K| Ñ
X is continuous if and only if f ||σ| : |σ| Ñ X is continuous for every simplex σ P S. �

Definition 29.6. A topological space X is a polyhedron (Polyeder) if it is homeomorphic
to the polyhedron |K| of some simplicial complex K. A choice of such a homeomorphism X – |K|
is called a triangulation (Triangulierung) or simplicial decomposition of the space X .

Remark 29.7. The definition of the term triangulation given above is perhaps stricter than
some other sensible definitions of this term that one could imagine. What everyone can agree upon
is that a triangulation of X should decompose X as a union of compact subsets, each of which is
homeomorphic to a standard simplex, such that the intersection of any two of them is a common
face of both; this includes the case where one of them is a face of the other, but also cases in
which their interiors are disjoint. Definition 29.6 does decompose X in this way, but having a
specific choice of homeomorphism X – |K| is actually a lot more information, and it is debateable
whether this amount of information is truly necessary for most of the important applications of
triangulations. It will be useful for our purposes, however, when we want to write down precise
relations between the simplicial and singular homologies of a triangulated space.

Definition 29.8. For each integer n ě 0, the n-skeleton (n-Skelett or n-Gerüst) of a sim-
plicial complex K “ pV, Sq is the subcomplex Kn “ pV, Snq of K whose set of simplices Sn Ă S

consists of all σ P S with dim σ ď n. Similarly, the n-skeleton of a polyhedron X with tri-
angulation X – |K| is the subspace Xn Ă X formed by the polyhedron of the n-skeleton Kn

of K.

This definition presents a polyhedron X as the union of a nested sequence of subspaces, its
skeleta of various dimensions,

X0 Ă X1 Ă X2 Ă . . . Ă
8ď
n“0

Xn “ X,

each of which is also a polyhedron. In particular, a polyhedron is n-dimensional (i.e. corresponds
to an n-dimensional simplicial complex) if and only if it is equal to its n-skeleton. The 0-skeleton
of any polyhedron is just the union of all its vertices—one can show that this is always a discrete
set.

While |K| was defined above as a subset of a vector space whose dimension may in general be
quite large (or infinite), visualizing |K| in concrete examples is often easier than one might expect.

Example 29.9. Suppose V “ tv0, v1, v2, v3u and S contains the subsets A :“ tv0, v1, v2u and
B :“ tv1, v2, v3u, plus all of their respective subsets. Then |K| contains two copies of the triangle
∆2, and they intersect each other along a single common edge connecting the vertices labeled
v1 and v2. The complex is 2-dimensional, and its 1-skeleton is the union of all the edges of the
triangles.

Example 29.10. If V has n` 1 elements and S consists of all subsets of V except for V itself,
then |K| is homeomorphic to B∆n, i.e. the union of all the boundary faces of ∆n. In particular,
this is homeomorphic to Sn´1.

Example 29.11. Suppose V “ tv0, . . . , vnu for some n ě 2 and S is defined to consist of all
the one-element subsets tviu plus the 1-simplices tvi, vi`1u for i “ 0, . . . , n´ 1 and tvn, v0u. Then
|K| is a 1-dimensional polyhedron homeomorphic to S1.
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Example 29.12. Taking V “ Z with S as the set of all 0-simplices tnu plus 1-simplices of the
form tn, n`1u for n P Z gives an infinite (but 1-dimensional) simplicial complex whose polyhedron
is homeomorphic to R.

Example 29.13. If V “ N and S is the set of all finite subsets of N, then K is an infinite-
dimensional simplicial complex. Every simplex in this complex is a face of t1, . . . , nu for n suffi-
ciently large, thus you can try to picture |K| as the union of an infinite nested sequence of simplices
∆0 Ă ∆1 Ă ∆2 Ă . . ., where each ∆k is a boundary face of ∆k`1.

Definition 29.14. Given two simplicial complexes K1 “ pV1, S1q and K2 “ pV2, S2q, a sim-
plicial map (simpliziale Abbildung) from K1 to K2 is a function f : V1 Ñ V2 such that fpσq P S2

for every σ P S1.

Note that a simplicial map K1 Ñ K2 need not be injective on any given simplex, i.e. it can
send an n-simplex of K1 onto a k-simplex of K2 for any k ď n. There is a natural way to turn any
simplicial map into a continuous map of the polyhedra |K1| Ñ |K2|. Indeed, denote by tevuvPV the
natural basis vectors of RV so that every element t P RV can be written uniquely as a formal52 sumř
vPV tvev with coordinates tv P R. Then since every element t P |K1| is of the form

ř
vPV1

tvev
where only finitely many of the coordinates are nonzero and they all add up to 1, we can define

f : |K1| Ñ |K2| :
ÿ
vPV1

tvev ÞÑ
ÿ
vPV1

tvefpvq P IV2 .

In other words, for each simplex σ P S1, f maps |σ| onto |fpσq| via the restriction of the obvious
linear map Rσ Ñ Rfpσq that sends basis vectors ev to efpvq for v P σ. We have thus defined a
functor

SimpÑ Top : K ÞÑ |K|,
where Simp is the category of simplicial complexes with morphisms defined to be simplicial maps.
Notice that f : |K1| Ñ |K2| always maps the n-skeleton of |K1| into the n-skeleton of |K2| for
every n ě 0.

Since we will often be concerned mainly with compact manifolds, the following result enables
us to restrict attention to finite simplicial complexes:

Proposition 29.15. A simplicial complex K “ pV, Sq is finite if and only if its polyhedron
|K| is compact.

This will follow from a more general theorem about CW-complexes that we shall prove in a
few weeks, so for now, we’ll settle for proving a special case, which happens to cover most of the
interesting examples, and is quite easy:

Proof of Proposition 29.15 for finite-dimensional complexes. If K is finite, then
|K| is a closed and bounded subset of the finite-dimensional vector space RV , and is therefore
compact.

Conversely, ifK is infinite but dimK ă 8, there exists an infinite sequence of distinct simplices
σ1, σ2, . . . P S with the property that each σi is not a face of any other simplex in K. Now for
each i P N, pick a point xi P |σi| along with an open neighborhood Ui Ă |σi| of xi that is contained
in the interior of |σi|. Since σi is not a face of any other simplex, we have Ui X |σ| “ H for all
simplices σ ‰ σi, thus Ui defines an open subset of |K| that contains xi but none of the other
points in the sequence x1, x2, . . .. This proves that the infinite subset tx1, x2, . . .u Ă |K| is discrete,
hence |K| cannot be compact. �

52The word “formal” means in this context that we do not require the sum to converge in any sense, as it is a
purely algebraic object. In practice, we are only going to consider points t P RV that have finitely many nonzero
coordinates, thus the sums converge trivially.
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29.2. The category of chain complexes. In absolute bordism theory, crucial roles are
played by the words “closed” and “boundary”: elements are represented by maps defined on closed
manifolds rather than manifolds that are noncompact or have boundary, and the equivalence
relation arises from the fact that certain manifolds are the boundaries of others. One trivial and
yet important detail here is the fact that for a compact manifold M with boundary, its boundary
BM is always a closed manifold: the compactness of BM is automatic since BM Ă M is a closed
subset, but being a boundary also means that BM cannot have any boundary points of its own.

In the usual constructions of homology theories—which do not require any knowledge of
manifolds—there is an algebraic device that gives useful meaning to the words closed and boundary,
and the fact that boundaries have no boundary of their own is then encoded by a simple algebraic
equation, taking the form “B2 “ 0”.

Definition 29.16. A chain complex (Kettenkomplex) of R-modules is a sequence of R-
modules taking the form

. . . ÝÑ Cn`1
Bn`1ÝÑ Cn

BnÝÑ Cn´1 ÝÑ . . .

and satisfying the relation

(29.2) Bn ˝ Bn`1 “ 0

for every n P Z.

Let’s add some helpful terminology and notation to the definition above. The collection of
R-modules Cn forming a chain complex can be packaged together as a single R-module

C˚ :“à
nPZ

Cn,

and writing B : C˚ Ñ C˚ for the homomorphism determined uniquely by the maps Bn : Cn Ñ Cn´1

for all n, the defining relation (29.2) is then written succintly as

B2 “ 0.

The chain complex itself can then be denoted by pC˚, Bq, often abbreviated simply as C˚. We call B
the boundary map of boundary operator (Randoperator) of the complex. An element c P C˚
is said to be homogeneous (homogen) if it belongs to the specific submodule Cn Ă C˚ for some
n P Z, which is then called the degree (Grad) of c, sometimes written as

|c| :“ n for c P Cn,
and the homogeneous elements of degree n are also called the n-chains (n-Ketten) of the complex.
We say that c P C˚ is closed (geschlossen) if it satisfies

Bc “ 0,

and the closed n-chains are called the n-cycles (n-Zykel) of the complex. Further, c P C˚ is a
boundary (Rand) if it satisfies

c “ Ba for some a P C˚,
and the n-cycles that are also boundaries are called the n-boundaries. The relation B2 “ 0 is
equivalent to the condition that all boundaries are also cycles, in other words, im Bn`1 is always a
submodule of ker Bn.

Remark 29.17. For the boundary map B : C˚ Ñ C˚ of a chain complex, one sometimes abuses
notation and writes

B : C˚ Ñ C˚´1
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to emphasize the fact that B sends n-chains to pn ´ 1q-chains for each n. A fancier way to say
this is that C˚ is naturally a Z-graded R-module, and the boundary map is a homomorphism of
degree ´1.

Definition 29.18. The homology H˚pC˚q “ H˚pC˚, Bq of the chain complex C˚ is the
collection of quotient modules

HnpC˚q :“ kerpBnq
M
impBn`1q.

Their direct sum is denoted by

H˚pC˚q “
à
nPZ

HnpC˚q.

Given a chain complex C˚, elements rcs P HnpC˚q are called homology classes of degree n:
their representatives c P Cn are n-cycles, and two such n-cycles c, c1 represent the same homology
class if and only if c1 ´ c is a boundary, in which case we say that they are homologous.

Definition 29.19. Given two chain complexes pA˚, BAq and pB˚, BBq, a chain map (Ketten-
abbildung) from pA˚, BAq to pB˚, BBq is a collection of homomorphisms fn : An Ñ Bn for n P Z

such that the following diagram commutes:

(29.3)
. . . An`1 An An´1 . . .

. . . Bn`1 Bn Bn´1 . . .

BAn`1

fn`1

BAn

fn

BAn´1

fn´1

BBn`1 BBn BBn´1

In other words, a chain map is a homomorphism f : A˚ Ñ B˚ that maps n-chains to n-chains for
each n P Z and satisfies BB ˝ f “ f ˝ BA.

It is easy to check that the composition of two chain maps is also a chain map, and so is the
identity map on any chain complex, thus we can define a category

ChpR-Modq often abbreviated as Ch,

whose objects are chain complexes of R-modules, with chain maps as morphisms. The following
easy observation then produces a functor

ChpR-Modq HnÝÑ R-Mod

for each n P Z, sending each chain complex to its homology in degree n and each chain map to the
induced homomorphism between homologies.

Proposition 29.20. Any chain map f : pA˚, BAq Ñ pB˚, BBq determines homomorphisms
f˚ : HnpA˚, BAq Ñ HnpB˚, BBq for every n P Z via the formula

f˚ras :“ rfpaqs.
Proof. There are two things to prove: first, that whenever a P An is a cycle, so is fpaq P Bn.

This is clear since BAa “ 0 implies BBpfpaqq “ fpBAaq “ 0 by the chain map condition. Second,
we need to know that f maps boundaries to boundaries, so that it descends to a well-defined
homomorphism ker BAn { im BAn`1 Ñ ker BBn { im BBn`1. This is equally clear, since a “ BAx implies
fpaq “ fpBAxq “ BBfpxq. �
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29.3. Ordered simplicial homology. We now describe the first of two versions of the
so-called simplicial chain complex (simplizialer Kettenkomplex) of a simplicial complex K “
pV, Sq, the homology of which will be the simplicial homology (simpliziale Homologie) of K. We
will see later that with a bit of care, simplicial homology can be defined as a collection of functors on
the subcategory of Top consisting of all polyhedra, without needing to specify how each polyhedron
is triangulated. For now, however, the definition of the simplicial homology groups will depend
explicitly on a simplicial complex, and thus gives us functors SimpÑ R-Mod.

The first version of the simplicial chain complex is algebraically simpler than the second, while
the second will be easier to interpret geometrically. In practice, we will eventually be able to
choose freely between them, because (for slightly nontrivial reasons) their homologies turn out to
be naturally isomorphic.

Remark 29.21. For readers who have seen the definition of simplicial homology in the first
semester of these notes (cf. Lecture 21): the complex defined in §29.4 below is cosmetically different
from the one that was defined there, but is easily seen to be isomorphic to it (see Remark 29.24).
The main difference is that our previous definition required fixing an arbitrary choice of orientation
for each simplex, and the definition below avoids making any such choices.

Convention. For the rest of this lecture, and in fact for most of the rest of this course, you
should assume that

G P R-Mod

is an arbitrary choice of R-module, which will typically play the role of the coefficient group in
whichever version of homology is under discussion. We will include G in the notation for homology
in situations where the choice of coefficient group matters, but omit it whenever this choice plays
no important role.

Given a simplicial complex K “ pV, Sq, define the set
KonpKq :“

!
pv0, . . . , vnq P V ˆpn`1q ˇ̌ there exists a σ P S with vi P σ for all i “ 0, . . . , n

)
for each n ě 0. The elements of KonpKq are thus ordered pn` 1q-tuples of vertices such that some
simplex of the complex contains all of them. Note that in this definition, we are not assuming
the v0, . . . , vn are all distinct, though if they are, then it means tv0, . . . , vnu P S is an n-simplex
of the complex K, and the ordered tuple pv0, . . . , vnq is then called an ordered n-simplex. The
ordered simplicial chain complex (with coefficients in G)

Co˚pKq “ Co˚pK;Gq “ à
nPZ

ConpK;Gq “ à
nPZ

ConpKq

is defined with
ConpKq “

à
σPKo

npKq
G

for each n ě 0, so that n-chains can be written uniquely as finite sums
ř
i aiσi with coefficients

ai P G attached to canonical generators σi P KonpKq. In particular, if the coefficient module G is
taken to be the ring R itself, then ConpKq is the free R-module over the set KonpKq; in the case
R “ Z, it is thus a free abelian group. Linearity and the formula

(29.4) Bpv0, . . . , vnq :“
nÿ
k“0

p´1qkpv0, . . . , vk´1, vk`1, . . . , vnq

uniquely determine a boundary map B : ConpKq Ñ Con´1pKq on this complex for each n ě 1, and
we define ConpKq to be trivial for each n ă 0, so that B : ConpKq Ñ Con´1pKq is necessarily trivial
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for each n ď 0. It is a straightforward exercise in sign cancellations to verify that B satisfies B2 “ 0.
The resulting homology groups

Ho˚pKq :“ Ho˚pK;Gq :“ H˚
`
Co˚pK;Gq, B˘

will be called the ordered simplicial homology of K with coefficients in G.
In order to view ordered simplicial homology as a functor, we associate to each simplicial map

f : K1 Ñ K2 and each n ě 0 the unique R-module homomorphism

f˚ : ConpK1q Ñ ConpK2q
determined by linearity and the formula

f˚pv0, . . . , vnq :“ pfpv0q, . . . , fpvnqq.
It is straightforward to check that this defines a chain map Co˚pK1q Ñ Co˚pK2q, and thus gives us
a functor

Co˚ : SimpÑ ChpR-Modq.
Composing this with the algebraic homology functors Hn : ChpR-Modq Ñ R-Mod gives us functors

Ho
n : SimpÑ R-Mod;

in particular, simplicial maps f : K1 Ñ K2 induce R-module homomorphisms f˚ : Ho
npK1q Ñ

Ho
npK2q for every n.
29.4. Oriented simplicial homology. The second version of the simplicial chain complex

has a similar but smaller set of generators, because it excludes tuples pv0, . . . , vnq that contain
repeats of the same vertex, and instead of keeping track of their orders, it keeps track of orientations.
The following combinatorial result makes this possible; its proof is an exercise.

Lemma 29.22. For each n ě 1, the boundary map B : ConpK;Zq Ñ Con´1pK;Zq defined via
(29.4) preserves the subgroup of Co˚pK;Zq generated by all elements of the form

(29.5)
`
v0, . . . , vn

˘ P ConpK;Zq with vi “ vj for some i ‰ j

or of the form

(29.6)
`
v0, . . . , vn

˘´ p´1q|τ |`vτp0q, . . . , vτpnq˘ P ConpK;Zq
for arbitrary pv0, . . . , vnq P KonpKq and permutations τ P Sn`1, where p´1q|τ | “ ˘1 denotes the
sign of the permutation. �

Definition 29.23. An orientation (Orientierung) of an n-simplex σ P S for n ě 1 in a
complex K “ pV, Sq is an equivalence class of orderings of the vertices of σ, where two orderings
are considered equivalent if they differ by an even permutation. The case n “ 0 is special: an
orientation of a 0-simplex is simply a choice of sign `1 or ´1, called the positive or negative
orientation respectively.

A simplex endowed with an orientation is called an oriented simplex (orientiertes Simplex),
and any oriented simplex with vertices v0, . . . , vn can be written with the notation

˘rv0, . . . , vns,
which is understood to mean the simplex tv0, . . . , vnu with orientation determined by the ordering
v0, . . . , vn if the sign in front is positive, and the opposite of that orientation if the sign is negative.
So for example, the symbols rv0, v1s and ´rv1, v0s represent the same oriented 1-simplex, while that
simplex with the opposite orientation can be written as either ´rv0, v1s or rv1, v0s. For an oriented
0-simplex ˘rv0s, there is only one possible ordering, and the orientation is thus determined entirely
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by the initial sign. For a 2-simplex tv0, v1, v2u, the fact that cyclic permutations of three elements
are always even means

rv0, v1, v2s “ rv1, v2, v0s “ rv2, v0, v1s “ ´rv1, v0, v2s “ ´rv0, v2, v1s “ ´rv2, v1, v0s.
In pictures of 2-dimensional polyhedra, one can usefully employ arrows on 1-simplices to specify
orientations by ordering the two vertices, and circular arrows in 2-simplices to indicate the cyclic
orderings that determine their orientations (see Figure 15).

Thanks to Lemma 29.22, the oriented simplicial chain complex of K “ pV, Sq can be
defined as a quotient

C∆˚ pKq :“ Co˚pKq
L
Do˚pKq,

where we denote by Do˚pKq Ă Co˚pKq the submodule generated by products of arbitrary coefficients
g P G with elements of the form (29.5) or (29.6); this is sometimes called the group of degenerate
chains. For each generator pv0, . . . , vnq of ConpK;Zq, we shall denote the equivalence class that it
represents in the quotient complex by

rv0, . . . , vns P C∆
n pK;Zq.

This means
rv0, . . . , vns “ 0 if vi “ vj for some i ‰ j,

whereas if the vertices v0, . . . , vn are all distinct, then rv0, . . . , vns can be interpreted as an oriented
n-simplex, and the equivalence relation in the quotient complex then reproduces our previous
notational convention for oriented simplices, namely

rv0, . . . , vi, . . . , vj , . . . , vns “ ´rv0, . . . , vj , . . . , vi, . . . , vns
for each pair i ‰ j in t0, . . . , nu. The boundary map B : C∆

n pKq Ñ C∆
n´1pKq is thus determined

by the formula

(29.7) Brv0, . . . , vns “
nÿ
k“0

p´1qkrv0, . . . , vk´1, vk`1, . . . , vns,

and Lemma 29.22 guarantees that this formula is independent of the order in which the vertices
are written. We will denote the resulting oriented simplicial homology by

H∆˚ pKq :“ H˚
`
C∆˚ pKq

˘
.

One checks easily that the chain maps f˚ : Co˚pK1q Ñ Co˚pK2q induced by any simplicial map
f : K1 Ñ K2 descend to the quotient as chain maps

f˚ : C∆˚ pK1q Ñ C∆˚ pK2q,
thus giving a functor

C∆˚ : SimpÑ ChpR-Modq,
which composes with the algebraic homology functor to produce functors

H∆
n : SimpÑ R-Mod

for each n ě 0.
Notice moreover that since the chain complex C∆˚ pKq is defined as a quotient of Co˚pKq, the

quotient projection
Co˚pKq Ñ C∆˚ pKq : pv0, . . . , vnq ÞÑ rv0, . . . , vns

is also a chain map, and thus induces a natural sequence of homomorphisms

Ho
npKq Ñ H∆

n pKq, n ě 0.

The word “natural” is meant here in its technical sense, as the map from ordered to oriented
simplicial homology can be seen as a natural transformation between two functors SimpÑ R-Mod.
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We will later see in fact that on the homology level (though not on the level of chain complexes),
these maps are always isomorphisms. This fact, however, requires a lengthier discussion, and we
do not need it just yet.

Remark 29.24. While it is not so obvious from the definition above, C∆
n pKq “ C∆

n pK;Gq for
a simplicial complex K can be identified with a complex of the form

C∆
n pKq –

à
σPK∆

n pKq
G,

where the set K∆
n pKq of generators consists of all n-simplices σ “ tv0, . . . , vnu in the complex K.

This perspective gives C∆˚ pKq a similar formal structure to that of Co˚pKq, so that for instance
C∆
n pK;Zq is also a free abelian group, but with a smaller and more manageable set of generators

than ConpK;Zq. Indeed, each generator of ConpKq is an ordered tuple pv0, . . . , vnq of vertices in a
simplex, but the generators of C∆

n pKq are instead actual n-simplices tv0, . . . , vnu of the complexK,
meaning that the vertices v0, . . . , vn are required to be distinct, and the order in which they are
written does not matter. Some choices are required, however, before C∆

n pKq can be presented in
this way: if one makes an arbitrary choice of orientation for each simplex tv0, . . . , vnu of K and
writes its vertices in an order consistent with the chosen orientation, then the resulting oriented
n-simplex rv0, . . . , vns can be used as a generator of C∆

n pKq, and there is no need to consider
other permutations of the vertices v0, . . . , vn. Writing down B : C∆

n pKq Ñ C∆
n´1pKq then requires

taking some care with signs, to account for the fact that the arbitrarily chosen orientations of the
pn´1q-simplices of K may or may not agree with the orientations of the boundary faces appearing
in the usual formula for Brv0, . . . , vns. The result is essentially the definition of H∆˚ pKq that we
gave in Lecture 21 last semester, and it is also the description that typically seems most convenient
for actual computations of simplicial homology (see e.g. Figure 15). The alternative formulation
as a quotient complex shows why it does not actually depend on the choices of orientations.

Comparing the ordered and oriented simplicial chain complexes, the oriented complex has a
more obvious geometric interpretation, because its generators are in bijective correspondence with
actual simplices. By contrast, the ordered chain complex has a lot of redundant information, since
each simplex gives rise to several generators corresponding to the different possible orderings of
its vertices. But as we will see, the ordered complex is the one that admits a straightforward
relationship with the singular homology of a polyhedron.

29.5. Exercises.

Exercise 29.1 (*). Prove Proposition 29.5: For any simplicial complex K “ pV, Sq and any
space X , a map f : |K| Ñ X is continuous if and only if f ||σ| : |σ| Ñ X is continuous for every
simplex σ P S.

Exercise 29.2 (*). Prove Lemma 29.22, which establishes that the definition of B on the
oriented simplicial chain complex makes sense.
Hint: One does not really need to examine all possible tuples pv0, . . . , vnq and all of their permu-
tations. It suffices to check cases where vk “ vk`1 for some k, and permutations that interchange
two neighboring elements.

Exercise 29.3. Figure 16 shows a simplicial complex K “ pV, Sq whose associated polyhedron
|K| is homeomorphic to the Klein bottle. There are nine vertices labeled Pi, Qi, Ri for i “ 1, 2, 3,
twenty-seven 1-simplices labeled by letters ai, bi, ci, di, ei, fi for i “ 1, 2, 3 and gi for i “ 1, . . . , 9, and
eighteen 2-simplices labeled σi, τi for i “ 1, . . . , 9. The picture also shows a choice of orientation for
each of the 2-simplices (circular arrows represent a cyclic ordering of the vertices) and 1-simplices
(arrows point from the first vertex to the last). If we additionally endow each 0-simplex with the
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Figure 15. The picture shows a simplicial complex K with polyhedron |K| –
T2, and choices of orientations on each simplex indicated via arrows (defining cyclic
orderings of three vertices in the case of each 2-simplex). With these orientations
fixed, plugging in the definition of B : C∆

n pK;Zq Ñ C∆
n´1pK;Zq gives e.g. Bσ1 “

g1 ´ a1 ´ d3, Bτ1 “ b1 ` e3 ´ g1, Ba1 “ P2 ´ P1, Ba2 “ P3 ´ P2, Ba3 “ P1 ´ P3,
and so forth. The complete computation of H∆˚ pK;Zq was carried out near the
end of Lecture 21 last semester, with H∆

2 pK;Zq – Z generated by the sum of the
eighteen 2-simplices in the complex, H∆

1 pK;Zq – Z2 – π1pT2q – H1pT2;Zq, and
H∆

0 pK;Zq – Z – H0pT2;Zq.

positive orientation, every letter in the picture can be regarded as representing an oriented simplex,
and thus a generator of the oriented simplicial chain complex C∆˚ pK;Zq.

(a) Write down the 1-chains Bσi, Bτi P C∆
1 pK;Zq explicitly for each i “ 1, . . . , 9.

(b) Prove that H∆
2 pK;Z2q – Z2, and write down a specific cycle in C∆

2 pK;Z2q that generates
it.

(c) Prove that H∆
2 pK;Zq “ 0.
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Figure 16. The Klein bottle as a polyhedron.

(d) Show that the 1-cycle d1 ` d2 ` d3 represents a nontrivial homology class rd1 ` d2 ` d3s
in both H∆

1 pK;Zq and H∆
1 pK;Z2q, but satisfies 2rd1 ` d2 ` d3s “ 0 P H∆

1 pK;Zq and
rd1 ` d2 ` d3s “ 0 P H∆

1 pK;Qq.

Exercise 29.4 (*). The following computations may give you a hint as to why h0pt˚uq is
called the coefficient group of an axiomatic homology theory h˚. In the simplicial context, let t˚u
denote a simplicial complex that has exactly one vertex.

(a) Prove that H∆
0 pt˚u;Gq – G and H∆

n pt˚u;Gq “ 0 for all n ‰ 0.
Hint: This is nearly trivial.

(b) Prove that Ho
0 pt˚u;Gq – G and Ho

npt˚u;Gq “ 0 for all n ‰ 0.
Remark: This is slightly less trivial than part (a), but not difficult.
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30. Triangulated manifolds and subdivision

I claimed in the previous lecture that simplicial homology can be viewed as a combinatorial
variant of bordism theory. To see what I mean by this, we need to talk about manifolds with
triangulations.

30.1. Triangulated manifolds. In this lecture, we will not need any knowledge of smooth-
ness, so the word “manifold” means topological manifold, i.e. a second countable Hausdorff space
that is locally homeomorphic to a finite-dimensional vector space or half-space. It should be
assumed that all manifolds M may have nonempty boundary BM unless stated otherwise.

Definition 30.1. An n-dimensional triangulated manifold is a topological n-manifold M
equipped with a triangulation M – |K| that identifies BM with the polyhedron of a subcomplex
K 1 Ă K.

The following is a consequence of the local Euclidean structure of manifolds:

Proposition 30.2. If M – |K| is a triangulated n-dimensional manifold, then the associated
simplicial complex K is n-dimensional, and every pn ´ 1q-simplex σ in K is a boundary face of
either one or two n-simplices, where the former is the case if and only if σ belongs to the subcomplex
triangulating BM . �

In general, it is a subtle question whether a given manifold admits a triangulation. It is known
to be true for all smooth manifolds, and also for topological manifolds of dimension at most three
(see [Moi77]), but not in general for dimensions four and above (see [Man14]). We will not
concern ourselves with such questions here, as for our purposes, it is already helpful to consider
explicit examples of manifolds with triangulations, such as the picture of T2 in Figure 15. Our
immediate motivation for doing so is to give explicit constructions of some important homology
classes. The idea is to turn a triangulation M – |K| of a compact n-manifold into an n-chain in
the simplicial chain complex of K.

It is easiest to explain how this works in H∆pK;Z2q. Using Z2 as a coefficient group has the
advantage that for any n-simplex σ “ tv0, . . . , vnu of K, we have

rv0, . . . , vns “ ´rv0, . . . , vns P C∆
n pK;Z2q,

so that all choices of ordering for the vertices v0, . . . , vn produce the same element, and there is
thus no need to worry about orientations. Given a compact triangulated n-manifold M – |K|, we
can define an oriented simplicial n-chain by

(30.1) cM :“ÿ
σ

vσ P C∆
n pK;Z2q,

where the sum ranges over the set of all n-simplices σ of K, and vσ “ rv0, . . . , vns denotes the
vertices of σ “ tv0, . . . , vnu, arranged in an arbitrary order. Note that this definition would not
make sense if M were not compact, but according to Proposition 29.15, compactness implies that
K is a finite simplicial complex, so that the sum in the definition of cM is finite. If BM ‰ H, then
the subcomplex K 1 Ă K triangulating BM similarly defines a simplicial pn´ 1q-chain

cBM P C∆
n´1pK 1;Z2q Ă C∆

n´1pK;Z2q,
where we are regarding C∆

n´1pK 1;Z2q as a submodule of C∆
n´1pK;Z2q, which makes sense because

the canonical generators of C∆
n´1pK 1;Z2q (i.e. the pn´1q-simplices of K 1) are also pn´1q-simplices

of K and thus generators of C∆
n´1pK;Z2q. If BM “ H, then the recipe above defines the trivial

pn´ 1q-chain, and we can therefore sensibly write

cBM “ 0 P C∆
n´1pK;Z2q if BM “ H.
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Proposition 30.3. The chains cM P C∆
n pK;Z2q and cBM P C∆

n´1pK 1;Z2q Ă C∆
n´1pK;Z2q in

the situation above satisfy
BcM “ cBM .

Proof. By Proposition 30.2, applying B to the right hand side of (30.1) produces exactly two
copies of each pn ´ 1q-simplex of K that is not in K 1, so with Z2 coefficients, they cancel each
other. What remains is a single term for each pn ´ 1q-simplex in the triangulation of BM , which
produces cBM . �

The proposition implies in particular that whenever M is a closed triangulated n-manifold,
the n-chain cM is a cycle, and thus represents a homology class

rM s :“ rcM s P H∆
n pK;Z2q.

We call this the (simplicial) fundamental class of M , and refer to cM as a fundamental cycle.
In the case BM ‰ H, we will see when we discuss relative simplicial homology that cM still
represents a relative homology class for the triangulated pair of spaces pM, BMq, thus the terms
fundamental cycle and fundamental class remain appropriate.

Fundamental cycles and classes can also be defined in ordered simplicial homology, but this
requires some choices.

Definition 30.4. An admissible ordering on a simplicial complex K “ pV, Sq assigns to
each simplex σ P S a total order on its set of vertices such that the inclusion τ ãÑ σ of each of its
faces τ Ă σ is an order-preserving map.

It is easy to see that every simplicial complex admits an admissible ordering, e.g. one can
simply choose a total order on the entire set of vertices V , and define the total orders on every
simplex σ Ă V so that the inclusion σ ãÑ V is order preserving. Since we are only talking about
compact manifolds in this lecture, our simplicial complexes are always finite, so you don’t even
need to appeal to any abstract set-theoretic machinery (e.g. the axiom of choice) before choosing
a total order on V . There are also situations where establishing a rule to determine total orders
on every simplex σ P S is more convenient than choosing a total order on V itself.

Suppose again that M – |K| is a compact triangulated n-manifold, and let K 1 Ă K denote
the subcomplex whose polyhedron is identified with BM . Working with Z2 coefficients, any choice
of admissible ordering for K determines an ordered simplicial n-chain of the form

cM :“ÿ
σ

vσ P ConpK;Z2q,

in which the sum ranges again over the set of all n-simplices σ of K, and vσ “ pv0, . . . , vnq denotes
the vertices of σ “ tv0, . . . , vnu arranged in increasing order. If BM ‰ H, the admissible ordering
on K restricts to an admissible ordering on K 1, and thus similarly determines an ordered simplicial
pn´ 1q-chain

cBM P Con´1pK 1;Z2q Ă Con´1pK;Z2q,
and we take cBM to be 0 P Con´1pK;Z2q if BM “ H. It is easy to verify that the analogue of
Proposition 30.3 also holds in this situation, and we thus have

BcM “ cBM P Con´1pK;Z2q.
It is clear from the construction that the natural chain map Co˚pK;Z2q Ñ C∆˚ pK;Z2q sends each

ordered fundamental cycle to the oriented fundamental cycle, so whenM is closed, it therefore sends
an ordered simplicial fundamental class rM s P Ho

npK;Z2q to the oriented simplicial fundamental
class rM s P H∆

n pK;Z2q. Once we’ve proved that the natural map Ho
npK;Z2q Ñ H∆

n pK;Z2q is an
isomorphism, we will be able to deduce from this that the class rM s P Ho

npK;Z2q is independent
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of choices, even though the fundamental cycle cM P ConpK;Z2q that represents it does depend on
the choice of admissible ordering for the complex.

The following result is a worthwhile exercise in the computation of simplicial homology.

Theorem 30.5. For any closed and connected triangulated n-manifold M – |K|, H∆
n pK;Z2q

is isomorphic to Z2, and its unique nontrivial element is the fundamental class rM s. �

30.2. Oriented triangulations. In order to extend the construction of fundamental cycles
from Z2 to integer coefficients, we need triangulations with a bit of extra structure.

Definition 30.6. Suppose n ě 1 and ˘rv0, . . . , vns is an oriented n-simplex in a simplicial
complex. The induced boundary orientation on the boundary face tv1, . . . , vnu is then given by
the oriented pn´ 1q-simplex ˘rv1, . . . , vns.

Note that the oriented simplex ˘rv0, . . . , vns can typically be written in multiple distinct ways
with the vertex v0 appearing first and the other vertices permuted, but the same permutation
then applies to the oriented boundary face ˘rv1, . . . , vns and causes the same sign change, so
that Definition 30.6 does not depend on any choices. Moreover, the definition determines an
orientation on every boundary face of σ “ tv0, . . . , vnu, because for any k “ 0, . . . , n, one can
always apply a permutation to rewrite ˘rv0, . . . , vns with vk in front; in particular, rv0, . . . , vns “
p´1qkrvk, v0, . . . , vk´1, vk`1, . . . , vns, so that endowing the face tv0, . . . , vk´1, vk`1, . . . , vnu with the
boundary orientation determined by rv0, . . . , vns produces the oriented simplex

p´1qkrv0, . . . , vk´1, vk`1, . . . , vns.
The formula (29.7) for Brv0, . . . , vns in the oriented simplicial chain complex can thus be interpreted
as the sum of the n` 1 boundary faces of rv0, . . . , vns endowed with their boundary orientations.

Remark 30.7. In addition to being consistent with our usual formulas for boundary operators
on chain complexes, there is some geometric motivation behind Definition 30.6. In differential
geometry, an oriented n-manifoldM induces a natural boundary orientation on BM , and if M has
a triangulation, the orientation ofM also induces orientations of the n-simplices in its triangulation.
One can check that if the polyhedron |σ| of an oriented n-simplex σ in a complex K is viewed as an
oriented n-manifold, then the geometric notion of boundary orientation on B|σ| – Sn´1 matches
the induced orientations (according to Definition 30.6) of the boundary faces of σ, which form a
triangulation of B|σ|.

Definition 30.8. For an n-dimensional manifoldM , an oriented triangulation (orientierte
Triangulierung) of M is a triangulation in which every n-simplex is endowed with an orientation
such that for every pn´1q-simplex σ not contained in BM , the two boundary orientations it inherits
as a boundary face of two distinct oriented n-simplices (cf. Prop. 30.2) are opposite.

I recommend now taking another look at Figure 15 to verify that the orientations of 2-simplices
depicted in this picture define an oriented triangulation of T2. Then, contrast it with Figure 16,
which shows a triangulation of the Klein bottle in which orientations of the 2-simplices have been
chosen but they fail to satisfy the conditions of Definition 30.8. (The trouble is with the 1-simplices
labeled d1, d2, d3.) The problem with the Klein bottle is of course that it is a non-orientable
manifold, and it turns out that only orientable manifolds can admit oriented triangulations—we
sketched a proof of this for surfaces last semester in Lecture 20, and we will be able to prove it for
all manifolds later in this course using homology.

Example 30.9. The triangulation of Sn´1 described in Example 29.10 can be oriented by
choosing an ordering of the vertex set V , regarding this as an oriented n-simplex σ and then
endowing each of its boundary faces with the boundary orientation. The cancelation condition



218 SECOND SEMESTER (TOPOLOGIE II)

on pn ´ 2q-simplices in this case is roughly equivalent to the fact that B2 “ 0 in the singular and
simplicial chain complexes; see Proposition 30.10 below.

We now consider whether a version of the fundamental cycle cM P C∆
n pK;Z2q for a compact

triangulated n-manifold M – |K| with boundary BM – |K 1| can also be defined with integer
coefficients. Indeed, suppose that an orientation has been chosen for each of the n-simplices σ
of K, and consider an n-chain of the form

(30.2) cM :“ÿ
σ

vσ P C∆
n pK;Zq,

where as usual the sum ranges over the set of all n-simplices σ “ tv0, . . . , vnu in K, and vσ “
rv0, . . . , vns is defined by ordering the vertices in accordance with the chosen orientation. Since
each pn´ 1q-simplex of the subcomplex K 1 Ă K triangulating BM is a boundary face of a unique
n-simplex, the chosen orientations of the n-simplices determine boundary orientations of the pn´1q-
simplices of K 1, which we can use to define an pn´ 1q-chain

cBM P C∆
n´1pK 1;Zq Ă C∆

n´1pK;Zq.
The formula

BcM “ cBM
is then satisfied if and only if the chosen orientations of the n-simplices satisfy the condition in
Definition 30.8: indeed, this condition means that all contributions to BcM from pn´ 1q-simplices
not in BM appear in cancelling pairs, while each pn´ 1q-simplex in BM appears exactly once with
the correct sign. In the case BM “ H, cM P C∆

n pK;Zq is then a cycle and thus represents an
integral fundamental class

rM s :“ rcM s P H∆
n pK;Zq.

We summarize:

Proposition 30.10. For any compact triangulated n-manifold M – |K| with an oriented
triangulation, the induced triangulation of the boundary BM – |K 1| admits a unique orientation
for which each pn´1q-simplex of K 1 is oriented as the boundary of an oriented n-simplex of K. The
resulting fundamental cycles in C∆˚ pK;Zq as constructed above then satisfy the relation BcM “ cBM .

Proof. The discussion preceding the statement showed that if the triangulation of M is
oriented and the orientations of its n-simplices are used in defining cM P C∆

n pK;Zq and (via
boundary orientations) cBM P C∆

n´1pK 1;Zq Ă C∆
n´1pK;Zq, then BcM “ cBM . One detail not yet

addressed is that the boundary orientations on the pn ´ 1q-simplices of K 1 really do define an
oriented triangulation of BM : this follows from the relation

BcBM “ BpBcM q “ 0,

which means that the two contributions to BcBM from each pn ´ 2q-simplex in BM cancel each
other. �

Here is another worthwhile computational exercise:

Theorem 30.11. For any closed and connected n-manifold M – |K| with an oriented trian-
gulation, H∆

n pK;Zq is isomorphic to Z, and its fundamental class rM s is a generator. �

For an analogue in ordered simplicial homology with integer coefficients, we can again choose
an admissible ordering for K, but we need to be aware that the resulting ordering of the vertices
pv0, . . . , vnq of each simplex σ might not be consistent with the chosen orientation of σ. We can
account for this by including appropriate signs in the formula: we define

cM :“ÿ
σ

ǫσvσ P ConpK;Zq,
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where for each n-simplex σ “ tv0, . . . , vnu of our oriented triangulation, with vertices arranged in
increasing order, we set ǫσ “ ˘1 so that ǫσrv0, . . . , vns defines the chosen orientation. Defining

cBM P Con´1pK 1;Zq Ă Con´1pK;Zq
in the same manner via the admissible ordering and boundary orientation, the same arguments as
before prove BcM “ cBM .

30.3. Triangulated bordism. With triangulated manifolds in hand, the similarity between
homology and bordism theory can be made more explicit. Suppose

X – |K|
is a space (but not necessarily a manifold) triangulated by a simplicial complex K, and suppose

M – |L|
is a closed triangulated n-manifold with an oriented triangulation. Any simplicial map ϕ : LÑ K

induces a continuous map ϕ :M Ñ X , so that the pair pM,ϕq represents an element of the oriented
bordism group ΩSO

n pXq. A corresponding simplicial homology class can be defined by

ϕ˚rM s P H∆
n pK;Zq,

using the integral fundamental class rM s “ rcM s P H∆
n pL;Zq defined via the oriented triangulation

of M . Further, suppose there is an oriented bordism pW,Φq between pM,ϕq and another such pair
pN,ψq, equipped with the additional data of an oriented triangulation: more precisely, W – |L1|
is a compact pn ` 1q-manifold with an oriented triangulation, Φ : L1 Ñ K is a simplicial map
inducing the continuous map Φ : W Ñ X , and there is a homeomorphism BW – M > p´Nq that
identifies the subcomplex triangulating M with K and Φ|M with ϕ. The minus sign in front of N
means that we consider N Ă BW to be equipped with an oriented triangulation whose n-simplices
carry the opposite of the boundary orientations they inherit from the oriented pn ` 1q-simplices
triangulating W . With this understood, we can write ψ :“ Φ|N : N Ñ X and obtain a simplicial
homology class

ψ˚rN s P H∆
n pK;Zq

in the same manner as ϕ˚rM s, but the triangulated bordism pW,Φq tells us more: the orientation
reversal on N gives the relation

BcW “ cBW “ cM ´ cN P C∆
n pL1;Zq,

and plugging this into the chain map Φ˚ : C∆˚ pL1;Zq Ñ C∆˚ pK;Zq, we have
BpΦ˚cW q “ Φ˚pcM ´ cN q “ ϕ˚cM ´ ψ˚cN P C∆

n pK;Zq,
implying

ϕ˚rM s “ ψ˚rN s P H∆
n pK,Zq.

This matches what happens in bordism theory: two simplicial homology classes represented by
closed triangulated manifolds with simplicial maps are the same whenever there is a triangulated
bordism between them. We will see when we study fundamental classes in singular homology that
the entire discussion makes sense in that context as well, but without any need for triangulations.

Remark 30.12. Orientations were needed for all the triangulations in the discussion above
because we were working with integer coefficients. If we did not have orientations, the entire
discussion would still make sense after uniformly replacing the coefficient group Z by Z2, and
H∆
n pX ;Z2q thus becomes the combinatorial variant of the unoriented bordism group ΩO

n pXq.
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30.4. Barycentric subdivision. I would now like to describe a specific triangulation of the
standard n-simplex ∆n. One can reasonably ask why it is worth bothering to triangulate a simplex:
after all, ∆n is already a polyhedron in a trivial way. But the point of the following construction
is to decompose ∆n into n-simplices that are strictly smaller, and iterating the process will then
produce triangulations whose individual n-simplices are as small as we like. This will come in
handy when we need to prove the formal properties of singular homology, and it also has some
important theoretical consequences for simplicial homology, including one ingredient in the proof
that Ho˚pKq and H∆˚ pKq really are invariants of the polyhedron |K|, and not just of the particular
simplicial complex K that is used for triangulating it.

For each n ě 0, the point

bn :“
ˆ

1

n` 1
, . . . ,

1

n` 1

˙
P ∆n Ă Rn`1

is called the barycenter of the standard n-simplex; you should imagine it as the center of mass
of ∆n. The following inductive procedure uniquely determines a decomposition of ∆n for each
n ě 0 into smaller pieces δn Ă ∆n that are homeomorphic to ∆n:

(1) For n “ 0, the one-point space ∆0 cannot be decomposed any further, so its triangulation
consists only of a single 0-simplex.

(2) If the triangulation of ∆n´1 has already been defined, then using the canonical identifi-
cation of the boundary face Bpkq∆n for each k “ 0, . . . , n with ∆n´1, each pn´1q-simplex
δn´1 Ă Bpkq∆n in its triangulation determines an n-simplex δn Ă ∆n as the convex hull
of δn´1 and the barycenter bn.

For a more precise description of barycentric subdivision, we should specify an abstract sim-
plicial complex K along with a homeomorphism |K| – ∆n defining the triangulation of ∆n. It
is most natural to define K so that its vertices are points in ∆n, and since ∆n is a subset of the
vector space Rn`1, the following condition becomes relevant:

Definition 30.13. Given a vector space V of dimension at least n, a set of n points in V is
said to be in general position if they are not contained in any pn´ 2q-dimensional plane.

For example, three points in a vector space of dimension at least 2 are in general position if
they are not colinear. In general, for a given set of points v0, . . . , vn P V with dimV ě n` 1, the
unique linear map Rn`1 Ñ V sending the standard basis of Rn`1 to the vectors v0, . . . , vn restricts
to ∆n Ă Rn`1 as an embedding ∆n ãÑ V if and only if the points v0, . . . , vn are in general position.

The abstract simplicial complex K arising from the barycentric subdivision of ∆n can now
be described as follows. One first triangulates the standard 0-simplex with the simplicial complex
whose only vertex is the one point in∆0 Ă R. Then inductively, having defined triangulations of the
boundary faces Bpkq∆n – ∆n´1 via complexes whose vertices are all identified with points in Bpkq∆n,
each n-simplex of K is defined to have vertices bn, v1, . . . , vn, where v1, . . . , vn P Bpkq∆n are the
vertices of an pn´ 1q-simplex in the complex triangulating Bpkq∆n – ∆n´1 for some k “ 0, . . . , n.
The homeomorphism identifying |K| with ∆n sends each simplex |σ| Ă |K| into ∆n via the
restriction of the unique linear map that sends each vertex to itself. That this actually defines a
homeomorphism |K| – ∆n follows from the following proposition, whose proof is Exercise 30.2:

Proposition 30.14. For the abstract simplicial complex K described above, whose vertices are
points in ∆n:

(a) The vertices of each n-simplex are in general position.
(b) Every point p P ∆n lies in the convex hull of the points v0, . . . , vk P ∆n for some simplex

tv0, . . . , vku of K.
�
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It is worth pausing a moment now to draw pictures of the barycentric subdivisions of ∆n for
n “ 1, 2: the subdivision of ∆1 will have only two 1-simplices, and since ∆2 has three boundary
faces, its subdivision has six 2-simplices. In general, the number of n-simplices in the subdivision
of ∆n will be pn ` 1q!. You’ll find a picture of the subdivision of ∆3 in [Hat02], among other
places; if you ever find a convincing picture of the case n “ 4, let me know.

The triangulation defined above can be turned into an integral fundamental cycle

c∆n P C∆
n pK;Zq or c∆n P ConpK;Zq

after making some additional choices, namely of orientations and/or admissible orderings. There
is surely more than one possible recipe for this, but here is one that works. Inductively, assume an
admissible ordering and an orientation have already been chosen for the barycentric subdivision
of ∆n´1; for the case n “ 0, there is no choice of ordering to be made, and we can fix the positive
orientation on the unique 0-simplex. Now if v1, . . . , vn are the vertices of an pn´1q-simplex on one
of the boundary faces Bpkq∆n “ ∆n´1 arranged in increasing order, and ˘rv1, . . . , vns is its chosen
orientation, define the ordering and orientation of the n-simplex tbn, v1, . . . , vnu in ∆n to be given
by

pbn, v1, . . . , vnq and ˘ p´1qkrbn, v1, . . . , vns
respectively. Following our usual prescriptions to define fundamental cycles as simplicial n-chains
in ConpK;Zq or C∆

n pK;Zq, the barycentric subdivisions of ∆n and its boundary faces are then
related via the formula

Bc∆n “
nÿ
k“0

p´1qkcBpkq∆n in Con´1pK;Zq or C∆
n´1pK;Zq,

where as usual, cBpkq∆n is defined by identifying Bpkq∆n with ∆n´1 and is then regarded as an
element of C∆

n´1pK;Zq since the vertices of the subdivision of Bpkq∆n are also vertices of the
subdivision of ∆n.

Since we can now subdivide a standard simplex into smaller simplices of the same dimension,
we can also subdivide any polyhedron. Indeed, assuming K “ pV, Sq is an arbitrary simplicial
complex, for each simplex σ P S of K, the corresponding subset |σ| Ă |K| has a well-defined
barycenter bσ P |σ|. We can then construct a new simplicial complex K 1 “ pV 1, S1q whose vertices
are points in the polyhedron |K|, including all the vertices of K plus all the barycenters of its
simplices, and such that the simplices of K 1 correspond to simplices in the barycentric subdivisions
of the individual simplices of K. The unique linear map RV

1 Ñ RV that sends the basis vector
ev P RV

1
corresponding to each vertex v P V 1 to the location of that vertex in |K| Ă RV now

restricts to a homeomorphism
|K 1| –ÝÑ |K|,

and we can therefore sensibly call K 1 the barycentric subdivision of the simplicial complex K.
A natural question now arises: what relation is there between the simplicial homologies of

K and K 1? Their simplicial chain complexes are obviously not the same; in general, the chain
complex for the subdivision K 1 has many more generators than that of K. But the polyhedra of
these two complexes are the same, and it turns out that simplicial homology recognizes this fact.
The result is best stated in terms of a concrete chain map

C∆˚ pKq SÝÑ C∆˚ pK 1q,
which can be defined by associating to each oriented n-simplex of K the n-chain of K 1 determined
by its fundamental cycle. In the next lecture we will prove:

Theorem 30.15. The map S˚ : H∆˚ pKq Ñ H∆˚ pK 1q induced by the chain map described above
is an isomorphism.
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30.5. Exercises.

Exercise 30.1. Prove Theorems 30.5 and 30.11 on the computation ofH∆
n pK;Z2q andH∆

n pK;Zq
for a closed and connected triangulated n-manifold M – |K|, in the second case with an ori-
ented triangulation. Show moreover that if the triangulation does not admit any orientation, then
H∆
n pK;Zq “ 0.

Exercise 30.2. Prove Proposition 30.14, showing that the simplicial complex K with vertices
in ∆n defined via the barycentric subdivision algorithm actually defines a triangulation of ∆n.
Hint: Argue inductively on n. Given any point p P ∆n distinct from the barycenter bn, draw a
straight line from bn through p. What can you say about the point where this line exits ∆n?

31. Chain homotopy and simplicial approximation

I owe you an explanation of why Theorem 30.15 is true, but in this lecture I also want to sketch
a deep application of this theorem, showing that the isomorphism class of the oriented simplicial
homology H∆˚ pKq of a finite simplicial complex K depends only on its polyhedron |K|. In other
words, simplicial homology is a topological invariant, not just an invariant of abstract simplicial
complexes. For concreteness, we shall work with the oriented rather than the ordered simplicial
chain complex, which is not a loss of generality since we will also show in the next lecture that
Ho˚pKq – H∆˚ pKq. A few tricky details will be omitted, and we will make up for this later in the
semester by deriving a second proof of the topological invariance of H∆˚ pKq from cellular homology.
But several of the ideas discussed in this lecture will also be useful for other purposes, when we
develop singular homology and study its applications.

In the early history of homology theory, it was widely believed that the topological invariance
of simplicial homology should be deduced from Theorem 30.15 in combination with a result called
the Hauptvermutung, which conjectured that any two triangulations of the same polyhedron could
be made identical up to homeomorphism after sufficiently many iterations of the barycentric subdi-
vision algorithm. At some point, the invariance of simplicial homology was proven by other means,
and the Hauptvermutung remained an open question until it was, ironically, shown to be false in
the 1960’s. Theorem 30.15 can be viewed nonetheless as an important ingredient in a proof that
H∆˚ pKq depends only on |K|.

To state the main result properly, let

Cpct∆ Ă Top

denote the subcategory whose objects consist of all compact polyhedra, with arbitrary continuous
maps as morphisms. We should clarify: a compact topological space X is an object of Cpct∆ if
and only if it is homeomorphic to the polyhedron |K| of some finite simplicial complex, but the
actual complex K and homeomorphism X – |K| are not considered to be part of the data defining
an object of Cpct∆. In general, a polyhedron has infinitely many distinct choices of possible
triangulations, and without choosing specific triangulations, there is no canonical way to define
what it means for a map between two polyhedra to be simplicial. This is one of a few reasons why
we allow all continuous maps as morphisms in Cpct∆, rather than just simplicial maps.

Theorem 31.1. There exists for each integer n ě 0 and each R-module G a functor

H∆
n “ H∆

n p¨;Gq : Cpct∆ Ñ R-Mod

that assigns to each compact polyhedron X the simplicial homology H∆
n pK;Gq of some finite sim-

plicial complex K whose polyhedron |K| is homeomorphic to X.

Since homeomorphisms are isomorphisms in the category Cpct∆, this result implies:
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Corollary 31.2. If K and K 1 are two finite simplicial complexes with homeomorphic poly-
hedra |K| – |K 1|, then their simplicial homologies H∆

n pKq and H∆
n pK 1q are isomorphic. �

Notice what Theorem 31.1 does not say: we are not claiming that the functor H∆
n : Cpct∆ Ñ

R-Mod is unique or canonical, and in fact, some arbitrary choices will need to be made in order to
define it at the end of this lecture. The need for choices, however, does not detract from the power
of the theorem: the mere fact that H∆

n is a functor on the category Cpct∆, whose morphisms are
arbitrary continuous maps, is enough to deduce useful consequences such as Corollary 31.2.

31.1. The homotopy question. In preparation for proving Theorem 30.15, let us consider
a slightly different question about the functoriality of simplicial homology. Suppose f, g : K Ñ L

are two simplicial maps between simplicial complexes such that the induced continuous maps of
polyhedra |K| Ñ |L| are homotopic. Does it follow that the induced homomorphisms

f˚, g˚ : H∆˚ pKq Ñ H∆˚ pLq
are identical? We’ve seen that bordism theory has a homotopy invariance property of this type, and
a similar property is also incorporated into the Eilenberg-Steenrod axioms for homology theories.

The assumption in the present context is that there exists a continuous map

I ˆ |K| hÝÑ |L|
with hp0, ¨q “ f and hp1, ¨q “ g. In order to make something useful out of this in simplicial
homology, it would seem natural to impose an extra condition and require h to be a simplicial map,
but here we encounter an obstacle: it is not obvious whether I ˆ |K| has a natural triangulation,
which would be needed in order for the notion of a simplicial map to make sense. The polyhedron
|K| is a union of simplices |σ| – ∆n of various dimensions n ě 0, and this decomposes I ˆ|K| into
“prism-shaped” subsets of the form

I ˆ∆n – ∆1 ˆ∆n.

If we can find a sufficiently natural way of triangulating ∆1 ˆ ∆n, we will obtain from this a
triangulation of I ˆ |K| and thus be able to speak of simplicial homotopies h : I ˆ |K| Ñ |L|
between f and g.

31.2. Triangulating products of simplices. Let us frame the question a bit more gener-
ally: Is there a natural way to triangulate ∆m ˆ ∆n for every pair of integers m,n ě 0? This
product of simplices is a manifold of dimension m` n with boundary

Bp∆m ˆ∆nq “ pB∆m ˆ∆nq Y p∆m ˆ B∆nq

“
˜

mď
k“0

Bpkq∆m ˆ∆n

¸
Y
˜

nď
k“0

∆m ˆ Bpkq∆n

¸
.

Notice that each term in the union on the second line is canonically homeomorphic to a product of
the form ∆kˆ∆ℓ for k ď m and ℓ ď n with k`ℓ “ m`n´1. This suggests an inductive condition
that would be natural to require on our triangulations: if we assume that suitable triangulations of
∆k ˆ∆ℓ have already been constructed for all k` ℓ ă m`n, then we would like our triangulation
of ∆m ˆ∆n to reproduce these triangulations when restricted to its smooth boundary faces. We
shall now describe a direct construction that produces this result.

Denote the standard basis of Rm`n`2 “ Rm`1 ˆ Rn`1 by

pe0, 0q, . . . , pem, 0q, p0, f0q, . . . , p0, fnq P Rm`1 ˆ Rn`1,
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so we can regard e0, . . . , em as the vertices of ∆m and f0, . . . , fn as the vertices of ∆n. The
triangulation of ∆m ˆ∆n we construct has vertex set

V :“  pei, fjq P ∆m ˆ∆n
ˇ̌
i P t0, . . . ,mu and j P t0, . . . , nu( ,

and its k-simplices for k “ 0, . . . ,m` n will be the convex hulls of certain pk ` 1q-tuples of these
vertices; in this way, the triangulation ∆m ˆ∆n – |K| will be uniquely determined once we have
specified a suitable abstract simplicial complex K “ pV, Sq. To specify which subsets should be
the vertices of a simplex in K, endow the set t0, . . . ,muˆt0, . . . , nu with the total order such that
pi, jq ď pi1, j1q if and only if i ď i1 and j ď j1, so strict inequality pi, jq ă pi1, j1q means additionally
that i ă i1 or j ă j1. For k “ 0, . . . ,m` n, the k-simplices σ of K are then defined as

σ “ tpei0 , fj0q, . . . , peik , fjkqu Ă ∆m ˆ∆n,

for all possible strictly increasing sequences

pi0, j0q ă . . . ă pik, jkq P t0, . . . ,mu ˆ t0, . . . , nu.
By this definition, we observe that the pm`nq-simplices all correspond to sequences pi0, j0q ă . . . ă
pim`n, jm`nq that begin with pi0, j0q “ p0, 0q and end with pim`n, jm`nq “ pm,nq, thus all of them
contain the two specific vertices pe0, f0q and pem, fnq. Boundary faces σ of these pm`nq-simplices
come in three types, corresponding to sequences pi0, j0q ă . . . ă pim`n´1, jm`n´1q that satisfy the
following conditions:

(1) The sequence j0, . . . , jm`n´1 takes every value in t0, . . . , nu but i0, . . . , im`n´1 misses
exactly one value i P t0, . . . ,mu.

(2) The sequence i0, . . . , im`n´1 takes every value in t0, . . . ,mu but j0, . . . , jm`n´1 misses
exactly one value j P t0, . . . , nu.

(3) There are two consecutive terms of the form pi, jq, pi` 1, j ` 1q.
In the first two cases, the m` n vertices of σ all lie in one of the convex sets

Bpiq∆m ˆ∆n or ∆m ˆ Bpjq∆n.

As observed above, the union of these sets for all i “ 0, . . . ,m and j “ 0, . . . , n is Bp∆mˆ∆nq, and
these boundary faces thus determine an pm ` n ´ 1q-dimensional subcomplex K 1 Ă K in which
the convex hull of the vertices of each simplex is contained in Bp∆m ˆ ∆nq. It is easy to check
that all simplices of K with convex hull contained in Bp∆mˆ∆nq are of this form, because for any
two points p, q P Bp∆m ˆ∆nq that do not both belong to the same one of the m ` n ` 2 convex
subsets mentioned above, the line segment from p to q passes through the interior of ∆mˆ∆n. In
particular, boundary faces of the third type in the list above do not belong to the subcomplex K 1.

Since the vertices pei, fjq P V are all points in ∆m ˆ∆n Ă Rm`n`2 and the latter is a convex
set, the unique linear map RV Ñ Rm`n`2 sending ev ÞÑ v for each v P V restricts to the polyhedron
|K| Ă RV as a map

(31.1) |K| Ñ ∆m ˆ∆n.

Exercise 31.1 shows that this map is a homeomorphism, and thus defines a triangulation of∆mˆ∆n;
moreover, restricting it to the subcomplex K 1 formed by vertices contained in Bp∆m ˆ∆nq gives
a homeomorphism |K 1| – Bp∆m ˆ∆nq.

In order to define fundamental cycles c∆mˆ∆n in Ho
m`npK;Zq and H∆

m`npK;Zq from our
triangulation, we need to endow it with an orientation and choose an admissible ordering for the
simplicial complex K. The latter is easy, as the total order on t0, . . . , ku ˆ t0, . . . , ℓu determines
a total order on the set of all vertices of K. In order to define a suitable orientation, let Spm,nq
denote the set of all strictly increasing sequences pi0, j0q ă . . . ă pim`n, jm`nq of m ` n ` 1
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elements in t0, . . . ,muˆt0, . . . , nu, and write σs for the pm`nq-simplex of K determined by each
s P Spm,nq. Denote by s0 P Spm,nq the specific sequence

p0, 0q ă p1, 0q ă . . . ă pm, 0q ă pm, 1q ă . . . ă pm,nq,
and define the parity |s| P Z2 of any element s P Spm,nq to be the number of steps (modulo 2)
required in order to transform s0 into s via operations that modify three consecutive terms of a
sequence like so:

pi´ 1, jq ă pi, jq ă pi, j ` 1q  pi´ 1, jq ă pi´ 1, j ` 1q ă pi, j ` 1q.
Lemma 31.3. The parity |s| P Z2 of elements s P Spm,nq is independent of choices.
Proof sketch. We can interpret p´1q|s| P t1,´1u as the sign of a permutation of m ` n

elements, which include m copies of the letter R (for “right”) and n copies of the letter U (for
“up”). �

The chosen orientation and admissible ordering for K determine a fundamental cycle

c∆mˆ∆n P C∆
m`npK;Zq or Com`npK;Zq.

For each m,n ě 1, the relation Bc∆mˆ∆n “ cBp∆mˆ∆nq then becomes the following formula under
the usual identification between boundary faces and simplices of one dimension lower:

(31.2) Bc∆mˆ∆n “
mÿ
i“0

p´1qicBpiq∆mˆ∆n ` p´1qm
nÿ
j“0

p´1qjc∆mˆBpjq∆n .

Remark 31.4. If we regard B∆m ˆ ∆n and ∆m ˆ B∆n as compact topological pm ` n ´
1q-manifolds with matching boundary B∆m ˆ B∆n and endow both with the obvious oriented
triangulations and admissible orderings that they inherit from ∆m ˆ ∆n, the formula in (31.2)
takes the slightly prettier form

Bc∆mˆ∆n “ cB∆mˆ∆n ` p´1qmc∆mˆB∆n .

When we introduce the homological cross product later in this semester, the singular homology
version of this relation will take the form

Bpc∆m ˆ c∆nq “ Bc∆m ˆ c∆n ` p´1qmc∆m ˆ Bc∆n ,

which is written in terms of the obvious fundamental cycle c∆k P Ckp∆k;Zq for the standard
simplex of each dimension with its trivial triangulation, and a bilinear product operation

C˚pXq b C˚pY q Ñ C˚pX ˆ Y q : AbB ÞÑ AˆB

that relates the singular chain complexes of any two spaces X,Y and sends CmpXq b CnpY q in
general to Cm`npX ˆ Y q. We will have plenty to say about this product later, but the detail I
want to comment on right now is the sign p´1qm appearing on the right hand side of the formula.
This is an instance of a general pattern known as the Koszul sign convention, which we will
see many more examples of in this course. In a nutshell, the rule is that whenever objects carry
natural gradings in either Z or Z2, exchanging the order of two objects with odd degree causes a
sign change. In the present context, the “objects” to which this rule applies are not only the chains
of certain degrees in ∆m and ∆n but also the operator B, which we regard as having degree ´1
since it maps k-chains to pk ´ 1q-chains for every k. This means that no sign change is necesary
when writing Bc∆m ˆ c∆n , since the three objects B, c∆m and c∆n appear here in the same order
as on the left hand side, but writing c∆m ˆ Bc∆n exchanges the order of B and c∆m , and since B
has odd degree, a sign change must then result if and only if c∆m also has odd degree, meaning m
is odd. One could presumably state some general theorem in category-theoretic terms to explain
why and in what contexts this particular way of dealing with signs gives the results we want, but
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I personally would consider writing down that theorem to be more trouble than it is worth. If
you haven’t seen the Koszul convention before in one of the many other contexts (e.g. the exterior
algebra of differential forms on smooth manifolds) where it naturally arises, then I think that you
will in any case learn through experience during the remainder of this course why it is good and
useful.

31.3. From simplicial homotopies to chain homotopies. Let us identify the unit interval
I with the standard 1-simplex via the homeomorphism

I
–ÝÑ ∆1 Ă R2 : t ÞÑ p1´ t, tq.

The oriented triangulation of ∆1 ˆ ∆n constructed in the previous section for each n ě 0 yields
an oriented triangulation of I ˆ∆n whose restriction to the smooth faces of

BpI ˆ∆nq “ pt1u ˆ∆nq Y pt0u ˆ∆nq Y
˜

nď
k“0

I ˆ Bpkq∆n

¸
matches the trivial triangulation of ∆n and the constructed trivialization of I ˆ∆n´1.

Now consider again the polyhedron |K| discussed in §31.1 above, and choose an admissible
ordering for the underlying simplicial complexK. The ordering determines an identification of each
n-simplex of |K| for n “ 0, 1, 2, . . . with the standard n-simplex, and applying the triangulation
algorithm then gives a triangulation of Iˆ|K|, whose underlying simplicial complex we shall denote
in the following by KI . For this triangulation, the two inclusions

|K| ιjãÑ I ˆ |K| : p ÞÑ pj, pq for j “ 0, 1

are both simplicial maps. Now suppose σ “ rv0, . . . , vns is an n-simplex of K, equipped with the
orientation it inherits from the admissible ordering, and let |σ| Ă |K| denote the corresponding
subset homeomorphic to ∆n in the polyhedron. Our triangulation determines an oriented trian-
gulation of the pn ` 1q-dimensional manifold I ˆ ∆n – I ˆ |σ| Ă I ˆ |K|, thus a fundamental
cycle

cIˆ|σ| P C∆
n`1pKI ;Zq,

for which the formula (31.2) specializes to this situation as

BcIˆ|σ| “ pι1q˚σ ´ pι0q˚σ ´ cIˆB|σ|.
Here cIˆB|σ| is an abbreviation for the signed sum of fundamental cycles of the induced triangulation
of I ˆ∆n´1 for each boundary face ∆n´1 – Bpkq∆n of |σ| – ∆n.

Since Iˆ|K| is now a polyhedron, we can sensibly impose an extra condition on the homotopy
h : I ˆ |K| Ñ |L|, and require it to be a simplicial map, i.e. a simplicial homotopy between f
and g. With this assumption in place, there is a unique homomorphism

C∆
n pKq h#ÝÑ C∆

n`1pLq
defined for each n ě 0 via linearity and the formula

h#pσq :“ h˚cIˆ|σ|.
for oriented n-simplices σ P rv0, . . . , vns of K. Since h˚ : C˚pKIq Ñ C˚pLq is a chain map, the
formula above for BcIˆ|σ| implies

Bh#pσq “ g˚σ ´ f˚σ ´ h#pBσq,
so that h# satisfies the so-called chain homotopy relation

Bh# ` h#B “ g˚ ´ f˚.
A brief algebraic digression is now in order.
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Definition 31.5. Given two chain maps f, g : pA˚, BAq Ñ pB˚, BBq, a chain homotopy
(Kettenhomotopie) from f to g is a homomorphism h : A˚ Ñ B˚ that satisfies hpAnq Ă Bn`1 for
each n P Z and the chain homotopy relation

BBh` hBA “ g ´ f.

We say that f and g are chain homotopic if there exists a chain homotopy from f to g.

One easily checks that the notion of chain homotopy defines an equivalence relation between
chain maps, and moreover, if f0 and f1 are chain homotopic and have well-defined compositions of
chain maps fj ˝ g, then f0 ˝ g and f1 ˝ g are also chain homotopic; a similar statement applies to
compositions of the form g ˝ fj. The upshot is that there is a well-defined homotopy category
of chain complexes

hChpR-Modq abbreviated as hCh,

in which the objects are chain complexes of R-modules and the morphisms are chain homotopy
classes of chain maps. An isomorphism in the category hCh is called a chain homotopy equiva-
lence (Kettenhomotopieäquivalenz), so a chain map f : A˚ Ñ B˚ is a chain homotopy equivalence
if and only if it admits a chain homotopy inverse g : B˚ Ñ A˚, meaning a chain map such that
the compositions g ˝ f and f ˝ g are each chain homotopic to identity maps.

There are two convincing reasons why the category hCh is important to define: the first is that
simplicial homotopies between simplicial maps give rise to chain homotopies between the induced
chain maps, as shown above—and we will see later that chain homotopies in the singular chain
complex similarly arise from arbitrary homotopies between continuous maps. The second reason
is the following easy result, which tells us that the algebraic homology functors Hn : ChÑ R-Mod

descend to the homotopy category as functors hChÑ R-Mod.

Proposition 31.6. If f, g : A˚ Ñ B˚ are chain homotopic chain maps, then for each n P Z,
the homomorphisms f˚, g˚ : HnpA˚q Ñ HnpB˚q they induce on homology are identical.

Proof. Given ras P HnpA˚q, the representative a P An is a cycle, so the chain homotopy
relation gives gpaq ´ fpaq “ BBhpaq ` hBAa “ BBhpaq, implying rfpaqs “ rgpaqs P HnpB˚q. �

Putting all of this together implies:

Corollary 31.7. If f, g : |K| Ñ |L| are simplicial maps related by a simplicial homotopy,
then for each n P Z, the induced maps f˚, g˚ : H∆

n pKq Ñ H∆
n pLq are identical. �

We have used oriented simplicial homology in this discussion for the sake of concreteness, but
the discussion also makes sense for ordered simplicial homology.

31.4. Subdivision defines a chain homotopy equivalence. Now that the notion of a
chain homotopy equivalence has been defined, we can explain the real reason behind Theorem 30.15.
AssumeK is a simplicial complex andK 1 is the complex defined fromK by barycentric subdivision,
giving rise to the chain map

S : C∆˚ pKq Ñ C∆˚ pK 1q
described in the previous lecture. A special class of chain maps in the other direction can be defined
as follows. By definition, every vertex v in the complex K 1 is the barycenter of a particular simplex
σv in the polyhedron |K|; note that this includes the vertices of K 1 that are also vertices of K,
since the latter are also 0-simplices of K. For each vertex v of K 1, let wpvq denote an arbitrary
choice of a vertex of the simplex σv in K that has v as its barycenter. One can check that this
defines a simplicial map

K 1 πÝÑ K : v ÞÑ wv,
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and we call it a projection since it necessarily sends each vertex of K 1 that is also a vertex of K
to itself. The following result now implies Theorem 30.15:

Theorem 31.8. For any choice of projection π : K 1 Ñ K, the induced chain map π˚ :

C∆˚ pK 1q Ñ C∆˚ pKq is a chain homotopy inverse of S : C∆˚ pKq Ñ C∆˚ pK 1q, implying in particular
that the latter is a chain homotopy equivalence.

A complete proof of this theorem can be found e.g. in [ES52, Theorem VI.7.1]; here we shall
content ourselves with a brief sketch. One can verify directly that π˚S : C∆˚ pKq Ñ C∆˚ pKq is the
identity map. It then remains to show that

Sπ˚ : C∆˚ pK 1q Ñ C∆˚ pK 1q
is chain homotopic to the identity. The details of this chain homotopy would require too much of a
digression, but there is a geometric construction in the background that is worth understanding: in
a different context, the same construction will later give us a relatively straightforward construction
of a chain homotopy for the natural subdivision operator on singular homology.

The construction is yet another triangulation of the prism Iˆ∆n, one that interpolates between
the trivial triangulation of t0u ˆ∆n and the barycentric subdivision of t1u ˆ∆n. Like the other
explicit triangulations we’ve discussed, it decomposes I ˆ ∆n into convex regions determined by
sets of vertices in general position, and it admits an inductive description: for n “ 0, one takes the
obvious triangulation of Iˆ∆0 – I with a single 1-simplex. Assuming that a suitable triangulation
of the n-manifold I ˆ∆n´1 for some n ě 1 has already been constructed, the pn` 1q-simplices of
our triangulation of I ˆ∆n then come in two types:

‚ One whose vertices are p0, e0q, . . . , p0, enq and p1, bnq, where e0, . . . , en are the standard
basis vectors of Rn`1 (i.e. the vertices of ∆n) and bn P ∆n is the barycenter.

‚ For each k “ 0, . . . , n and each n-simplex tv0, . . . , vnu in the triangulation of IˆBpkq∆n –
I ˆ∆n´1, one with vertices v0, . . . , vn and p1, bnq.

Exercise 31.2 implies that this defines an oriented triangulation of I ˆ∆n.
Intuitively, the three pieces of the boundary

BpI ˆ∆nq “ pt1u ˆ∆nq Y pt0u ˆ∆nq Y pI ˆ B∆nq
with their induced triangulations now correspond to the three terms on the right hand side of a
chain homotopy relation

Bh# “ Sπ˚ ´ 1´ h#B
for some chain homotopy h# : C∆

n pK 1q Ñ C∆
n`1pK 1q. In the simplicial context, it is not so

straightforward to make this intuition precise, but we will return to this subject in the near future
in the context of singular homology, where the definition of the corresponding chain homotopy is
more straightforward.

31.5. Simplicial approximation. The last major ingredient needed for a proof of Theo-
rem 31.1 is a result that relates the categories Cpct∆ and Simp:

Theorem 31.9 (simplicial approximation). If X – |K| and Y – |L| are compact polyhedra
and f : X Ñ Y is a continuous map, then after finitely-many iterations of barycentric subdivision
to replace the triangulation of X with a finer triangulation X – |K 1|, f is homotopic to a map
g : X Ñ Y that arises from a simplicial map K 1 Ñ L. Moreover, for every x P X, gpxq is contained
in the smallest simplex of Y containing fpxq.

We might have naively hoped for the theorem to state that every continuous map between
polyhedra with fixed choices of triangulations is homotopic to a simplicial map—but there are
easy counterexamples to that statement. For instance, every non-surjective map S1 Ñ S1 has its
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image in a contractible space S1zt˚u – R and is thus homotopic to a constant, implying that every
map S1 Ñ S1 homotopic to the identity is surjective. But if we choose two triangulations S1 – |K|
and S1 – |L| such that L has strictly more vertices than K, then no simplicial map K Ñ L can
be surjective, and the identity S1 Ñ S1 therefore cannot be homotopic to any simplicial map with
respect to these particular triangulations. Of course, this problem goes away if we are also allowed
to replace K with a triangulation that has arbitrarily many vertices, e.g. by iterated barycentric
subdivision.

We refer to [Hat02, §2.C] for a detailed proof of Theorem 31.9, but the following explains the
basic idea.

Sketch of the proof of Theorem 31.9. For each vertex v P X , define the so-called open
star of v as the open neighborhood

st v Ă X

of v formed by the union of the interiors of all simplices in X that have v as a vertex. Figure 17
shows the open stars of two neighboring vertices in a 2-dimensional polyhedron; notice that their
intersection contains the interior of the 1-simplex bounded by these two vertices (cf. Exercise 31.3).
The collection of all open stars of vertices defines an open covering of any polyhedron. Now given
f : X Ñ Y continuous, after subdividing the triangulation of X enough times, we can assume that
for every vertex v P X there exists a vertex wv P Y such that (see Figure 17 again)

st v Ă f´1pstwvq.
Having associated to each v P X some wv P Y with this property, there is a unique simplicial map
g : X Ñ Y that satisfies gpvq “ wv: indeed, for every simplex tv0, . . . , vnu of X , Exercise 31.3
implies that the set twv0 , . . . , wvnu is also a simplex of Y . One can now check that g is indeed an
“approximation” of f in the sense that gpxq is contained in the smallest simplex of Y containing
fpxq for every x P X . In light of this, a homotopy h : I ˆX Ñ Y from f to g can be defined by
choosing hp¨, xq : I Ñ Y for every x P X to be the linear path from fpxq to gpxq in the smallest
simplex containing fpxq. �

31.6. Simplicial homology as a topological invariant. Here is a sketch of a proof of
Theorem 31.1.

By the axiom of choice, we can associate to every compact polyhedron X P Cpct∆ a specific
choice of finite simplicial complex KX and triangulation X – |KX|; having done this, define

H∆
n pXq :“ H∆

n pKXq.
For each continuous map f : X Ñ Y between compact polyhedra, we can apply the simplicial
approximation theorem to find a sufficiently fine subdivision K 1

X of KX and a simplicial map
g : K 1

X Ñ KY for which the associated continuous map g : X Ñ Y is homotopic to f . Writing
S˚ : H∆

n pKXq Ñ H∆
n pK 1

Xq for the isomorphism defined via iterated barycentric subdivision, the
homomorphism f˚ : H∆

n pXq Ñ H∆
n pY q induced by f can then be defined by

H∆
n pXq “ H∆

n pKXq H∆
n pK 1

Xq H∆
n pKY q “ H∆

n pY q

f˚

S˚
–

g˚
.

The result of §31.3 on simplicial homotopies can be used in showing that the map f˚ : H∆
n pXq Ñ

H∆
n pY q defined in this way is independent of choices. Putting all this together produces a functor

H∆
n : Cpct∆ Ñ R-Mod.
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Figure 17. A map f : X Ñ Y between two polyhedra, with vertices v0, v1 P X
and wv0 , wv1 P Y chosen such that f maps the open star of vi into the open star of
wvi for i “ 0, 1. The prescription in the proof of Theorem 31.9 will then produce
a simplicial map g : X Ñ Y sending vi ÞÑ wvi for i “ 0, 1, so the 1-simplex in X
bounded by v0 and v1 is sent to the 1-simplex in Y bounded by wv0 and wv1 .

31.7. Exercises.

Exercise 31.1. Prove that the map |K| Ñ ∆mˆ∆n described in (31.1) is a homeomorphism.
Hint: This is probably not the only possible approach, but here an inductive argument as in
Exercise 30.2 is also possible. Use the fact that certain points are contained in all the n-simplices.
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Exercise 31.2. Let L denote the pn` 1q-dimensional abstract simplicial complex formed by
the sets of vertices in I ˆ ∆n described in §31.4, and define L1 Ă L to be the subcomplex of
simplices whose vertices have convex hulls lying in BpI ˆ∆nq.

(a) Carry out the analogue of Exercise 30.2 to show that L defines a triangulation of I ˆ∆n

for which the subcomplex L1 triangulates BpI ˆ∆nq.
Hint: To show that every point p P I ˆ∆n lies in one of the pn` 1q-simplices described,
draw a line from p1, bnq through p and see where it exits through BpI ˆ∆nq.

(b) Describe an inductive algorithm to produce suitable admissible orderings and orientations
for this triangulation of I ˆ∆n for each n ě 0.

Exercise 31.3. Given vertices v0, . . . , vk in a polyhedron X , show that
Şk
i“0 st vi ‰ H if and

only if X contains a simplex whose vertices are v0, . . . , vk.

32. Acyclic models and relative homology

I want to tie up a few loose ends regarding simplicial homology before we move on to singular
homology in the next lecture. One important topic is the reason why the ordered simplicial
homology Ho˚pKq and its oriented counterpart H∆˚ pKq are isomorphic: we will prove this using
the method of acyclic models, which will also be quite useful in our later discussion of products in
singular homology and cohomology. We also take this opportunity to introduce relative simplicial
homology, and explain the general algebraic mechanism that leads to long exact sequences of
homology groups.

Several results in this lecture will apply equally well to the ordered and oriented versions of
simplicial homology, and the following notational convention will allow us to talk about both at
the same time:

H ‚̊ :“ Ho˚ or H∆˚ ,
C ‚̊ :“ Co˚ or C∆˚ .

32.1. Reduced simplicial homology. We discussed the reduced version rh˚ of an axiomatic
homology theory h˚ in Lecture 28. A reduced version of simplicial homology can be defined anal-
ogously, after observing that the one-point space t˚u is a polyhedron, whose underlying simplicial
complex consists only of a single vertex. We shall also denote this one-point simplicial complex
by t˚u, and let

K
ǫÝÑ t˚u

denote the unique simplicial map from any given simplicial complex K to the one-point complex.
The reduced (ordered or oriented) simplicial homology is then defined byrH‚

npKq “ rH‚
npK;Gq :“ ker

´
H‚
npK;Gq ǫ˚ÝÑ H‚

npt˚u;Gq
¯
.

As with axiomatic homology, we can always choose a right-inverse of ǫ : K Ñ t˚u, which in
this context must be a simplicial map t˚u ãÑ K, and the induced homomorphism on homology
gives rise to a splitting of the short exact sequence

0Ñ rH‚
npKq ãÑ H‚

npKq ǫ˚Ñ H‚
npt˚uq Ñ 0,

and thus an isomorphismH‚
npKq – rH‚

npKq‘H‚
npt˚uq. We recall from Exercise 29.4 thatH‚

npt˚u;Gq
is trivial for n ‰ 0 and is naturally isomorphic to the coefficient group G for n “ 0, so the result is

H‚
npK;Gq –

# rH‚
npK;Gq ‘G for n “ 0,rH‚
npK;Gq for n ‰ 0.
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Working through Exercise 29.4 also leads to the following observation: In both versions of the
simplicial chain complex for t˚u, the boundary map B1 : C‚

1 pt˚uq Ñ C‚
0 pt˚uq at degree 1 is trivial.

Indeed, this is immediate in the oriented chain complex because C∆
1 pt˚uq is trivial due to the

lack of 1-simplices, while in the ordered chain complex, Co1 pt˚uq has only a single generator p˚, ˚q
determined by the unique vertex ˚ P t˚u, which satisfies

Bp˚, ˚q “ p˚q ´ p˚q “ 0.

Since ǫ˚ : C ‚̊pKq Ñ C ‚̊pt˚uq is a chain map, the relation ǫ˚B “ Bǫ˚ then implies that the compo-
sition of B1 : C‚

1 pKq Ñ C‚
0 pKq with the so-called augmentation ǫ˚ : C‚

0 pKq Ñ C‚
0 pt˚uq “ G is

trivial, leading to the so-called augmented chain complex

. . . ÝÑ C‚
2 pK;Gq B2ÝÑ C‚

1 pK;Gq B1ÝÑ C‚
0 pK;Gq ǫ˚ÝÑ G ÝÑ 0 ÝÑ 0 ÝÑ . . . ,

in which we use the natural isomorphism C‚
0 pt˚u;Gq – G to replace C‚

0 pt˚u;Gq by the coefficient
group G, and the map ǫ˚ : C‚

0 pK;Gq Ñ G can then be expressed via the direct formula

ǫ˚

˜ÿ
i

aiσi

¸
“ÿ

i

ai

for any finite linear combination of generators σi with coefficients ai P G. We shall denote the
augmented chain complex by rC ‚̊pKq “ rC ‚̊pK;Gq, with chain groups

rC‚
npK;Gq :“

#
C‚
npK;Gq for n ‰ ´1,

G for n “ ´1,
and boundary map B : rC ‚̊pKq Ñ rC ‚̊pKq matching that of the usual chain complex C ‚̊pKq except
at degree 0, where it is defined to be the augmentation ǫ˚ : C‚

0 pK;Gq Ñ G. The following result
is a near immediate consequence of the definitions.

Proposition 32.1. There is a natural isomorphism

H˚
` rC ‚̊pK;Gq˘ –ÝÑ rH ‚̊pK;Gq

that takes the form rcs ÞÑ rcs for cycles c P rC‚
npK;Gq of degree n ě 0. �

32.2. The cone of a simplicial complex. The point of defining reduced simplicial homology
is to have a version of simplicial homology that vanishes in all degrees for certain contractible
polyhedra that arise in applications. Here is a popular class of examples.

Definition 32.2. The cone of a simplicial complex K “ pV, Sq is the simplicial complex
CK “ pCV,CSq with vertices

CV :“ V Y t˚u
and simplices

CS :“ S Y  tv0, . . . , vn, ˚u ˇ̌ tv0, . . . , vnu P S( ,
where ˚ denotes an extra vertex that is assumed to be not an element of the original vertex set V .

The polyhedron |CK| of a cone complex CK has an obvious identification with the topological
cone C|K| of the original polyhedron |K|, in which the summit of the cone corresponds to the
extra vertex ˚ P CV .

Definition 32.3. A chain complex A˚ is called chain contractible if the identity map
1 : A˚ Ñ A˚ is chain homotopic to the trivial chain map 0 : A˚ Ñ A˚.
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If A˚ is chain contractible, then looking at induced maps H˚pA˚q Ñ H˚pA˚q, we find that the
identity map and the zero map on H˚pA˚q must be identical, which is only possible if H˚pA˚q “
0. A chain complex with the latter property is said to be acyclic, in other words, A˚ has no
cycles other than those which are trivial in the sense of being boundaries. Chain contractible
complexes are thus acyclic; one can view this as an algebraic counterpart to the topological fact
that contractible spaces have trivial reduced homology according to the axioms.

Lemma 32.4. For any simplicial complex K, the augmented simplicial chain complex rC ‚̊pCK;Zq
of its cone is chain contractible.

Proof. Let us write down a proof for the ordered chain complex, from which a proof for the
oriented complex can be obtained just be changing round brackets into square brackets. For each
n ě 0, we can specify a homomorphism h# : rConpCK;Zq Ñ rCon`1pCK;Zq by saying how it is
defined on an arbitrary generator pv0, . . . , vnq P ConpCK;Zq “ rConpCK;Zq, so we definerConpCK;Zq h#ÝÑ rCon`1pCK;Zq : pv0, . . . , vnq ÞÑ p˚, v0, . . . , vnq,
and we extend it to n “ ´1 by specifying its value on the generator 1 P Z “ rCo´1pCK;Zq, namely

rCo´1pCK;Zq h#ÝÑ rCo0 pCK;Zq : 1 ÞÑ p˚q.
We then have

Bh#pv0, . . . , vnq “ pv0, . . . , vnq ´ h#Bpv0, . . . , vnq and Bh#p1q “ ǫ˚p˚q “ 1 “ 1´ h#Bp1q
since rCo´2pCK;Zq is trivial by definition and thus Bp1q “ 0. This establishes the chain homotopy
relation Bh# ` h#B “ 1 “ 1´ 0. �

Example 32.5. For some n ě 1, suppose K is a simplicial complex containing only a single
n-simplex and all its faces, so |K| – ∆n. Then K can be identified with the cone of a complex K 1
with |K 1| – ∆n´1, and the lemma above therefore implies that rC˚pK;Zq is chain contractible.

32.3. Natural chain homotopy equivalences. Recall that for any simplicial complex K
and any choice of coefficients, the quotient projection pv0, . . . , vnq ÞÑ rv0, . . . , vns determines a
natural chain map

Co˚pKq ΨKÝÑ C∆˚ pKq.
Here the word natural carries a precise meaning that will be important to clarify: it means that
for any other simplicial complex L with a simplicial map f : LÑ K, the diagram

Co˚pLq C∆˚ pLq

Co˚pKq C∆˚ pKq

ΨK

f˚ f˚
ΨL

commutes. As a special case, suppose L Ă K is a subcomplex and f : L ãÑ K is the inclusion map:
the chain maps f˚ : Co˚pLq Ñ Co˚pKq and f˚ : C∆˚ pLq Ñ C∆˚ pKq are then likewise inclusions of
subcomplexes, and naturality then implies firstly that ΨK sends the subcomplex Co˚pLq Ă Co˚pKq
into the subcomplex C∆˚ pLq Ă C∆˚ pKq, and secondly that ΨL is simply the restriction of ΨK
to Co˚pLq.

With this observation as motivation, let us say more generally that for a specific simplicial
complex K, a chain map Ψ : Co˚pKq Ñ C∆˚ pKq is natural if for every subcomplex L Ă K, Ψ
sends Co˚pLq into C∆˚ pLq. In the same manner, one can define the notion of a natural chain map in
the other direction C∆˚ pKq Ñ Co˚pKq, or between each of C∆˚ pKq or Co˚pKq and itself. Such chain
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maps can always be interpreted as natural transformations between two functors to the category
of chain complexes, defined on a category that has subcomplexes of K as objects and inclusion
maps as morphisms.

The following result explains why the natural homomorphism Ho˚pKq Ñ H∆˚ pKq induced by
the chain map ΨK is always an isomorphism, thus making the ordered and oriented versions of
simplicial homology interchangeable in practice.

Theorem 32.6. For every simplicial complex K, the natural chain map ΨK : Co˚pKq Ñ C∆˚ pKq
is a chain homotopy equivalence.

The theorem will follow from three lemmas, each of which should be understood to hold for
an arbitrary simplicial complex K:

Lemma 32.7. There exists a natural chain map Φ : C∆˚ pK;Zq Ñ Co˚pK;Zq that is determined
in degree 0 by the formula

Φprvsq :“ pvq for all vertices v of K,

and moreover, natural chain maps with this property are unique up to chain homotopy.

Lemma 32.8. Natural chain maps Co˚pK;Zq Ñ Co˚pK;Zq matching the identity map in degree 0
are unique up to chain homotopy.

Lemma 32.9. Natural chain maps C∆˚ pK;Zq Ñ C∆˚ pK;Zq matching the identity map in de-
gree 0 are unique up to chain homotopy.

Notice that the statements of the last two lemmas only involve uniqueness, not existence; the
existence is clear in both cases because the identity map is a chain map that satisfies the required
properties. This trivial observation is used in the following proof.

Proof of Theorem 32.6. Writing Ψ :“ ΨK , the uniqueness up to chain homotopy in Lem-
mas 32.8 and 32.9 implies that if we are working with integer coefficients, Φ ˝ Ψ and Ψ ˝ Φ are
both chain homotopic to the identity, so that the chain map Φ from Lemma 32.7 is a chain homo-
topy inverse for Ψ. The validity of this result extends to arbitrary coefficients for relatively trivial
algebraic reasons explained in Remark 32.10 below. �

Remark 32.10. Here is why in the proof of Theorem 32.6, it suffices to consider chain com-
plexes with integer coefficients. The three lemmas above provide chain maps between chain com-
plexes with integer coefficients, but the resulting formulas for these maps on the canonical genera-
tors of Co˚pK;Zq and C∆˚ pK;Zq determine via linearity chain maps on Co˚pK;Gq and C∆˚ pK;Gq for
any coefficient group G. The same applies to chain homotopies, e.g. if h : Co˚pK;Zq Ñ Co˚`1pK;Zq
is a chain homotopy between Φ˝ΨK : Co˚pK;Zq Ñ Co˚pK;Zq and the identity, then it determines via
linearity a chain homotopy h : Co˚pK;Gq Ñ Co˚`1pK;Gq between Φ ˝ΨK : Co˚pK;Gq Ñ Co˚pK;Gq
and the identity for any choice of coefficients G.

The proofs of Lemmas 32.7, 32.8 and 32.9 are very similar, and are based on an idea known
as the method of acyclic models. We shall carry out the details only for Lemma 32.7.

Proof of Lemma 32.7. For the entirety of this proof, we assume

G :“ Z

and omit the coefficient group from the notation. We shall prove by induction on the degree n ě 0

that it is possible to construct homomorphisms ΦL : C∆
n pLq Ñ ConpLq for every subcomplex L Ă K

such that ΦL is the restriction of ΦK to C∆
n pLq Ă C∆

n pKq and the chain map relation ΦLB “ BΦL
is satisfied. It would of course suffice to construct ΦK such that it sends C∆

n pLq Ñ ConpLq for every



32. ACYCLIC MODELS AND RELATIVE HOMOLOGY 235

subcomplex L Ă K and then define ΦL as the restriction, but in practice, we shall do things the
other way around, and define ΦL first for a special class of subcomplexes such that the definition
of ΦK is then uniquely determined.

The beginning of the induction is to define ΦK : C∆
0 pLq Ñ Co0 pLq : rvs ÞÑ pvq as specified in

the statement of the lemma.
For a given n ě 1, we then assume that ΦK : C∆

k pKq Ñ CokpKq has already been defined for
every k ď n ´ 1 such that it sends C∆

k pLq to CokpLq for every subcomplex L Ă K and satisfies
ΦKB “ BΦK . The idea for the inductive step is now to first define ΦL : C∆

n pLq Ñ ConpLq for
a specific class of “model” subcomplexex L Ă K, which will determine ΦK : C∆

n pKq Ñ ConpKq
via the naturality condition. The model complexes are defined as follows: For any n-simplex
σ “ tv0, . . . , vnu of K, let Lσ Ă K denote the subcomplex that contains only σ and all its faces.
Note that since n ě 1, Lσ can be identified with the cone of an pn ´ 1q-dimensional complex
as in Example 32.5, so Lemma 32.4 implies that both versions of the augmented simplicial chain
complex for Lσ are acyclic; this is why Lσ is called an “acyclic model”. Now, there is only one
generator σ “ rv0, . . . , vns P C∆

n pLσq, so ΦLσ
: C∆

n pLσq Ñ ConpLσq will be determined as soon as
we choose a value for τ :“ ΦLσ

pσq P ConpLσq, which must be required to satisfy

Bτ “ BΦLσ
pσq “ ΦLσ

pBσq P Con´1pLσq.
The right hand side of this expression has already been defined due to the inductive hypothesis.
Moreover, it is a cycle in the augmented chain complex rCo˚pLσq, since

BΦLσ
pBσq “ ΦLσ

pB2σq “ 0 P rCon´2pLσq,
where we should clarify that in the case n “ 1, the operator B acting on 0-chains is actually the
augmentation ǫ˚ : Co0 pLσ;Zq Ñ Z. Since rCo˚pLσq is acyclic, it follows that ΦLσ

pBσq is also a
boundary, and we can therefore define ΦLσ

pσq to be any choice of element τ P ConpLσq such that
Bτ “ ΦLσ

pBσq.
Having made such choices and defined ΦLσ

: C∆
n pLσq Ñ ConpLσq for the model subcomplex

Lσ Ă K corresponding to each n-simplex σ of K, we observe now that there is a unique definition
of ΦK : C∆

n pKq Ñ ConpKq that has the correct restriction to all of these subcomplexes, and it
automatically satisfies both the chain map relation and the naturality condition.

The construction of ΦK beyond degree zero involved some arbitrary choices, so it remains to
show that any other natural chain map Φ1K that matches ΦK in degree zero is chain homotopic
to it. We shall use a similar inductive argument to construct homomorphisms hK : C∆

k pKq Ñ
Cok`1pKq that satisfy the chain homotopy relation BhK ` hKB “ Φ1K ´ ΦK , and here as well it
will be convenient to impose a naturality condition, namely that hK has a well-defined restriction
hL : C∆

k pLq Ñ Cok`1pLq for every subcomplex L Ă K. To start the induction, it suffices to define
hK : C∆

0 pKq Ñ Co1 pKq as the trivial homomorphism since ΦK “ Φ1K on C∆
0 pKq. Now assume

that hK and its restrictions hL satisfying the chain homotopy relation have already been defined
on chains of degree k ď n´ 1 for some n ě 1. For each n-simplex σ “ tv0, . . . , vnu of K, we again
consider the corresponding model subcomplex Lσ Ă K, and define hLσ

: C∆
n pLσq Ñ Con`1pLσq

so that it sends the unique generator σ “ rv0, . . . , vns P C∆
n pLσq to some element τ :“ hLσ

pσq P
Con`1pLσq satisfying

Bτ “ BhLσ
pσq “ ´hLσ

pBσq ` Φ1Lσ
pσq ´ ΦLσ

pσq P ConpLΣq.
This is possible due to acyclicity, since the inductive hypothesis implies that the right hand side is
a cycle:

B `´hLσ
pBσq ` Φ1Lσ

pσq ´ ΦLσ
pσq˘ “ `´BhLσ

` Φ1Lσ
´ ΦLσ

˘ pBσq
“ hLσ

pBBσq “ 0.
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Having extended hLσ
to degree n for each of the model subcomplexes Lσ Ă K, there is again

a unique definition of hK : C∆
n pKq Ñ Con`1pKq that has the correct restriction to each of these

subcomplexes, and it automatically satisfies the chain homotopy relation. �

The proofs of Lemmas 32.8 and 32.9 are similar, but shorter since one only needs to construct
chain homotopies, the existence of suitable chain maps being obvious. Lemma 32.8 also requires
the knowledge that rCo˚pLσq is an acyclic chain complex for each of the model complexes Lσ Ă K,
while for Lemma 32.9, one must instead use the fact that rC∆˚ pLσq is acyclic.

32.4. Relative homology. In §28.3 we saw that there is a relative version of bordism theory
defined for pairs of spaces pX,Aq P Toprel, with long exact sequences that relate the relative
bordism groups of pX,Aq to the absolute bordism groups of X and A. Something similar is true
in all versions of homology theory; let’s discuss briefly how it works in simplicial homology.

A simplicial pair pK,Lq is a simplicial complex K together with a subcomplex L Ă K, and
a map of simplicial pairs f : pK,Lq Ñ pK 1, L1q is a simplicial map f : K Ñ K 1 that sends L
into L1 and thus also defines a simplicial map LÑ L1. Let us denote by Simprel the category whose
objects are simplicial pairs and whose morphisms are maps of simplicial pairs. We can identify the
category Simp of simplicial complexes with the subcategory

Simp Ă Simprel

consisting of pairs of the form pK,Hq. The following definition makes sense because for any
subcomplex L Ă K, the generators of C ‚̊pLq are also generators of C ‚̊pKq, thus making the chain
complex C ‚̊pLq into a subcomplex of C ‚̊pKq.

Definition 32.11. The (ordered or oriented) relative simplicial homology of a simplicial
pair pK,Lq with coefficients in G is defined in each degree n P Z as the homology of the quotient
chain complex C ‚̊pK;Gq{C ‚̊pL;Gq, thus

H‚
npK,Lq “ H‚

npK,L;Gq :“ Hn

`
C ‚̊pK,L;Gq˘, where

C ‚̊pK,Lq “ C ‚̊pK,L;Gq :“ C ‚̊pK;Gq
M
C ‚̊pL;Gq.

Relative simplicial homology defines functors

H‚
n : Simprel Ñ R-Mod

in a straightforward way: any map of simplicial pairs f : pK,Lq Ñ pK 1, L1q induces a chain map
f˚ : C ‚̊pKq Ñ C ‚̊pK 1q that also sends C ‚̊pLq to C ‚̊pL1q and thus descends to the quotients as a
chain map f˚ : C ‚̊pK,Lq Ñ C ‚̊pK,Lq, inducing maps

H‚
npK,Lq f˚ÝÑ H‚

npK 1, L1q
for each n. In keeping with the identification of Simp with a subcomplex of Simprel, we observe
that HnpK,Hq is the same thing as HnpKq.

Elements rcs P H‚
npK,Lq can be represented by relative n-cycles

c P C‚
npKq such that Bc P C‚

n´1pLq.
Here, the condition Bc P C‚

n´1pLqmeans that the image of c under the quotient projection C‚
npKq Ñ

C‚
npK,Lq is a cycle, and we understand rcs P H‚

npK,Lq to mean the homology class represented by
that cycle. Two relative n-cycles a, b P C‚

npKq then represent the same relative homology class in
H‚
npK,Lq if and only if a ´ b “ Bc` d for some c P C‚

n`1pKq and d P C‚
npLq. There is a natural

homomorphism defined for each n ě 1 by

H‚
npK,Lq B˚ÝÑ H‚

n´1pLq : rcs ÞÑ rBcs.
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Note that, in spite of appearances, the class rBcs P H‚
n´1pLq in this expression need not be trivial,

because c is an n-chain in K, but might not be an n-chain in L.

Theorem 32.12. Given a simplicial pair pK,Lq, let i : L ãÑ K and j : pK,Hq ãÑ pK,Lq
denote the obvious inclusion maps. Then the sequence

. . . ÝÑ H‚
n`1pK,Lq B˚ÝÑ H‚

npLq i˚ÝÑ H‚
npKq j˚ÝÑ H‚

npK,Lq B˚ÝÑ H‚
n´1pLq i˚ÝÑ H‚

n´1pKq ÝÑ . . .

ÝÑ H‚
0 pLq i˚ÝÑ H‚

0 pKq j˚ÝÑ H‚
0 pK,Lq ÝÑ 0

is exact.

It is not hard to verify the exactness of the sequence in this theorem explicitly, but there is also
an underlying algebraic phenomenon that deserves more attention. Since C ‚̊pK,Lq is a quotient,
every simplicial pair pK,Lq gives rise to an obvious short exact sequence

0Ñ C ‚̊pLq i˚ãÑ C ‚̊pKq j˚Ñ C ‚̊pK,Lq Ñ 0,

in which each term is a chain complex and the maps between them are chain maps. The inclusion
C ‚̊pLq ãÑ C ‚̊pKq of chain complexes is in fact the chain map i˚ induced by the inclusion i : L ãÑ K

of simplicial complexes, and since j : pK,Hq ãÑ pK,Lq is actually the identity map, the quotient
projection C ‚̊pKq Ñ C ‚̊pKq{C ‚̊pLq can similarly be understood as the chain map j˚ : C ‚̊pKq Ñ
C ‚̊pK,Lq induced by j. Algebraically, it turns out that short exact sequences of chain complexes
and chain maps always give rise to long exact sequences relating their homology groups:

Proposition 32.13. Suppose 0 Ñ A˚
fÑ B˚

gÑ C˚ Ñ 0 is a short exact sequence of chain
complexes and chain maps. Then for each n P Z there exists a so-called connecting homomor-
phism B˚ : HnpC˚q Ñ Hn´1pA˚q such that the sequence

. . .
B˚ÝÑ Hn`1pA˚q f˚ÝÑ Hn`1pB˚q g˚ÝÑ Hn`1pC˚q

B˚ÝÑ HnpA˚q f˚ÝÑ HnpB˚q g˚ÝÑ HnpC˚q
B˚ÝÑ Hn´1pA˚q f˚ÝÑ Hn´1pB˚q g˚ÝÑ Hn´1pC˚q B˚ÝÑ . . .

is exact. Moreover, this result is functorial in the following sense: suppose we are given another
triple of chain complexes A1̊ , B 1̊ and C 1̊ , with a commuting diagram

0 A˚ B˚ C˚ 0

0 A1̊ B 1̊ C 1̊ 0

f

α

g

β γ

f 1 g1

in which all maps are chain maps and the bottom row is also exact, and we denote the resulting
connecting homomorphisms by B 1̊ : HnpC 1̊ q Ñ Hn´1pA1̊ q. Then the diagram

. . . Hn`1pC˚q HnpA˚q HnpB˚q HnpC˚q Hn´1pA˚q . . .

. . . Hn`1pC 1̊ q HnpA1̊ q HnpB 1̊ q HnpC 1̊ q Hn´1pA1̊ q . . .

B˚

γ˚

f˚

α˚

g˚

β˚

B˚

γ˚ α˚
B1̊ f 1̊ g1̊ B1̊

also commutes.

The proof of this result is by “diagram chasing,” which we already saw examples of in Propo-
sition 28.22 and Exercise 28.8 (the five-lemma). Let’s do the first step, which is to write down a
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reasonable candidate for the map B˚ : HnpC˚q Ñ Hn´1pA˚q. We are given a commuting diagram
of the form

...
...

...

0 An Bn Cn 0

0 An´1 Bn´1 Cn´1 0

0 An´2 Bn´2 Cn´2 0

...
...

...

f

B

g

B B
f

B

g

B B
f

B

g

B B

in which every column is a chain complex and every row is exact. Given rcs P HnpC˚q, choose
a representative c P Cn, which necessarily satisfies Bc “ 0. We would like to find some element
a P An´1 that satisfies Ba “ 0 so that we can set B˚rcs :“ ras. The idea is to use whatever
information the diagram gives us to forge a path from Cn to An´1. To start with, the exactness
of the top row implies that g is surjective, so choose b P Bn with gpbq “ c. Since Bc “ 0 and the
diagram commutes, we also know Bgpbq “ gpBbq “ 0, and exactness of the middle row then implies
Bb “ fpaq for some a P An´1. To see that a is a cycle, we use commutativity again and observe
fpBaq “ Bfpaq “ BBb “ 0, and since the bottom row is exact, f is injective, so this implies Ba “ 0.
We can therefore sensibly set B˚rcs “ ras, and step 1 of the proof is complete.

There are still several things to check: steps 2 through 4000 consist of first verifying that the
definition of B˚ : HnpC˚q Ñ Hn´1pA˚q we just proposed does not depend on any of the choices we
made (e.g. of the representative c P Cn and the element b P g´1pcq), and after that, we still need to
show that the sequence of homology groups really is exact. All of this follows by the same style of
diagram chasing—it becomes a bit tedious at some point, but it is not fundamentally difficult. If
you haven’t done it before, I recommend finding a quiet evening to do so once, so that you never
have to do it again.

Similarly, it is not hard to see why the “functoriality” aspect of the statement is true once you
have understood the basic idea of diagram chasing. Functoriality in this situation amounts to the
statement that there exist natural definitions of categories whose objects are short exact sequences
of chain complexes or long exact sequences of R-modules, with morphisms defined in each case via
commutative diagrams, such that Proposition 32.13 produces a functor from the former category to
the latter. See Exercise 32.3 for a precise formulation in these terms. Exercise 32.2 shows moreover
that applying Proposition 32.13 to the short exact sequence 0Ñ C ‚̊pLq Ñ C ‚̊pKq Ñ C ‚̊pK,Lq Ñ 0

for a simplicial pair pK,Lq produces the same connecting homomorphism as in the statement of
Theorem 32.12.

32.5. Exercises.

Exercise 32.1. Carry out the rest of the details of the diagram chase to prove the exactness
of the sequence in Proposition 32.13.

Exercise 32.2 (*). Show that for any simplicial pair pK,Lq, the connecting homomorphisms
B˚ : H‚

npK,Lq Ñ H‚
n´1pLq that arise by plugging the short exact sequence of simplicial chain
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complexes 0Ñ C ‚̊pLq ãÑ C ‚̊pKq Ñ C ‚̊pK,Lq Ñ 0 into Proposition 32.13 are given by the formula
B˚rcs “ Bc for any relative n-cycle c P C‚

npKq in pK,Lq.
Exercise 32.3. Consider the categories Short and Long, defined as follows. Objects in Short

are short exact sequences of chain complexes 0 Ñ A˚
fÑ B˚

gÑ C˚ Ñ 0 of R-modules, with a

morphism from this object to another object 0Ñ A1̊ f 1Ñ B 1̊ g1Ñ C 1̊ Ñ 0 defined as a triple of chain

maps A˚ αÑ A1̊ , B˚
βÑ B 1̊ and C˚

γÑ C 1̊ such that the following diagram commutes:

0 A˚ B˚ C˚ 0

0 A1̊ B 1̊ C˚ 0

f

α

g

β γ

f 1 g1

The objects in Long are long exact sequences of Z-graded R-modules . . .Ñ Cn`1
δÑ An

FÑ Bn
GÑ

Cn
δÑ An´1 Ñ . . ., with morphisms from this to another object . . .Ñ C 1

n`1
δ1Ñ A1n

F 1Ñ B1
n
G1Ñ C 1

n
δ1Ñ

A1n´1 Ñ . . . defined as triples of homomorphisms A˚ αÑ A1̊ , B˚
βÑ B 1̊ and C˚

γÑ C 1̊ that preserve
the Z-gradings and make the following diagram commute:

. . . Cn`1 An Bn Cn An´1 . . .

. . . C 1
n`1 A1n B1

n C 1
n A1n´1 . . .

δ

γ

F

α

G

β

δ

γ α

δ1 F 1 G1 δ1

(a) Show that there is a covariant functor Simprel Ñ Short assigning to each simplicial pair
pK,Lq its short exact sequence of (ordered or oriented) simplicial chain complexes.

(b) Show that there is also a covariant functor Short Ñ Long assigning to each short exact
sequence of chain complexes the corresponding long exact sequence of their homology
groups. (Note that this can be composed with the functor in part (a) to define a functor
Simprel Ñ Long.)

33. Singular homology

33.1. Definitions. The immediate disadvantage of simplicial homology is that its definition
requires strictly more data than just a topological space: we need to have a triangulation of that
space, and it takes considerable effort to see why different triangulations of the same space produce
isomorphic homologies. The definition of singular homology resembles that of simplicial homology,
but it explicitly removes the need for a triangulation. The price to be paid for this is that the
resulting chain complex seems absurdly large: so large, in fact, that one might find it surprising
at first that it is ever possible to explicitly compute the singular homology of a space. I advise
you not to think too much about this when you first read the definition, as we will subsequently
discuss some properties that make computations of singular homology quite a reasonable task.

Definition 33.1. A singular n-simplex (singulärer n-Simplex) in a topological space X is
defined to be a continuous map σ : ∆n Ñ X . Let

KnpXq :“  
σ : ∆n Ñ X

ˇ̌
σ is continuous

(
denote the set of all singular n-simplices in X . The singular chain complex (singulärer Ket-
tenkomplex) C˚pXq “ C˚pX ;Gq of X with coefficients in the R-module G is defined such that
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CnpXq “ 0 for all n ă 0, and for n ě 0,

CnpXq :“
à

σPKnpXq
G.

The boundary map B : CnpXq Ñ Cn´1pXq for n ě 1 is uniquely determined by linearity and the
formula

Bσ “
nÿ
k“0

p´1qk `σ|Bpkq∆n

˘
,

where the identification (29.1) is used in order to view each term in the summation as a singular
pn ´ 1q-simplex σ|Bpkq∆n : ∆n´1 Ñ X , making the linear combination an element of Cn´1pX ;Zq.
The homology groups of this chain complex form the singular homology of X with coefficients
in G,

HnpXq “ HnpX ;Gq :“ Hn

`
C˚pX ;Gq˘.

There is a fairly obvious way to make

C˚ : TopÑ ChpR-Modq
into a functor: any continuous map f : X Ñ Y between spaces induces a unique chain map

f˚ : C˚pXq Ñ C˚pY q
determined by linearity and the formula

f˚pσq :“ f ˝ σ
for singular simplices σ : ∆n Ñ X . Composing this functor with Hn : ChpR-Modq Ñ R-Mod makes
singular homology itself into a collection of functors

Hn : TopÑ R-Mod,

meaning in particular that continuous maps f : X Ñ Y induce homomorphisms f˚ : HnpXq Ñ
HnpY q for every n ě 0.

For a pair of spaces pX,Aq P Toprel, there is a similarly straightforward extension of the
definitions above to the notion of relative singular homology

HnpX,Aq “ HnpX,A;Gq :“ Hn

`
C˚pX,A;Gq˘, where

C˚pX,Aq “ C˚pX,A;Gq :“ C˚pX ;Gq
M
C˚pA;Gq,

which makes sense because singular simplices in A are also singular simplicies in X , making C˚pAq
naturally a subcomplex of C˚pXq. We have HnpX,Hq “ HnpXq for all spaces X , and relative
singular homology can thus be regarded as an extension of the functor Hn : Top Ñ R-Mod

over the larger category Toprel, in which maps of pairs f : pX,Aq Ñ pY,Bq induce chain maps
f˚ : C˚pXq Ñ C˚pY q that descend to the quotients as chain maps f˚ : C˚pX,Aq Ñ C˚pY,Bq
and thus induce homomorphisms f˚ : HnpX,Aq Ñ HnpY,Bq for all n. As with relative simplicial
homology, we can represent relative singular homology classes rcs P HnpX,Aq via relative cycles
c P CnpXq, which are assumed to satisfy Bc P Cn´1pAq, and writing them in this way gives rise to
an obvious connecting homomorphism

HnpX,Aq B˚ÝÑ Hn´1pAq : rcs ÞÑ rBcs.
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33.2. Non-axiomatic properties. Before we get to the purely “formal” (i.e. axiomatic)
properties of singular homology, let us discuss a few features it has that other axiomatic homology
theories do not.

Theorem 33.2. For any space X and any coefficient group G, there is a canonical isomorphism

H0pX ;Gq “ à
π0pXq

G,

where π0pXq is an abbreviation for the set of path-components of X.

The isomorphism in this theorem arises from a pair of convenient coincidences: first, since the
standard 0-simplex ∆0 contains only one point, there is a natural bijection between the set K0pXq
of singular 0-simplices in X and the set X itself, allowing us to write singular 0-chains as finite
linear combinations ÿ

i

aixi P C0pXq
of generators xi P X with coefficients ai P G. The second coincidence is that the unit interval
I “ r0, 1s, which we normally use for parametrizing paths in X , is homeomorphic to the standard
1-simplex ∆1 Ă I2, e.g. via the map

(33.1) I
–ÝÑ ∆1 : t ÞÑ p1´ t, tq.

This is of course not the only possible choice of such a homeomorphism, but we will use it consis-
tently in this course, for the following reason. The map (33.1) matches boundary points via the
correspondence

BI Q 0 ÞÑ Bp1q∆1 Ă B∆1, BI Q 1 ÞÑ Bp0q∆1 Ă B∆1,

which may seem backwards when you see it for the first time, but if you recall the way in which signs
were associated to the various boundary faces of ∆n in our definition of the boundary operator
B : CnpXq Ñ Cn´1pXq, you might recognize that this particular correspondence is consistent
with certain orientation conventions in differential geometry, where the standard orientation of
the 1-manifold I Ă R induces a positive boundary orientation on 1 P BI and a negative boundary
orientation on 0 P BI. This detail is unimportant for our present purposes, but what matters is that
if we use (33.1) to identify singular 1-simplices in X with paths γ : I Ñ X and likewise identify
singular 0-simplices with points x P X in the canonical way, then the operator B : C1pXq Ñ C0pXq
is now determined by the formula

(33.2) Bγ “ γp1q ´ γp0q.
This tells you why two 0-cycles of the form mx,my P C0pXq for m P G and x, y P X will always be
homologous if x and y lie in the same path-component, and from there it is not a difficult exercise
to find an explicit isomorphism H0pXq –À

π0pXqG.
For any choice of base point p P X , the identification (33.1) between I and ∆1 also gives rise

to a natural homomorphism

(33.3) h : π1pX, pq Ñ H1pX ;Zq
sending the homotopy class of the loop γ : I Ñ X to the homology class that it represents
when regarded as a singular 1-chain with integer coefficients; note that by (33.2), this 1-chain
is a cycle because γ : I Ñ X has the same start and end point. The map (33.3) is called the
Hurewicz homomorphism, and the proof that it is well defined (see e.g. Exercise 22.12 from
last semester’s Topologie I course) relies on several straightforward lemmas, showing for instance
that any two homotopic loops based at p give rise to homologous 1-cycles, and the 1-cycle arising
from a concatenation of two loops is homologous to the sum of the two corresponding 1-cycles.
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Since H1pX ;Zq is abelian, the Hurewicz map automatically vanishes on the commutator subgroup
of π1pX, pq, so it descends to a map of the abelianization of π1pX, pq to H1pX ;Zq.

Theorem 33.3. If X is path-connected, then the Hurewicz map (33.3) descends to the abelian-
ization of π1pXq :“ π1pX, pq as an isomorphism

π1pXq
M
rπ1pXq, π1pXqs –ÝÑ H1pX ;Zq.

One can prove Theorem 33.3 by writing down an inverse map that transforms any singular
1-cycle (viewed as a formal sum of paths whose end points must satisfy some matching conditions
in order to produce a cycle) into a loop based at p by concatenating the associated paths. There are
typically many ways that this can be done, but the ambiguity turns out to lie in the commutator
subgroup rπ1pX, pq, π1pX, pqs; see last semester’s Exercise 22.12 for further hints.

The third property I want to mention is a relationship between simplicial and singular homol-
ogy. Suppose K “ pV, Sq is a simplicial complex, with polyhedron |K|. There is then a natural
chain map

Co˚pKq Ñ C˚p|K|q
defined by associating to each generator pv0, . . . , vnq in degree n of the ordered simplicial chain
complex the unique singular n-simplex σ : ∆n Ñ |K| that extends to a linear map Rn`1 Ñ
RV sending the standard basis of Rn`1 to the vectors ev0 , . . . , evn P RV . As usual, the word
“natural” has a precise meaning here, and the map Co˚pKq Ñ C˚p|K|q can be described as a
natural transformation between two functors SimpÑ ChpR-Modq. Letting chain maps descend to
maps between homology groups, we obtain natural homomorphisms

Ho
npKq Ñ Hnp|K|q.

In light of the natural isomorphisms Ho
npKq –ÝÑ H∆

n pKq, we also obtain from this natural homo-
morphisms H∆

n pKq Ñ Hnp|K|q, and we will see when we study cellular homology that the latter
is also an isomorphism.

One useful application of this relationship is a construction of fundamental cycles in singular
homology: If M – |K| is a compact triangulated n-manifold, with a choice of admissible ordering
for the underlying simplicial complex, then feeding the resulting fundamental cycle cM P ConpK;Z2q
into the natural chain map ConpK;Z2q Ñ CnpM ;Z2q produces a singular fundamental cycle

cM P CnpM ;Z2q such that BcM “ cBM P Cn´1pBM ;Z2q Ă Cn´1pM ;Z2q.
If the triangulation is also oriented, then this can all also be done with integer coefficients, producing
an integral fundamental cycle

cM P CnpM ;Zq such that BcM “ cBM P Cn´1pBM ;Zq Ă Cn´1pM ;Zq.
33.3. The axioms. Here is the main result of this lecture.

Theorem 33.4. For any R-module G, the functors Hnp¨;Gq : Toprel Ñ R-Mod and connecting
homomorphisms B˚ : HnpX,A;Gq Ñ Hn´1pA;Gq defined for all pX,Aq P Toprel and n P Z satisfy
the axioms of a homology theory (in the sense of Eilenberg-Steenrod) with coefficient group G.

Let’s first dispense with the axioms that are easy exercises. Since a one-point space t˚u admits
only one singular n-simplex σ : ∆n Ñ t˚u for each n ě 0, a computation completely analogous to
Exercise 29.4 shows that

Hnpt˚u;Gq –
#
0 if n ‰ 0,

G if n “ 0.
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This shows that H˚ :“ H˚p¨;Gq satisfies the dimension axiom, and moreover, the isomorphism
H0pt˚u;Gq – G is canonical. The additivity axiom is a similarly straightforward consequence of
the definitions.

Now for the interesting part.

Proposition 33.5 (the homotopy axiom). For any two homotopic maps of pairs f, g : pX,Aq Ñ
pY,Bq, the induced homomorphisms f˚, g˚ : HnpX,Aq Ñ HnpY,Bq on singular homology are iden-
tical.

Proof. We consider first the case of absolute homology, so assume h : I ˆ X Ñ Y is a
homotopy between f :“ hp0, ¨q and g :“ hp1, ¨q. For each n ě 0, there is a unique homomorphism
h# : CnpXq Ñ Cn`1pY q determined by linearity and the following formula for h#pσq P Cn`1pY ;Zq
on an arbitrary singular n-simplex σ : ∆n Ñ X : we use the maps

I ˆ∆n IdˆσÝÑ I ˆX
hÝÑ Y,

together with the integral fundamental cycle cIˆ∆n P Cn`1pI ˆ ∆n;Zq arising from the oriented
triangulation of I ˆ∆n – ∆1 ˆ∆n described in §31.2, to define

h#pσq :“ h˚pIdˆσq˚cIˆ∆n P Cn`1pY ;Zq.
One now deduces from the formula for BcIˆ∆n that h# : C˚pXq Ñ C˚`1pY q is a chain homotopy
between f˚ and g˚.

Extending this result to the setting of a homotopy h : pI ˆX, I ˆ Aq Ñ pY,Bq between two
maps of pairs f, g : pX,Aq Ñ pY,Bq requires only the extra observation that since hpIˆAq Ă B, the
chain homotopy h# constructed above descends to the quotient as a chain homotopy C˚pX,Aq Ñ
C˚`1pY,Bq between the two chain maps f˚, g˚ : C˚pX,Aq Ñ C˚pY,Bq. �

Proposition 33.6 (the exactness axiom). For any pair of spaces pX,Aq P Toprel with inclusion
maps i : A ãÑ X and j : pX,Hq ãÑ pX,Aq, the sequence

. . . ÝÑ HnpAq i˚ÝÑ HnpXq j˚ÝÑ HnpX,Aq B˚ÝÑ Hn´1pAq ÝÑ . . . ÝÑ H0pX,Aq ÝÑ 0

is exact.

Proof. This is a straightforward consequence of Proposition 32.13 and the obvious short
exact sequence of chain complexes

0 ÝÑ C˚pAq i˚ÝÑ C˚pXq j˚ÝÑ C˚pX,Aq ÝÑ 0,

one only needs to check that the connecting homomorphism produced by the diagram chase in the
proof of Proposition 32.13 is the specific map HnpX,Aq Ñ Hn´1pAq : rcs ÞÑ rBcs. �

Recall that for the excision axiom formulated in Lecture 28, the hypothesis was that B Ă A Ă
X and there exists a continuous function u : X Ñ I that “separates” B from XzA in the sense that
u|B ” 0 and u|XzA ” 1. In singular homology, it suffices to work with a slightly weaker variant of
this hypothesis.

Proposition 33.7 (the excision axiom). Assume B Ă A Ă X such that the closure of B is
contained in the interior of A. Then the inclusion of pairs i : pXzB,AzBq ãÑ pX,Aq induces an
isomorphism i˚ : HnpXzB,AzBq –ÝÑ HnpX,Aq for every n.

The proof requires a bit of preparation. For each n ě 0, there is a unique homomorphism

S : CnpXq Ñ CnpXq
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that is determined by linearity and the formula

Spσq :“ σ˚c∆n P CnpX ;Zq,
where σ : ∆n Ñ X is an arbitrary singular n-simplex and c∆n P Cnp∆n;Zq is the integral funda-
mental cycle defined via barycentric subdivision of ∆n. We will refer to this as the subdivision
operator on the singular chain complex.

Lemma 33.8. For each m P N, the mth iterate Sm : C˚pXq Ñ C˚pXq of the subdivision
operator is a chain map, and there exists a chain homotopy hm : C˚pXq Ñ C˚`1pXq between Sm
and the identity map. Moreover, for any subspace A Ă X, both Sm and hm preserve the subcomplex
C˚pAq Ă C˚pXq.

Proof. We prove the statement first for m “ 1. For a given singular n-simplex σ : ∆n Ñ X ,
the chain map relation BSpσq “ σ˚Bc∆n “ σ˚cB∆n “ SpBσq follows from the inductive nature of the
barycentric subdivision algorithm described in §30.4. To see why S is then chain homotopic to the
identity, one uses the oriented triangulation of Iˆ∆n described in §31.4 and its integral fundamental
cycle cIˆ∆n P Cn`1pIˆ∆n;Zq to define, for each n ě 0, a homomorphism h1 : CnpXq Ñ Cn`1pXq
that is given on each generator σ : ∆n Ñ X by

h1pσq “ ppr2q˚pIdˆσq˚cIˆ∆n P Cn`1pX ;Zq,
with pr2 : I ˆ X Ñ X denoting the projection to the second factor. Since the triangulation of
I ˆ∆n restricts to BpI ˆ∆nq as the trivial triangulation of t0u ˆ∆n, the barycentric subdivision
of t1u ˆ∆n, and the pn´ 1q-dimensional case of the same triangulation on each face of I ˆ B∆n,
we have

Bh1pσq “ ppr2q˚pIdˆσq˚BcIˆ∆n “ Spσq ´ σ ´ h1pBσq,
and thus the chain homotopy relation Bh1 ` h1B “ S ´ 1. It is clear from the construction that
both S and h1 preserve C˚pAq Ă C˚pXq for any A Ă X .

For arbitrary m P N, it is now obvious that Sm is also a chain map and is chain homotopic
to 1

m “ 1, but we need to check that there is a chain homotopy hm that preserves subcomplexes
C˚pAq Ă C˚pXq. One can see this by writing down an inductive definition of hm, for which various
choices are possible, e.g. hm :“ hm´1S ` h1 does the job. �

Taking m large enough, the operator Sm can be applied in principle to replace any singular
chain c P CnpXq with a chain Smc P CnpXq whose constituent singular simplices are as “small” we
we like: in particular, if X is covered by the interiors of two subsets

X “ Ů Y V̊, U ,V Ă X,

then for any given chain c P CnpXq, takingm P N sufficiently large makes the n-chain Smc P CnpXq
decomposable with respect to this covering, meaning

Smc “ u` v for some u P CnpUq, v P CnpVq,
because every singular n-simplex in the finite linear combination forming Smc can be assumed to
have its image entirely inside either U or V . Moreover, if c P CnpXq is a cycle, then Smc P CnpXq
is also a cycle, and the chain homotopy relation

Smc´ c “ Bhmc` hmBc “ Bhmc
shows that c and Smc represent the same singular homology class. A relative version of this
observation will be used in the proof below, and we can now see the significance of the conditionsB Ă Å: it means that the interiors of A and XzB form an open covering of X .
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Proof of Proposition 33.7. Given any class rcs P HnpX,Aq represented by a relative n-
cycle c P CnpXq, we observe that for each m P N, the chain Smc P CnpXq satisfies

BpSmcq “ SmpBcq P Cn´1pAq,
since the subdivision operator S : C˚pXq Ñ C˚pXq preserves the subcomplex C˚pAq Ă C˚pXq,
hence Smc is also a relative n-cycle. Moreover, the chain homotopy relation Smc´c “ Bhmc`hmBc
implies rSmcs “ rcs P HnpX,Aq, since Bc P Cn´1pAq implies hmBc P CnpAq. With this in mind,
since the interiors of A and XzB cover X , we can assume without loss of generality after replacing
c by Smc for some m P N sufficiently large that the chain c can be decomposed as

c “ cA ` cXzB for some cA P CnpAq, cXzB P CnpXzBq.
Having made this assumption, the fact that c P CnpX,Aq is a relative n-cycle means Bc P Cn´1pAq
and therefore also BcXzB P CnpAq, so that cXzB is a relative n-cycle in pXzB,AzBq, thus repre-
senting a class rcXzBs P HnpXzB,AzBq that satisfies

i˚rcXzBs “ rcs.
This proves that i˚ : HnpXzB,AzBq Ñ HnpX,Aq is surjective.

To show that i˚ : HnpXzB,AzBq Ñ HnpX,Aq is injective, suppose c P CnpXzBq is a relative
n-cycle in pXzB,AzBq representing a class rcs P HnpXzB,AzBq with i˚rcs “ 0 P HnpX,Aq, which
means that if c is viewed as an n-chain in X , we have

c “ Bb` a for some b P Cn`1pXq and a P CnpAq.
By applying Sm to both sides for m sufficiently large, we can assume without loss of generality
that b decomposes as

b “ bA ` bXzB for some bA P CnpAq, bXzB P CnpXzBq.
We then have c ´ BbXzB “ BbA ` a, in which the left hand side is a chain in XzB and the right
hand side is a chain in A, implying that the right hand side is also a chain in AzB, and the relation
c “ BbXzB ` pBbA ` aq therefore implies rcs “ 0 P HnpXzB,AzBq. �

The proof of Theorem 33.4 is now complete, and now that we have established the existence of
at least one axiomatic homology theory with any given choice of coefficient group, there are many
immediate corollaries, e.g. the Brouwer fixed point theorem (cf. Exercise 28.7). In particular, the
computation of h˚pSnq carried out in Lecture 28 can now be considered a valid computation of
singular homology, giving

HkpSn;Gq –
#
G if k “ 0 or k “ n,

0 otherwise.

33.4. Chain-level excision. When we study singular cohomology later in this semester, it
will be useful to have a stronger variant of the excision property, one that applies to the singular
chain complex rather than just to its homology:

Theorem 33.9. Assume B Ă A Ă X such that the closure of B is contained in the interior
of A. Then the inclusion of pairs i : pXzB,AzBq ãÑ pX,Aq induces a chain homotopy equivalence
i˚ : C˚pXzB,AzBq Ñ C˚pX,Aq.

This obviously implies Proposition 33.7, and we will see in the following that it also more-or-
less follows from it, for somewhat nontrivial reasons. The usefulness of Theorem 33.9 will be that it
almost immediately implies that similar statements hold after applying certain standard algebraic
operations to chain complexes, such as the one that turns homology into cohomology. One gets a
hint of this from the following easy observation, which is based on the same trick as Remark 32.10:
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Lemma 33.10. If Theorem 33.9 holds for singular chain complexes with coefficients in Z, then
it also holds for arbitrary choices of coefficients.

Proof. Under the stated hypotheses on B Ă A Ă X , assume it is known that the map
i˚ : C˚pXzB,AzB;Zq Ñ C˚pX,A;Zq is a chain homotopy equivalence, which means there exists a
chain map g : C˚pX,A;Zq Ñ C˚pXzB,AzB;Zq, a chain homotopy h1 between i˚g : C˚pX,A;Zq Ñ
C˚pX,A;Zq and the identity, and a chain homotopy h2 between gi˚ : C˚pXzB,AzB;Zq Ñ
C˚pXzB,AzB;Zq and the identity. For any coefficient module G, linearity and the definitions
of these maps on the generators of the singular chain complex (i.e. on singular simplices) uniquely
determine similar chain maps and chain homotopies that relate C˚pXzB,AzB;Gq and C˚pX,A;Gq
in the same manner. �

With the lemma in mind, our goal is now to prove that Theorem 33.9 holds in the special
case G “ Z. We will deduce this from some general results about chain complexes in the next
subsection.

33.5. Chain contractions and mapping cones. Recall that a chain complex C˚ is called
chain contractible if there exists a chain homotopy of the identity map C˚ Ñ C˚ to the trivial
chain map 0 : C˚ Ñ C˚.

Lemma 33.11. A chain complex of R-modules C˚ is chain contractible if and only if there is
a splitting of Cn for each n P Z into submodules Cn “ An ‘ Bn such that Cn

BÝÑ Cn´1 vanishes
on An and maps Bn isomorphically to An´1.

Proof. Assume h : C˚ Ñ C˚ satisfies hpCnq Ă Cn`1 for every n P Z and Bh ` hB “ 1.
We observe that the homomorphisms Bh and hB in this case are complementary projections, since
B2 “ 0 implies

pBhq2 “ BphBqh “ Bp1´ Bhqh “ Bh, and phBq2 “ hpBhqB “ hp1´ hBqB “ hB.
We therefore obtain a splitting C˚ “ A˚ ‘ B˚ with A˚ :“ impBhq and B˚ :“ imphBq, and setting
An :“ A˚XCn and Bn :“ B˚XCn for each n P Z gives Cn “ An‘Bn. Since BpBhq “ 0, B vanishes
on A˚; moreover, the definitions of the projections imply that Bh is the identity map on A˚ while
hB is the identity map on B˚, showing that for each n P Z, one obtains an inverse of Bn

BÝÑ An´1

by composing An´1
hÝÑ Cn with the projection Cn

hBÝÑ Bn.
Conversely, if splittings Cn “ An ‘ Bn with the stated properties are given, then defining

h : Cn Ñ Cn`1 for each n P Z to be trivial on Bn and an inverse of Bn`1
BÝÑ An on An gives a

chain contraction. �

We can now clarify the advantage of focusing on the case G “ Z in the proof of Theorem 33.9:
it is the fact that chain complexes over Z are free abelian groups, thus making the following result
applicable.

Lemma 33.12. A chain complex C˚ of free abelian groups is acyclic if and only if it is chain
contractible.

Proof. Assume the chain complex C˚ is acyclic and Cn Ă C˚ is a free abelian group for each
n P Z. By a basic result in algebra (see e.g. [Lan02, §III.7]), subgroups of free abelian groups are
also free, and this applies in particular to the subgroups

Zn :“ ker
´
Cn

BnÝÑ Cn´1

¯
.

Acyclicity means that the map
Cn

BnÝÑ Zn´1
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is surjective for every n, and we therefore have a short exact sequence

0Ñ Zn ãÑ Cn
BÑ Zn´1 Ñ 0,

which splits since Zn´1 is free. This splitting identifies Cn with Zn ‘ Zn´1 so that B becomes the
projection Zn ‘ Zn´1 Ñ Zn´1, and chain contractibility now follows from Lemma 33.11. �

Remark 33.13. Lemma 33.12 also holds under the hypothesis that each Cn Ă C˚ is a free
R-module if the underlying ring R is a principal ideal domain: the key detail is that under this
assumption, submodules of free R-modules are also free, thus providing the splitting of short exact
sequences used in the proof. This fact about principal ideal domains depends in general on Zorn’s
lemma, so it may seem a bit abstract, but one can also avoid using it if one is willing to assume
the chain complex is bounded above or below, which also suffices for our present purposes; see
Exercise 33.2.

What we need next is a way to deduce that something is a chain homotopy equivalence from
the fact that some other complex is chain contractible. The right tool for this is the mapping cone.

A quick digression on simplicial complexes will provide some useful motivation. For a simplicial
pair pK,Lq, the cone CL of L also contains L itself as a subcomplex, so we can define the cone of
the pair pK,Lq as the simplicial complex

conepK,Lq :“ CL YL K,
in which the subcomplexes L Ă CL and L Ă K are identified with each other. The vertices of
conepK,Lq thus consist of the vertices of K plus one extra vertex labelled ˚, while its simplices
consist of the simplices of K plus, for each n ě 0 and each n-simplex tv0, . . . , vnu of L, the
pn` 1q-simplex t˚, v0, . . . , vnu. Topologically, the polyhedron | conepK,Lq| is a space obtained by
attaching |K| to the cone C|L| along |L|, thus making the inclusion |L| ãÑ | conepK,Lq| homotopic
to a constant map.

The augmented chain complex rC∆˚ pconepK,Lq;Zq contains two types of generators. First,
since K Ă conepK,Lq is a subcomplex, there are the generators corresponding to simplices of K,
in addition to 1 P Z “ rC∆´1pK;Zq, making rC∆˚ pK;Zq a subcomplex of rC∆˚ pconepK,Lq;Zq. Secondly,
each oriented simplex rv0, . . . , vns of L gives rise to a generator r˚, v0, . . . , vns of rC∆˚ pconepK,Lqq,
defining for each n ě ´1 a homomorphismrC∆

n pL;Zq jÝÑ rC∆
n`1pconepK,Lq;Zq

such that jrv0, . . . , vns :“ r˚, v0, . . . , vns and, for the case n “ ´1, jp1q :“ r˚s. The map j identifies
every n-chain in rC∆˚ pL;Zq with an pn ` 1q-chain in rC∆˚ pconepK,Lq;Zq, but j is not a chain map
and its image is not a subcomplex: instead, we have

Bjrv0, . . . , vns “ Br˚, v0, . . . , vns “ rv0, . . . , vns ´ jpBrv0, . . . , vnsq
and, using B “ ǫ˚ for the degree 0 part of the augmented chain complex, Bjp1q “ ǫ˚r˚s “ 1 “
1´ jpBp1qq. The result is a direct sum decompositionrC∆

n pconepK,Lq;Zq – rC∆
n´1pL;Zq ‘ rC∆

n pK;Zq
for each n ě ´1 such that the boundary map on rC∆˚ pconepK,Lq;Zq decomposes in block form as

B “
ˆ´BL 0

i˚ BK
˙
,

where BL and BK denote the boundary maps on the augmented simplicial chain complexes of L
and K respectively, and i : L ãÑ K is the inclusion. One can take this as topological motivation
for the following algebraic definition.
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Definition 33.14. The mapping cone of a chain map f : pA˚, BAq Ñ pB˚, BBq is the chain
complex pconepfq˚, Bq with

conepfqn :“ An´1 ‘Bn and B :“
ˆ´BA 0

f BB
˙
.

Remark 33.15. The literature contains a variety of alternative versions of Definition 33.14
with slightly different sign conventions.

It is straightforward to check that for any chain map f : A˚ Ñ B˚, one obtains a short exact
sequence of chain complexes

0 ÝÑ B˚ iÝÑ conepfq˚ πÝÑ A˚r´1s ÝÑ 0,

where we denote by A˚r´1s the chain complex A˚ with its grading shifted so that A˚r´1sn :“
An´1, and the maps i and π are the obvious inclusion and projection respectively,

Bn
iÝÑ An´1 ‘Bn, An´1 ‘Bn

πÝÑ An´1.

Plugging this into Proposition 32.13 thus gives a long exact sequence that relates the homology
groups of A˚, B˚ and the cone, and by inspection of the usual diagram chase, one finds that the
connecting homomorphism HnpA˚r´1sq “ Hn´1pA˚q B˚ÝÑ Hn´1pB˚q in this case is simply the map
induced on homology by the chain map f : A˚ Ñ B˚, so the long exact sequence takes the form

(33.4) . . . ÝÑ HnpA˚q f˚ÝÑ HnpB˚q i˚ÝÑ Hnpconepfq˚q π˚ÝÑ Hn´1pA˚q f˚ÝÑ Hn´1pB˚q ÝÑ . . . .

The exactness of this sequence implies:

Proposition 33.16. A chain map f : A˚ Ñ B˚ induces isomorphisms HnpA˚q Ñ HnpB˚q
for all n P Z if and only if its mapping cone conepfq˚ is acyclic. �

The following is a chain-level analogue of Proposition 33.16.

Theorem 33.17. A chain map f : A˚ Ñ B˚ is a chain homotopy equivalence if and only if
its mapping cone conepfq˚ is chain contractible.

Proof. Suppose conepfq˚ admits a chain contraction, so for each n P Z, there is a homomor-
phism

h “
ˆ
α β

γ δ

˙
: An´1 ‘Bn “ conepfqn Ñ conepfqn`1 “ An ‘Bn`1

satisfying hB ` Bh “ 1, which amounts to the four equations

´BAα´ αBA ` βf “ 1,

fα` BBγ ´ γBA ` δf “ 0,

´BAβ ` βBB “ 0,

fβ ` BBδ ` δBB “ 1

for the maps α : An´1 Ñ An, β : Bn Ñ An, γ : An´1 Ñ Bn`1 and δ : Bn Ñ Bn`1. The third
equation makes β a chain map B˚ Ñ A˚, the first makes ´α a chain homotopy between β ˝ f and
the identity A˚ Ñ A˚, and the fourth makes δ a chain homotopy between f ˝ β and the identity
B˚ Ñ B˚, proving that β is a chain homotopy inverse of f .

We will not need the converse in the application below, so we include here only a sketch of its
proof, adapted from an argument in [Bro94, Prop. 0.7].

As a preparatory observation, note that for any two chain complexes pA˚, BAq and pB˚, BBq,
there is a chain complex pHompA˚, B˚q, Bq whose degree n part consists of the homomorphisms
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ϕ : A˚ Ñ B˚ that satisfy ϕpAkq Ă Bk`n for all k P Z, with the boundary operator B given on
homomogeneous elements ϕ P HompA˚, B˚q of degree |ϕ| by

Bϕ :“ BB ˝ ϕ´ p´1q|ϕ|ϕ ˝ BA.
The choice of sign convention used here is motivated by a convention that we will later use for
defining tensor products of chain complexes, and it ensures for instance that the obvious evaluation
map

HompA˚, B˚q bA˚ Ñ B˚ : ϕb a ÞÑ ϕpaq
is a chain map. This detail is unimportant for now; one can easily check in any case that
pHompA˚, B˚q, Bq as defined above is a chain complex. Moreover, the 0-cycles in HompA˚, B˚q
are precisely the chain maps from A˚ to B˚, and two such cycles are homologous if and only if
they are chain homotopic.

Next, we have two claims whose proofs are both straightforward exercises:
Claim 1 : For any fixed chain complex C˚, there exists a covariant functor ChÑ Ch that sends

each chain complex A˚ to the chain complex HompC˚, A˚q and sends each chain map f : A˚ Ñ B˚
to the chain map

HompC˚, fq : HompC˚, A˚q Ñ HompC˚, B˚q : ϕ ÞÑ f ˝ ϕ,
and moreover, the chain homotopy class of HompC˚, fq depends only on the chain homotopy class
of f .

Claim 2 : For any chain map f : A˚ Ñ B˚ and any third chain complex C˚, there is a natural
isomorphism between the chain complexes HompC˚, conepfq˚q and conepHompC˚, fqq˚.

With these ingredients in place, suppose f : A˚ Ñ B˚ is a chain homotopy equivalence, and
abbreviate C˚ :“ conepfq˚. Claim 1 implies that HompC˚, fq : HompC˚, A˚q Ñ HompC˚, B˚q is
then also a chain homotopy equivalence, and by claim 2, its mapping cone is naturally isomorphic
to HompC˚, C˚q, implying via Proposition 33.16 that HompC˚, C˚q is acyclic. The vanishing of
H0pHompC˚, C˚qq means that every chain map C˚ Ñ C˚ is chain homotopic to zero: since this
applies in particular to the identity map C˚ Ñ C˚, it follows that C˚ is chain contractible. �

Theorem 33.9 in the case G “ Z is an immediate consequence of the following:

Corollary 33.18. For two chain complexes A˚, B˚ of free abelian groups, a chain map f :

A˚ Ñ B˚ is a chain homotopy equivalence if and only if the induced maps f˚ : HnpA˚q Ñ HnpB˚q
are isomorphisms for all n P Z.

Proof. If f˚ : HnpA˚q Ñ HnpB˚q is an isomorphism for every n, then by Proposition 33.16,
conepfq˚ is acyclic. Since the chain groups An´1 and Bn are free abelian groups, the same holds
for conepfqn “ An´1 ‘ Bn, and it then follows via Lemma 33.12 that conepfq˚ is also chain
contractible. The result now follows from Theorem 33.17. �

33.6. Exercises.

Exercise 33.1. Let Top˚ denote the category of pointed spaces with base-point preserving
continuous maps, so that we can regard both π1 and H1p¨;Zq as functors from Top˚ to the category
Grp of groups with homomorphisms. (Note that the base point is irrelevant for the definition of
H1p¨,Zq, which actually takes values in the smaller subcategory of abelian groups, but these details
are unimportant for now.) In this context, show that the Hurewicz homomorphism (33.3) defines
a natural transformation from π1 to H1p¨;Zq.

Exercise 33.2. A chain complex C˚ is said to be bounded below or bounded above
if Cn “ 0 for all n P Z sufficiently small or sufficiently large respectively, e.g. all of the chain
complexes that we have used for defining topological invariants so far have been bounded below,
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since they satisfy Cn “ 0 for n ă 0. Show that if C˚ is an acyclic chain complex of R-modules that
is bounded above or below and the modules Cn Ă C˚ are all free, then C˚ is chain contractible.
Hint: Construct a chain contraction inductively by degree, as in the method of acyclic models.
The assumption that C˚ is bounded above or below gives you a place to start the induction.

Exercise 33.3 (*). Prove that for any two subsets U ,V Ă X with X “ Ů Y V̊ , the obvious
inclusion

C˚pUq ` C˚pVq ãÑ C˚pXq
is a chain homotopy equivalence.

Exercise 33.4 (*). The reduced version of singular homologyrHnpXq “ rHnpX ;Gq :“ ker
´
HnpX ;Gq ǫ˚ÝÑ Hnpt˚u;Gq

¯
is defined in terms of the unique map ǫ : X Ñ t˚u. Show that rH˚pXq can also be identified in a
natural way with the homology of an augmented singular chain complex rC˚pX ;Gq, taking the
form

. . . ÝÑ C2pX ;Gq BÝÑ C1pX ;Gq BÝÑ C0pX ;Gq ǫ˚ÝÑ G ÝÑ 0 ÝÑ 0 ÝÑ . . . ,

where the augmentation map ǫ˚ : C0pX ;Gq Ñ G takes the form ǫ˚
ř
i aiσi :“

ř
i ai.

34. Pairs, triples, and the Mayer-Vietoris sequence

In this lecture we discuss three further properties that are common to all axiomatic homology
theories, though some of them are a bit easier to understand in the specific example of singular
homology.

34.1. Triples. A triple pX,A,Bq of spaces consists of a space X and two nested subsets
B Ă A Ă X . In this situation, there are two obvious inclusion maps

pA,Bq iãÑ pX,Bq jãÑ pX,Aq,
and in singular homology there is are also natural homomorphisms

(34.1) HnpX,Aq B˚ÝÑ Hn´1pA,Bq : rcs ÞÑ rBcs,
where c P CnpXq denotes a relative n-cycle in pX,Aq, which makes Bc P Cn´1pAq an pn´ 1q-cycle
in A and therefore also a relative pn´ 1q-cycle in pA,Bq.

Theorem 34.1. For any axiomatic homology theory h˚, there exist natural homomorphisms
B˚ : hnpX,Aq Ñ hn´1pA,Bq associated to every triple of spaces pX,A,Bq such that the sequence

. . . ÝÑ hnpA,Bq i˚ÝÑ hnpX,Bq j˚ÝÑ hnpX,Aq B˚ÝÑ hn´1pA,Bq ÝÑ . . . ÝÑ h0pX,Aq ÝÑ 0

is exact, and in the case of singular homology, B˚ is the map defined in (34.1).

Proof. Let us first give a proof that applies only to singular homology, since it is quicker and
more intuitive. It is simply a matter of applying Proposition 32.13 with the short exact sequence
of relative chain complexes

0 ÝÑ C˚pA,Bq i˚ÝÑ C˚pX,Bq j˚ÝÑ C˚pX,Aq ÝÑ 0

and then inspecting the diagram chase to check that the resulting connecting homomorphism is
the map specified in (34.1).
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A different argument is needed in order to produce the same result for an arbitrary axiomatic
homology theory h˚. It is based on the following “braid” diagram:
(34.2)

. . . hn`1pX,Aq hnpA,Bq hn´1pBq hn´1pXq . . .
hnpAq hnpX,Bq hn´1pAq

. . . hnpBq hnpXq hnpX,Aq hn´1pA,Bq . . .

B

B1

B3

i

i2

i3j3

i1

B2

j

i1

j3i3

i2

j2

j1

B1

B

The braid consists of four “strands,” three of which you may recognize as the long exact sequences
of the pairs pX,Aq, pX,Bq and pA,Bq, as provided by the exactness axiom. The fourth strand is
the sequence

(34.3) . . . ÝÑ hn`1pX,Aq BÝÑ hnpA,Bq iÝÑ hnpX,Bq jÝÑ hnpX,Aq BÝÑ hn´1pA,Bq ÝÑ . . . ,

which we would like to prove is exact. Here the map B :“ j3 ˝ B1 is defined via the commutativity
of the diagram, while all other maps are either induced by the obvious inclusions or are connecting
homomorphisms from long exact sequences of pairs. The whole diagram commutes due to the
commutativity of the obvious inclusions plus the naturality of the connecting homomorphisms.
The rest is an exercise in diagram chasing; see Exercise 34.1. �

34.2. Good pairs. Here is a useful application of the long exact sequence of a triple. Since
H˚pX,Aq is defined so as to measure the topology of X while ignoring anything that happens
entirely in A, it is natural to expect some relationship between this and the absolute homology of
the space X{A defined by collapsing A Ă X to a point. Here we should restrict attention to the
case where A Ă X is closed, since X{A may otherwise be a horrible (e.g. non-Hausdorff) space.
It turns out that under a further assumption on the pair pX,Aq, the relative homology H˚pX,Aq
is naturally isomorphic to the reduced homology rH˚pX{Aq of the quotient space. To see this, we
start by observing that there is a natural isomorphism between the reduced homology of X{A and
the relative homology of the pair pX{A,A{Aq, in which the subset A{A Ă X{A is actually just a
single point. Indeed:

Lemma 34.2. For any homology theory h˚, any space X and a point x P X, the inclusion of
pairs pX,Hq ãÑ pX, txuq induces an isomorphismrh˚pXq –ÝÑ rh˚pX, txuq “ h˚pX, txuq.

Proof. This is immediate from the long exact sequence of pX, txuq in reduced homology sincerh˚ptxuq “ 0. �

Now, observe that the quotient projection q : X Ñ X{A is also a map of pairs pX,Aq Ñ
pX{A,A{Aq and thus induces a morphism h˚pX,Aq Ñ h˚pX{A,A{Aq. Can we expect this map
to be an isomorphism? The intuition here is that if we were allowed to remove the subset A and
consider the restricted map

pXzA,AzAq qÝÑ ppX{AqzpA{Aq, pA{AqzpA{Aqq,
then it becomes a homeomorphism, and thus induces an isomorphism between two homology groups
that we expect should match h˚pX,Aq and h˚pX{A,A{Aq due to excision. But we aren’t quite
allowed to apply excision in this way: normally, the set B Ă A Ă X that we remove from A needs
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to satisfy a strict condition separating it from XzA, and this condition usually does not hold if
B “ A. Conclusion: we need to impose a condition on pX,Aq so that A lies strictly inside of
something else that will allow us to apply excision. The following bit of informal terminology is
adapted from [Hat02].

Definition 34.3. A pair of spaces pX,Aq will be called good if A Ă X is a closed subset and
is a deformation retract of some neighborhood V Ă X such that there exists a continuous function
u : X Ñ I with u|A ” 0 and u|XzV ” 1.

Remark 34.4. We have formulated Definition 34.3 to be compatible with the hypothesis of
the excision axiom as stated in Lecture 28, but if h˚ is singular homology, for which excision holds
under a weaker hypothesis, then one can also use a weaker variant of Definition 34.3 in which the
existence of the separating function u : X Ñ I does not need to be assumed explicitly. That is
how the condition is stated in [Hat02].

Example 34.5. pDn, BDnq is a good pair since BDn “ Sn´1 has a neighborhood homeomorphic
to p´1, 0s ˆ Sn´1 which deformation retracts to t0u ˆ Sn´1.

Example 34.6. The pair pX,Aq with X “ r0, 1s and A “ t1, 1{2, 1{3, 1{4, . . . , 0u is not good.
The easiest way to prove this is probably by showing that it does not satisfy Theorem 34.7 below;
see Exercise 34.2.

As you might extrapolate from the two examples just mentioned, most pairs you will encounter
in nature are good; it takes some creativity to come up with examples that are not.

Theorem 34.7. If pX,Aq is a good pair, then for every axiomatic homology theory h˚, the
natural quotient map q : pX,Aq Ñ pX{A,A{Aq induces an isomorphism

q˚ : h˚pX,Aq –ÝÑ h˚pX{A,A{Aq,
implying via Lemma 34.2 that there is a natural isomorphism h˚pX,Aq – rh˚pX{Aq.

Proof. Fix a neighborhood V Ă X of A such that A is a deformation retract of V and there
exists a function u : X Ñ I that vanishes on A and equals 1 outside of V . The deformation
retraction implies that the inclusion pA,Aq ãÑ pV,Aq is a homotopy equivalence of pairs, thus

h˚pV,Aq – h˚pA,Aq “ 0,

where the latter vanishes due to the long exact sequence of pA,Aq. Writing down the long exact
sequence of the triple pX,V,Aq then gives

0 “ hkpV,Aq Ñ hkpX,Aq Ñ hkpX,V q Ñ hk´1pV,Aq “ 0,

so that the map h˚pX,Aq i˚ÝÑ h˚pX,V q induced by the inclusion i : pX,Aq ãÑ pX,V q is an
isomorphism.

One can carry out the same argument after taking the quotient of all spaces by A: the defor-
mation retraction of V to A implies that V {A is contractible and thus h˚pV {A,A{Aq – rh˚pV {Aq “
0, so the exact sequence of pX{A, V {A,A{Aq then implies that the map h˚pX{A,A{Aq j˚ÝÑ
h˚pX{A, V {Aq induced by the inclusion j : pX{A,A{Aq ãÑ pX{A, V {Aq is an isomorphism.

Now consider the commutative diagram

h˚pX,Aq h˚pX,V q h˚pXzA, V zAq

h˚pX{A,A{Aq h˚pX{A, V {Aq h˚
`pX{AqzpA{Aq, pV {AqzpA{Aq˘,

i˚

q˚ q˚
k˚

q˚

j˚
ℓ˚



34. PAIRS, TRIPLES, AND THE MAYER-VIETORIS SEQUENCE 253

where i˚ and j˚ have already been shown to be isomorphisms, and k˚ and ℓ˚ are also induced by
the obvious inclusions. The excision axiom implies that both of the latter are isomorphisms. The
rightmost map labeled q˚ in this diagram is also an isomorphism since it is induced by the map

pXzA, V zAq qÝÑ ppX{AqzpA{Aq, pV {AqzpA{Aqq,
which is a homeomorphism. We can now follow a path of isomorphisms from h˚pX,Aq all the way
to the right of the diagram, then down, then back all the way to h˚pX{A,A{Aq at the left, proving
that the leftmost map labeled q˚ is also an isomorphism. �

The following simple example will appear frequently when we compute the homology of CW-
complexes.

Example 34.8. Since collapsing the boundary of the disk Dn produces a sphere Dn{BDn – Sn,
the theorem implies

hkpDn, BDnq – rhkpDn{BDnq – rhkpSnq – #
G if k “ n,
0 otherwise,

where G :“ h0pt˚uq is the coefficient group. (Of course it is also not hard to compute this more di-
rectly using the reduced long exact sequence of pDn, BDnq, in which the connecting homomorphism
hkpDn, BDnq Ñ rhk´1pSn´1q is an isomorphism.)

34.3. Mayer-Vietoris sequences in simplicial homology. It is time to discuss the ana-
logue in homology of the Seifert-van Kampen theorem.

The problem is as follows: we are given a space X “ A Y B, and we would like to compute
the homology h˚pXq in terms of h˚pAq, h˚pBq and h˚pA XBq. Of the versions of homology that
we’ve discussed so far, the problem is simplest to solve in simplicial homology, so let’s start with
that. As in Lecture 32, we use the notation H ‚̊pKq and C ‚̊pKq to denote either the ordered or
oriented versions of simplicial homology.

Suppose K “ A Y B is a simplicial complex containing A,B Ă K as subcomplexes, in which
case AXB is automatically also a subcomplex of K. For clarity: the notation K “ AYB means
that every simplex of K is a simplex of A or a simplex of B, and AX B denotes the subcomplex
of K consisting of simplices that belong to both of the subcomplexes A and B. The inclusions

(34.4)

A

AXB K

B

jAiA

iB jB

are all simplicial maps, and the induced chain maps can be assembled into a short exact sequence
of simplicial chain complexes

(34.5) 0 C ‚̊pAXBq C ‚̊pAq ‘ C ‚̊pBq C ‚̊pKq 0.
piA˚ ,´iB˚ q jA˚‘jB˚

Note in particular that the map jA˚ ‘ jB˚ is surjective since every generator of C ‚̊pKq is also a
generator of C ‚̊pAq or C ‚̊pBq; this is worth pointing out because it is the detail that will become
more complicated when we adapt this discussion to singular homology, but let’s come back to
that in a moment. Plugging (34.5) into Proposition 32.13 gives the Mayer-Vietoris sequence
of simplicial homology groups, in which close inspection of the usual diagram chase reveals the
connecting homomorphism to be of the form stated below:
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Theorem 34.9. For any simplicial complex K “ AYB that is the union of two subcomplexes
A,B Ă K, with simplicial inclusion maps written as in (34.4), there exists a long exact sequence

. . . ÝÑ H‚
n`1pKq B˚ÝÑ H‚

npAXBq pi
A˚ ,´iB˚ qÝÑ H‚

npAq ‘H‚
npBq

jA˚‘jB˚ÝÑ H‚
npKq B˚ÝÑ H‚

n´1pAXBq
ÝÑ . . . ÝÑ H‚

0 pAXBq pi
A˚ ,´iB˚ qÝÑ H‚

0 pAq ‘H‚
0 pBq

jA˚‘jB˚ÝÑ H‚
0 pKq ÝÑ 0,

with connecting homomorphisms B˚ : H‚
npKq Ñ H‚

n´1pAXBq characterized by the formula

B˚ra` bs “ rBas
for any simplicial n-cycle of the form a` b P C‚

npKq with a P C‚
npAq and b P C‚

npBq. �

Remark 34.10. The placement of the minus signs in (34.5) and in the exact sequence of
Theorem 34.9 is not universally standard; other reasonable conventions on this are possible.

Remark 34.11. One easily checks that the connecting homomorphisms in Theorem 34.9 (and
therefore the entire Mayer-Vietoris sequence) are natural in the sense that for any simplicial map
f : K Ñ K 1 such that K 1 “ A1YB1 for subcomplexes A1, B1 Ă K 1 with fpAq Ă A1 and fpBq Ă B1,
the diagram

H‚
npKq H‚

n´1pAXBq

H‚
npK 1q H‚

n´1pA1 XB1q

B˚

f˚ f˚
B˚

commutes.

34.4. Mayer-Vietoris sequences in singular homology. Consider next an arbitrary topo-
logical space X “ AYB that is the union of two subsets A,B Ă X , with inclusion maps denoted
by

(34.6)

A

AXB X

B

jAiA

iB jB

The obvious analogue of the short exact sequence (34.5) for the singular chain complex is not
generally exact, because the map jA˚ ‘ jB˚ : C˚pAq ‘ C˚pBq Ñ C˚pXq is not surjective: there can
be singular simplices σ : ∆n Ñ X with image not fully contained in either A or B. We’ve seen
this problem before, namely in the proof of the excision property for singular homology, and we
know how to solve it: subdivision. But in order to make this solution possible, we will have to
assume some conditions on the subsets A,B Ă X . Let’s first observe what can be proved easily:
the obvious analogue of (34.5) does become exact if we replace the final term C˚pXq with the
subcomplex

C˚pA`Bq :“ C˚pAq ` C˚pBq Ă C˚pXq,
producing the short exact sequence

(34.7) 0 C˚pAXBq C˚pAq ‘ C˚pBq C˚pA`Bq 0
piA˚ ,´iB˚ q JA‘JB

,

where we denote by JA and JB the inclusions of chain complexes

C˚pAq C˚pA`Bq C˚pBqJA JB

.
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There is of course a long exact sequence of homology groups associated to the short exact sequence
above, but in order for that long exact sequence to be useful as a way of computing H˚pXq, we need
to be able to deduce the latter from the subcomplex C˚pA `Bq Ă C˚pXq. Subdivision will make
this possible in certain situations, in particular by establishing the conditions of Definition 34.12
below.

Notation. We have left the coefficient group G unspecified in this discussion; for situations
where the choice of coefficients matters, we shall denote

C˚pA`B;Gq :“ C˚pA;Gq ` C˚pB;Gq Ă C˚pX ;Gq.
Definition 34.12. For a space X , two subsets A,B Ă X are said to form an excisive couple

in X (for singular homology) if the inclusion of subcomplexes C˚pA ` B;Zq ãÑ C˚pA Y B;Zq Ă
C˚pX ;Zq induces an isomorphism on homology,

H˚
`
C˚pA`B;Zq˘ –ÝÑ H˚pAYB;Zq.

Remark 34.13. We have formulated Definition 34.12 so that the condition is maximally easy
to check, but several seemingly stronger conditions are equivalent to it. Indeed, since C˚pAYB;Zq
and C˚pA`B;Zq are chain complexes of free abelian groups, the defining property of an excisive
couple implies via Corollary 33.18 that the inclusion C˚pA ` B;Zq ãÑ C˚pA Y B;Zq is also a
chain homotopy equivalence. From this, it follows as in Remark 32.10 and Lemma 33.10 that
C˚pA ` B;Gq ãÑ C˚pA Y B;Gq is also a chain homotopy equivalence for arbitrary coefficient
groups G, and the homological condition in Definition 34.12 therefore also holds with an arbitrary
choice of coefficients. With this in mind, we shall mostly go back to omitting the coefficients from
the notation from here on.

Here is the most common situation in which one encounters excisive couples:

Proposition 34.14. If A,B Ă X are subsets such that AY B “ Å Y B̊ is the union of their
interiors, then they form an excisive couple. In particular, this holds whenever A and B are both
open in X.

Proof. We can replace X by A Y B and thus assume without loss of generality that the
interiors of A and B cover X . The result is then immediate from Exercise 33.3, which states that
the inclusion C˚pA ` Bq ãÑ C˚pXq is in this case a chain homotopy equivalence. In fact, one
can first use barycentric subdivision to prove that A,B Ă X forms an excisive couple; the crucial
detail is that since every point lies in at least one of either Å or B̊, applying barycentric subdivision
sufficiently many times to any given chain produces one whose constituent singular simplices are
each fully contained in either A or B. This result implies the stronger statement in Exercise 33.3
due to the general properties of chain complexes and mapping cones discussed in §33.5. �

For an excisive couple A,B Ă X with X “ AYB, we can define homomorphisms

HnpXq B˚ÝÑ Hn´1pAXBq : ra` bs ÞÑ rBas “ ´rBbs, where a P CnpAq and b P CnpBq.
Indeed, the defining property of an excisive couple implies that every homology class rcs P HnpXq
can be represented by the sum of a chain a in A with a chain b in B, and the condition that
a ` b is a cycle then means Ba “ ´Bb, so that the pn ´ 1q-cycle Ba necessarily lies in A X B.
One can deduce from the injectivity of the map HnpC˚pA ` Bqq Ñ HnpXq that the homology
class rBas P Hn´1pA X Bq does not depend on the choice of representation rcs “ ra ` bs; see
Exercise 34.3(a). Applying Proposition 32.13 and Exercise 34.3(b), we have:
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Theorem 34.15. For any space X “ AYB that is the union of two subsets forming an excisive
couple for singular homology, the sequence

. . . ÝÑ Hn`1pXq B˚ÝÑ HnpAXBq pi
A˚ ,´iB˚ qÝÑ HnpAq ‘HnpBq j

A˚‘jB˚ÝÑ HnpXq B˚ÝÑ Hn´1pAXBq
ÝÑ . . . ÝÑ H0pAXBq pi

A˚ ,´iB˚ qÝÑ H0pAq ‘H0pBq j
A˚‘jB˚ÝÑ H0pXq ÝÑ 0

is exact. Moreover, the connecting homomorphisms are natural in the sense that for any map
f : X Ñ X 1 such that X 1 “ A1 Y B1 with A1, B1 Ă X 1 an excisive couple and fpAq Ă A1 and
fpBq Ă B1, the diagram

HnpXq Hn´1pAXBq

HnpX 1q Hn´1pA1 XB1q

B˚

f˚ f˚
B˚

commutes. �

Note that the naturality part of the statement follows from the functoriality of the shortÑlong
exact sequence construction, cf. Proposition 32.13 and Exercise 32.3.

We will have more use for excisive couples later, when we discuss product structures in relative
homology and cohomology. The following result will be important in that discussion, and also
provides a useful hint about how to generalize beyond singular homology to the axiomatic setting.
Observe that for any two subsets A,B Ă X , we have a nested sequence of subcomplexes

C˚pA`Bq “ C˚pAq ` C˚pBq Ă C˚pAYBq Ă C˚pXq
and therefore also quotient projections

C˚pXq Ñ C˚pXq
C˚pA`Bq Ñ

C˚pXq
C˚pAYBq “ C˚pX,AYBq,

which are chain maps.

Proposition 34.16. For a space X with two subsets A,B Ă X, the following conditions are
equivalent.

(i) A,B Ă X form an excisive couple for singular homology;
(ii) The quotient projection

C˚pX ;Zq
C˚pA`B;Zq Ñ C˚pX,AYB;Zq

induces isomorphisms of homology groups;
(iii) The map H˚pA,A X B;Zq Ñ H˚pA Y B,B;Zq induced by the inclusion pA,A X Bq ãÑ

pAYB,Bq is an isomorphism;
(iv) The map H˚pB,A X B;Zq Ñ H˚pA Y B,A;Zq induced by the inclusion pB,A X Bq ãÑ

pAYB,Aq is an isomorphism.

Moreover, if any of these conditions hold, then the same conditions also hold with Z replaced by
an arbitrary coefficient group G.

Proof. We shall prove that the four statements are equivalent using an arbitrary coefficient
group G instead of Z. The fact that everything then follows from the special case G “ Z will then
be a consequence of Remark 34.13.
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To see that conditions (i) and (ii) are equivalent, consider the commutative diagram

0 C˚pA`Bq C˚pXq C˚pXq
C˚pA`Bq 0

0 C˚pAYBq C˚pXq C˚pX,AYBq 0,

1

in which both rows are short exact sequences of chain complexes and all arrows are either inclusions
or quotient projections. Transforming both rows via Proposition 32.13 into long exact sequences
of homology groups then produces a diagram of the form

. . . HnpC˚pA`Bqq HnpXq Hn

´
C˚pXq

C˚pA`Bq
¯

Hn´1pC˚pA`Bqq Hn´1pXq . . .

. . . HnpAYBq HnpXq HnpX,AYBq Hn´1pAYBq Hn´1pXq . . .

1 1

Each of (i) and (ii) amounts to a condition in which every third vertical arrow in this last diagram
is an isomorphism, so if either holds, then the five-lemma implies that the other one does as well.

We next prove that conditions (i) and (iii) are equivalent; since condition (i) is symmetric
with respect to the interchange of A and B, it will follow that both are also equivalent to (iv).
We observe first that the inclusion C˚pAq ãÑ C˚pA ` Bq descends to an isomorphism of quotient
complexes

C˚pA,A XBq “ C˚pAq
C˚pAXBq

–ÝÑ C˚pA` Bq
C˚pBq .

The diagram

C˚pAq
C˚pAXBq C˚pA,A XBq C˚pAYB,Bq C˚pAYBq

C˚pBq

C˚pA`Bq
C˚pBq

–

i˚

Φ

now shows that the chain map induced by the inclusion i : pA,A X Bq ãÑ pA Y B,Bq induces
isomorphisms on homology if and only if the same is true of the chain map Φ, which is the result
of letting the inclusion C˚pA ` Bq ãÑ C˚pA Y Bq descend to the quotient by C˚pBq. Another
argument using long exact sequences and the five-lemma shows that Φ induces isomorphisms on
homology if and only if the inclusion C˚pA ` Bq ãÑ C˚pA Y Bq does; the necessary argument is
closely analogous to the proof that (i) ô (ii), so we leave the details as an exercise. �

34.5. Axiomatic Mayer-Vietoris sequences. The singular homology version of the Mayer-
Vietoris sequence is a sufficient tool for all applications that we will encounter, nonetheless, we
give here a quick sketch of how it can be generalized to the axiomatic setting.

Observe first that conditions (iii) and (iv) in Proposition 34.16 give a hint as to the motivation
for the word “excisive”: if we write X 1 :“ AYB, A1 :“ B and B1 :“ BzpAXBq, then the inclusion
pA,AXBq ãÑ pAYB,Bq becomes pX 1zB1, A1zB1q ãÑ pX 1, A1q and condition (iii) thus becomes the
statement that excision holds in singular homology for the triple pX 1, A1, B1q. Statements of this
form make sense in any axiomatic homology theory.
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Definition 34.17. Given an axiomatic homology theory h˚ and a space X with two subsets
A,B Ă X , we will call pA,Bq an excisive couple in X for the theory h˚ if the obvious inclusions
of pairs induce isomorphisms

h˚pA,A XBq –ÝÑ h˚pAYB,Bq and h˚pB,AXBq –ÝÑ h˚pAYB,Aq.
Example 34.18. The excision axiom for h˚ implies that pA,Bq will be an excisive couple in

X whenever there exists a continuous function u : A Y B Ñ I that equals 0 outside of B and 1

outside of A. Urysohn’s lemma guarantees this on well-behaved spaces X that are covered by the
interiors of A and B.

If X “ AYB and pA,Bq is an excisive couple for h˚, then using the inclusion map pX,Hq ãÑ
pX,Bq and the connecting homomorphism hnpA,A X Bq Ñ hn´1pA X Bq from the long exact
sequence of the pair pA,A XBq, the diagram

(34.8)

hnpXq hn´1pAXBq

hnpX,Bq hnpA,AXBq

B˚

–

determines a homomorphism B˚ : hnpXq Ñ hn´1pA X Bq for each n P Z. This requires only
the first of the two isomorphisms in Definition 34.17; if one instead uses the second isomorphism
and interchanges the roles of A and B, one analogously obtains another homomorphism hnpXq Ñ
hn´1pA X Bq, which turns out to differ from the one defined above only by a sign. This is the
content of Lemma 34.20 below, and its proof makes use of the following alternative characterization
of excisive couples:

Proposition 34.19. For two subsets A,B Ă X, pA,Bq is an excisive couple for h˚ if and
only if the inclusions of pairs

pA,AXBq pAYB,AXBq pB,AXBqkA kB

give rise to isomorphisms

hnpA,AXBq ‘ hnpB,AXBq hnpAYB,AXBqkA˚‘kB˚
–

for all n.

Proof. See Exercise 34.9 or [ES52, P. 34, Theorem 14.2]. �

Lemma 34.20. If X “ AYB with pA,Bq an excisive couple for the homology theory h˚, then
for each n P Z, the two maps BA˚ , BB˚ : hnpXq Ñ hn´1pAXBq defined in terms of natural inclusions
and connecting homomorphisms from long exact sequences of pairs via the diagram

hn´1pAXBq hnpXq hn´1pAXBq

hnpB,A XBq hnpX,Aq hnpX,Bq hnpA,AXBq

BA˚ BB˚

– –

satisfy BA˚ ` BB˚ “ 0.
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Proof. The maps BA˚ and BB˚ are obtained by following the highest and lowest rightward
paths respectively from hnpXq to hn´1pAXBq in the diagram

hnpX,Aq hnpB,AXBq

hnpXq hnpX,AXBq hn´1pAXBq

hnpX,Bq hnpA,AXBq

–

kB˚

Bb˚ϕA˚

ϕB˚

ϕ˚

fA˚

fB˚

B˚

–

kA˚ Ba˚

where the maps Ba˚, Bb˚ and B˚ are all connecting homomorphisms from long exact sequences of
pairs, and all other maps in the diagram are induced by inclusions of pairs of spaces. Note that
while this diagram commutes, it does not imply that all paths from hnpXq to hn´1pAXBq give the
same map, and in particular it does not imply BA˚ “ BB˚ ; the latter would follow if fA˚ and fB˚ were
invertible, but in general they are not. By Proposition 34.19, however, each x P hnpXq determines
unique elements a P hnpA,AXBq and b P hnpB,AXBq such that

kA˚ a` kB˚ b “ ϕ˚x P hnpX,AXBq.
The compositions fA˚ kA˚ and fB˚ kB˚ each come from long exact sequences of triples, and are therefore
trivial, thus we have

ϕA˚x “ fA˚ ϕ˚x “ fA˚ pkA˚ a` kB˚ bq “ fA˚ kB˚ b P hnpB,AXBq,
implying BA˚ x “ Bb˚b, and a similar argument shows BB˚ x “ Ba˚a. Since the horizontal maps in the
middle of the diagram belong to the long exact sequence of the pair pX,AXBq, it follows that

0 “ B˚ϕ˚x “ B˚pkA˚ a` kB˚ bq “ Ba˚a` Bb˚b “ pBA˚ ` BB˚ qx.
�

Since the two homomorphisms BA˚ , BB˚ : hnpXq Ñ hn´1pAXBq described above only differ by
a sign, it does not matter which one we use for the purposes of exactness in the theorem below.
We chose in (34.8) to define B˚ :“ BB˚ , because this convention is consistent with the version of the
Mayer-Vietoris sequence derived for singular homology in §34.4, but this is not really an important
detail.

Theorem 34.21. For any axiomatic homology theory h˚ and any space X “ AYB that is the
union of two subsets forming an excisive couple pA,Bq for h˚, the sequence

. . . ÝÑ hn`1pXq B˚ÝÑ hnpAXBq pi
A˚ ,´iB˚ qÝÑ hnpAq ‘ hnpBq j

A˚‘jB˚ÝÑ hnpXq B˚ÝÑ hn´1pAXBq ÝÑ . . .

is exact, and it is natural with respect to maps f : X Ñ X 1 such that X 1 “ A1 Y B1 with pA1, B1q
an excisive couple and fpAq Ă A1 and fpBq Ă B1.

The proof of the theorem is a diagram chase, which we will mostly leave as an exercise, but
here is a useful hint. All terms appearing in the sequence of Theorem 34.21 also appear in the
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diagram

. . . hn`1pA,AXBq hnpAXBq hnpAq hnpA,A XBq hn´1pAXBq . . .

. . . hn`1pX,Bq hnpBq hnpXq hnpX,Bq hn´1pBq . . .

–

iA˚

iB˚ jA˚ – iB˚
jB˚

whose rows are both long exact sequences of pairs, with downward arrows induced by the inclusion
of pairs pA,A X Bq ãÑ pX,Bq. The fact that this diagram commutes and that certain vertical
arrows in the diagram are isomorphisms is useful information for proving that the sequence in
Theorem 34.21 is exact at each term.

34.6. Reduced and relative Mayer-Vietoris sequences. There is an analogue of the
Mayer-Vietoris sequence for reduced homology, which follows from a similar argument to the one
we used for the long exact sequence of the pair. Indeed, whenever X “ A Y B with pA,Bq an
excisive couple for h˚, we observe that pt˚u, t˚uq is automatically an excisive couple in the one-
point space t˚u, and the Mayer-Vietoris sequences for both couples can then be put together in a
commutative diagram as follows:

0 0 0 0

. . . rhnpAXBq rhnpAq ‘ rhnpBq rhnpXq rhn´1pAXBq . . .

. . . hnpAXBq hnpAq ‘ hnpBq hnpXq hn´1pAXBq . . .

. . . hnpt˚u X t˚uq hnpt˚uq ‘ hnpt˚uq hnpt˚uq hn´1pt˚u X t˚uq . . .

0 0 0 0

ǫ˚ ǫ˚‘ǫ˚ ǫ˚ ǫ˚

Since all columns of this diagram are exact and so are the bottom two nontrivial rows, Proposi-
tion 28.22 provides uniquely determined maps on the top row that preserve the commumativity of
the diagram and make the top row exact:

Theorem 34.22. In the setting of Theorem 34.21, all maps can be restricted to the respective
reduced homology groups to produce an exact sequence

. . . ÝÑ rhnpAXBq pi
A˚ ,´iB˚ qÝÑ rhnpAq ‘ rhnpBq jA˚‘jB˚ÝÑ rhnpXq B˚ÝÑ rhn´1pAXBq Ñ . . . ,

�

Finally, there is also a relative version of the Mayer-Vietoris sequence, which we will need later
in this semester when we prove Poincaré duality. Given pairs of spaces pX,Y q, pA,Cq and pB,Dq
such that X “ A Y B and Y “ C Y D with excisive couples pA,Bq in X and pC,Dq in Y , the
relative Mayer-Vietoris sequence in an axiomatic homology theory h˚ takes the form

. . . ÝÑ hn`1pX,Y q B˚ÝÑ hnpAXB,C XDq pi
A˚ ,´iB˚ qÝÑ hnpA,Cq ‘ hnpB,Dq

jA˚‘jB˚ÝÑ hnpX,Y q B˚ÝÑ hn´1pAXB,C XDq ÝÑ . . . ,

(34.9)
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where we denote the inclusions of pairs

pA,Cq

pAXB,C XDq pX,Y q

pB,Dq

jAiA

iB jB

See Exercise 34.8 for a proof of the exactness of this sequence of singular homology.

34.7. Exercises.

Exercise 34.1. Deduce via the following steps that the sequence (34.3) appearing as the
fourth strand in the braid diagram (34.2) is exact:

(a) Use the commutativity of the diagram to show that i ˝ B “ 0 and B ˝ j “ 0.
Hint: Each can be expressed as a different composition that includes two successive maps
in an exact sequence.

(b) Prove that j ˝ i “ 0 by factoring it through the group h˚pA,Aq, which is always zero.
(Why?)

(c) Use a purely algebraic diagram-chasing argument to prove that the kernel of each map
in the sequence (34.3) is contained in the image of the previous one.

Exercise 34.2. Show that for the pair pX,Aq in Example 34.6, H1pX{A;Zq fl H1pX,A;Zq.
Hint: H1pX,A;Zq is not too hard to compute from the long exact sequence of pX,Aq, and in
particular it is an infinitely-generated but countable group. To compute H1pX{A;Zq, you might
notice that X{A is homeomorphic to the so-called Hawaiian earring, which we examined in Ex-
ercise 13.2 last semester as an example of an “unreasonable” space. We saw in particular that
π1pX{Aq admits a surjective homomorphism to the uncountable abelian group

ś
nPN Z.

Exercise 34.3 (*). Assume X “ AYB is any space with subsets pA,Bq forming an excisive
couple for singular homology.

(a) Prove that the definition of the homomorphism

HnpXq B˚ÝÑ Hn´1pAXBq : ra` bs ÞÑ rBas “ ´rBbs, where a P CnpAq and b P CnpBq
is independent of choices.

(b) Prove that the map B˚ in part (a) is in fact the connecting homomorphism in the long
exact sequence that arises by plugging the short exact sequence (34.7) into Proposi-
tion 32.13.

Exercise 34.4. Derive from the Mayer-Vietoris sequence a simple proof that there is an
isomorphism rhnpXq – rhn`1pΣXq for every axiomatic homology theory h˚, every n P Z and every
space X , where ΣX denotes the suspension of X .

Exercise 34.5. Use Mayer-Vietoris sequences to computeH˚pT2;Zq by decomposing the torus
T2 into a union of open subsets each homotopy equivalent to S1.
Hint: There is a useful algebraic trick for turning any long exact sequence

. . . ÝÑ A
αÝÑ B

βÝÑ C
γÝÑ D

δÝÑ E ÝÑ . . .

into a short exact sequence with a specific term in the middle, e.g.

0 ÝÑ cokerpαq βÝÑ C
γÝÑ kerpδq ÝÑ 0,
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where cokerpαq :“ B{ impαq. If this short exact sequence splits, one obtains from it a formula
for C.

Exercise 34.6. Use Mayer-Vietoris sequences to compute H˚pX ;Zq and H˚pX ;Z2q, where X
is

(a) The projective plane RP2.
(b) The Klein bottle.

Hint: RP2 is the union of a disk with a Möbius band, and the latter admits a deformation retraction
to S1. The Klein bottle, in turn, is the union of two Möbius bands, also known as RP2#RP2.

Exercise 34.7. Recall that given two connected topological n-manifolds X and Y , their
connected sum X#Y is defined by deleting an open n-disk D̊n from each of X and Y and then
gluing XzD̊n and Y zD̊n together along an identification of their boundary spheres.

(a) Prove that for any k “ 1, . . . , n ´ 2 and any coefficient group, HkpX#Y q – HkpXq ‘
HkpY q.
Hint: There are two steps, as you first need to derive a relation between HkpXq and
HkpXzD̊nq, and then see what happens when you glue XzD̊n and Y zD̊n together.

(b) It turns out that the formula Hn´1pX#Y ;Zq – Hn´1pX ;Zq ‘Hn´1pY ;Zq also holds if
X and Y are both closed orientable n-manifolds with n ě 2, and without orientability we
still have Hn´1pX#Y ;Z2q – Hn´1pX ;Z2q ‘Hn´1pY ;Z2q. (One can deduce both results
from the properties of fundamental classes in singular homology, which we will discuss
later.) Find a counterexample to the formula H1pX#Y ;Zq – H1pX ;Zq‘H1pY ;Zq where
X and Y are both closed (but not necessarily orientable) 2-manifolds.

Exercise 34.8. Here is a way to derive the relative Mayer-Vietoris sequence in singular homol-
ogy. Assume pX,Y q, pA,Cq and pB,Dq are pairs of spaces such that X “ AYB and Y “ C YD.
Defining the quotient chain complex

C˚pA`B,C `Dq :“ C˚pA`Bq
M
C˚pC `Dq “ C˚pAq ` C˚pBq

C˚pCq ` C˚pDq ,

we notice that the inclusion C˚pA`Bq ãÑ C˚pXq descends to a chain map

C˚pA`B,C `Dq Ñ C˚pX,Y q.

(a) Show that if pA,Bq is an excisive couple in X and pC,Dq is an excisive couple in Y , then
the chain map C˚pA`B,C `Dq Ñ C˚pX,Y q induces an isomorphism on homology.
Hint: Five-lemma!

(b) Under the same assumptions as in part (a), derive the exact sequence (34.9) in singular
homology h˚ :“ H˚ from a short exact sequence of chain complexes 0Ñ C˚pAXB,C X
Dq Ñ C˚pA,Cq ‘ C˚pB,Dq Ñ C˚pA`B,C `Dq Ñ 0.

Exercise 34.9. Prove Proposition 34.19. You may find the following diagram helpful, in which
both diagonals are long exact sequences of triples, and the two vertical arrows are the maps that
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are required to be isomorphisms in the definition of an excisive couple:

hn´1pA,AXBq hn´1pB,AXBq

hnpAYB,Aq hnpAYB,Bq

hnpAYB,AXBq

hnpB,AXBq hnpA,AXBq

hn`1pAYB,Bq hn`1pAYB,Aq

kB˚ kA˚

Exercise 34.10. Fill in the details of the proof of Theorem 34.21 on the exactness of the
axiomatic Mayer-Vietoris sequence.

35. Mapping tori and maps between spheres

The two topics of this lecture are essentially independent of each other. The first is another
computational tool involving an exact sequence, which permits an easy extension of our previous
Mayer-Vietoris-based computation of H˚pT2;Zq to Tn for all n P N. The second topic is the begin-
ning of a larger discussion about the degrees of maps between closed equidimensional manifolds,
which will extend into the next lecture and subsequently play an important role in the development
of cellular homology.

35.1. Mapping tori. I’d like to talk about another way of computing the homology of T2

(and many other things), by viewing it as an example of a mapping torus.
Given a space X and a map f : X Ñ X , themapping torus (Abbildungstorus) of f is defined

to be the quotient space

Xf :“ pX ˆ IqL „, where px, 0q „ pfpxq, 1q for all x P X.
We can regard X itself as a subspace of Xf via the inclusion map53

i : X ãÑ Xf : x ÞÑ rpx, 1qs.
Theorem 35.1. For any map f : X Ñ X and its mapping torus Xf , every axiomatic homology

theory h˚ admits a long exact sequence

. . . ÝÑ hk`1pXf q ÝÑ hkpXq 1´f˚ÝÑ hkpXq i˚ÝÑ hkpXf q ÝÑ hk´1pXq ÝÑ . . .

Let’s do an example before talking about the proof.

Example 35.2. For each n P N, the n-torus Tn “ S1 ˆ . . . ˆ S1 is the mapping torus of the
identity map Id : Tn´1 Ñ Tn´1, so the exact sequence of the mapping torus includes segments of
the form

. . . ÝÑ hkpTn´1q 0ÝÑ hkpTn´1q i˚ÝÑ hkpTnq ΦÝÑ hk´1pTn´1q 0ÝÑ hk´1pTn´1q ÝÑ . . .

53Of course there are also natural maps X Ñ Xf : x ÞÑ rpx, tqs for every t P I, and for our purposes it will not
matter which one we pick since they are all obviously homotopic. The case t “ 0 is a little bit awkward however
since it might not be injective—we have rpx, 0qs “ rpy, 0qs P Xf whenever fpxq “ fpyq.
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The triviality of the two maps 1´ Id˚ “ 0 here means that we actually have a short exact sequence

(35.1) 0 ÝÑ hkpTn´1q i˚ÝÑ hkpTnq ΦÝÑ hk´1pTn´1q ÝÑ 0.

Let us apply this sequence for singular homology with integer coefficients in the case n “ 2, so
Tn´1 “ S1, and since Hk´1pS1;Zq is free for every k, the sequence splits, giving an isomorphism

HkpT2;Zq – HkpS1;Zq ‘Hk´1pS1;Zq
for every k. By induction on n P N, we can now prove that all homology groups of the torus Tn

for every n are free, so the sequence (35.1) again splits and gives

HkpTn;Zq – HkpTn´1;Zq ‘Hk´1pTn´1;Zq.
This means that each HkpTn;Zq is isomorphic to Zr for some integer r ě 0, the rank (Rang) of
the group, and these ranks satisfy rankHkpTn;Zq “ rankHkpTn´1;Zq ` rankHk´1pTn´1;Zq, so
they are precisely the numbers in Pascal’s triangle, i.e. the familiar binomial coefficients:

rankHkpTn;Zq “
ˆ
n

k

˙
for 0 ď k ď n, HkpTn;Zq “ 0 for k ą n.

Theorem 35.1 gives rise to a similarly straightforward computation of the homology of the
Klein bottle; see Exercise 35.1.

To prove the theorem, we shall first state a more general result that implies it. Given two
spaces X,Y and maps f, g : X Ñ Y , define the space

Z :“ ppX ˆ Iq > Y q L„ where px, 0q „ fpxq and px, 1q „ gpxq for all x P X.
This space comes with a natural inclusion

i : Y ãÑ Z,

and the special case with X “ Y and g “ Id reproduces the mapping torus Xf of f : X Ñ X .
Theorem 35.1 follows immediately from the next statement:

Theorem 35.3. Given f, g : X Ñ Y and the space Z described above, there exists a long exact
sequence

. . . ÝÑ hk`1pZq ÝÑ hkpXq g˚´f˚ÝÑ hkpY q i˚ÝÑ hkpZq ÝÑ hk´1pXq ÝÑ . . .

for every axiomatic homology theory h˚.

Remark 35.4. It is not too hard to see intuitively why the composition i˚ ˝ pg˚ ´ f˚q in this
sequence is trivial. Imagine for instance a homology class of the form a “ j˚rM s P HnpX ;Zq
defined via a closed n-manifold M with an oriented triangulation and a map j : M Ñ X . This
gives rise to a map r : M ˆ I Ñ X ˆ I : px, tq ÞÑ pjpxq, tq, so that any choice of oriented
triangulation on M ˆ I turns this into a singular pn ` 1q-chain c P Cn`1pX ˆ I;Zq. Composingr with the quotient projection sending X ˆ I to Z then produces a chain c1 P Cn`1pZ;Zq with
Bc1 “ ˘pg˚a´f˚aq, thus proving that g˚a´f˚a P HnpY ;Zq becomes trivial after acting on it with
the map i˚ : HnpY ;Zq Ñ HnpZ;Zq.

Proof of Theorem 35.1. Consider the map of pairs q : pX ˆ I,X ˆ BIq Ñ pZ, Y q defined
as the composition of the two maps

pX ˆ I,X ˆ BIq ãÑ ppX ˆ Iq > Y,X ˆ BIq Ñ pZ, Y q,
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where the first is the inclusion and the second is the quotient projection. Using the naturality
of connecting homomorphisms in long exact sequences of pairs, this gives rise to a commuting
diagram
(35.2)

. . . hk`1pX ˆ Iq hk`1pX ˆ I,X ˆ BIq hkpX ˆ BIq hkpX ˆ Iq . . .

. . . hk`1pZq hk`1pZ, Y q hkpY q hkpZq . . .

β˚

q˚

B˚

q˚

α˚

q˚

β˚

q˚
B´˚ i˚

where the two rows are the exact sequences of the pairs pX ˆ I,X ˆBIq and pZ, Y q, and the maps
α : X ˆ BI ãÑ X ˆ I and β : pX ˆ I,Hq ãÑ pX ˆ I,X ˆ BIq are the obvious inclusions. Since
X ˆ BI “ X ˆ t0, 1u – X >X , the additivity axiom gives an isomorphism

(35.3) j0˚ ‘ j1˚ : hkpXq ‘ hkpXq –ÝÑ hkpX ˆ BIq,
defined in terms of the inclusions ji : X ãÑ X ˆ t0, 1u : x ÞÑ px, iq for i “ 0, 1. Composing this
with the inclusion α : X ˆ BI ãÑ X ˆ I, we notice that each of the maps α ˝ ji : X ãÑ X ˆ I for
i “ 0, 1 is a homotopy equivalence, and they are also homotopic to each other, so by the homotopy
axiom, the two maps pα ˝ jiq˚ : hkpXq Ñ hkpX ˆ Iq for i “ 0, 1 are both the same isomorphism.
It follows that

α˚ ˝ pj0˚ ‘ j1˚q “ pα˚ ˝ j0˚q ‘ pα˚ ˝ j1˚q : hkpXq ‘ hkpXq Ñ hkpX ˆ Iq
is surjective, its kernel being the group of all pairs pc,´cq for c P hkpXq. In particular, α˚ itself is
surjective, and we have an isomorphism

(35.4) Ψ : hkpXq –ÝÑ kerα˚ : c ÞÑ pj0˚ ‘ j1˚qp´c, cq “ j1˚c´ j0˚c.
Exactness of the top row now implies β˚ “ 0, and the connecting homomorphism B˚ : HkpX ˆ
I,XˆBIq Ñ Hk´1pXˆBIq is thus injective. This makes B˚ an isomorphism onto its image, which
is kerα˚.

Now observe that for the map q : X ˆ BI Ñ Y , the compositions q ˝ ji : X Ñ Y for i “ 0, 1

are the maps f and g respectively, thus we have

(35.5) q˚ ˝Ψ : hkpXq Ñ hkpY q : c ÞÑ g˚c´ f˚c “ pg˚ ´ f˚qc.
On the other hand, the map

pX ˆ IqLpX ˆ BIq qÝÑ Z{Y
determined by q : pXˆ I,XˆBIq Ñ pZ, Y q is a homeomorphism and thus induces an isomorphism

q˚ : rh˚`pX ˆ IqLpX ˆ BIq˘ –ÝÑ rh˚pZ{Y q,
and since both pairs are good in the sense of Definition 34.3, Theorem 34.7 implies that the map
q˚ : h˚pX ˆ I,X ˆ BIq Ñ h˚pZ, Y q is also an isomorphism. We can put all of this information
together to produce a commutative diagram

hk`1pZ, Y q hk`1pX ˆ I,X ˆ BIq kerα˚ hkpXq

hkpY q

q
´1
˚

B´˚

B˚ Ψ´1

q˚
g˚´f˚

in which all the horizontal maps on the top row are isomorphisms. The composition of these maps
therefore gives an isomorphism hk`1pZ, Y q Ñ hkpXq that we can use to replace hk`1pZ, Y q by
hkpXq in the bottom row of (35.2); the original connecting homomorphism B´̊ : hk`1pZ, Y q Ñ
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hkpY q then gets replaced by the map g˚ ´ f˚ : hkpXq Ñ hkpY q, producing an exact sequence as
in the statement of the theorem. �

One last comment about mapping tori: the usefulness of the exact sequence in Theorem 35.1
depends heavily on how easy it is to compute the homomorphism f˚ : h˚pXq Ñ h˚pXq. This is
not always easy, but sometimes it is, particularly in cases where h˚pXq is relatively simple.

35.2. Degrees of maps between spheres. For the second topic today, let’s talk about
the homomorphism f˚ : HnpSnq Ñ HnpSnq induced by a map f : Sn Ñ Sn. For n ě 1, the
following definition makes sense due to the fact that HnpSn;Zq – Z and HnpSn;Z2q – Z2 and
homomorphisms ZÑ Z or Z2 Ñ Z2 admit very simple characterizations. In order to accommodate
the case n “ 0 under the same umbrella, we can use reduced homology since rH0pS0;Zq – Z andrH0pS0;Z2q – Z2.

Definition 35.5. The mapping degree (Abbildungsgrad)

degpfq P Z

of a map f : Sn Ñ Sn is the unique integer k such that the homomorphism f˚ : rHnpSn;Zq ÑrHnpSn;Zq is given by c ÞÑ kc. Analogously, the mod-2 mapping degree

deg2pfq P Z2

is the unique k P Z2 such that f˚ : rHnpSn;Z2q Ñ rHnpSn;Z2q is the map c ÞÑ kc.

We will not do much with deg2pfq in the present lecture, but most of the basic properties of
degpfq as in the following proposition have obvious analogues for the mod-2 degree. The latter
becomes more important when one also wants to consider maps f :M ÑM on a closed connected
manifold M that need not be orientable, and we will touch upon this in the next lecture.

Proposition 35.6. The integer-valued degree for maps Sn Ñ Sn has the following properties.
(1) If f, g : Sn Ñ Sn are homotopic, then degpfq “ degpgq.
(2) For any f, g : Sn Ñ Sn, degpf ˝ gq “ degpfq ¨ degpgq.
(3) The identity map Sn Ñ Sn has degpIdq “ 1.
(4) If f is constant, then degpfq “ 0.
(5) The degree of any map f : S1 Ñ S1 matches its winding number (Windungszahl),

i.e. it is the unique k P Z such that any continuous function θ : r0, 1s Ñ R with fpe2πitq “
e2πiθptq satisfies θp1q ´ θp0q “ k.

Proof. The first three properties are immediate from the homotopy invariance of rH˚p¨;Zq
and the fact that it is a functor. For the fourth, observe that any constant map f : Sn Ñ Sn can
be factored as i˝ ǫ for the unique map ǫ : Sn Ñ t˚u and a suitable inclusion i : t˚u ãÑ Sn, thus f˚ :rHnpSn;Zq Ñ rHnpSn;Zq factors through rHnpt˚u;Zq “ 0. Finally, the fifth property follows from
standard facts about π1pS1q and the natural isomorphism rH1pS1;Zq “ H1pS1;Zq – π1pS1q. �

Recall that the suspension ΣX “ C`X YX C´X of a space X can be regarded as a functor
TopÑ Top sending objects X to ΣX , where maps f : X Ñ Y are transformed to maps

Σf : ΣX Ñ ΣY : rpx, tqs ÞÑ rpfpxq, tqs.
In particular, any map f : Sn Ñ Sn gives rise to a map Σf : Sn`1 Ñ Sn`1 using the identification
ΣSn – Sn`1.

Proposition 35.7. For any f : Sn Ñ Sn, degpfq “ degpΣfq.
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Proof. A useful detail you may have learned if you worked out Exercise 34.4 is that the iso-
morphism rHn`1pΣX ;Zq Ñ rHnpX ;Zq can always be constructed as the connecting homomorphism
in a Mayer-Vietoris exact sequence for ΣX . Given a map f : Sn Ñ Sn, the naturality of this
connecting homomorphism produces a commuting diagram

rHn`1pSn`1;Zq rHnpSn;Zq

rHn`1pSn`1;Zq rHnpSn;Zq

B˚

pΣfq˚ f˚

B˚

where the two maps labeled B˚ are the same isomorphism. Now if pΣfq˚c “ kc for some nontrivial
c P rHn`1pSn`1;Zq, it follows that B˚pΣfq˚c “ kB˚c “ f˚B˚c, where B˚c P rHnpSn;Zq is also
nontrivial, hence degpΣfq “ k “ degpfq. �

Proposition 35.8. If f : Sn Ñ Sn is the restriction to the unit sphere Sn Ă Rn`1 of an
orthogonal linear transformation A P Opn` 1q, then degpfq “ detpAq “ ˘1.

Proof. Recall that Opn`1q has exactly two path-components, which can be labeled according
to whether their elements have determinant `1 or ´1. A given A P Opn ` 1q thus admits a
continuous path in Opn ` 1q to the identity matrix 1 if and only if detpAq “ 1, whereas if
detpAq “ ´1, then it admits a path to the reflection matrix

Rn`1 “

¨̊
˚̋̊´1 1

. . .
1

‹̨‹‹‚
It follows that f : Sn Ñ Sn is homotopic to the identity and thus has degree 1 if detpAq “ 1,
and otherwise f is homotopic to a reflection map. What remains to be shown is that reflection
maps always have degree ´1. For n “ 0 or n “ 1, this is easy to check by direct calculation, e.g. a
reflection on S1 produces a map S1 Ñ S1 with winding number ´1, so the claim follows from
Proposition 35.6. Now if we assume the claim is true for reflections f : Sn Ñ Sn, it suffices to
observe that Σf : ΣSn Ñ ΣSn is also a reflection under a suitable identification ΣSn – Sn`1, so
by induction, the result follows from Proposition 35.7. �

The basic properties of degpfq established thus far already have some quite nontrivial conse-
quences about the topology of spheres. Here are two such results.

Theorem 35.9. Every map f : Sn Ñ Sn with degpfq ‰ p´1qn`1 has a fixed point.

Proof. It is easy to think of a specific map f : Sn Ñ Sn that has no fixed point: the
antipodal map x ÞÑ ´x has this property, and its degree according to Proposition 35.8 is p´1qn`1.
The theorem will follow from the claim that, in fact, every map f : Sn Ñ Sn with no fixed point
is homotopic to the antipodal map, and therefore also has degree p´1qn`1.

Indeed, if f : Sn Ñ Sn has no fixed point, then fpxq and ´x are never antipodal points for
any x P Sn, thus the line in Rn`1 connecting them does not pass through the origin. We can
parametrize this line by

gtpxq “ p1´ tqfpxq ´ tx for t P r0, 1s,
thus defining a continuous 1-parameter family of maps gt : Sn Ñ Rn`1zt0u with g0 “ f and
g1pxq “ ´x. Since gtpxq is never zero, we can then define a homotopy h : I ˆSn Ñ Sn in Sn from
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f to the antipodal map g1 by

hpt, xq “ gtpxq
|gtpxq| .

�

Theorem 35.10 (the “hairy sphere” theorem). If n P N is even, then there does not exist any
continuous nowhere zero vector field on Sn, i.e. there is no map V : Sn Ñ Rn`1zt0u such that
V pxq is orthogonal to x for all x P Sn Ă Rn`1.

Proof. If such a map V exists, then for each x P Sn, we can define Px Ă Rn`1 as the 2-
dimensional plane spanned by x and V pxq, so that Px X Sn is a circle in Sn. The idea is then to
follow a path along this circle from x through V pxq{|V pxq| ending at ´x. Concretely, such a path
is given by the formula

t ÞÑ ftpxq :“ pcosπtqx` psinπtq V pxq|V pxq| P S
n for t P r0, 1s,

which defines a homotopy from f0 “ Id to the antipodal map f1pxq “ ´x. The degree of the latter
was observed in the previous theorem to be p´1qn`1, so we conclude 1 “ degpf0q “ degpf1q “
p´1qn`1, implying n must be odd. �

35.3. Exercises.

Exercise 35.1. The mapping torus of f : S1 Ñ S1 : eiθ ÞÑ e´iθ is homeomorphic to the Klein
bottle K2. Use Theorem 35.1 to compute H˚pK2;Zq and H˚pK2;Z2q.

Exercise 35.2. The goal of this exercise is to gain a more concrete picture of the connecting
homomorphism Φ : H1pXf ;Zq Ñ H0pX ;Zq that appears in the long exact sequence of the mapping
torus of a homeomorphism f : X Ñ X ,

. . . ÝÑ Hk`1pXf ;Zq ΦÝÑ HkpX ;Zq 1˚´f˚ÝÑ HkpX ;Zq i˚ÝÑ HkpXf ;Zq ΦÝÑ Hk´1pX ;Zq ÝÑ . . .

in singular homology with integer coefficients. It will be useful to observe first that if f : X Ñ X

is a homeomorphism, then its mapping torus admits an alternative description as the quotient

Xf “ pX ˆ Rq
M
px, tq „ pfpxq, t` 1q,

where the equivalence is defined for every t P R. Take a moment to convince yourself that this
quotient is homeomorphic to the slightly different definition of Xf given above. The new per-
spective has the advantage that one can view rX :“ X ˆ R as a covering space for Xf , with the
quotient projection defining a covering map rX Ñ Xf of infinite degree. Writing S1 :“ R{Z, we
also see a natural continuous surjective map π : Xf Ñ S1 : rpx, tqs ÞÑ rts, whose fibers π´1ptq
are homeomorphic to X for all t P S1. We shall denote by i : X ãÑ Xf the inclusion of the fiber
π´1pr0sq.

Assume X is path-connected, so there is a natural isomorphism H0pX ;Zq “ Z, and notice that
Xf is then also path-connected. Since H1pXf ;Zq is isomorphic to the abelianization of π1pXf , xq
for any choice of base point x P Xf , we can identify X with π´1pr0sq Ă Xf , fix a base point
x P X Ă Xf and represent any class in H1pXf ;Zq by a loop γ : r0, 1s Ñ Xf with γp0q “ γp1q “ x.
Now let γ̃ : r0, 1s Ñ rX denote the unique lift of γ to the cover rX “ X ˆR such that γ̃p0q “ px, 0q.
Since γ is a loop, it follows that γ̃p1q “ pfmpxq,mq for some m P Z.
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(a) Prove that under the natural identification of H0pX ;Zq with Z, the connecting homo-
morphism Φ : H1pXf ;Zq Ñ Z can be chosen54 such that

Φprγsq “ m,

so in particular, rγs P kerΦ if and only if the lift of γ to the cover rX is a loop.
(b) Prove directly from the characterization in part (a) that Φ : H1pXf ;Zq Ñ H0pX ;Zq is

surjective.
Remark: Of course this can also be deduced less directly from the exact sequence.

Exercise 35.3 (*). There are only four possible maps f : S0 Ñ S0. What are their degrees?

Exercise 35.4. Fix n P N.

(a) Prove that if n is even, every continuous map f : Sn Ñ Sn has at least one point x P Sn
where either fpxq “ x or fpxq “ ´x. Deduce that every continuous map RP

n Ñ RP
n

has a fixed point if n is even.
(b) Construct counterexamples to the statement in part (a) for every odd n.

Hint: Consider linear transformations with no real eigenvalues.

36. Local and global mapping degree

We would now like to generalize the mapping degree beyond spheres, while also giving it a
more concrete geometric interpretation. The degree of a map f : X Ñ Y in general is meant to be
an answer to the following question: for each y P Y , how many points are there in f´1pyq? For
arbitrary spaces, the answer of course depends on our choice of the point y P Y , e.g. any bounded
function f : R Ñ R has the property that f´1pyq is empty for some points y P R and not for
others. It is perhaps surprising that if we are somewhat more restrictive about the class of spaces
we consider, and we interpret the question “how many?” in the right way, then the answer no
longer depends on y, and in fact, it depends on f only up to homotopy. We are already familiar
with one situation where at least the first statement is true: if f : X Ñ Y is a finite covering map
and Y is connected, then every fiber f´1pyq Ă X contains the same finite number of points, called
the degree of the cover (see Theorem 15.8). We will eventually be able to show that a reasonable
generalization of this statement is true whenever X and Y are both closed, connected and oriented
topological manifolds of the same dimension. The present lecture will prove this, modulo a couple
of black boxes involving the computation of HnpMq whenM is an arbitrary closed n-manifold; the
general version of that computation will be dealt with later in the semester, when we construct
fundamental classes without triangulations.

Local orientations and degree. We begin by defining a “local” version of homology that is
interesting for manifolds in particular, but not necessarily for more general spaces.

Definition 36.1. Suppose M is a topological manifold of dimension n P N. For a homology
theory h˚ and any interior point x P MzBM , the local homology of M at x is the group
hnpM,Mztxuq.

It turns out that local homology groups are always isomorphic to the coefficient group G “
h0pt˚uq, though the isomorphism itself may depend on various choices. To see this, recall that
every interior point x in an n-manifoldM admits a so-called Euclidean neighborhood; we shall

54There is a bit of freedom allowed in the definition of Φ, e.g. we could replace it with ´Φ and the sequence
would still be exact since kerΦ and imΦ would not change.
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use this term in the following to refer to any (open or compact) neighborhood U ĂM of x together
with a choice of homeomorphism

ϕ : U
–ÝÑ Rn or Dn, such that ϕpxq “ 0,

i.e. a coordinate chart identifying x with the origin. The choice of whether to use Rn or Dn as a
local model for M near x is a matter of taste, and we shall generally use whichever seems more
convenient in any given situation. A Euclidean neighborhood U Ă M of x with coordinate chart
ϕ : U Ñ Dn determines a string of isomorphisms

(36.1) hnpM,Mztxuq Ð hnpU ,Uztxuq ϕ˚Ñ hnpDn,Dnzt0uq Ð hnpDn, Sn´1q B˚Ñ rhn´1pSn´1q – G,

in which every arrow without a label is induced by a continuous inclusion map. Here, the first map
is an isomorphism due to excision, the connecting homomorphism B˚ is an isomorphism due to
the long exact sequence of the pair pDn, Sn´1q in reduced homology, and the map induced by the
inclusion pDn, Sn´1q ãÑ pDn,Dnzt0uq is an isomorphism due to a combination of the homotopy and
exactness axioms with the five-lemma: indeed, since j : Sn´1 ãÑ Dnzt0u is a homotopy equivalence,
one can apply the five-lemma to the diagram

. . . hnpSn´1q hnpDnq hnpDn, Sn´1q hn´1pSn´1q hn´1pDnq . . .

. . . hnpDnzt0uq hnpDnq hnpDn,Dnzt0uq hn´1pDnzt0uq hn´1pDnq . . .

j˚– 1– j˚ j˚– 1–

If preferred, the same trick can be done with an open Euclidean neighborhood and chart ϕ : U Ñ Rn

after replacing the middle term of (36.1) with hnpRn,Rnzt0uq.
Specializing to singular homology with integer coefficients, the local homology can be used to

define a notion of orientations for topological manifolds, without needing to mention triangulations.

Definition 36.2. A local orientation of an n-manifold M at an interior point x P MzBM
is a choice of generator rM sx for the group HnpM,Mztxu;Zq – Z.

Note that in light of the excision isomorphism

HnpU ,Uztxu;Zq –ÝÑ HnpM,Mztxu;Zq
defined for any Euclidean neighborhood U Ă M of x, a local orientation can equivalently be
regarded as a generator of HnpU ,Uztxu;Zq – Z.

Example 36.3. IfM is a surface without boundary and x PM is a point, then a specific relative
2-cycle generating H2pM,Mztxu;Zq can be defined via a single singular 2-simplex σ : ∆2 Ñ M

that embeds the triangle ∆2 onto a neighborhood of x. Indeed, σ P C2pMq is clearly a relative
cycle in pM,Mztxuq since σ maps B∆2 to Mztxu, and to see that it generates H2pM,Mztxu;Zq,
one can follow the string of isomorphisms (36.1): they map rσs to the homology class of a 1-
cycle in S1 – B∆2 consisting of the three edges of the triangle, a loop that clearly generates
π1pB∆2q – H1pB∆2;Zq. In this picture, we can think of a local orientation at x as a choice (up
to homotopy) of a small embedded loop in M about x: since there are two directions that such a
loop can wind around x, there are two choices of local orientation.

Definition 36.4. Suppose M and N are manifolds of dimension n P N, f :M Ñ N is a map,
and x PMzBM and y “ fpxq P NzBN are interior points such that x is an isolated point in the set
f´1pyq, i.e. there exists an open neighborhood U Ă M of x such that f´1pyq X U “ txu. Assume
without loss of generality that U ĂMzBM is a Euclidean neighborhood. Given local orientations
rM sx P HnpU ,Uztxu;Zq and rN sy P HnpN,Nztyu;Zq, the local degree

degpf ;xq P Z
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of f and x is then defined as the unique integer k P Z such that the map HnpU ,Uztxu;Zq Ñ
HnpN,Nztyu;Zq induced by f : pU ,Uztxuq Ñ pN,Nztyuq sends rM sx to krN sy.

Under the same assumptions, the mod 2 local degree

deg2pf ;xq P Z2

is similarly defined to be the unique k P Z2 such that f˚ : HnpU ,Uztxu;Z2q Ñ HnpN,Nztyu;Z2q
sends rM sx to krN sy, where rM sx and rN sy are now taken to be the unique nontrivial elements of
HnpU ,Uztxu;Z2q – Z2 and HnpN,Nztyu;Z2q – Z2 respectively.

Notice that there are no choices involved in the definition of deg2pf ;xq, whereas degpf ;xq will
change sign whenever we change the choice of one of the local orientations.

As explained in (36.1), any choice of Euclidean neighborhood U ĂM of x gives rise to an iso-
morphism of HnpU ,Uztxu;Zq with rHn´1pSn´1;Zq – Z. We can use this isomorphism to transform
the definition above into a condition about maps between spheres:

Proposition 36.5. In the setting of Definition 36.4, fix a generator rSn´1s P rHn´1pSn´1;Zq
and Euclidean neighborhoods U ĂM of x and V Ă N of y such that the resulting isomorphisms of
HnpU ,Uztxu;Zq and HnpV ,Vztyu;Zq to rHn´1pSn´1;Zq send rM sx and rN sy to rSn´1s. Then ifpf denotes the map f written in the chosen local coordinates as a map between neighborhoods of 0
in Rn, we have

degpf ;xq “ deg

¨̋ pf
| pf |

ˇ̌̌̌
ˇBDn

ǫ

: BDnǫ Ñ Sn´1‚̨
for all ǫ ą 0 sufficiently small, where Dnǫ denotes the closed ǫ-disk and its boundary is identified
in the obvious way with Sn´1, so that the right hand side is the degree of a map Sn´1 Ñ Sn´1.
Similarly, deg2pf ;xq is related in the same say to the mod 2 degree of the same map BDnǫ Ñ
Sn´1. �

Corollary 36.6. Suppose tft : M Ñ NutPr0,1s is a continuous family of maps between two
manifolds of dimension n P N, with interior points x P MzBM and y P NzBN such that x is an
isolated point of f´1

t pyq for every t. Then for any fixed choice of local orientations at x and y,
degpf0;xq “ degpf1;xq, and similarly, deg2pf0;xq “ deg2pf1;xq.

Proof. We can interpret both local degrees via Proposition 36.5 as degrees of maps Sn´1 Ñ
Sn´1, and the assumption about the family ft implies that these two maps between spheres are
homotopic. �

Example 36.7. Continuing the discussion of Example 36.3, suppose f : M Ñ N is a map
between surfaces such that x is an isolated point in f´1pyq, and suppose we have fixed local ori-
entations rM sx P H2pM,Mztxu;Zq and rN sy P H2pN,Nztyu;Zq. Choose small Euclidean neigh-
borhoods U Ă M of x and V Ă N of y such that fpUq Ă V and f´1pyq X U “ txu. Then rM sx
determines a homotopy class of embedded loops α : S1 ãÑ Uztxu winding once around x, so that
f ˝ α : S1 Ñ Vztyu is also uniquely determined up to homotopy. The winding number of f ˝ γ
is then the local degree degpf ;xq; its definition requires a local orientation at y in order to de-
cide which winding numbers are positive and which are negative, i.e. those that wind in the same
direction as the loops S1 ãÑ Vztyu determined by rN sy are considered positive.

Let us discuss more concretely how local degrees of maps from Rn to itself can be computed.
There is a natural way to choose local orientations rRnsx P HnpRn,Rnztxu;Zq at every point
x P Rn: if Dnx Ă Rn denotes the closed unit disk about x and we identify its boundary in the
obvious way with Sn´1, then we obtain as in (36.1) a string of natural isomorphisms

HnpRn,Rnztxu;Zq – HnpDnx , BDnx ;Zq – rHn´1pSn´1;Zq,
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so that any choice of generator rSn´1s P rHn´1pSn´1;Zq determines local orientations rRnsx P
HnpRn,Rnztxu;Zq for all x P Rn simultaneously. With this choice in place, any continuous map
f : U Ñ Rn defined on an open subset U Ă Rn has a well-defined local degree at any point
x P U that is isolated in f´1pfpxqq, and we notice that degpf ;xq does not depend on our arbitrary
choice of generator rSn´1s since reversing this would reverse both of the local orientations rRnsx
and rRnsfpxq. We can now prove:

Proposition 36.8. Suppose local orientations rRnsx for points x P Rn are fixed according to
the prescription above, U Ă Rn is an open subset and f : U Ñ Rn is a map that is differentiable at
a point x P U such that its derivative dfpxq : Rn Ñ Rn is an isomorphism. Then x is an isolated
point of f´1pfpxqq, and degpf ;xq “ ˘1, with sign matching the sign of det dfpxq.

Proof. We can write f : U Ñ Rn near x as

fpx` hq “ y ` dfpxqh` |h|ηphq
for sufficiently small h P Rn, where y :“ fpxq and ηphq is an Rn-valued function satisfying
limhÑ0 ηphq “ 0. If dfpxq : Rn Ñ Rn is invertible, then there exists a constant c ą 0 such
that |dfpxqh| ě c|h| for all h P Rn, so

|fpx` hq ´ y| “ |dfpxqh ` |h|ηphq| ě |dfpxqh| ´ |h||ηphq ě pc´ |ηphq|q |h|,
and the right hand side is positive for all |h| sufficiently small since ηphq Ñ 0. This proves that x
is isolated in f´1pyq. Now modify f near x by

ftpx` hq “ y ` dfpxqh` ρtphq|h|ηphq,
where ρtphq P r0, 1s is a family of cutoff functions that equal 1 away from h “ 0 such that ρ0 ” 1

and ρ1 vanishes on a smaller neighborhood of h “ 0. This changes f by a homotopy through maps
in which x remains an isolated point of f´1

t pyq, so in light of Corollary 36.6, we can now assume
without loss of generality that the remainder term vanishes completely, i.e. fpx` hq “ y ` dfpxq.
Now observe that if we modify f by a further homotopy of the form

ftpx` hq “ y `Ath,

where At : Rn Ñ Rn is a family of invertible linear transformations, then the local degree still
will not change due to Corollary 36.6, thus we are free to assume without loss of generality that
dfpxq is an orthogonal transformation. The corresponding map Sn´1 Ñ Sn´1 is then of the type
considered in Proposition 35.8, so its degree is the determinant of the orthogonal transformation,
which is `1 if the original derivative dfpxq had positive determinant and ´1 otherwise. �

Many applications of the local degree are based on the following result, as it provides a criterion
for existence of solutions to equations of the form fpxq “ y that are stable under small perturbations
of f . Its proof is Exercise 36.2.

Proposition 36.9. If U Ă Rn is open and f : U Ñ Rn is a continuous map with fpxq “ y

and either degpf ;xq or deg2pf ;xq is nonzero for some x P U , then for any neighborhood Ux Ă U

of x, there exists an ǫ ą 0 such that every continuous map pf : U Ñ Rn satisfying | pf ´ f | ă ǫ maps
some point in Ux to y. �

Mapping degree for closed manifolds. We will now extend the global mapping degree
previously defined for maps f : Sn Ñ Sn to maps f : M Ñ N between more general closed
connected n-manifolds. Most of what follows can also be extended to maps f : pM, BMq Ñ pN, BNq
between compact n-manifolds with boundary, so long as fpBMq Ă BN , but we will leave this
extension as an exercise for the reader.



36. LOCAL AND GLOBAL MAPPING DEGREE 273

Our definition of degree for maps f : M Ñ N will necessitate imposing a condition on the
manifolds that we consider. It will later turn out that this condition is satisfied for all closed and
connected manifolds—possibly with a condition on orientations,55 depending which coefficients we
want to use—though it will be a while before we are in a position to fully prove this.

Definition 36.10. Given an axiomatic homology theory h˚, a topological manifold M of
dimension n P N will be called h˚-admissible56 if M is closed and the obvious inclusion ix :

pM,Hq ãÑ pM,Mztxuq induces an isomorphism

ix˚ : hnpMq –ÝÑ hnpM,Mztxuq
for every point x P M . For the case h˚ “ H˚p¨;Gq, we shall abbreviate the terminology and say
that M is G-admissible.

Clearly an h˚-admissible n-manifold must have hnpMq isomorphic to the coefficient group, so
there are in general some nontrivial computations of homology to be done before we can prove
that any given manifold is admissible. To start with, it will be useful to note that we already know
how to do this for spheres of arbitrary dimension:

Proposition 36.11. For each n P N, the sphere Sn is h˚-admissible for every axiomatic
homology theory h˚.

Proof. See Exercise 36.1. �

Just so it’s clear how widely applicable the mapping degree is, let us state a result whose proof
in full generality will have to wait until after the general construction of fundamental classes later
in this semester. Certain special cases of it, however, are already within reach, and a lot more will
be so in the near future, once we’ve discussed cellular homology.

Proposition 36.12. Every closed and connected topological manifold M is Z2-admissible, and
if M is also orientable, then it is Z-admissible.

Partial proof. The cases for which we already know how to prove Z-admissibility include
the spheres Sn and the tori Tn, and we can also prove Z2-admissibility for these, plus certain
non-orientable examples such as the projective plane and the Klein bottle. The point is that all of
these examples of closed connected n-manifolds M have the following two features in common:

(1) M admits a triangulation;
(2) HnpM ;Z2q – Z2, and in cases where the triangulation is orientable, HnpM ;Zq – Z.

The latter fact about Sn was our first serious computation of homology, and for the other manifolds
mentioned above, it can be proved using Mayer-Vietoris sequences (see Lecture 34, especially
Exercises 34.5 and 34.6), or in certain cases also the exact sequence of a mapping torus (Lecture 35).
These two conditions in tandem give us the following. In Lecture 30, we saw that a triangulation of
a closed n-manifold M gives rise to a fundamental class in simplicial homology, which we can feed
into the natural map from ordered simplicial to singular homology to obtain a singular fundamental
class

rM s P HnpM ;Z2q.
For any given point x PM , we are free to assume after perhaps a small perturbation of the trian-
gulation that x lies in the interior of one of its n-simplices. The homomorphism ix˚ : HnpM ;Z2q Ñ

55We will define later what it means in general for a topological n-manifold to be orientable; you may already
be able to intuit part of the definition from the notion of “local” orientations introduced in Definition 36.2. A
notion of orientations for topological manifolds of dimension n ď 2 was discussed last semester in Lecture 20, and
Example 36.3 hints at the relationship between that notion and local orientations in the case n “ 2.

56This is not a universally standard term, but it is convenient for our purposes at the moment.
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HnpM,Mztxu;Z2q then sends rM s to the class in HnpM,Mztxu;Z2q represented by a single sin-
gular n-simplex σ : ∆n ÑM whose image is the n-simplex of the triangulation containing x; this
n-chain is a relative cycle in pM,Mztxuq since σpB∆nq ĂM does not touch x. We can choose local
coordinates in which x is identified with 0 P Rn and σp∆nq with the unit disk Dn; following the chain
of isomorphisms (36.1) fromHnpM,Mztxu;Z2q to rHn´1pSn´1;Z2q then identifies ix˚rM s “ rσs with
a fundamental class determined by the obvious triangulation of B∆n – Sn´1. It is not hard to
prove by induction on n that this fundamental class generates rHn´1pSn´1;Z2q – Z2, and it follows
that ix˚rM s generates HnpM,Mztxu;Z2q – Z2, meaning it is the unique nontrivial element. If we
also know HnpM ;Z2q – Z2, this implies that the map ix˚ : HnpM ;Z2q Ñ HnpM,Mztxu;Z2q
is an isomorphism. If additionally the triangulation is oriented, then we also have an inte-
gral fundamental class rM s P HnpM ;Zq and can similarly deduce the stronger statement that
ix˚ : HnpM ;Zq Ñ HnpM,Mztxu;Zq – Z sends rM s to a primitive element, which in this case
means a local orientation rM sx at x. The condition HnpM ;Zq – Z then similarly implies that rM s
generates HnpM ;Zq and the map HnpM ;Zq Ñ HnpM,Mztxu;Zq is an isomorphism.

By the end of next week, we will also be able to deduce condition (2) above from condition (1),
using the deep theorem that h˚p|K|q – H∆˚ pK;Gq for every simplicial complex K and every ax-
iomatic homology theory h˚ with coefficient group G. For the computation of H∆

n pK;Gq when K
is the simplicial complex that triangulates a closed connected n-manifold (with or without orien-
tation), see Exercise 30.1. We will then be able to say without any black boxes that every closed
connected manifold admitting a triangulation is Z2-admissible (and Z-admissible if the triangula-
tion is orientable), which in particular includes all (closed and connected) smooth manifolds. For
closed topological manifolds without triangulations, the result will follow later from the general
construction of fundamental classes in singular homology. �

Definition 36.13. Assume M and N are Z-admissible manifolds of dimension n P N, and
choose generators rM s P HnpM ;Zq – Z and rN s P HnpN ;Zq – Z. We then define the degree
(Grad) of any map f :M Ñ N to be the unique integer degpfq “ k P Z such that

f˚rM s “ krN s.
If M and N are Z2-admissible (but not necessarily Z-admissible), one can similarly define the
mod 2 degree of f as the unique k P Z2 such that f˚rM s “ krN s where rM s P HnpM ;Z2q – Z2

and rN s P HnpN ;Z2q – Z2 are the unique nontrivial elements.

Note that the sign of degpfq depends in general on the choices of generators rM s and rN s, but
if M “ N , then it is natural to choose rM s “ rN s, and degpfq is then independent of choices since
reversing the signs of rM s and rN s simultaneously changes nothing in the relation f˚rM s “ krN s.
In this way, our new definition recovers the old one for maps Sn Ñ Sn. The mod 2 degree
is in any case defined with no need for choices, since the generators rM s and rN s are unique in
homology with Z2-coefficients. It is again easy to check that the obvious analogues of items (1)–(4)
in Proposition 35.6 are satisfied for this new definition.

We can now state the main result relating global and local degrees.

Theorem 36.14. Suppose M and N are Z-admissible manifolds of dimension n P N, fix
generators rM s P HnpM ;Zq and rN s P HnpN ;Zq and use these to determine local orientations
rM sx :“ ix˚rM s and rN sy :“ i

y˚rN s at all points x PM and y P N . Then for any map f : M Ñ N

and any point y P N such that f´1pyq is a finite set,

(36.2) degpfq “ ÿ
xPf´1pyq

degpf ;xq.
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Similarly, if M and N are Z2-admissible and f :M Ñ N is any map with a point y P N such that
f´1pyq is finite, we have

deg2pfq “
ÿ

xPf´1pyq
deg2pf ;xq.

We sometimes refer to the expression on the right hand side of (36.2) as the algebraic count of
points in f´1pyq. One can check that if f :M Ñ N happens to be a covering map, then for suitable
choices of the generators rM s and rN s, the local degrees degpf ;xq are all 1 and the algebraic count
is thus the actual count of points. In more general situations, the points must be counted with
signs and “weights” determined by the local degree, but the advantage is that the result does not
depend on the point y P N , and it only depends on f up to homotopy.

Remark 36.15. For a given map f : M Ñ N , there is no guarantee in general that f´1pyq
will be a finite set for any choice of y P N ; if it isn’t, then the statement of Theorem 36.14 becomes
vacuous. SinceM and N have the same dimension, however, one can reasonably hope to encounter
situations in which f is a local homeomorphism near each x P f´1pyq, implying that f´1pyq ĂM

is a discrete subset, and since M is compact, the finiteness of f´1pyq follows. If M and N have
smooth structures, then standard results in differential topology imply that this is in fact the
“generic” situation, i.e. every continuous map f : M Ñ N can be perturbed (without changing its
homotopy class) to one that is smooth, and by Sard’s theorem, almost every point y P N will then
be a regular value of the smoothened version of f , making f a local diffeomorphism near every
point of f´1pyq. In this case the local degree degpf ;xq at every point x P f´1pyq can be deduced
from the derivative dfpxq via Proposition 36.8, and will always be ˘1.

Theorem 36.14 has a wide range of applications, but it also establishes an important theoretical
connection between algebraic and differential topology. In the setting of closed differentiable
manifolds and smooth maps f :M Ñ N , there is a natural way to define degpfq using transversality
results for smooth maps, e.g. one can use the perturbation trick mentioned in Remark 36.15 above
to restrict attention to cases in which f is a local diffeomorphism with degpf ;xq “ ˘1 for each
x P f´1pyq. One then defines degpfq essentially as the right hand side of (36.2) and interprets it as
“counting f´1pyq with signs”; the interesting part is then to prove that the result does not depend
on y or on f beyond its homotopy class. Without knowing Theorem 36.14 or anything else about
homology, the latter can also be proven as a consequence of transversality results—the main point
is that if f0 and f1 are homotopic, then a generic choice of smooth homotopy tft :M Ñ NutPr0,1s
between them gives rise to a compact oriented 1-manifold

Q :“  pt, xq P r0, 1s ˆM
ˇ̌
ftpxq “ y

(
for which the difference #f´1

0 pyq ´ #f´1
1 pyq between the two signed counts of preimages of y

is interpreted as a signed count of the points in the oriented 0-manifold BQ. The classification
of 1-manifolds implies that every component of a compact oriented 1-manifold with nonempty
boundary has exactly one boundary point that counts positively and one that counts negatively,
hence the total count is always zero. This perspective on the degree is explained beautifully in the
classic book by Milnor [Mil97].57 It is by no means easy however to see from the differentiable
viewpoint what the mapping degree has to do with the homology of manifolds, i.e. why the right
hand side of (36.2) matches the left hand side. The proof of that requires the formal properties of
homology theories.

Proof of Theorem 36.14. For later convenience, we shall carry out most of the proof in the
framework of an arbitrary axiomatic homology theory h˚, assumingM and N to be h˚-admissible.

57The differentiable approach to the mapping degree was also sketched in Exercise 19.14 last semester.
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Write
f´1pyq “ tx1, . . . , xℓu,

fix a Euclidean neighborhood V Ă N of y, along with Euclidean neighborhoods Uk Ă M of the
individual points xk for k “ 1, . . . , ℓ such that

fpUkq Ă V and Uk X Uj “ H for j ‰ k.

These assumptions guarantee that fpUkztxkuq Ă Vztyu, hence f also defines a map of pairs
pUk,Ukztxkuq Ñ pV ,Vztyuq for every k “ 1, . . . , ℓ. Now consider the diagram

(36.3)

hnpUk,Ukztxkuq hnpV ,Vztyuq

hnpM,Mztxkuq hnpM,Mzf´1pyqq hnpN,Nztyuq

hnpMq hnpNq

αk˚
γk˚

f˚

β

pk˚

f˚

i
xk˚

j˚
f˚

i
y
˚

where the maps αk, pk, γk, j and β are all inclusions. By the admissibility assumption, ixk˚ and iy˚
are isomorphisms, and αk˚ and β˚ are also isomorphisms by excision. To understand the maps pk˚
for k “ 1, . . . , ℓ, observe that these can all be combined to define a product map

p :“ pp1˚, . . . , pℓ˚q : hnpM,Mzf´1pyqq Ñ
ℓà

k“1

hnpM,Mztxkuq,

which fits into the following diagram:

hnpM,Mzf´1pyqq Àℓ
k“1 hnpM,Mztxkuq

hn

´šℓ
k“1pUk,Ukztxkuq

¯ Àℓ
k“1 hnpUk,Ukztxkuq

p

– –

–

Here the maps are all induced by obvious inclusions, the two vertical maps are isomorphisms by
excision, and the bottom horizontal map is an isomorphism due to a combination of the additivity
axiom with the five-lemma (see Exercise 28.8), thus p is also an isomorphism. If we use this to
replace hnpM,Mzf´1pyqq in (36.3) by

Àℓ
k“1 hnpM,Mztxkuq, then the map pk˚ becomes simply

the projection of
Àℓ

k“1 hnpM,Mztxkuq to the factor hnpM,Mztxkuq. With this replacement
understood, we have

j˚ “ pix1˚ , . . . , ixℓ˚ q : hnpMq Ñ
ℓà

k“1

hnpM,Mztxuq,

and the commutativity of the bottom right square in (36.3) then gives the formula

(36.4) f˚j˚ “
ℓÿ

k“1

f˚ixk˚ “ i
y˚f˚ : hnpMq Ñ hnpN,Nztyuq.

If h˚ is H˚p¨;Zq and we apply this formula to the chosen generator rM s P HnpM ;Zq with ixk˚ rM s “
rM sxk

, the result is
ℓÿ

k“1

f˚rM sxk
“

ℓÿ
k“1

degpf ;xkqrN sy “ i
y˚f˚rM s “ degpfqiy˚rN s “ degpfqrN sy,
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from which the formula for the integer-valued degree follows. The formula for the mod 2 degree
follows in the same way using h˚ “ H˚p¨;Z2q. �

It is easy to see that a non-surjective map f : Sn Ñ Sn must have degree 0, because its image
then lies in the contractible space Snzt˚u – Rn, making f homotopic to a constant. The same
argument does not work for maps f : M Ñ N when N is a more general closed n-manifold, but
Theorem 36.14 nonetheless gives us an easy proof of the same statement:

Corollary 36.16. If M and N are Z-admissible n-manifolds with n ě 1 and f : M Ñ N

is not surjective, then degpfq “ 0. Similarly, if both manifolds are Z2-admissible and f is not
surjective, then deg2pfq “ 0.

Proof. Apply Theorem 36.14 to identify degpfq or deg2pfq with a suitable count of points in
f´1pyq where y R fpMq. �

In the axiomatic setting, the proof of Theorem 36.14 also gives rise to the following result,
which will be of some theoretical importance when we develop cellular homology. Note that by
Exercise 36.1, we already know Sn to be h˚-admissible for every h˚ and every n P N.

Theorem 36.17. For any map f : Sn Ñ Sn with n P N and any axiomatic homology theory h˚,
the induced homomorphism f˚ : hnpSnq Ñ hnpSnq takes the form c ÞÑ degpfqc.

Proof. One can verify explicitly that the corresponding statement about reduced homology
holds for all maps f : S0 Ñ S0; this is easy to check because there exist only four distinct maps
from S0 to itself, and the reduced homology of S0 can be derived directly from the additivity and
dimension axioms (cf. Exercise 35.3). We now argue by induction on the dimension, assuming for
a given n that homomorphisms f˚ : rhn´1pSn´1q Ñ rhn´1pSn´1q are always given by multiplication
with the integer-valued degree of maps f : Sn´1 Ñ Sn´1. Using perturbation results from differ-
ential topology as mentioned in Remark 36.15, we can assume after a small perturbation of any
given map f : Sn Ñ Sn within its homotopy class that f´1pyq is a finite set for some y P Sn. Now
write f´1pyq “ tx1, . . . , xℓu and, given c P hnpSnq, use (36.4) to write

i
y˚f˚c “

ℓÿ
k“1

f˚ixk˚ c P hnpSn, Snztyuq,

where the individual terms on the right hand side involve the homomorphisms

f˚ : hnpSn, Snztxkuq Ñ hnpSn, Snztyuq.
Using excision and connecting homomorphisms as in Proposition 36.5, one can identify both the
domain and target of this map with rhn´1pSn´1q so that f˚ is equivalent to the homomorphismrhn´1pSn´1q Ñ rhn´1pSn´1q induced by a map Sn´1 Ñ Sn´1, whose degree is precisely degpf ;xkq.
The inductive hypothesis thus expresses the homomorphism as multiplication by degpf ;xkq, giving
a commutative diagram

hnpSn, Snztxkuq hnpSn, Snztyuq

hn´1pSn´1q hn´1pSn´1q

f˚

– –
¨ degpf ;xkq

Adding up these contributions for every xk P f´1pyq produces multiplication by degpfq according
to Theorem 36.14. �
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One consequence of this result is that the definition of degpfq for maps f : Sn Ñ Sn does
not actually depend on the choice to use singular homology in particular—we could have replaced
H˚p¨;Zq with any other axiomtaic homology theory with coefficient group Z and would thus obtain
an equivalent definition.

One can use a similar inductive argument to prove a straightforward relationship between
degpfq and deg2pfq; we will later also be to give a purely algebraic proof of the following result,
using the universal coefficient theorem.

Corollary 36.18. If M and N are both Z-admissible and Z2-admissible, then for every map
f :M Ñ N , deg2pfq is the image of degpfq under the natural projection ZÑ Z2. �

36.1. Exercises.

Exercise 36.1 (*). Prove Proposition 36.11 on the h˚-admissibility of Sn.
Hint: You can choose a neighborhood U Ă Sn of any x P Sn homeomorphic to a disk, and use
hnpSn, SnzUq as a substitute for hnpSn, Snztxuq (why?). What kind of space is SnzU?

Exercise 36.2. Prove Proposition 36.9 on the stability of solutions to the equation fpxq “ y

when degpf ;xq or deg2pf ;xq is nonzero.
Hint: Consider the restriction of pf to the boundary of a small ball about x, and normalize it so
that it maps to the sphere surrounding a small ball about y. What can you say about the degree
of this map between spheres if pf maps the ball about x to Rnztyu?

Exercise 36.3. Viewing S1 as the unit circle in C, fix a generator rS1s P H1pS1;Zq – Z

and use it to determine local orientations rCsz P HnpC,Cztzu;Zq for every point z P C via the
natural isomorphisms H2pC,Cztzu;Zq – H2pDz , BDz;Zq – H1pBDz;Zq, where Dz Ă C denotes the
closed unit disk centered at z, whose boundary is canonically identified with S1. This choice will
be used in the following for the definition of local degrees of maps f : U Ñ C defined on open
subsets U Ă C; note that changing the generator rS1s P H1pS1;Zq does not change the definition
of degpf ; zq since it changes both rCsz and rCsfpzq by a sign.

(a) Show that if f : CÑ C is of the form fpzq “ pz ´ z0qkgpzq for some z0 P C, k P N and g
a continuous map with gpz0q ‰ 0, then degpf ; z0q “ k.

(b) Can you modify the example in part (a) to produce one with degpf ; z0q “ ´k for k P N?
(c) Let f : S2 Ñ S2 denote the natural continuous extension to S2 :“ CY t8u of a complex

polynomial CÑ C of degree n. What is degpfq?
(d) Pick a constant t0 P S1 and let A – S1 _ S1 denote the subset tpx, yq | x “ t0 or y “

t0u Ă S1 ˆ S1 “ T2. Show that T2{A – S2, and that the quotient map T2 Ñ T2{A has
degree ˘1 (depending on choices of generators for H2pT2;Zq and H2pS2;Zq).

Exercise 36.4. Find an example of a smooth map f : R2 Ñ R2 that has an isolated zero at
the origin with degpf ; 0q “ 0 and admits arbitrarily small perturbations that are nowhere zero.

Exercise 36.5. Suppose f : Sn Ñ Sn is any continuous map, and p` P ΣSn “ C`Sn YSn

C´Sn is the vertex of the top cone in the suspension ΣSn – Sn`1. What is degpΣf ; p`q? Use this
to give a new proof (different from that of Proposition 35.7) that degpΣfq “ degpfq.

Exercise 36.6. Show that every map Sn Ñ Tn has degree 0 if n ě 2.
Hint: Lift Sn Ñ Tn to the universal cover of Tn.

Exercise 36.7. Show that for every d P Z and every Z-admissible n-dimensional manifold M
with n ě 1, there exists a map M Ñ Sn of degree d.
Hint: Try a map that is interesting only on some n-ball in M and constant everywhere else.

Exercise 36.8. Using the mod 2 degree, describe examples of maps from RP
2 or the Klein

bottle to S2 that cannot be homotopic to a constant.
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37. CW-complexes

37.1. Definitions and first examples. Let’s clear up one thing straightaway: the “CW” in
“CW-complex” does not stand for my name.

If you must know, the “C” stands for “closure-finite,” and the “W” for “weak topology”. Both
of these terms refer to slightly subtle issues involving the definition and properties of the topology
on a CW-complex. We’ll get to that.

But first, I should tell you what they are. The informal answer is that CW-complexes are spaces
that we can construct by gluing disks (of various dimensions) to things along their boundaries.
It turns out that almost all spaces of importance in geometric settings can be constructed in this
way, so understanding the algebraic topology of CW-complexes opens the way toward an enormous
range of applications. The motivation to focus on CW-complexes rather than more general spaces
is practical: in essence, CW-complexes are the class of topological spaces for which the subject of
algebraic topology is doable.

Definition 37.1 (CW-complexes, part 1 of 2). A CW-complex (CW-Komplex) or cell
complex (Zellkomplex) is a topological spaceX that is presented as the union of a nested sequence
of subspaces

X0 Ă X1 Ă X2 Ă . . . Ă ď
ně0

Xn “ X

constructed by the following inductive procedure:
‚ X0 is a space with the discrete topology;
‚ For each n P N, there is a set Kn and a collection of maps tϕα : Sn´1 Ñ Xn´1uαPKn

such that Xn is the result of attaching n-disks Dn along their boundaries to Xn´1 via
the maps ϕα for every α P Kn, i.e.

(37.1) Xn “ Xn´1 Yϕn

ž
αPKn

Dn, where ϕn :“ ž
αPKn

ϕα :
ž
αPKn

BDn Ñ Xn´1.

We call Xn the n-skeleton (n-Skelett or n-Gerüst) of X . We call the individual points of X0 the
0-cells (0-Zellen) of the complex, and it will be convenient to also denote K0 :“ X0. For each
n P N and α P Kn, the interior of the copy of Dn associated to α in the disjoint union defines an
open subset

enα Ă Xn,

which is called an n-cell (n-Zelle) of the complex, and the associated map ϕα : Sn´1 Ñ Xn´1 is
called its attaching map (Anklebeabbildung). The map

Φnα : Dn Ñ X

that satisfies Φnα|BDn “ ϕα and restricts to the interior of the disk as the inclusion enα ãÑ Xn is
called the characteristic map (charakteristische Abbildung) of the cell enα. The complex is called
n-dimensional if n is the largest number for which it contains an n-cell, i.e. Km “ H for allm ą n

but Kn ‰ H.

Let us recall quickly what the notation in (37.1) means: we are defining Xn as a quotient of
a disjoint union,

Xn “ Xn´1 >
˜ ž
αPKn

Dn

¸O
„,

where x „ ϕnpxq for every x PšαPKn BDn. The topology of Xn is implicit in this definition: if we
know the topology of Xn´1, then the topology of Xn is determined via the quotient topology and
the disjoint union topology, so in this way one can start from the discrete space X0 and deduce
the topology of every individual skeleton Xn one by one. Now, I’m not sure if you noticed this,
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but nothing we’ve said so far specifies the topology of X itself, at least not in the most general
cases—it may well happen that X “ Xn for some n ě 0 because the complex is finite-dimensional,
so then the topology of Xn defines the topology of X , but more needs to be said if the complex is
infinite dimensional.

Definition 37.2 (CW-complexes, part 2 of 2). The topology of a CW-complex X “ X0 Y
X1YX2Y . . . is defined by the condition that a subset U Ă X is open if and only if U XXn is an
open subset of Xn for every n ě 0.

The next two results regarding the topology of CW-complexes are important but straightfor-
ward exercises in point-set topology.

Proposition 37.3. A subset U Ă X in a CW-complex is open if and only if for every n ě 0

and every n-cell enα, Φ
´1
α pUq is an open subset of Dn. In other words, the topology of a CW-complex

is the strongest possible topology for which all characteristic maps are continuous. �

Proposition 37.4. For any CW-complex X and any space Y , a map f : X Ñ Y is continuous
if and only if its restriction to the n-skeleton of X is continuous for every n ě 0, or equivalently,
if f ˝ Φα : Dn Ñ Y is continuous for every n ě 0 and α P Kn. �

Remark 37.5. You may by now have noticed an awkward problem with our terminology: the
“W” in “CW” supposedly stands for “weak topology,” yet the topology described in Definition 37.2 is
not weak at all, but is the strongest with a given property. This discrepancy is apparently the fault
of J.H.C. Whitehead,58 whose influence on the subject was so substantial that many authors still
refer to the topology of CW-complexes as “the weak topology” in the literature. Proposition 37.4
at least provides an argument for this term, as a CW-complex X is “weak” in the sense that it is
fairly easy for functions defined on X to be continuous.

Definition 37.6. A cell decomposition (Zellenzerlegung) of a space X is a choice of home-
omorphism from X to a CW-complex.

Example 37.7. Since the standard n-simplex ∆n is homeomorphic to Dn, the polyhedron
X “ |K| of any simplicial complex K is also a CW-complex, whose n-cells are the interiors of the
n-simplices, and the n-skeleton is thus the union of all the k-simplices for k ď n. The attaching
map B∆n – Sn´1 Ñ Xn´1 of each n-cell enα Ă X is then a homeomorphism to the polyhedron
of the pn ´ 1q-dimensional subcomplex determined by the boundary faces of the corresponding
n-simplex, and it follows that all of the characteristic maps in this case are inclusions. A cell
decomposition of this type is equivalent to a triangulation.

Example 37.8. Recall that Sn – Dn{BDn for n ě 1. This picture of the sphere defines
a cell decomposition of Sn with one 0-cell and one n-cell: the 0-cell is the point e0 P Dn{BDn
represented by any point in BDn, and the characteristic map of the n-cell en is the quotient map
Φ : Dn Ñ Dn{BDn. This identifies Sn with an n-dimensional CW-complex whose k-skeleton for
each k ă n is a single point.

Note that in Example 37.8, the attaching map of the n-cell is very far from being injective,
thus its characteristic map is also not injective at BDn, in contrast to Example 37.7. On the other
hand, the restriction of a characteristic map to the interior of the disk is always injective, and is a
homeomorphism onto its (open) image.

58This terminological awkwardness is consistent with certain popular jokes among mathematicians, one of
which is that J.H.C. Whitehead’s initials actually stand for “Jesus, he’s confused!”
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Example 37.9. There is another favorite cell decomposition of Sn in which the k-skeleton for
each k “ 0, . . . , n is homeomorphic to Sk. The idea is to start with two points X0 :“ S0, and then
inductively define Xk for each k “ 1, . . . , n by regarding Xk´1 “ Sk´1 as an equator and gluing
two cells to it to form the “northern” and “southern” hemispheres of Sk:

Sk “ Sk´1 Yϕk pDk` > Dk´q.
In this case there are exactly two k-cells for each k “ 0, . . . , n, all attaching maps Sk´1 Ñ Xk´1

are homeomorphisms, and all characteristic maps are inclusions.

Example 37.10. It is natural to define the decomposition Sn “ Dn` YSn´1 Dn´ used in the
previous example such that the antipodal map Sn Ñ Sn sends Dn˘ to Dn¯ and restricts to the
equator Sn´1 as the antipodal map, which we can then assume satisfies the same condition with
respect to the decomposition Sn´1 “ Dn´1` YSn´2 Dn´1´ and so forth. In this way, Example 37.9
also gives rise to a cell decomposition of RPn “ Sn{Z2 with exactly one k-cell for each k “ 0, . . . , n.
The k-skeleton of RPn is then a submanifold of the form

Xk “  rpx0, . . . , xnqs P RP
n “ Sn{Z2

ˇ̌
xk`1 “ . . . “ xn “ 0

( – RP
k.

In contrast to Example 37.9, the characteristic maps Dk Ñ RP
n for this cell decomposition are

not injective: indeed, the k-cells in Example 37.9 are attached to the pk ´ 1q-skeleton Sk´1 via
a homeomorphism Sk´1 Ñ Sk´1, but in RPn this must be understood as a map to Xk´1 “
RP

k´1 “ Sk{Z2, thus the homeomorphism Sk´1 Ñ Sk´1 from Example 37.9 gets composed with
the quotient projection Sk´1 Ñ RP

k´1 and becomes a covering map of degree 2.

Example 37.11. This will be harder to picture, but one can adjust Example 37.9 by following
the same procedure of attaching two k-cells along homeomorphisms Sk´1 Ñ Xk´1 for every k P N,
without stopping when k “ n. The result is an infinite-dimensional CW-complex called S8. The
best way to picture it is probably as a subset of the infinite-dimensional vector space R8 :“À8

k“1 R, consisting of all sequences of real numbers px1, x2, x3, . . .q that have only finitely many
nonzero terms. Here we can identify Rn for each n ě 1 with the subspace tpx1, . . . , xn, 0, 0, . . .q P
R8u, so that Sk Ă Rk`1 becomes a subset of R8 that also happens to be contained in Sk`1, and
S8 is the union of the nested sequence of spaces

S0 Ă S1 Ă S2 Ă S3 Ă . . . Ă ď
kě0

Sk “ S8.

More concretely, S8 is just the subset of R8 defined by the condition
ř8
i“1 x

2
i “ 1, where there

is no question about convergence since only finitely many terms can be nonzero. The following
observation (see Exercise 37.2) reveals that there is something a bit subtle about the topology
of S8: for any convergent sequence xk P S8, there exists n P N such that xk P Sn for every k.

Remark 37.12. The observation about sequences mentioned above demonstrates that S8 is
in some sense quite different from any “infinite-dimensional sphere” that one would be likely to
study in functional analysis. For instance, if S is the set of unit vectors in the infinite-dimensional
Hilbert space

ℓ2 :“
#
x “ px1, x2, . . .q P

8ź
i“1

R

ˇ̌̌̌
ˇ 8ÿ
i“1

x2i ă 8
+

with inner product xx,yy :“ ř
i xiyi, then there is no reason for the terms in a convergent sequence

in S to belong to any particular finite-dimensional subspace. One can show however that S and
S8 are nonetheless homotopy equivalent—in fact, both are contractible! (A proof of this for S8
can be found in [Hat02, p. 88].)
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Remark 37.13. Combining Examples 37.10 and 37.11 in the obvious way produces another
infinite-dimensional CW-complex called RP

8, which has exactly one k-cell for every k ě 0. This
space is of great theoretical importance, as it arises e.g. as the so-called classifying space of the
group Z2, meaning that classification questions for certain classes of vector bundles over reasonable
spaces X can be reduced to computations of the set of homotopy classes of maps X Ñ RP

8. The
theory of characteristic classes is founded in large part on understanding the homotopy types of
certain infinite-dimensional CW-complexes such as this one; see e.g. [MS74].

Example 37.14. Recall that the closed oriented surface Σg of genus g ě 0 can be pre-
sented as a polygon with 4g sides, with certain pairs of sides identified as dictated by the word
a1, b1, a

´1
1 , b´1

1 , a2, b2, a
´1
2 , b´1

2 , . . . , ag, bg, a
´1
g , b´1

g (see Definition 14.6 in last semester’s Lecture 14).
This defines a CW-complex in which there is one 0-cell (the vertices of the polygon are all iden-
tified with the same point), 2g one-cells which can be labeled a1, b1, . . . , ag, bg and are attached
along the unique map S0 Ñ X0, and a single 2-cell attached via a map S1 Ñ X1 that defines the
concatenation of loops indicated by the above word.

Definition 37.15. A subcomplex of a CW-complex X is a subset A Ă X that is also a
CW-complex with n-skeleton An “ AXXn for all n ě 0, such that every cell in A is also a cell in
X with the same characteristic map.

37.2. Compact subsets. Our goal in this lecture is to get as quickly as possible to the
definition of cellular homology so that we can compute some examples. For this definition to make
sense in full generality, we need to know a basic fact about the point-set topology of CW-complexes
that is vacuous in the case of finite complexes, but nontrivial for infinite complexes:

Proposition 37.16. For any CW-complex X, any compact subspace K Ă X is contained in
a finite subcomplex of X, i.e. in a subcomplex with only finitely many cells.

The following consequence is the reason for the term “closure-finite”:

Corollary 37.17. The closure of each cell in a CW-complex intersects only finitely many
other cells. �

Proof of Proposition 37.16. Step 1: Suppose A Ă X is a subset with the property that
for every pair of distinct elements x, y P A, x and y belong to different cells of the complex. We
claim then that AXXn is a closed subset of Xn for every integer n ě 0. The proof is by induction
on n; for n “ 0 it is trivially true since X0 carries the discrete topology, so all of its subsets are
closed. Now if we assume A X Xn´1 Ă Xn´1 is closed, it follows that for every n-cell enα with
attaching map ϕα : Sn´1 Ñ Xn´1 and characteristic map Φα : Dn Ñ X , ϕ´1

α pAq is a closed
subset of Sn´1. Since at most one element of A can lie in enα, the set Φ

´1
α pAq Ă Dn is then either

ϕ´1
α pAq or the union of this with a single point in the interior of the disk, so in either case it is

closed. Viewing Xn itself as a CW-complex in the obvious way and remembering that closed sets
are complements of open sets, Proposition 37.3 now implies that A X Xn Ă Xn is closed. By
induction, this is true for every n ě 0, and it follows via the definition of the topology of X that
A is a closed subset of X .

Step 2: Given a compact subset K Ă X , we claim that K can intersect at most finitely many
distinct cells of X . Otherwise there exists an infinite subset A Ă K in which every element belongs
to a different cell. Step 1 implies that A Ă X is closed, and moreover, so is every subset of A, which
means that the induced subspace topology on A is the discrete topology. Since K is compact, this
makes A Ă K a compact discrete space, contradicting the assumption that A is infinite.

Step 3: We claim that for every n ě 0, every compact subset K Ă Xn is contained in a finite
subcomplex of Xn. For n “ 0 this is obvious since the compact subsets of X0 are finite. By
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induction, if the claim is known for compact subsets of Xn´1, then it holds in particular for the
image of the attaching map ϕα : Sn´1 Ñ Xn´1 of any n-cell enα, providing a finite subcomplex
A Ă Xn´1 whose union with enα is a finite subcomplex of Xn containing enα. In light of step 2,
this proves the claim for all compact subsets of Xn, as finite unions of finite subcomplexes are also
finite subcomplexes.

To conclude, step 3 implies that for every cell enα of the complex, the compact subset Ďenα “
ΦαpDnq Ă X is contained in a finite subcomplex, and combining this with the claim in step 2
proves the result. �

37.3. Cellular homology. We can now define the cellular chain complex (zellulärer Ket-
tenkomplex) associated to a CW-complexX . As usual, we shall fix an arbitrary choice of R-module
G to use for coefficients, and omit G from the notation whenever the choice of coefficients is unim-
portant. For n P Z, define CCW

n pXq to be the trivial module if n ă 0, and otherwise

CCW
n pXq “ CCW

n pX ;Gq :“ à
αPKn

G,

so e.g. CCW
n pX ;Zq is the free abelian group generated by the set of n-cells enα in our given cell

decomposition of X . We shall regard the cells enα as generators of CCW
n pXq, thus writing elements

of CCW
n pXq as sums ÿ

αPKn

aαe
n
α P CCW

n pXq

for coefficients aα P G, with the understanding that the sum is always finite because at most
finitely-many of the coefficients aα are nonzero. The direct sum of all these groups produces a
Z-graded R-module

CCW˚ pXq “ CCW˚ pX ;Gq :“à
nPZ

CCW
n pXq,

which we shall now turn into a chain complex by defining a suitable boundary operator B :

CCW˚ pXq Ñ CCW˚´1pXq. There is a geometric motivation for the definition: for each generator
enα of CCW

n pXq, we want Benα to be a linear combination of pn´ 1q-cells determined by the attach-
ing map ϕα, which tells us how the closure of enα is glued to the pn ´ 1q-skeleton of X . For this
purpose, associate to each α P Kn with n ě 1 the map pα : Xn Ñ Sn determined by the following
diagram:

(37.2)

Xn Dn{BDn Sn

Xn
LpXnzenαq

pα

pr
Φα

Here pr denotes the quotient projection, and the fact that ϕα maps BDn into Xn´1 Ă Xnzenα
implies that the characteristic map Φα : Dn Ñ Xn descends to a map of the quotients Dn{BDn Ñ
Xn{pXnzenαq. The key point is that the latter is a homeomorphism, thus we can invert it to define
pα “ Φ´1

α ˝ pr as a map from Xn Ñ Sn after identifying Sn with Dn{BDn. This doesn’t quite
make sense if n “ 0 since we cannot write “D0{BD0 “ S0,” nonetheless there is a natural map
of X0{pX0ze0αq to S0 “ t1,´1u sending the cell e0α to 1 and the equivalence class represented by
every other 0-cell to ´1. This map is a bijection except in the special case X0 – t˚u, i.e. when
there is only one 0-cell e0α and X0ze0α “ H, but in this case the map X0{pX0ze0αq Ñ S0 is well
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defined nonetheless, so we will adopt the convention of using it to define

(37.3)
X0 S0

X0
LpX0ze0αq

pα

pr

as the analogue of (37.2) for n “ 0.

Definition 37.18. Given an n-cell enα and an pn´1q-cell en´1
β in a CW-complex X , we define

the incidence number
ren´1
β : enαs P Z

as the degree of the map
Sn´1 pβ˝ϕαÝÑ Sn´1

defined by composing the attaching map ϕα : Sn´1 Ñ Xn´1 for enα with the map pβ : Xn´1 Ñ Sn´1

defined by replacing enα with en´1
β in the diagram (37.2) or (37.3).

Observe that whenever Ďenα X en´1
β “ H, it follows that the image of ϕα : Sn´1 Ñ Xn´1 is

disjoint from en´1
β and is thus mapped to a constant by pβ : Xn´1 Ñ Sn´1, hence pβ ˝ ϕα is a

constant map and ren´1
β : enαs “ 0. In light of Corollary 37.17, this implies that the sum in the

following definition makes sense, because it can only have finitely-many nonzero terms.

Definition 37.19. For each n P N, the boundary operator CCW
n pXq BÝÑ CCW

n´1pXq is deter-
mined by linearity and the formula

Benα :“ ÿ
βPKn´1

ren´1
β : enαsen´1

β

for each α P Kn.

We define B : CCW
n pXq Ñ CCW

n´1pXq to be the trivial map for every n ď 0, as it must be since
its target is then the trivial module.

Let us work out a more useful formula for B : CCW
1 pXq Ñ CCW

0 pXq. If X0 – t˚u, then
pβ ˝ ϕα : S0 Ñ S0 always factors through a one-point space and is therefore a constant map,
implying re0β : e1αs “ 0 for all β P K0 and α P K1, so B “ 0. If there is more than one 0-cell, then
pβ : X0 Ñ S0 is the map that sends e0β to 1 P S1 and every other 0-cell to ´1 P S1, so composing
it with the attaching map ϕα : BD1 Ñ X0 produces the following possibilities:

‚ If ϕαp1q “ e0β and ϕαp´1q ‰ e0β , then pβ ˝ ϕα : S0 Ñ S0 is the identity map and thus
re0β : e1αs “ 1.

‚ If ϕαp1q ‰ e0β but ϕαp´1q “ e0β , then pβ ˝ ϕαp˘1q “ ¯1 and thus re0β : e1αs “ ´1.
‚ In all other cases, pβ ˝ ϕα is constant and thus re0β : e1αs “ 0.

Since each point of X0 is a 0-cell, we can identify it with a generator of CCW
0 pXq and thus deduce

from the remarks above the following:

Proposition 37.20. The map B : CCW
1 pXq Ñ CCW

0 pXq is determined by the formula

Be1α “ ϕαp1q ´ ϕαp´1q.
�

We shall now state two important theorems whose proofs will take up most of the next two
lectures: the first states simply that pCCW˚ pXq, Bq is a chain complex.
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Theorem 37.21. The map B : CCW˚ pXq Ñ CCW˚ pXq satisfies B2 “ 0.

The cellular homology (zelluläre Homologie) of the CW-complex X with coefficient group
G can now be defined as

HCW˚ pXq “ HCW˚ pX ;Gq :“ H˚
`
CCW˚ pX ;Gq, B˘.

The notation CCW˚ pXq and HCW˚ pXq is in some sense slightly non-ideal, as it hides the fact that
the definitions of these objects depend on more than just a space X and coefficient group G, but
also on a cell decomposition of X . The next theorem reveals why this is not a big deal.

Theorem 37.22. For any CW-complex X and any axiomatic homology theory h˚ with coeffi-
cient group G, there is a natural isomorphism HCW˚ pX ;Gq – h˚pXq.

We’ll say more in the next lecture about the precise meaning of the word “natural” in this
statement. Theorem 37.22 has several remarkable consequences that can be recognized immedi-
ately: one is that HCW˚ pXq depends (up to isomorphism) only on the topology of X and not on its
cell decomposition, and another is that all axiomatic homology theories with any given coefficient
group are isomorphic if we restrict them to spaces that are nice enough to have cell decompositions.
In light of Example 37.7, this also gives us a new explanation for why the simplicial homology of
a polyhedron depends only on its topology: the oriented simplicial chain complex of a polyhedron
is the same as its cellular chain complex!

Before trying to explain why all this is true, let’s look at a couple of examples that will make
Theorem 37.22 look more plausible.

Example 37.23. We saw in Example 37.8 that Sn for each n P N has a cell decomposition
with one 0-cell e0 and one n-cell en, so X0 “ X1 “ . . . “ Xn´1 – t˚u and Xn “ Sn. These two
cells are thus the only generators of CCW˚ pSnq, giving

CCW
k pSn;Gq “

#
G if k “ 0, n,

0 otherwise.

We claim that on this chain complex, B “ 0, hence HCW˚ pSnq “ CCW˚ pSnq, which matches our
previous computation of h˚pSnq for any axiomatic homology theory. If n ě 2, then the claim holds
trivially because for every k P Z, either the domain or the target of the map B : CCW

k pSnq Ñ
CCW
k´1pSnq is trivial. When n “ 1 there is still something to check: B : CCW

1 pSnq Ñ CCW
0 pSnq

might theoretically be nontrivial since its domain and target are both G. The map will be trivial
for every choice of coefficient group if and only if

Be1 “ re0 : e1se0
is trivial, i.e. if the incidence number re0 : e1s is 0. This is the degree of a map p ˝ ϕ : S0 Ñ S0,
where ϕ : S0 Ñ X0 – t˚u is the attaching map for e1 and p : X0 Ñ S0 sends e0 to 1 P S0. Since
both of these maps are constant, re0 : e1s “ degpp ˝ ϕq “ 0.

Example 37.24. We consider S2 with the alternative cell decomposition described in Exam-
ple 37.9, which has two k-cells ek˘ for each k “ 0, 1, 2, hence S2 “ e0` Y e0´ Y e1` Y e1´ Y e2` Y e2´,
and the k-skeleton is Xk “ Sk Ă S2 for k “ 0, 1, 2. We now have CCW

k pSnq “ 0 for k ă 0 or
k ą 2, while CCW

k pSnq “ G ‘G for each k “ 0, 1, 2, with the two factors of the coefficient group
G corresponding to the two generators ek`, ek´ P CCW

k pSn;Zq. Denote the attaching map for ek˘
by ϕk˘ : Sk´1 Ñ Xk´1, and denote the projection map as defined in (37.2) by pk˘ : Xk Ñ Sk, so
B : CCW

k pSnq Ñ CCW
k´1pSnq is now determined by

Bek` “ degppk´1` ˝ ϕk`qek´1` ` degppk´1´ ˝ ϕk`qek´1´ ,

Bek´ “ degppk´1` ˝ ϕk´qek´1` ` degppk´1´ ˝ ϕk´qek´1´ .
(37.4)



286 SECOND SEMESTER (TOPOLOGIE II)

To compute these degrees, we will need a slightly more concrete description of the maps involved.
Let us regard S2 as the unit sphere in the xyz-plane, with its 1-skeleton formed by the unit circle
in the xy-plane, and the 0-skeleton consisting of the two points p˘1, 0, 0q. It is then natural to
parametrize the characteristic maps Φ1˘ : D1 Ñ S2 of the two 1-cells e1˘ via the x coordinate,
giving

Φ1˘ : D1 Ñ S2 : x ÞÑ px,˘
a
1´ x2, 0q,

so the attaching maps ϕ1˘ : S0 Ñ S0 are the restrictions of these to BD1 and are thus both the
identity map S0 Ñ S0. Each of the maps p0˘ : X0 Ñ S0 is likewise a bijection in this example,
sending its “favorite” 0-cell e0˘ to 1 P S0 and the other one to ´1 P S0, so in fact, p0` is the identity
map S0 Ñ S0 and p0´ is the bijection sending ˘1 to ¯1. The latter has degree ´1, so we can now
fill in the coefficients for k “ 1 in (37.4) and write

Be1` “ Be1´ “ e0` ´ e0´.

For the 2-cells e2˘, the most obvious parametrization is defined by inverting the projection px, y, zq ÞÑ
px, yq, so we can define the characteristic maps by

Φ2˘ : D2 Ñ S2 : px, yq ÞÑ px, y,˘a1´ x2 ´ y2q,
and the attaching maps ϕ2˘ : S1 Ñ X1 thus become once again the identity map S1 Ñ S1. To
understand the maps p1˘ : X1 Ñ S1, let us first agree that the identification of D1{BD1 with S1

should be defined via a path γ : D1 Ñ S1 that sends ˘1 ÞÑ 1 and traverses a loop γptq P S1 with
winding number `1 as t goes from ´1 to 1. Now, p1` : S1 Ñ D1{BD1 sends the top half of the
circle S1 “ X1 to D1 via the inverse of our chosen characteristic map Φ1` and sends the bottom
half of the circle to a constant: the resulting winding number is degpp1` ˝ ϕ2˘q “ ´1. Meanwhile,
p2´ : S1 Ñ D1{BD1 sends the top half of the circle to a constant but maps the bottom half to D1

as the inverse of Φ1´, producing degpp1´ ˝ ϕ2˘q “ 1. We thus have

Be2` “ Be2´ “ ´e1` ` e1´.

With these formulas in place, we can compute the homology of CCW˚ pS2q explicitly: acting with B
on an arbitrary 2-chain ge2` ` he2´ for g, h P G gives

Bpge2` ` he2´q “ ´pg ` hqe1` ` pg ` hqe1´ “ pg ` hqp´e1` ` e1´q,
which vanishes if and only if g “ ´h, so in terms of the obvious identification of CCW

2 pS2q with
G‘G, the group of 2-cycles takes the form

ker B2 “ tpg,´gq P G‘G | g P Gu Ă CCW
2 pS2q,

which is isomorphic to G. Since CCW
3 pS2q “ 0, we conclude HCW

2 pS2q – G. To find the 1-cycles,
we similarly compute

Bpge1` ` he1´q “ pg ` hqe0` ´ pg ` hqe0´ “ pg ` hqpe0` ´ e0´q,
and this again vanishes if and only if g “ ´h, so the 1-cycles consist of all elements of the form
gpe1` ´ e1´q. But these are also boundaries since Bp´ge2`q “ gpe1` ´ e1´q, thus HCW

1 pS2q “ 0.
Finally, all 0-chains ge0` ` he0´ are cycles since CCW´1 pS2q “ 0, but under the obvious isomorphism
CCW

0 pS2q “ G‘G we have

im B1 “ tpg,´gq P G‘G | g P Gu Ă CCW
0 pS2q,

so HCW
0 pS2q is isomorphic to the quotient of G‘G by this subgroup, which is again G. The end

result therefore matches the n “ 2 case of Example 37.23.
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It is not too hard to extend Example 37.24 to a computation of HCW˚ pSnq for every n P N

in terms of the cell decomposition Sn “ e0` Y e0´ Y . . . Y en` Y en´. Getting all the signs right is
a bit of a pain, but all coefficients will again work out to ˘1 in such a way that all nontrivial
k-cycles are also boundaries for k “ 1, . . . , n ´ 1, but the groups ker Bn and CCW

0 pSnq{ im B1 are
again both G. The fact that getting all the signs right is a bit tricky is an argument for doing the
computation via the simpler cell decomposition Sn “ e0 Y en instead, as in Example 37.23, so we
will invest considerable effort during the next lecture into proving that this is allowed, because the
isomorphism class of HCW˚ pXq depends in general only on the topology of X and not on its cell
decomposition.

Let’s do one more easy example.

Example 37.25. We saw in Example 37.14 that the closed oriented surface Σg of genus g ě 0

has a cell decomposition with one 0-cell e0, 2g cells of dimension one which we can label

e1a1 , e
1
b1
, . . . , e1ag , e

1
bg
,

and a single 2-cell e2, which is the interior of the usual polygon with 4g sides. In particular, the 0-
skeleton X0 is a single point, and the 1-skeleton X1 is a wedge of 2g circles labeled a1, b1, . . . , ag, bg
that all intersect only at X0. Since there is only one 0-cell, all of the 1-cells are cycles in CCW

1 pΣgq:
Be1aj “ Be1bj “ 0 for j “ 1, . . . , g.

The attaching map ϕ : S1 Ñ X1 of the 2-cell is a loop that traverses a1, then b1, then a1 again
backwards and b1 again backwards, then moves on to a2, b2 and so forth, ending with bg backwards.
Composing this with the projection pa1 : X1 Ñ S1 that collapses X1ze1a1 to a point, we obtain
a concatenation of the loop a1 with a constant path and then a´1

1 followed by another constant
path, resulting in a map S1 Ñ S1 with degree 0. The same happens with all the other projections
paj , pbj , so that all of the incidence numbers in the computation of Be2 vanish and we obtain

Be2 “ 0.

This proves that B “ 0 for the entire cellular chain complex with arbitrary coefficients, hence

HCW
k pΣg;Gq “ CCW

k pΣg;Gq –
$’&’%
G for k “ 0, 2,

G2g for k “ 1,

0 for k ă 0 and k ą 2.

37.4. Exercises.

Exercise 37.1 (*). Prove Propositions 37.3 and 37.4 concerning the definition of the topology
of a CW-complex.

Exercise 37.2. Show that if xk P S8 is a convergent sequence, then there exists n P N such
that xk P Sn for every k. (Note that this statement follows immediately from Proposition 37.16,
but it is worth trying to do the exercise independently of this, in order to develop some intuition
as to why Proposition 37.16 is true.)
Hint: Given x P Sn Ă S8 and a sequence xk P S8 such that xk R Sk for all k, construct a
neighborhood U Ă S8 of x such that xk R U for all k.

Exercise 37.3. Convince yourself that if K is a simplicial complex and its polyhedron X “
|K| is viewed as a CW-complex as in Example 37.7, then its cellular chain complex CCW˚ pXq is
isomorphic to its oriented simplicial chain complex C∆˚ pKq.
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Figure 18. The two cell decompositions of the Klein bottle that are considered
in Exercise 37.4.

Exercise 37.4. Figure 18 shows two spaces that you may recall from Topologie I are both
homeomorphic to the Klein bottle. Each also defines a cell complex X “ X0YX1YX2 consisting
of one 0-cell, two 1-cells (labeled a and b) and one 2-cell.

(a) Compute HCW˚ pX ;Zq, HCW˚ pX ;Z2q and HCW˚ pX ;Qq for both complexes. (You’ll know
you’ve done something wrong if the answers you get from the two complexes are not
isomorphic!)

(b) Recall that the rank (Rang) of a finitely generated abelian group G is the unique integer
k ě 0 such that G – Zk ‘ T for some finite group T . Verify for both cell decompositions
of the Klein bottle above thatÿ

k

p´1qk rankHCW
k pX ;Zq “ÿ

k

p´1qk dimZ2
HCW
k pX ;Z2q “

ÿ
k

p´1qk dimQH
CW
k pX ;Qq “ 0.

(Congratulations, you’ve just computed the Euler characteristic of the Klein bottle! A
comprehensive discussion of this invariant is coming up in Lecture 40.)

Exercise 37.5. The complex projective n-space CP
n is a compact 2n-manifold defined as

the set of all complex lines through the origin in Cn`1, or equivalently,

CPn “ pCn`1zt0uqL „
where two points z, z1 P Cn`1zt0u are equivalent if and only if z1 “ λz for some λ P C. It is
conventional to write elements of CPn in so-called homogeneous coordinates, meaning the equiva-
lence class represented by pz0, . . . , znq P Cn`1 is written as rz0 : . . . : zns. Notice that CPn can be
partitioned into two disjoint subsets

Cn – tr1 : z1 : . . . : zns P CP
nu and CP

n´1 – tr0 : z1 : . . . : zns P CP
nu.

(a) Show that the partition CPn “ Cn Y CPn´1 gives rise to a cell decomposition of CPn

with one 2k-cell for every k “ 0, . . . , n.
(b) Compute H˚pCPnq and H˚pCPnq for an arbitrary coefficient group.

Hint: This is easy.

38. Invariance of cellular homology

Our goal in this lecture is to prove Theorem 37.22 for finite-dimensional CW-complexes: more
precisely, given any axiomatic homology theory h˚ with coefficients G “ h0pt˚uq and a CW-
complex X that is equal to its N -skeleton XN for some N P N, we will establish an isomorphism
hnpXq – HCW

n pX ;Gq for every n ě 0. Dropping the condition dimX ă 8 will then be the main
objective of the next lecture.
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38.1. The isomorphism HCW˚ pXq – h˚pXq. The key idea behind the proof of Theo-
rem 37.22 is to establish a relationship between h˚pXq and the homology of a chain complex
built out of the long exact sequences of the pairs pXn, Xn´1q and pXn`1, Xnq. It will turn out
that the latter chain complex can be identified naturally with CCW˚ pXq.

Lemma 38.1. For all n P N, pXn, Xn´1q is a good pair in the sense of Definition 34.3.

Proof. Since Xn “ Xn´1 Yϕn

š
αPKn Dn, it suffices to set V :“ Xn´1 Yϕn

š
αPKnpDnzt0uq.

�

By Theorem 34.7, we now have a natural isomorphism h˚pXn, Xn´1q – rh˚pXn{Xn´1q for
each n ě 1. Observe next that the disjoint union of the characteristic maps of n-cells defines a
map of pairs

Φn :“ ž
αPKn

Φα :
ž
αPKn

pDn, BDnq Ñ pXn, Xn´1q.
We claim that this map descends to a homeomorphism between the quotients

Φn :
ž
αPKn

Dn

O ž
αPKn

BDn –ÝÑ Xn{Xn´1.

Indeed, under the usual identification Dn{BDn “ Sn that regards the collapsed boundary of Dn

as a base point in Sn, the quotient on the left hand side here becomes the wedge sum
Ž
αPKn Sn,

with all copies of Sn attached at this base point. By inspection, the right hand side is exactly the
same thing: XnzXn´1 is the union of all the n-cells, which Φn identifies with copies of D̊n, and
the quotient collapses the boundaries of all these disks to a point. With this understood, it follows
that the map Φn˚ at the bottom of the following diagram is an isomorphism, and so therefore is
the map at the top:

h˚
´š

αPKnpDn, BDnq
¯

h˚pXn, Xn´1q

rh˚´šαPKn Dn
Mš

αPKn BDn
¯ rh˚pXn{Xn´1q.

Φn˚

– –
Φn˚

Applying the additivity axiom (in conjunction with the five-lemma as in Exercise 28.8) to identify
h˚

´š
αPKnpDn, BDnq

¯
with

À
αPKn h˚pDn, BDnq, this proves:

Lemma 38.2. The characteristic maps Φα : pDn, BDnq Ñ pXn, Xn´1q determine isomorphismsà
αPKn

pΦαq˚ :
à
αPKn

h˚pDn, BDnq –ÝÑ h˚pXn, Xn´1q

for each n P N. �

The long exact sequence of pDn, BDnq in reduced homology implies that the connecting homo-
morphisms

hkpDn, BDnq B˚ÝÑ rhk´1pSn´1q –
#
G if k “ n,

0 if k ‰ n

are isomorphisms for all k and n, thus we’ve proved

(38.1) hkpXn, Xn´1q –
#
CCW
n pX ;Gq “À

αPKn G if k “ n,

0 if k ‰ n.
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We’ve been assuming n ě 1 so far, but it is not hard to incorporate n “ 0 into this discussion: if
we set

X´1 :“ H,

then hkpX0, X´1q “ hkpX0q is simply the homology of a discrete space, i.e. the disjoint union of
one-point spaces

X0 “ ž
αPK0

t˚u,

so that (38.1) is also correct in this case due to the dimension and additivity axioms. The group
hnpXn, Xn´1q can therefore serve as a stand-in for CCW

n pX ;Gq in our proof of Theorem 38.10.
The plan going forward is to use the Eilenberg-Steenrod axioms to construct a boundary oper-

ator on
À

nPZ hnpXn, Xn´1q and prove that the homology of the resulting chain complex is isomor-
phic to h˚pXq. The last step will then be to show that our boundary map on

À
nPZ hnpXn, Xn´1q

matches the cellular boundary map B : CCW˚ pXq Ñ CCW˚´1pXq under our identification.
Let us first derive some more consequences from the vanishing of hkpXn, Xn´1q for k ‰ n.

Observe that whenever either k ą n or k ă n´ 1, the long exact sequence of pXn, Xn´1q contains
a segment of the form

(38.2) 0 “ hk`1pXn, Xn´1q Ñ hkpXn´1q Ñ hkpXnq Ñ hkpXn, Xn´1q “ 0,

implying that the inclusion Xn´1 ãÑ Xn induces an isomorphism hkpXn´1q –ÝÑ hkpXnq. This has
two immediate consequences. For k ą n, we can apply these isomorphisms repeatedly to decrease
n to 0:

hkpXnq – hkpXn´1q – . . . – hkpX0q – à
αPK0

hkpt˚uq “ 0,

where at the last step we have applied the additivity and dimension axioms, using the fact that X0

is a discrete space. This already proves a quite nontrivial fact that we did not yet know, though
you may have expected it: for any homology theory, the homology groups of an n-dimensional
CW-complex vanish in dimensions greater than n.

Lemma 38.3. For every k ą n, hkpXnq “ 0. �

Similarly, starting with k ă n and applying (38.2) repeatedly to increase n gives:

Lemma 38.4. For every k ă n, the inclusions Xn ãÑ Xn`1 ãÑ Xn`2 ãÑ . . . induce isomor-
phisms hkpXnq – hkpXn`1q – hkpXn`2q – . . .. �

We can now proceed to the heart of the proof of Theorem 37.22. We define for each n ě 1 a
map

βn : hnpXn, Xn´1q Ñ hn´1pXn´1, Xn´2q
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by combining the long exact sequences of the pairs pXn, Xn´1q and pXn`1, Xnq in the following
diagram:
(38.3)

0 hnpXn´1q 0

hn`1pXnq hn`1pXn`1q hn`1pXn`1, Xnq hnpXnq hnpXn`1q hnpXn`1, Xnq

hnpXn, Xn´1q 0

hn´1pXn´1q

jn`1 Bn`1

βn`1

in

jn

Bn

In other words, we define βn`1 :“ jn ˝ Bn`1 for each n ě 0, and of course β0 :“ 0. (We can use
the convention X´1 :“ H so that the diagram also makes sense in the case n “ 0.) The relation
β0 ˝ β1 is then trivially true, while for every n ě 1, we have

βn ˝ βn`1 “ jn´1 ˝ Bn ˝ jn ˝ Bn`1 “ 0

since Bn ˝ jn “ 0, thus we can now regard the sequence

(38.4) . . .Ñ hnpXn, Xn´1q βnÑ hn´1pXn´1, Xn´2q Ñ . . . . . .Ñ h1pX1, X0q β1Ñ h0pX0q β0Ñ 0Ñ . . .

as a chain complex whose individual chain groups are canonically isomorphic to the chain groups
in CCW˚ pXq. The exactness of the horizontal and vertical sequences in the diagram now give us
the following observations: first, in is surjective, and thus descends to an isomorphism

(38.5) hnpXnq{ ker in hnpXn`1q.in

–

Second, jn´1 is injective, thus

kerβn “ kerpjn´1 ˝ Bnq “ ker Bn “ im jn,

and since jn is also injective, it maps hnpXnq isomorphically to kerβn. Moreover, it maps the
subgroup ker in “ im Bn`1 isomorphically to imβn`1, implying that jn descends to an isomorphism

(38.6) hnpXnq{ ker in kerβn{ imβn`1.
jn

–

The latter is of course the nth homology group of the chain complex (38.4). Let us at this point
make a simplifying assumption and suppose the CW-complex X is finite-dimensional: then there
exists N P N such that X “ XN . For any given integer n ě 0 we can then take N ě n` 1 without
loss of generality, and use Lemma 38.4 to conclude via (38.5) and (38.6) that

kerβn{ imβn`1 – hnpXn`1q – hnpXn`2q – . . . – hnpXNq “ hnpXq.
We will discuss in the next lecture how to lift the assumption dimX ă 8, but if you are

willing to accept this assumption for now, then the proof that h˚pXq – HCW˚ pXq will be complete
as soon as we can show that the boundary maps βn in (38.4) are the same as our usual cellular
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boundary maps. In other words, we need to prove that the diagram

CCW
n pXq hnpXn, Xn´1q

CCW
n´1pXq hn´1pXn´1, Xn´2q

–

B βn

–

commutes for every n, where the horizontal maps are the canonical isomorphisms that we discussed
above. The result that B2 “ 0 on CCW˚ pXq will also follow from this, since we already know
βn´1 ˝ βn “ 0.

Here is a useful observation: the characteristic maps Φα : pDn, BDnq Ñ pXn, Xn´1q also induce
maps of quotients Dn{BDn Ñ Xn{Xn´1 such that the direct sum of the induced map on reduced
homology

(38.7)
à
αPKn

pΦαq˚ :
à
αPKn

rhnpDn{BDnq Ñ rhnpXn{Xn´1q

is an isomorphism. Indeed, under the natural isomorphisms between relative homology for good
pairs and reduced homology of quotients, this is equivalent to Lemma 38.2. The advantage of
rewriting this map in terms of quotients is, however, that we can explicitly write down its inverse.
We recall the projections pα : Xn Ñ Xn{pXnzenαq “ Dn{BDn that appear in the definition of the
cellular boundary map, and notice that pα sends Xn´1 to the base point in Dn{BDn represented
by points in the boundary, hence it descends to a map

pα : Xn{Xn´1 Ñ Dn{BDn.
Lemma 38.5. The inverse of the map (38.7) isź

αPKn

ppαq˚ : rhnpXn{Xn´1q Ñ à
αPKn

rhnpDn{BDnq.
Proof. Since we already know that (38.7) is an isomorphism, it will suffice to prove thatś

βppβq˚ ˝
À

αpΦαq˚ is the identity map on
À

α
rhnpDn{BDnq. This follows from the fact that

pα ˝ Φα : Dn{BDn Ñ Dn{BDn is the identity map and thus induces the identity on rhnpDn{BDnq,
while for β ‰ α, pβ ˝Φα is a constant map and thus factors through a one-point space, so the map
it induces on rhnpDn{BDnq is trivial. �

Here’s a diagram to help us understand what βn has to do with the cellular boundary map:

(38.8)

CCW
n pXq CCW

n´1pXq

À
αPKn hnpDn, BDnq À

αPKn
rhn´1pBDnq À

βPKn´1
rhn´1pDn´1{BDn´1q

hnpXn, Xn´1q rhn´1pXn´1q rhn´1pXn´1{Xn´2q

hn´1pXn´1, Xn´2q hn´1pXn´1{Xn´2, Xn´2{Xn´2q

À
α B˚
–À

αpΦαq˚– À
αpϕαq˚

BCW

Bn
βn

q˚

jn´1 –

ś
βppβq˚ –

–

The following details deserve clarification:
‚ The map labeled q˚ is induced by the quotient projection q : Xn´1 Ñ Xn´1{Xn´2.
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‚ Regarding the same quotient projection as a map of pairs produces the horizontal map
at the bottom, which we proved in Theorem 34.7 is an isomorphism. Composing the
latter with (the inverse of) the lower right vertical isomorphism from the reduced long
exact sequence of pXn´1{Xn´2, Xn´2{Xn´2q produces the usual natural isomorphism
hn´1pXn´1, Xn´2q –Ñ rhn´1pXn´1{Xn´2q.

‚ We have replaced hn´1pXn´1q with rhn´1pXn´1q for the middle term in the composition
βn “ jn´1 ˝ Bn, which is fine because the connecting homomorphism in the long exact
sequence of a pair always has its image in redued homology anyway.

‚ The diagram is intended to serve as a definition of the map BCW : CCW
n pXq Ñ CCW

n´1pXq,
i.e. it is what βn : hnpXn, Xn´1q Ñ hn´1pXn´1, Xn´2q turns into after using canonical
isomorphisms to replace its domain and target with cellular chain groups.

The point here is really just to replace the target hn´1pXn´1, Xn´2q of βn with rhn´1pXn´1{Xn´2q
so that we can then use Lemma 38.5 to identify the latter with CCW

n´1pXq via an explicit formula.
The resulting formula for BCW isź

βPKn´1

ppβq˚ ˝
à
αPKn

pϕαq˚ :
à
αPKn

rhn´1pSn´1q Ñ à
βPKn´1

rhn´1pSn´1q.

This is determined by the collection of endomorphisms of rhn´1pSn´1q induced by pβ ˝ ϕα for all
α P Kn and β P Kn´1, and by Theorem 36.17, each of these maps is just multiplication by the
degree of pβ ˝ϕα, also known as the incidence number ren´1

β : enαs. This proves that BCW is indeed
simply the cellular boundary map B, and in particular, the latter satisfies B2 “ 0.

The proof of Theorem 37.22 in the case dimX ă 8 is now complete up to one minor quibble:
not every detail in the presentation above made sense in the case n “ 0, in particular where the
quotient Dn{BDn was mentioned. But these discrepancies are easy to fix; see Exercise 38.2.

38.2. The relative case. There is also a relative version of cellular homology. A CW-pair
(CW-Paar) is a pair of CW-complexes pX,Aq such that A is a subcomplex of X . In this case
CCW˚ pAq is a subcomplex of CCW˚ pXq, i.e. it is a subgroup preserved by the boundary map, giving
rise to a quotient chain complex

CCW˚ pX,Aq “ CCW˚ pX,A;Gq :“ CCW˚ pXqLCCW˚ pAq.
The homology of this complex is the relative cellular homology

HCW˚ pX,Aq “ HCW˚ pX,A;Gq :“ H˚
`
CCW˚ pX,A;Gq˘.

Theorem 37.22 generalizes to this setting as follows.

Theorem 38.6. For any CW-pair pX,Aq and any axiomatic homology theory h˚ with coeffi-
cient group G, there is a natural isomorphism HCW˚ pX,A;Gq – h˚pX,Aq.

The proof of this theorem in the finite-dimensional case is Exercise 38.1. It is a somewhat
lengthy exercise, but it is not fundamentally difficult—every step is simply a minor generalization
of something that we saw in the proof of Theorem 37.22, and working through it is one of the best
ways to achieve a deeper understanding of the isomorphism HCW˚ pXq – h˚pXq.

38.3. Cellular maps and naturality. By this point you should not be surprised to learn
that one can define a category CWrel whose objects are CW-pairs, such that CCW˚ : CWrel Ñ
ChpR-Modq and HCW

n : CWrel Ñ R-Mod become functors. But I still need to tell you what the
morphisms in CWrel are.
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Definition 38.7. A continuous map f : X Ñ Y between CW-complexes is called a cellular
map (zelluläre Abbildung) if fpXnq Ă Y n for every n ě 0. More generally, if pX,Aq and pY,Bq
are CW-pairs, a map of CW-pairs is a cellular map f : X Ñ Y such that fpAq Ă B. (Its
restriction f |A : AÑ B is then automatically a cellular map.)

Example 38.8. If X and Y are polyhedra (and therefore also CW-complexes as explained in
Example 37.7), then any simplicial map f : X Ñ Y is also a cellular map.

In contrast to simplicial maps, a cellular map f : X Ñ Y need not generally map cells of X to
cells of Y . Instead, the image of an individual cell enα Ă X may cover many n-cells enβ Ă Y , and it
may cover some of them multiple times, which can be measured by an incidence number analogous
to the one appearing in the definition of B. On the 0-skeleton, the situation is straightforward:
since fpX0q Ă Y 0 and each 0-cell e0α is just a single point, fpe0αq is always a specific 0-cell in Y , so
that for each 0-cell e0β of Y we can define

re0β : e0αs :“
#
1 if fpenαq “ e0β ,

0 otherwise.

For n ě 1, the key observation is that since fpXnq Ă Y n and fpXn´1q Ă Y n´1, f descends to a
map of quotients, Xn{Xn´1 Ñ Y n{Y n´1 and we can therefore consider the composition

(38.9) Sn – Dn{BDn ΦαÝÑ Xn{Xn´1 fÝÑ Y n{Y n´1 prÝÑ Y n
LpY nzenβq Φ

´1
βÝÑ Dn{BDn – Sn,

where the map labeled pr is the natural quotient projection, and the map Φβ on quotients is
invertible for the same reason as before. We shall denote the degree of this map by

renβ : enαs P Z.

This incidence number vanishes whenever enβ X f
`Ďenα˘ “ H since the map in (38.9) is in this case

constant, so Proposition 37.16 implies that for each individual enα Ă X , there are at most finitely
many enβ Ă Y with renβ : enαs ‰ 0. This allows us to define a homomorphism

f˚ : CCW˚ pXq Ñ CCW˚ pY q
acting on the generators enα P CCW

n pXq as
(38.10) f˚enα “

ÿ
en
β

renβ : enαsenβ,

where the sum ranges over all n-cells enβ Ă Y and has only finitely many nonzero terms.
As a sanity check, it is a simple but worthwhile exercise to show that if X and Y are the same

CW-complex and f : X Ñ Y is the identity map, the incidence number renβ : enαs is 1 for α “ β

and 0 otherwise, so in particular, f˚ : CCW˚ pXq Ñ CCW˚ pY q is then the identity homomorphism.
Another worthwhile exercise is to show that if f : X Ñ Y and g : Y Ñ Z are cellular maps, then

pg ˝ fq˚ “ g˚ ˝ f˚ : CCW˚ pXq Ñ CCW˚ pZq.
This discussion of induced maps extends in an obvious way to the relative case: if f : pX,Aq Ñ

pY,Bq is a map of CW-pairs, then f˚ maps CCW˚ pAq into CCW˚ pBq and thus descends to a homo-
morphism

f˚ : CCW˚ pX,Aq Ñ CCW˚ pY,Bq.
The proof of the next theorem will arise naturally from the proof of the much bigger theorem that
follows it.
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Theorem 38.9. For any map of CW-pairs f : pX,Aq Ñ pY,Bq, f˚ : CCW˚ pX,Aq Ñ CCW˚ pY,Bq
is a chain map and thus induces homomorphisms f˚ : HCW

n pX,Aq Ñ HCW
n pY,Bq for every n. In

particular, the cellular chain complex and cellular homology with coefficients in any given R-module
G define functors

CCW˚ “ CCW˚ p¨;Gq : CWrel Ñ ChpR-Modq, and HCW
n “ HCW

n p¨;Gq : CWrel Ñ R-Mod,

where CWrel denotes the category of CW-pairs, with morphisms defined as maps of CW-pairs.

We can now clarify the meaning of the word “natural” in Theorems 37.22 and 38.6.

Theorem 38.10. Suppose h˚ is an axiomatic homology theory with coefficient group G. Then
the isomorphisms HCW

n pX,A;Gq – hnpX,Aq for CW-pairs pX,Aq P CWrel are natural in the sense
that for any map of CW-pairs f : pX,Aq Ñ pY,Bq, the diagram

HCW
n pX,A;Gq hnpX,Aq

HCW
n pY,B;Gq hnpY,Bq

ΨpX,Aq
–

f˚ f˚
ΨpY,Bq
–

commutes.

In the language of category theory, this theorem says the following. There is a functor CWrel Ñ
Toprel that sends each CW-pair to the underlying pair of spaces and each map of CW-pairs to
the underlying continuous map, and composing hn with this functor for any n P Z produces a
functor CWrel Ñ R-Mod. Theorems 38.6 and 38.10 together define a natural transformation from
HCW
n p¨;Gq to the latter functor, associating to every CW-pair pX,Aq the isomorphism ΨpX;Aq.
For the proof of Theorem 38.10, we shall focus on the absolute case and leave the relative case

as an exercise.
If f : X Ñ Y is a cellular map, then it defines a map of pairs pXn, Xn´1q Ñ pY n, Y n´1q

for every n, and thus induces homomorphisms from every term in the diagram (38.3) to the
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corresponding term in a similar diagram for Y . Something like this:

hnpY n´1q

hn`1pY nq hn`1pY n`1q hn`1pY n`1, Y nq hnpY nq hnpY n`1q

hnpY n, Y n´1q

hnpXn´1q hn´1pY n´1q

hn`1pXnq hn`1pXn`1q hn`1pXn`1, Xnq hnpXnq hnpXn`1q . . .

hnpXn, Xn´1q

hn´1pXn´1q

Bn`1

βn`1
jn

in

f˚

Bn`1

βn`1

f˚

in

jn

f˚

All of the red arrows in this three-dimensional diagram are maps induced by f , and the diagram
commutes due to the naturality of long exact sequences. In particular, we now have

hn`1pXn`1, Xnq hnpXn, Xn´1q

hn`1pY n`1, Y nq hnpY n, Y n´1q,

βn`1

f˚ f˚
βn`1

so that f˚ defines a chain map from the chain complex (38.4) to the corresponding chain complex
for Y , and therefore determines a chain map HCW˚ pXq Ñ HCW˚ pY q. To relate this to the map
f˚ : h˚pXq Ñ h˚pY q, recall that the isomorphism HCW

n pXq “ kerβn{ imβn`1 – hnpXq is defined
in terms of the maps in and jn in the diagram, along with the map induced by the inclusion
Xn`1 ãÑ X , and all of these commute with f˚, thus we also obtain

HCW
n pXq hnpXq

HCW
n pY q hnpY q.

–

f˚ f˚

–

To finish, we just need to check that under the canonical identification of hnpXn, Xn´1q
and hnpY n, Y n´1q with CCW

n pXq and CCW
n pY q respectively, the map f˚ : hnpXn, Xn´1q Ñ

hnpY n, Y n´1q matches the formula we gave in (38.10) for maps CCW
n pXq Ñ CCW

n pY q induced
by cellular maps. This will prove simultaneously the statement that the homomorphism in (38.10)
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is a chain map. Here is the analogue of the diagram (38.8) for the situation at hand:

(38.11)

CCW
n pXq CCW

n pY q

À
enαĂX

rhnpDn{BDnq À
en
β
ĂY rhnpDn{BDnq

rhnpXn{Xn´1q rhnpY n{Y n´1q

fCW˚

À
αpΦαq˚–

f˚

ś
βppβq˚ –

The direct sums here are over the set of all n-cells enα in X or enβ in Y , and the diagram is to
be understood as a definition of the map fCW˚ : CCW

n pXq Ñ CCW
n pY q, which is equivalent to

f˚ : hnpXn, Xn´1q Ñ hnpY n, Y n´1q under the canonical isomorphisms. It produces the formula

fCW˚ “ ź
e
β
nĂY

ppβq˚ ˝ f˚ ˝
à
enαĂX

pΦαq˚ :
à
enαĂX

rhnpSnq Ñ à
en
β
ĂY

rhnpSnq,
and this map is determined by the set of all its “matrix elements”

ppβq˚ ˝ f˚ ˝ pΦαq˚ “ ppβ ˝ f ˝ Φαq˚ : rhnpSnq Ñ rhnpSnq
for each individual enα Ă X and enβ Ă Y . Applying Theorem 36.17 again, this map is multiplication
by degppβ ˝ f ˝ Φαq “ renβ : enαs, thus fCW˚ does indeed match the formula given in (38.10) for
f˚ : CCW

n pXq Ñ CCW
n pY q.

The proof of Theorem 38.10 is now complete except for one detail that is outsourced to Exer-
cise 38.2.

The major unresolved issue we still have is the simplifying assumption dimX ă 8 that was
imposed in order to argue that hnpXn`1q – hnpXq. We will discuss in the next lecture how to lift
this assumption.

38.4. Exercises.

Exercise 38.1 (*). Prove Theorem 38.6 on the isomorphism h˚pX,Aq – HCW˚ pX,A;Gq for
finite-dimensional CW-pairs pX,Aq and any axiomatic homology theory h˚ with coefficients G.
Hint: Start by showing that CCW

n pX,A;Gq is canonically isomorphic to hnpXn Y A,Xn´1 Y Aq,
and instead of the long exact sequence of the pair pXn, Xn´1q, consider the long exact sequence
of the triple pXn YA,Xn´1 YA,Aq.

Exercise 38.2. Some portions of the proofs of Theorems 37.22 and 38.10 given above did not
make sense for n “ 0, especially when Dn{BDn was mentioned. Adapt the discussion as needed for
that particular case.

39. Direct limits and infinite-dimensional cell complexes

If X is an infinite-dimensional CW-complex, then the arguments of the previous lecture do
not suffice to prove HCW˚ pX ;Gq – h˚pXq for every axiomatic homology theory h˚ with coefficient
group G. What they do prove is that for every integer n ě 0, there are isomorphisms

HCW
n pX ;Gq – hnpXn`1q – hnpXn`2q – hnpXn`3q – . . . ,

where the maps hnpXn`kq Ñ hnpXn`k`1q are induced by the inclusions Xn`k ãÑ Xn`k`1, and
moreover, these isomorphisms are natural in the sense that for any cellular map f : X Ñ Y , the
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induced homomorphism f˚ : HCW
n pX ;Gq Ñ HCW

n pY ;Gq fits into a commutative diagram

HCW
n pX ;Gq hnpXn`1q hnpXn`2q hnpXn`3q . . .

HCW
n pY ;Gq hnpY n`1q hnpY n`2q hnpY n`3q . . .

–

f˚

–

f˚

–

f˚

–

f˚

– – – –

To get from here to a computation of hnpXq, the idea is to interpret X as a “limit” of the sequence
of spaces X0, X1, X2, . . . , Xn, . . . as n Ñ 8. If the functor hn could be shown to be “continuous”
with respect to such limits, we would conclude

(39.1) hnpXq “ hn
`
lim
kÑ8X

k
˘ “ lim

kÑ8 hnpX
kq,

and the value of this limit seems intuitively clear since all the groups in the sequence

hnpXn`1q, hnpXn`2q, hnpXn`3q, . . .
are isomorphic to HCW

n pX ;Gq. To make all this precise, we need to explain in what sense a
topological space X can be a “limit” of a sequence of spaces tXku8k“0, and similarly for a sequence
of abelian groups or R-modules such as thnpXkqu8k“0. We will then see that the continuity relation
(39.1) really does hold for any sequence Xk consisting of the skeleta of a CW-complex.

39.1. Direct systems, targets and limits. Suppose J is a set with a pre-order ă, i.e. ă
is reflexive (α ă α) and transitive (α ă β and β ă γ implies α ă γ), but the relations α ă β

and β ă α need not imply α “ β, so ă need not be a partial order. Recall that pJ,ăq is called
a directed set (gerichtete Menge) if for every pair α, β P J , there exists γ P J with γ ą α and
γ ą β. The most common directed set in our examples will be pN,ďq, or sometimes pN0,ďq where
N0 :“ t0u Y N. Some more interesting examples will arise when we discuss Poincaré duality and
Čech (co-)homology later in this semester; see also Example 39.5 below.

In the following, we use the notation X fÑ Y to indicate that f is a morphism from X to Y ,
where X and Y may be objects in an arbitrary category. In this way we can use commutative
diagrams to encode relations between compositions of morphisms in any category—one should keep
in mind however that the literal meaning of such a diagram may vary radically depending on the
category we are working with.

Definition 39.1. Given a category C , a direct system (induktives System) tXα, ϕβαu in C
over the directed set pJ,ăq associates to each α P J an object Xα of C , along with morphisms

ϕβα P HompXα, Xβq for each α ă β

such that
ϕαα “ IdXα

and the diagram

Xα Xβ Xγ

ϕβα

ϕγα

ϕγβ

commutes for every triple α, β, γ P J with α ă β ă γ.

Remark 39.2. Exercise 27.3 shows that a pre-order ă on a set J can be encoded by calling
J the collection of objects in a category J , such that for each pair x, y P J , the set of morphisms
Hompx, yq contains exactly one element whenever x ă y and is otherwise empty. A direct system
in C over pJ,ăq is then nothing other than a (covariant) functor J Ñ C .
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Example 39.3. For any CW-complex X , its collection of skeleta tXnu8n“0 forms a direct
system in Top over pN0,ďq, with the maps ϕmn for eachm ě n defined as the inclusionsXn ãÑ Xm.
Similarly, the skeleta of a CW-pair define a direct system in Toprel.

Example 39.4. For any axiomatic homology theory h˚ taking values in the category of R-
modules, the homologies of the skeleta of a CW-complex form direct systems in R-Mod over pN0,ďq:
indeed, for each k P Z, there is a direct system consisting of the modules thkpXnqu8n“0 and for
every m ě n the map hkpXnq Ñ hkpXmq induced by the inclusion Xn ãÑ Xm.

The last example illustrates the following general observation, which is immediate from the
definitions:

Proposition 39.5. If tXα, ϕβαu is a direct system in A over pJ,ăq, and F : A Ñ B is a
covariant functor, then tFpXαq,Fpϕβαqu forms a direct system in B over pJ,ăq. �

The notion of “convergence” for a direct system will necessarily look somewhat different from
what we’ve seen before for sequences or nets: in most categories, there is no obvious topology
or metric with which to measure how closely the objects Xα approach some limiting object X8
as α P J becomes large. What we do have in every category is the notion of morphisms and the
composition function pf, gq ÞÑ f ˝g, so this is the structure that we will use. The idea is to measure
the convergence of a direct system tXα, ϕβαu in terms of the morphisms from each Xα to other
fixed objects in the category.

Definition 39.6. For a direct system tXα, ϕβαu in C over pJ,ăq, a target tY, fαu of the
system consists of an object Y of C together with associated morphisms fα P HompXα, Y q for
each α P J such that the diagram

Xα Xβ

Y

ϕβα

fα fβ

commutes for every pair α, β P J with α ă β.

Definition 39.7. A target tX8, ϕαu of the direct system tXα, ϕβαu is called a direct limit59
(induktiver Limes) of the system and written as

X8 “ limÝÑtXαu
if it satisfies the following “universal” property: for all targets tY, fαu of tXα, ϕβαu, there exists a
unique morphism f8 P HompX8, Y q such that the diagram

Xα X8

Y

ϕα

fα
f8

commutes for every α P J .
The essential meaning of a direct limit can be encoded in the diagram

Xα Xβ Xγ . . . limÝÑtXαu

Y

ϕβα ϕγβ

59Direct limits are also sometimes called inductive limits, and they are a special case of a more general notion
in category theory called colimits (Kolimes); cf. Exercise 39.8.
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where we assume α ă β ă γ ă . . . P J . The key feature of the object limÝÑtXαu is that whenever
an object Y and morphisms Xα Ñ Y in a commuting diagram of this type are given, the “limit”
morphism from limÝÑtXαu to Y indicated by the dashed arrow must also exist and be unique.

Note that from these definitions, there is generally no guarantee that a direct limit exists, and
if it exists then it is generally not unique. Indeed, the proof of the following is an easy exercise:

Proposition 39.8. If tX, fαu is a direct limit of tXα, ϕβαu and Y is another object such that
there exists an isomorphism ψ P HompX,Y q, then tY, ψ˝fαu is also a direct limit of tXα, ϕβαu. �

The non-uniqueness exhibited by the proposition above is however the worst thing that can
happen: if tX, fαu and tY, gαu are any two direct limits of the same system tXα, ϕβαu, then the
universal property provides unique morphisms g8 P HompX,Y q and f8 P HompY,Xq satisfying
g8 ˝ fα “ gα and f8 ˝ gα “ fα for every α P J . It follows that f8 ˝ g8 is the unique morphism
from X to X satisfying pf8 ˝ g8q ˝ fα “ fα for every α P J , which implies f8 ˝ g8 “ IdX . A
similar argument shows g8 ˝ f8 “ IdY , thus X and Y are isomorphic, and there is a distinguished
isomorphism relating them. For this reason, we shall typically feel free to refer to “the” (rather
than “a”) direct limit of any system for which a limit exists.

The next result computes direct limits in a situation that is of concrete interest for the homology
of a CW-complex X : recall from the previous lecture that for each k P Z, the sequence of homology
groups hkpX0q Ñ hkpX1q Ñ . . .Ñ hkpXnq Ñ hkpXn´1q Ñ . . . stabilizes as nÑ 8, i.e. the maps
induced by the inclusions Xn ãÑ Xn`1 all become isomorphisms as soon as n is sufficiently large.
The intuition here is the same as in the elementary observation that for any sequence that is
“eventually constant,” its limit is what you think it should be. The proof is Exercise 39.2.

Proposition 39.9. Suppose tXα, ϕβαu is a direct system in C over pJ,ăq with the property
that for some α0 P J , ϕγβ P HompXβ , Xγq is an isomorphism for every β, γ P J with β ą α0 and
γ ą α0. For each α P J , choose γ P J such that γ ą α and γ ą α0, and define

ϕα :“ ϕ´1
γα0

˝ ϕγα P HompXα, Xα0
q.

Then the morphism ϕα does not depend on the choice of the element γ P J , and tXα0
, ϕαu defines

a direct limit of the system, i.e. Xα0
“ limÝÑtXαu. �

39.2. Constructions of direct limits. For the categories that we are most interested in,
we will see presently that direct limits always exist and can be described in more concrete terms.

Lemma 39.10. Suppose tXα, ϕβαu is a direct system in C over pJ,ăq, where C is any category
in which objects are sets (possibly with extra structure) and morphisms are maps between them.
For any α, β P J , x P Xα and y P Xβ, define the relation x „ y to mean

x „ y ô ϕγαpxq “ ϕγβpyq for some γ P J with γ ą α and γ ą β.

Then „ is an equivalence relation on the set-theoretic disjoint union
š
αPJ Xα.60

Proof. See Exercise 39.3. �

Proposition 39.11. If tXα, ϕβαu is a direct system in Top over pJ,ăq, then its direct limit
is the space

limÝÑtXαu “
ž
αPJ

Xα

O
„,

60The set-theoretic disjoint union of a collection of sets tXαuαPJ can be defined in general as the set
tpα, xq | α P J, x P Xαu, i.e. it is a union of all the sets Xα, but defined such that even if some pair of the sets Xα

and Xβ for α ‰ β have elements in common, they are each identified with disjoint subsets of
š

γ Xγ . The disjoint
union of topological spaces is defined in the same way, but with the extra structure of a topology, which for the
purposes of Exercise 39.3 is not needed.
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where the equivalence relation is defined as in Lemma 39.10, and the associated morphisms ϕα :

Xα Ñ limÝÑtXαu are the compositions of the inclusions Xα ãÑš
βPJ Xβ with the quotient projection.

Moreover, the topology on limÝÑtXαu is the strongest topology for which the maps ϕα : Xα Ñ limÝÑtXαu
are continuous for all α P J .

Proof. Abbreviate X8 “ š
αXα

L„. The topology of X8 is determined from that of the
individual spaces Xα via the quotient and disjoint union topologies: concretely, this means that
a set U Ă X8 is open if and only if its preimage q´1pUq Ă š

βXβ via the quotient projection
q :

š
βXβ Ñ X8 is open, and the latter is true if and only if q´1pUq X Xα is open in Xα for

every α P J . Since q´1pUq XXα “ ϕ´1
α pUq, this means that U Ă X8 is open if and only if every

ϕ´1
α pUq Ă Xα is open, thus characterizing the topology of X8 as the strongest for which every

map ϕα : Xα Ñ X8 is continuous. An easy corollary of this observation is that for any other space
Y , a map f : X8 Ñ Y is continuous if and only if the maps f ˝ ϕα : Xα Ñ Y are continuous for
all α P J (cf. Prop. 37.4).

It is clear that tX8, ϕαu is a target since for any α, β P J with α ă β, the relation

ϕβ ˝ ϕβαpxq “ ϕαpxq for all x P Xα

follows from the fact that x „ ϕβαpxq. Now assuming tY, fαu is another target, we need to show
that there is a unique continuous map f8 : X8 Ñ Y satisfying the condition f8˝ϕα “ fα for every
α P J . To write down f8pxq for an arbitrary element x P X8, observe that since the quotient
projection q :

š
βXβ Ñ X8 is surjective, we have x “ qpxαq “ ϕαpxαq for some α P J and

xα P Xα Ăš
βXβ , so in order to achieve f8 ˝ ϕα “ fα, we are forced to define

f8pxq :“ fαpxαq.
We claim that f8pxq is then independent of the choice of element xα P q´1pxq. Indeed, suppose
β P J and xβ P Xβ Ăš

γ Xγ such that ϕβpxβq “ qpxβq “ x. The equivalence xα „ xβ then means
that for some γ P J satisfying γ ą α and γ ą β,

ϕγαpxαq “ ϕγβpxβq “: xγ P Xγ ,

and thus fγpxγq “ fαpxαq “ fβpxβq. This proves that a map f8 : X8 Ñ Y with the desired
properties is well defined and uniquely determined, though a remark is still required on why f8 is
continuous: this follows from the previous paragraph since f8 ˝ ϕα “ fα : Xα Ñ Y is continuous
for every α P J . �

Remark 39.12. Proposition 39.11 extends in an obvious way to give a concrete description of
any direct limit in the category Toprel of pairs of spaces.

Consider the specific direct system of topological spaces tXnu8n“0 from Example 39.3, con-
sisting of the skeleta of a CW-complex X with maps Xm ãÑ Xn for n ě m defined by inclusion.
Considering the quotient X8 :“š8

n“0X
n
L„ as in Proposition 39.11 along with the natural maps

ϕn : Xn Ñ X8, the disjoint union of the inclusion maps in : Xn ãÑ X descends to the quotient as
a bijection

8ž
n“0

in :

8ž
n“0

Xn
M
„ –ÝÑ X

which identifies ϕn with the inclusion in for each n. Since the topology of both X8 and X

is the strongest for which the maps ϕn or in respectively are all continuous, this bijection is a
homeomorphism, and we’ve proved:

Corollary 39.13. For the direct system of Example 39.3 formed by the skeleta of a CW-
complex X,

limÝÑtXnu “ X,
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with the associated morphisms Xn Ñ limÝÑtXnu defined as the inclusions Xn ãÑ X. �

We next consider the analogue of Proposition 39.11 in the category R-Mod of R-modules.

Proposition 39.14. If tGα, ϕβαu is a direct system in R-Mod over pJ,ăq, then its direct limit
is the module

limÝÑtGαu “
à
αPJ

Gα

N
H,

were H Ă À
αGα is the submodule generated by all elements of the form g ´ ϕβαpgq for g P Gα

and β ą α, and the associated homomorphisms ϕα : Gα Ñ limÝÑtGαu are the compositions of the
natural inclusions Gα ãÑÀ

β Gβ with the quotient projection.

Proof. Abbreviating G8 “ À
αGα

M
H , it is easy to see that tG8, ϕαu is a target. Given

another target tA,ψαu, the condition ψβ˝ϕβα “ ψα for each β ą α implies that the homomorphismà
αPJ

ψα :
à
αPJ

Gα Ñ A

vanishes on the submodule H and thus descends to a homomorphism ψ8 : G8 Ñ A that satisfies
ψ8 ˝ ϕα “ ψα for all α. �

Remark 39.15. A minor variation on Proposition 39.14 gives a similar description of direct
limits in the category of chain complexes; see Exercise 39.4.

39.3. The mapping telescope. We have seen above that any CW-complex X can be iden-
tified with the direct limit of its skeleta. Combining Proposition 39.9 with the computations of the
previous lecture proves moreover that for any axiomatic homology theory h˚ and any k P Z, the
direct system of R-modules thkpXnqu8n“0 stabilizes as n Ñ 8 and thus has direct limit hkpXnq
for any n sufficiently large, which matches HCW

k pXnq “ HCW
k pXq. This gives an isomorphism

HCW
k pXq – limÝÑthkpXnqu8n“0.

The isomorphism HCW˚ pXq – h˚pXq will therefore follow if we can prove that the functors hk
behave “continuously” under this direct limit, i.e. the question becomes

limÝÑthkpXnqu – hk
`
limÝÑtXnu˘?

It is time to insert a word of caution: the next example shows that singular homology does not
always behave as nicely as one would hope with respect to direct limits.

Example 39.16. Define tXαuαPJ to be the collection of all countable subspaces of S1, with a
partial order assigned to the index set such that

α ă β ô Xα Ă Xβ .

In this case we can define ϕβα : Xα ãÑ Xβ to be the inclusion map and regard tXα, ϕβαu as
a direct system of topological spaces. One can show that limÝÑtXαu is homeomorphic to S1, but
limÝÑtH1pXα;Zqu is not isomorphic to H1pS1;Zq; see Exercise 39.5.

To see nonetheless why it might sometimes be true that limÝÑthkpXαqu – hk
`
limÝÑtXαu˘, let us

observe first that there is always a natural morphism between these two objects. Indeed, suppose
more generally that tXα, ϕβαu is a direct system in some category A over pJ,ăq, and F : A Ñ B
is a covariant functor, thus producing a direct system tFpXαq,Fpϕβαqu in B. If limÝÑtXαu exists,
then the natural morphisms

Xα limÝÑtXαuϕα
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for every α P J induce morphisms

FpXαq FplimÝÑtXαuqΦα:“Fpϕαq

which satisfy

Φβ ˝Fpϕβαq “ Fpϕβq ˝ Fpϕβαq “ Fpϕβ ˝ ϕβαq “ Fpϕαq “ Φα

for all β ą α and thus make tFplimÝÑtXαuq,Φαu a target of the system tFpXαq,Fpϕβαqu. If we
assume that limÝÑtFpXαqu also exists, then it now follows via the universal property of the direct
limit that there is a limiting morphism

(39.2) limÝÑtFpXαqu FplimÝÑtXαuq.Φ8

In the setting of a homology theory h˚ and a CW-complex X with its direct system of skeleta
tXnu8n“0, taking F :“ hk for some k P Z in the discussion above gives us a natural homomorphism

(39.3) limÝÑthkpXnqu8n“0 hkpXq.Φ8

The following result then fills the final gap in our proof of the isomorphism HCW
k pX ;Gq – hkpXq

for all CW-complexes:

Theorem 39.17. For all CW-complexes X, axiomatic homology theories h˚ and k P Z, the
natural map (39.3) is an isomorphism.

The proof of this theorem uses an ingenious trick in which the direct limit X “ limÝÑtXnu8n“0

is replaced by a slightly different space that is a target of the system “up to homotopy”. We can
frame the setup a bit more generally: rather than assuming the Xn are the skeleta of a given
CW-complex, suppose to start with that we are simply given a sequence of spaces and maps

X0 f0ÝÑ X1 f1ÝÑ X2 f2ÝÑ . . . .

This sequence is to be understood as a direct system in Top, where the associated map Xm Ñ Xn

for any n ą m is defined as a composition of successive maps f i. The direct limit of this system
can be constructed as in Proposition 39.11, but instead of that, we shall consider the mapping
telescope of the sequence, defined as the space

T :“ `
X0 ˆ r0, 1s˘Yf0

`
X1 ˆ r1, 2s˘Yf1

`
X2 ˆ r2, 3s˘Yf2 . . . ,

where for each n ě 0, the set Xn “ Xnˆtn` 1u is attached to Xn`1 “ Xn`1ˆtn` 1u along the
map fn. The mapping telescope comes with a sequence of inclusions

Xn “ Xn ˆ tnu inãÑ T,

such that the diagram

(39.4)
X0 X1 X2 . . .

T

f0

i0

f1

i1 i2

commutes up to homotopy, meaning that compositions formed by distinct paths between two
objects on the diagram need not be identical maps, but they are homotopic. In particular, the
inclusions in : Xn ãÑ T make T a target of the system tXn, fnu if the latter is regarded as a direct
system in the homotoy category hTop, and one can show that this target even satisfies a weak
version of the universal property for direct limits in hTop, though this is not strictly correct—in
reality, T is not a direct limit in any category, but is an example of something slightly different
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called a homotopy colimit. For present purposes, it is not necessary to know what this means, but
the following easy observation will be important: by the homotopy axiom, applying the functor
hk to the entirety of the homotopy-commutative diagram (39.4) produces a genuine commutative
diagram

hkpX0q hkpX1q hkpX2q . . .

hkpT q

f0˚

i0˚

f1˚

i1˚ i2˚ ,

thus making hkpT q a target of the direct system of R-modules thkpXnqu8n“0, so that there is a
unique limiting homomorphism

(39.5) limÝÑthkpXnqu8n“0 Ñ hkpT q
Lemma 39.18. The map (39.5) is always an isomorphism.

Proof. By Proposition 39.14, we can identify limÝÑthkpXnqu8n“0 with the quotient of the direct
sum

À8
n“0 hkpXnq by the submodule generated by all elements of the form c ´ fn˚ c P hkpXnq ‘

hkpXn`1q for n ě 0 and c P hkpXnq. As it turns out, that is precisely the same description that
we get for hkpT q if we compute it using the long exact sequence of the mapping torus established
in Lecture 35. Indeed, T can be identified with the mapping torus of the map

8ž
n“0

Xn fÝÑ
8ž
n“0

Xn

whose restriction to Xm Ă š8
n“0X

n for each m ě 0 is Xm fmÝÑ Xm`1. Theorem 35.1 thus gives
a long exact sequence

. . . ÝÑ hk

´ ž
ně0

Xn
¯

ΦkÝÑ hk

´ ž
ně0

Xn
¯
ÝÑ hkpT q ÝÑ hk´1

´ž
ně0

Xn
¯

Φk´1ÝÑ hk´1

´ ž
ně0

Xn
¯
ÝÑ . . . ,

where Φk :“ 1´f˚. One can always turn a long exact sequence into a short exact sequence with a
desired term in the middle: in the case at hand, one obtains from this trick a short exact sequence

0 ÝÑ cokerΦk ÝÑ hkpT q ÝÑ kerΦk´1 ÝÑ 0.

Now, using the additivity axiom, we can identify Φk with the map¨̊
˚̊̊̊
˚̋̊

1 0 0 0 ¨ ¨ ¨
´f0˚ 1 0 0 ¨ ¨ ¨
0 ´f1˚ 1 0 ¨ ¨ ¨
0 0 ´f2˚ 1 ¨ ¨ ¨
0 0 0 ´f3˚ ¨ ¨ ¨
...

...
...

...
. . .

‹̨‹‹‹‹‹‹‚:
8à
n“0

hkpXnq ÝÑ
8à
n“0

hkpXnq,

which is easily seen to be injective for every k P Z, turning the exact sequence above into an
isomorphism

cokerΦk
–ÝÑ hkpT q.

But in fact, the image of Φk in
À8

n“0 hkpXnq is precisely the submodule that gets quotiented out
in order to construct the direct limit, and this isomorphism is precisely the map (39.5). �

The mapping telescope T of the sequence tXn, fnu is a different space from the direct limit
X :“ limÝÑtXnu, and in general hkpT q and hkpXq also are not isomorphic. The situation is nicer,
however, if we impose a few extra assumptions that hold in the case where tXnu is the sequence
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of skeleta of a CW-complex. A simplifying feature in that situation is that the spaces Xn are all
subsets of the direct limit X , and the maps fn : Xn Ñ Xn`1 are all inclusions. The mapping
telescope can thus be understood as a subset of X ˆ r0,8q,

T “ `
X0 ˆ r0, 1s˘Y `

X1 ˆ r1, 2s˘Y `
X2 ˆ r2, 3s˘Y . . . Ă X ˆ r0,8q.

Proposition 39.19. Assume X is a CW-complex and

A0 Ă A1 Ă A2 Ă . . . Ă
8ď
n“0

An “ X

is a nested sequence of subcomplexes such that for every n ě 0, the n-skeleton Xn is contained in
Am for some m ě 0. Then for the mapping telescope T Ă Xˆr0,8q of the direct system consisting
of the spaces tAnu8n“0 and their inclusions, there exists a deformation retraction of Xˆr0,8q to T .

The proof of this proposition uses the following lemma.

Lemma 39.20. For any CW-pair pX,Aq, there exists a deformation retraction of X ˆ r0, 1s to
the subset pAˆ r0, 1sq Y pX ˆ t1uq.

Proof. We start by constructing a deformation retraction of pX0YAqˆr0, 1s to pAˆ r0, 1sqY`
X0 ˆ t1u˘. This is easy: one only has to push e0αˆr0, 1s to e0αˆt1u for each isolated 0-cell e0α that
does not belong to A. One then proceeds inductively: Assuming for some n P N that a suitable
deformation retraction of pXn´1 Y Aq ˆ r0, 1s to pAˆ r0, 1sq Y `

Xn´1 ˆ t1u˘ has already been
constructed, one must extend it so that Xn´1 is replaced by Xn. This simply requires extending
it to each individual n-cell enα, which amounts to extending a given deformation retraction of
Sn´1 ˆ r0, 1s to a deformation retraction of Dn ˆ r0, 1s, and you will easily convince yourself that
this can be done, roughly for the same reasons that Dn ˆr0, 1s admits a deformation retraction to
the subset pDn ˆ t1uq Y pSn´1 ˆ r0, 1sq. The topology of a CW-complex is defined such that any
map constructed in this manner by induction on the dimensions of the skeleta is automatically
continuous. �

Proof of Proposition 39.19. We define a homotopy H : I ˆX ˆ r0,8q Ñ X ˆ r0,8q as
follows. For t P r1{2, 1s, Hpt, ¨q : X ˆ r0,8q Ñ X ˆ r0,8q is a map that fixes X ˆ r1,8q, is the
identity for t “ 1, and for t “ 1{2 is a retraction to pA0 ˆ r0, 1sq Y pX ˆ r1,8qq constructed via
Lemma 39.20. For t P r1{4, 1{2s, we apply Lemma 39.20 again to construct a further deformation
fixingXˆr2,8q so that at t “ 1{4, we have a retraction to pA0ˆr0, 1sqYpA1ˆr1, 2sqYpX ˆ r2,8qq.
Continuing in this manner with an infinite sequence of deformations, one obtains a deformation
defined for t P p0, 1s, but it has the property that for each n ě 0, the deformation does not change
anything on An ˆ r0,8q for t ą 0 sufficiently close to 0. Since each finite-dimensional skeleton of
X is contained in one of the subsets An, it follows that the deformation has a unique continuous
extension to t “ 0, and this extension produces a retraction of X ˆ r0,8q to T . �

Proof of Theorem 39.17. For each n ě 0, we can put the inclusions Xn ãÑ X , in : Xn ãÑ
T , X “ X ˆ t0u ãÑ X ˆ r0,8q and T ãÑ X ˆ r0,8q together in a diagram

Xn X

T X ˆ r0,8q
in ,

which is not strictly commutative but commutes up to homotopy, and Proposition 39.19 tells us
that the bottom arrow is a homotopy equivalence, which is also obviously true of the arrow at
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the right. By the homotopy axiom, this gives rise to a strictly commutative diagram of homology
groups

hkpXnq hkpXq

hkpT q hkpX ˆ r0,8qq
in˚ –

–
,

in which two of the arrows are already known to be isomorphisms, and therefore also a diagram

8à
n“0

hkpXnq hkpXq

hkpT q hkpX ˆ r0,8qq
À

n i
n˚

–

–

.

Both of the maps defined on
À

n hkpXnq in this diagram descend to its quotient by the image of
the map Φk that appeared in the proof of Lemma 39.18, and this quotient is the direct limit of the
homology groups, giving rise to another commutative diagram

limÝÑthkpXnqu8n“0 hkpXq

hkpT q hkpXq ˆ r0,8q
– –

–
,

in which the top arrow is the natural map in the statement of the theorem, while the arrow at the
left is the isomorphism in Lemma 39.18. �

We will not carry out the details here, but this entire discussion can be extended to the setting
of a CW-pair pX,Aq. Using hnpXn Y A,Xn´1 Y Aq as substitutes for the relative cellular chain
groups CCW

n pX,Aq as sketched in Exercise 38.1, one obtains isomorphisms

HCW
k pX,Aq –Ñ hkpXk`1YA,Aq –Ñ hkpXk`2YA,Aq –Ñ . . .

–Ñ limÝÑthkpXnYA,Aqu8n“0 Ñ hkpX,Aq,
in which the homomorphism at the end is determined via the universal property of the direct
limit by the maps induced by the inclusions of pairs pXn Y A,Aq ãÑ pX,Aq. It is possible to
adapt the entire mapping telescope discussion to accommodate CW-pairs and thus show that
this last map is an isomorphism. An alternative approach is to write down the obvious long
exact sequence in cellular homology that results from the short exact sequence 0 Ñ CCW˚ pAq Ñ
CCW˚ pXq Ñ CCW˚ pX,Aq Ñ 0, and show that its connecting homomorphisms fit into commutative
diagrams together with B˚ : hkpX,Aq Ñ hk´1pAq and the natural maps HCW

k pX,Aq Ñ hkpX,Aq
and HCW

k´1pAq Ñ hk´1pAq. This produces a diagram relating the long exact sequences of pX,Aq
in HCW˚ and h˚, together with the natural maps from the former to the latter, and the result in
the absolute case then combines with the five-lemma to prove that HCW˚ pX,Aq Ñ h˚pX,Aq is an
isomorphism.

Finally, one should also check naturality, i.e. that the homomorphisms f˚ : HCW˚ pX,Aq Ñ
HCW˚ pY,Bq induced by cellular maps of pairs f : pX,Aq Ñ pY,Bq fit together into commutative
diagrams with the maps f˚ : h˚pX,Aq Ñ h˚pY,Bq and isomorphisms HCW˚ pX,Aq – h˚pX,Aq and
HCW˚ pY,Bq – h˚pY,Bq. In the absolute case, for a cellular map f : X Ñ Y , this amounts to
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verifying that all squares in the diagram

HCW
k pXq hkpXk`1q hkpXk`2q . . . limÝÑthkpXnqu8n“0 hkpXq

HCW
k pY q hkpY k`1q hkpY k`2q . . . limÝÑthkpY nqu8n“0 hkpY q

–

f˚

–

f˚

–

f˚

– –

f˚

– – – – –

commute, where the map between the two direct limits is uniquely determined by the universal
property. That the squares on the left commute was established in the proof of Theorem 38.10,
so the only real question here involves the rightmost square, but here also, commutativity can be
deduced from the uniqueness condition in the universal property.

We shall leave the further details as exercises, and thus regard the proofs of Theorems 37.22
and 38.10 as complete.

39.4. Singular homology of direct limits. The following discussion is not strictly neces-
sary, but you may be interested to know that in the particular case of singular homology, there
is also a more hands-on way to prove that the natural map limÝÑtHkpXnqu8n“0 Ñ HkpXq is an
isomorphism for every CW-complex X .

Recall that for each k P Z, Hk : TopÑ R-Mod is in fact the composition of two functors: the
first is C˚ : TopÑ Ch, which sends each space X to its singular chain complex with coefficients in
a given module G, and the second is Hk : ChÑ R-Mod, sending a chain complex to its homology
in degree k. The second of these two functors turns out to be extremely well behaved with respect
to direct limits.

Proposition 39.21. Suppose pJ,ăq is a directed set, with a chain complex Cα˚ associated to
each α P J and a chain map ϕβα : Cα˚ Ñ C

β˚ associated to each pair α ă β P J such that tCα˚ , ϕβαu
is a direct system in Ch over pJ,ăq. Then choosing F to be the functor Hk : Ch Ñ R-Mod for
some k P Z, the map

Φ8 : limÝÑtHkpCα˚ qu Ñ Hk

`
limÝÑtCα˚ u

˘
defined as in (39.2) is an isomorphism of R-modules.

The proof of the proposition uses the following consequence of Proposition 39.14, which makes
proving things about direct limits of abelian groups or R-modules (or chain complexes thereof)
considerably easier.

Lemma 39.22. The following statements hold for any direct system tGα, ϕβαu in R-Mod or
ChpR-Modq over a directed set pJ,ăq:

(i) For every x P limÝÑtGαu, there exists β P J and xβ P Gβ such that x “ ϕβpxβq.
(ii) For every β P J and xβ P Gβ satisfying ϕβpxβq “ 0 P limÝÑtGαu, there exists γ ą β such

that ϕγβpxβq “ 0 P Gγ .
Proof. Writing limÝÑtGαu “

À
αGα

M
H , any given element x P limÝÑtGαu is an equivalence

class represented by an element ÿ
αPJ0

gα P
à
αPJ

Gα

for some finite subset J0 Ă J . Since pJ,ăq is a directed set, we can then find an element β P J
satisfying β ą α for every α P J0, soÿ

αPJ0

gα ´
ÿ
αPJ0

ϕβαpgαq P H,

implying that xβ :“ř
αPJ0

ϕβαpgαq P Gβ satisfies ϕβpxβq “ x.
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For the second statement, we observe that ϕβpxβq “ 0 holds if and only if xβ P Gβ ĂÀ
αGα

belongs to the submodule H , meaning

(39.6) xβ “
Nÿ
i“1

pgi ´ ϕβiαi
pgiqq

for some finite collection of elements βi ą αi P J and gi P Gαi
, i “ 1, . . . , N . Choose a finite subset

J0 Ă J that contains all the αi, βi for i “ 1, . . . , N , along with an element γ P J such that γ ą α

for all α P J0. Applying the homomorphism
À

αPJ0
ϕγα to both sides of (39.6) then produces

ϕγβpxβq P Gγ on the left hand side and kills the right hand side since for each i,˜à
αPJ0

ϕγα

¸
pgi ´ ϕβiαi

pgiqq “ ϕγαi
pgiq ´ ϕγβi

˝ ϕβiαi
pgiq “ ϕγαi

pgiq ´ ϕγαi
pgiq “ 0.

We have thus proved ϕγβpxβq “ 0. �

Proof of Proposition 39.21. We prove first that Φ8 is surjective. Given a homology class
rcs P Hk

`
limÝÑtCα˚ u

˘
represented by a k-cycle c P limÝÑtCα˚ u, Lemma 39.22 implies c “ ϕβpcβq for

some β P J and cβ P Cβk , where ϕβ : C
β˚ Ñ limÝÑtCα˚ u denotes the natural morphism associated to

the direct limit. Since Bc “ 0 and ϕβ is a chain map, we have ϕβpBcβq “ 0, so by Lemma 39.22, we
can find some γ ą β and replace cβ with cγ :“ ϕγβpcβq P Cγk such that ϕγpcγq “ ϕγ ˝ ϕγβpcβq “
ϕβpcβq “ c but also Bcγ “ 0, and cγ thus represents a homology class rcγs P HkpCγ˚q. Now let

Ψγ : HkpCγ˚q Ñ limÝÑtHkpCα˚ qu
denote the natural morphism associated to the direct limit of the system tHkpCα˚ q,Φγαu, where
Φγα :“ pϕγαq˚ : HkpCα˚ q Ñ HkpCγ˚q for γ ą α. Writing Φγ :“ pϕγq˚ : HkpCγ˚q Ñ Hk

`
limÝÑtCα˚ u

˘
,

the diagram

HkpCγ˚q limÝÑtHkpCα˚ qu

Hk

`
limÝÑtCα˚ u

˘
Ψγ

Φγ
Φ8

commutes by the definition of Φ8, thus Φ8pΨγrcγsq “ Φγrcγs “ rϕγpcγqs “ rcs, proving that Φ8
is surjective.

The proof of injectivity uses all the same ideas, so we shall leave it as an exercise. �

An essential role in the proof above was played by Lemma 39.22, which is a tool for replacing
statements about direct limits with corresponding statements about individual objects in the direct
system. We saw in Exercise 39.5 that the singular homology functors Hk : Top Ñ R-Mod are
not always continuous with respect to direct limits; since Hk is the composition of two functors
Hk : Ch Ñ R-Mod and C˚ : Top Ñ Ch, Proposition 39.21 implies that something must go wrong
in general with the continuity of C˚ : Top Ñ Ch. The following result therefore contains an
extra hypothesis that is not satisfied in pathological examples such as Exercise 39.5, but certainly
is satisfied (due to Proposition 37.16) by the direct system formed by the skeleta of any CW-
complex. The key point is that since every singular n-simplex σ : ∆n Ñ limÝÑtXαu has image
contained in a compact set, this extra hypothesis will allow us to write it as ϕβ ˝σβ for some β P J
and a singular n-simplex σβ : ∆n Ñ Xβ , producing an analogue of Lemma 39.22 for the situation
at hand.

Proposition 39.23. Suppose tXα, ϕβαu is a direct system of topological spaces over pJ,ăq
satisfying the following conditions:
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(1) For every α P J , Xα is a subspace of X :“ limÝÑtXαu and the maps ϕβα : Xα Ñ Xβ and
ϕα : Xα Ñ X are the natural inclusions;

(2) Every compact subset K Ă X is contained in Xα for some α P J .
Then choosing F to be the singular chain complex functor C˚ : Top Ñ Ch with an arbitrary
coefficient group G, the chain map

Φ8 : limÝÑtC˚pXαqu Ñ C˚
`
limÝÑtXαu˘

defined as in (39.2) is an isomorphism of chain complexes.

Proof. For surjectivity, given c “ ř
i giσi P Cn

`
limÝÑtXαu˘, the finitely many singular n-

simplices σi : ∆n Ñ limÝÑtXαu can each be written as σi “ ϕαi
˝ σ1i for some αi P J and σ1i :

∆n Ñ Xαi
since ∆n is compact. We can then find β P J with β ą αi for all i and define

σ2i :“ ϕβαi
˝ σ1i : ∆n Ñ Xβ , so

σi “ ϕαi
˝ σ1i “ ϕβ ˝ ϕβαi

˝ σ1i “ ϕβ ˝ σ2i ,
producing an element cβ :“ ř

i giσ
2
i P CnpXβq such that pϕβq˚cβ “ c. Writing Ψβ : C˚pXβq Ñ

limÝÑtC˚pXαqu for the natural map associated to the direct limit, the diagram

C˚pXβq limÝÑtC˚pXαqu

C˚
`
limÝÑtXαu˘

Ψβ

pϕβq˚ Φ8

commutes by the definition of Φ8, and thus gives Φ8pΨβpcβqq “ c.
Injectivity is again proved by similar arguments, which we shall leave as an exercise. �

Applying Propositions 39.21 and 39.23 together, we’ve proved:

Theorem 39.24. Under the same hypotheses as in Proposition 39.23, there is a natural iso-
morphism

limÝÑtHkpXαqu –ÝÑ Hk

`
limÝÑtXαu˘

for every k ě 0 and every choice of coefficient group. �

39.5. Exercises.

Exercise 39.1. Prove Proposition 39.8 on the non-uniqueness of direct limits.
Remark: The invertibility of ψ is needed only for showing that tY, ψ ˝ fαu satisfies the universal
property; it is already a target without this.

Exercise 39.2 (*). Prove Proposition 39.9, on direct limits of systems that are eventually
constant.

Exercise 39.3. Prove Lemma 39.10 on the equivalence relation defined on the set-theoretic
disjoint union for any direct system of sets and maps.

Exercise 39.4. Prove the obvious analogue of Proposition 39.14 for direct systems in the
category Ch “ ChpR-Modq of chain complexes of R-modules.

Exercise 39.5. For the direct system tXαuαPJ described in Example 39.16, prove the claim
that limÝÑtXαu – S1 but limÝÑtH1pXα;Zqu is not isomorphic to H1pS1;Zq.
Hint: Describing limÝÑtXαu as in Proposition 39.11, it is not hard to find a natural bijection between
limÝÑtXαu and Ť

αPJ Xα “ S1, but you need to check that the topology of this direct limit matches
the standard topology of S1.
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Exercise 39.6. Each of the following spaces can be defined as a direct limit in terms of the
natural inclusions Fm ãÑ Fn for n ě m, where F is R or C, and we identify Fm with the subspace
Fm ‘ t0u Ă Fn. In particular, Rm`1 ãÑ Rn`1 gives rise to inclusions Sm ãÑ Sn and RPm ãÑ RPn,
and the complex version gives CP

m ãÑ CP
n. Use cell decompositions to compute the homology

with integer coefficients for each space:

(a) S8 “ limÝÑtSnunPN
(b) RP

8 “ limÝÑtRPnunPN
(c) CP

8 “ limÝÑtCPnunPN
Exercise 39.7. Suppose tXα, ϕβαu is a direct system of topological spaces such that each Xα

is a subspace of some fixed topological space X , β ą α if and only if Xα Ă Xβ , and the maps
ϕβα : Xα Ñ Xβ in this case are the natural inclusions. Let us use Proposition 39.11 to identify

limÝÑtXαu with š
αXα

M
„, in terms of the equivalence relation

Xα Q x „ y P Xβ ô ϕγαpxq “ ϕγβpyq for some γ P J with γ ą α, γ ą β.

The disjoint union of the inclusions Xα ãÑ Ť
βPJ Xβ then descends to the quotient as a bijection

limÝÑtXαu Ñ
ď
αPJ

Xα,

and we have seen examples where it is a homeomorphism: this is true in particular for the direct
system consisting of the skeleta of a CW-complex. The following example shows however that it
need not be a homeomorphism in general: let J “ p0, 1q and consider the family of sets Xt “
t0u Y pt, 1s Ă R for t P J , ordered by inclusion. The union of these sets is r0, 1s, but show that the
topological space limÝÑtXtu is not connected.

Exercise 39.8. Direct limits are a special case of a more general notion in category theory
called colimits. In order to express the definition, recall (cf. Remark 39.2) that every pre-ordered
set pJ,ăq can be encoded as a category J in which relations α ă β are viewed as morphisms
α Ñ β, and from this perspective, a direct system tXα, ϕβαu over pJ,ăq in the category C is
the same thing as a (covariant) functor F : J Ñ C . To define targets and direct limits in this
language, one can identify each object Y of C with the “constant” functor Y : J Ñ C that sends
every α P J to Y and every morphism α Ñ β of J to the identity morphism Y Ñ Y . Note that
if X ,Y : J Ñ C are two such contant functors associated to objects X,Y respectively in C , then
a natural transformation from X to Y must associate to every α P J the same morphism X Ñ Y ,
and conversely, every morphism X Ñ Y determines a natural transformation X Ñ Y. A target
tY, fαu of the system tXα, ϕβαu is now the same thing as a natural transformation TY : F Ñ Y,
assigning to each object α of J the morphism TY pαq :“ fα : Xα Ñ Y , and in this language, a
target TX : F Ñ X is called universal (and is thus a direct limit of the system) if for every target
TY : F Ñ Y, there is a unique natural transformation Φ : X Ñ Y such that TY “ Φ ˝ TX .

Having expressed the definition of a direct limit in this form, the whole discussion still makes
sense if one replaces the category J associated with the directed set pJ,ăq by an arbitrary61

category A . For reasons that may become clearer when you look at the examples below, a functor
F : A Ñ C is then often referred to as a diagram in C over A . A target is again simply a natural
transformation TX : F Ñ X to the constant functor X : A Ñ C determined by some object X

61I say “arbitrary,” but in practice, A is almost always taken to be a small category, meaning that its objects
form an honest set, rather than a proper class. In many important special cases, A contains only finitely many
objects, and there are already interesting examples (as in Exercise 39.8(c)) in which it has only two.
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of C , and it is called a colimit of the diagram if it satisfies the universal property described above.
In this case one often writes

X “ colimF ,

though it is important to keep in mind that the colimit consists of not just the object X but also
the morphisms TXpαq : Fpαq Ñ X associated to each object α of A . As with direct limits, colimits
are not guaranteed to exist, and they are also not generally unique, but the universal property
guarantees that they are unique up to canonical isomorphisms whenever they exist.

(a) If A is a category whose objects form a set J and whose morphisms consist of only the
identity morphism on each object, then a diagram A Ñ C is simply a collection tXαuαPJ
of objects in C , and a colimit of such a diagram is called a coproduct of the collection.
Flesh out the details of the following statement: coproducts in the categories Top and
Toprel are disjoint unions, and coproducts in Ab, R-Mod and Ch are direct sums.

(b) Give a concrete description of coproducts in the categories Top˚ (pointed spaces) and Grp

(not necessarily abelian groups).
Hint: Both answers are constructions that were introduced in last semester’s Topologie I
course.

(c) If A contains only two objects α, β and its morphisms consist only of the identity mor-
phisms on α, β plus exactly two morphisms α Ñ β, then a diagram F : A Ñ C can be
described as a pair of objects in C with a pair of morphisms

X Y,

f

g

and a colimit of such a diagram is called a coequalizer. Give an explicit description of
coequalizers in the categories Top and R-Mod.
Hint: Use quotients.

(d) Prove: If C is a category in which coproducts and coequalizers always exist, then every
direct system in C has a direct limit.
Hint: Special cases of this yield the explicit descriptions of direct limits in Top and R-Mod

that appear in Propositions 39.11 and 39.14.

40. Euler characteristic and fixed points

We would now like to discuss a few applications of the isomorphism

HCW˚ pX,A;Gq – H˚pX,A;Gq.
40.1. Finitely-generated homology. One of the advantages of cellular homology is that

for compact spaces, cell decompositions are always finite, so that the cellular chain complex has
only finitely-many generators. Working with coefficients in the ring R, this means in particular
that the entire chain complex is a finitely-generated R-module, and therefore so is the homology:

Corollary 40.1. If pX,Aq is a compact CW-pair, then H˚pX,A;Rq is a finitely-generated
R-module. In particular, H˚pX,A;Zq is a finitely-generated abelian group, and for any field K,
H˚pX,A;Kq is a finite-dimensional vector space over K. �

Note that the corollary is actually two statements in one, as it says on the one hand that
HnpX,A;Rq is finitely generated for each n P Z, but a second implication is that HnpX,A;Rq is
trivial for all but finitely many values of n.

It is similarly obvious that CCW
k pXq and therefore also HCW

k pXq must vanish for any CW-pair
that has no k-cells:
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Corollary 40.2. If pX,Aq is an n-dimensional CW-pair, then HkpX,Aq “ 0 for all k ą n

and every choice of coefficients. �

Remark 40.3. As I’m sure I’ve mentioned a few times by now, it is not too hard to prove
that every smooth n-manifold is triangulable and is therefore also an n-dimensional CW-complex,
so Corollary 40.2 applies to every smooth n-manifold. It also applies to every n-dimensional
topological manifold, though this is less easy to see—there exist manifolds that do not admit cell
decompositions, but it is also known that every n-dimensional manifold is homotopy equivalent to
a CW-complex of dimension n or less. Since singular homology depends only on homotopy type,
Corollary 40.2 still applies.

For a closed n-manifold, we will see another proof that HkpMq “ 0 for all k ą n when
we talk about Poincaré duality later in the semester, and that proof requires no knowledge of cell
decompositions. It’s worth mentioning that homology is in this sense very different from the higher
homotopy groups: there are plenty of n-dimensional manifolds M that have πkpMq ‰ 0 for some
k ą n, e.g. the simplest example is π3pS2q – Z. This is one of the details that makes homology
generally easier than homotopy theory.

Remark 40.4. By results of Palais [Pal66] proved in 1966, it is also known that every smooth
(but not necessarily finite-dimensional) Fréchet manifold is homotopy equivalent to a (not neces-
sarily finite-dimensional) CW-complex. Fréchet manifolds are spaces that can be covered by charts
identifying them locally with Fréchet spaces, a class of complete metrizable topological vector space
that includes all Banach spaces, plus popular non-Banach examples like the space of C8-functions
on a compact smooth manifold. For example, if M and N are two smooth finite-dimensional
manifolds and M is compact, then C8pM,Nq is naturally a Fréchet manifold. Since many results
of algebraic topology hold only for CW-complexes, Palais’s theorem makes the techniques of the
subject applicable in many of the functional-analytic settings that are used to study nonlinear
PDEs.

40.2. The Hopf trace formula. There are situations in which interesting topologically
invariant information can be extracted from the cellular chain complex without even computing
its homology. The following algebraic result makes this possible.

Theorem 40.5 (Hopf trace formula). Suppose C˚ is a finite-dimensional chain complex of
vector spaces over a field K, and f : C˚ Ñ C˚ is a K-linear chain map. Thenÿ

nPZ
p´1qn tr

´
Cn

fÑ Cn

¯
“ ÿ

nPZ
p´1qn tr

´
HnpC˚q f˚Ñ HnpC˚q

¯
.

Proof. For the boundary maps Bn : Cn Ñ Cn´1 for each n P Z, abbreviate

Zn :“ ker Bn Ă Cn, Bn :“ im Bn`1 Ă Cn, Hn :“ Zn{Bn.
Denote fCn

:“ f |Cn
: Cn Ñ Cn, and note that since f is a chain map, it restricts to these subspaces

and the quotient as linear maps

Zn
fZnÝÑ Zn, Bn

fBnÝÑ Bn, Hn
fHnÝÑ Hn,

such that the following diagram commutes

0 Zn Cn Bn´1 0

0 Zn Cn Bn´1 0

fZn fCn

Bn

fBn´1

Bn
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and its rows are exact. Here it is convenient to make use of the assumption that all these objects
are vector spaces, not just abelian groups or modules—it guarantees in particular that a short
exact sequence always splits, i.e. we can choose a subspace of Cn complementary to Zn and use
the map Bn to identify that subspace with Bn´1, giving a (non-canonical) isomorphism

Cn – Zn ‘Bn´1.

Identifying Cn in this way with Zn‘Bn´1, the map fCn
: Cn Ñ Cn becomes a matrix of the form

fCn
“
ˆ
fZn

g

0 fBn´1

˙
for some linear map g : Bn´1 Ñ Zn. Here the lower-left term vanishes because fCn

preserves the
subspace Zn, and the other off-diagonal term might not vanish because fCn

need not preserve the
complementary subspace, yet if we restrict fCn

to this subspace and project away the term in Zn,
what remains is the map Bn´1 Ñ Bn´1 induced by the same chain map f , i.e. it is the lower-right
term fBn´1

. This formula proves

(40.1) trpfCn
q “ trpfZn

q ` trpfBn´1
q.

Now apply the same argument to the diagram

0 Bn Zn Hn 0

0 Bn Zn Hn 0

fBn fZn fHn

where the maps Zn Ñ Hn are the natural quotient projections and the rows are therefore exact.
We obtain

trpfZn
q “ trpfBn

q ` trpfHn
q,

and combining this with (40.1) givesÿ
nPZ
p´1qn “trpfCn

q ´ trpfBn´1
q‰ “ ÿ

nPZ
p´1qn trpfZn

q “ ÿ
nPZ
p´1qn rtrpfBn

q ` trpfHn
qs ,

which implies the desired result after dropping the extraneous terms trpfBn
q from both sides. �

Plugging the identity map C˚ Ñ C˚ into the Hopf trace formula gives:

Corollary 40.6. For C˚ a finite-dimensional chain complex of vector spaces over a field K,ÿ
nPZ

p´1qn dimK Cn “
ÿ
nPZ
p´1qn dimKHnpC˚q.

�

40.3. Betti numbers and the Euler characteristic. Associating a sequence of abelian
groups or R-modules to every topological space is a nice thing to do, but sometimes one would
prefer something simpler, e.g. a number. There are several numerical invariants that we can now
associate to spaces in terms of their homology.

Definition 40.7. For any space X and integer k ě 0, the kth Betti number of X is the
nonnegative (or possibly infinite) integer

bkpXq :“ dimQHkpX ;Qq.
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Remark 40.8. Several alternative definitions of bkpXq will become possible once we’ve proved
the universal coefficient theorem, e.g. it will turn out that the coefficient field Q in Definition 40.7
can freely be replaced by any other field of characteristic zero. One can also use Z coefficients:
recall that according to the classification of finitely-generated abelian groups, every such group G
is isomorphic to

G – Zn ‘ T,

for a unique integer n ě 0 and a unique finite group T . Concretely, T is the torsion subgroup
of G, meaning the group of all elements g P G that satisfy mg “ 0 for some m P N. The quotient
G{T is then a finitely-generated abelian group with trivial torsion, and thus turns out to be a free
abelian group; the smallest number of elements required to generate this group is the same integer
n ě 0 that appears in the isomorphism above, and is called the rank (Rang) of G,

rankG :“ n ě 0, where G – Zn ‘ torsion.

We will see as a corollary of the universal coefficient theorem that HkpX ;Kq – HkpX ;Zq b K

whenever K is a field of characteristic zero. If HkpX ;Zq – Zn ‘T for a torsion group T , it follows
in this situation that

HkpX ;Kq – pZn bKq ‘ pT bKq – Kn

since ZbK – K and T bK is trivial, and another way of defining the Betti numbers is therefore

bkpXq “ rankHkpX ;Zq.
We will see when we study the singular cohomology groups HkpX ;Gq that bkpXq can equally well
be defined as the rank of HkpX ;Zq or the dimension of HkpX ;Kq for a field K of characteristic
zero, because another version of the universal coefficient theorem implies that these numbers are
all the same. In differential geometry, you may also see a definition of bkpMq for smooth manifolds
M as the dimension of the de Rham cohomology Hk

dRpMq, which is a vector space over R. This
matches our definition above due to de Rham’s theorem, which provides an isomorphism between
Hk

dRpMq and the singular cohomology group HkpM ;Rq with coefficients in R.

Definition 40.9. For any space X with finitely-generated singular homology over Z, the
Euler characteristic (Eulercharakteristik) of X is the integer62

χpXq “
8ÿ
k“0

p´1qkbkpXq P Z.

The usefulness of χpXq as an invariant derives from Corollary 40.6, which gives us a very easy
way to compute χpXq whenever X is a finite cell complex, without even needing to compute its
homology! The following result is a direct consequence of Corollary 40.6 and the isomorphism
HCW˚ pX ;Qq – H˚pX ;Qq.

Theorem 40.10. For any compact space X that admits a cell decomposition, every such de-
composition satisfies

8ÿ
n“0

p´1qn|Kn| “ χpXq,
where |Kn| ě 0 denotes the number of n-cells in the decomposition. �

Example 40.11. For n ě 0, we have χpSnq “ 2 when n is even and χpSnq “ 0 when n is odd.
One can see this by writing Sn as the union of one 0-cell with one n-cell, or almost as easily, by
writing Sn as the union of two k-cells for every k “ 0, . . . , n.

62Let’s be clear about this notational detail: χ is the Greek latter “chi,” not a variety of the letter “X” in a
strange font. The χ of course stands for “characteristic”.
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Example 40.12. For the closed oriented surface Σg of genus g ě 0, we computed H˚pΣgq in
Example 37.25: taking rational coefficients, the nontrivial homology groups are H0pΣg;Qq – Q,
H1pΣg;Qq – Q2g and H2pΣg;Qq – Q, thus

χpΣgq “ 1´ 2g ` 1 “ 2´ 2g.

But one can also compute χpΣgq without computing H˚pΣgq at all, just by observing that Σg has
a cell decomposition with one 0-cell, one 2-cell and 2g cells of dimension 1; this is the same cell
decomposition we used in Example 37.25, but there is no longer any need to compute the boundary
map.

Here is an application of a more combinatorial nature. Recall that a graph (Graph) consists
of a set V whose elements are called vertices (Ecken or Punkte), and a set E whose elements
are called edges (Kanten), each of which is associated to a particular pair of vertices. Graphs
are typically depicted by drawing a point for each vertex and drawing a curve for each edge such
that its end points are the two vertices associated to that edge, and in this way every graph Γ

naturally gives rise to a 1-dimensional CW-complex |Γ| whose 0-cells are the vertices and 1-cells
are the edges. The space |Γ| is compact if and only if the graph Γ is finite, meaning both V and
E are finite, and we say that Γ is connected if |Γ| is a connected space. A finite connected graph
is called a tree (Baum) if it contains no cycles, meaning there does not exist any finite sequence
of distinct vertices v0, . . . , vN P V together with a finite sequence of distinct edges e0, . . . , eN such
that the end points of ej are vj and vj`1 for j “ 0, . . . , N ´ 1 but the end points of eN are vN
and v0. Now, since |Γ| is a 1-dimensional CW-complex, we have Hkp|Γ|q “ 0 for all k except 0

and 1. If Γ is connected, then |Γ| is also path-connected and therefore H0p|Γ|;Qq – Q. Since there
are no 2-cells, H1p|Γ|;Qq is isomorphic to the subgroup of 1-cycles in CCW

1 p|Γ|;Qq, but it is not
hard to prove that if Γ is a tree, then there are also no nontrivial 1-cycles in the chain complex, so
H1p|Γ|;Qq “ 0. This proves χp|Γ|q “ 1, and combining it with Theorem 40.10, we then have:

Theorem 40.13. For any finite graph Γ with v vertices and e edges, if Γ is a tree, then
v ´ e “ 1. �

Here is an application to covering spaces. The proof of the following lemma is Exercise 40.1.

Lemma 40.14. Suppose X is a compact cell complex and π : Y Ñ X is a covering map of
finite degree d P N. Then Y admits a cell decomposition such that Y n “ π´1pXnq for every n,
and every individual n-cell enα Ă X corresponds to exactly d cells in Y whose characteristic maps
Dn Ñ Y are lifts of the characteristic map Dn Ñ X for enα. �

In conjunction with Theorem 40.10, the lemma implies:

Theorem 40.15. If X is a finite cell complex and π : Y Ñ X is a covering map of finite degree
d P N, then χpY q “ dχpXq. �

As an easy application, the fact that χpXq is always an integer allows us to deduce that there
are not very many ways for an even-dimensional sphere to be the universal cover of something else:

Corollary 40.16. If π : Sn Ñ X is a d-fold covering map, n is even and X is a CW-complex,
then d is either 1 or 2. �

Example 40.17. Clearly both options in the above corollary are possible: d “ 1 is always
possible since the identity map is a covering map, and d “ 2 occurs for the natural quotient
projection Sn Ñ RP

n.



316 SECOND SEMESTER (TOPOLOGIE II)

40.4. The Lefschetz fixed point theorem. As another application of cellular homology
and the Hopf trace formula, I’d like to address the following general question:

Question 40.18. What topological conditions on a map X
fÑ X are sufficient to guarantee

that f has a fixed point?

We saw one example last semester: by the Brouwer fixed point theorem, no conditions at all
are needed for f if X is a disk. We also saw in Lecture 36 that for X “ Sn, every map f that does
not have degree p´1qn`1 must have a fixed point—this is a homotopy-invariant condition, but of
course it is important to include the exception in this statement, as e.g. the antipodal map does
not have any fixed points.

Definition 40.19. For any space X and a field K such that H˚pX ;Kq is finite dimensional,
the Lefschetz number (Lefschetz-Zahl) of a map f : X Ñ X is defined by

LKpfq :“
ÿ
nPZ

p´1qn tr `HnpX ;Kq f˚ÝÑ HnpX ;Kq˘ P K.

In the case K “ Q, we denote this more simply by

Lpfq :“ LQpfq.
Notice that by the homotopy axiom for homology, LKpfq depends on f only up to homotopy.

Remark 40.20. We will not need to know this for our discussion, but it’s interesting to
note that while the definition above makes Lpfq a rational number, it is secretly always an
integer. If X is a finite CW-complex and f a cellular map, then this follows easily from the
Hopf trace formula, as LQpfq is then the same as the alternating sum of the traces of maps
f˚ : CCW

n pX ;Qq Ñ CCW
n pX ;Qq that are represented in the canonical basis by matrices with in-

teger entries. Without these assumptions, it follows more generally from the universal coefficient
theorem, which will give us a natural isomorphism H˚pX ;Qq – H˚pX ;Zq bQ, so that the maps
f˚ : H˚pX ;Qq Ñ H˚pX ;Qq can also be presented as matrices with integer entries. More precisely,
every endomorphism HnpX ;Zq Ñ HnpX ;Zq preserves the torsion subgroup Tn Ă HnpX ;Zq and
thus descends to an endomorphism of the free part of HnpX ;Zq,

HnpX ;ZqLTn f˚ÝÑ HnpX ;ZqLTn,
which is a free abelian group. Thus f˚ can again be presented as an integer matrix with respect
to any basis of this free group, and the alternating sum of the traces of these matrices is the
integer Lpfq.

Example 40.21. If X has finitely-generated homology and f : X Ñ X is homotopic to the
identity map, then Lpfq “ χpXq.

Theorem 40.22 (Lefschetz-Hopf). If X is a compact polyhedron and K is a field, then every
map f : X Ñ X satisfying LKpfq ‰ 0 has a fixed point.

Before discussing the proof, we give one application and a few remarks. The application is
an extension of the famous “hairy sphere” theorem (recall Theorem 35.10), and its proof requires
some knowledge of the flow of a smooth vector field from differential geometry.

Corollary 40.23. For any closed smooth manifold M with χpMq ‰ 0, there is no continuous
vector field on M that is nowhere zero.

Proof. If such a vector field exists, then we can approximate it with a smooth vector field X
that is also nowhere zero. The flow of X for some small but nonzero time t ą 0 is then a
diffeomorphism ϕtX : M Ñ M with no fixed points, but is clearly also homotopic to the identity,
thus LpϕtXq “ χpMq “ 0. �
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Remark 40.24. Another easy corollary of the theorem is that it also holds for spaces somewhat
more general than compact polyhedra: it holds in particular whenever X is a compact Euclidean
neighborhood retract, meaning X admits a topological embedding X ãÑ RN for some N P N

such that some neighborhood U Ă RN of X admits a retraction to X . It is not so hard to prove
(see [Hat02, Corollary A.9]) that all compact topological manifolds have this property, even those
which do not admit triangulations. In this situation, even if X does not have a triangulation, we
can triangulate RN finely enough so that all simplices touchingX Ă RN are contained in the neigh-
borhood U , and the retraction r : U Ñ X then makes X a retract of a compact polyhedron K Ă U

containing X . Now if f : X Ñ X has LKpfq ‰ 0, one can consider the map

i ˝ f ˝ r : K Ñ K

where i : X ãÑ K is the inclusion, and use Exercise 40.2 to prove LKpi ˝ f ˝ rq “ LKpfq, so that
Theorem 40.22 guarantees a fixed point for i˝f ˝r. But i˝f ˝rpxq “ x implies x P X and fpxq “ x.

Remark 40.25. Lefschetz’s original version of the fixed point theorem applied only to mani-
folds and was thus more restrictive, but it has the following nice feature that Theorem 40.22 lacks.
For a map f : M Ñ M on an n-manifold with at most finitely many fixed points, the Lefschetz
number Lpfq gives not only a sufficient condition but also an algebraic count of the fixed points, in
the same sense that the degree of a map f :M Ñ N counts the points in f´1pqq for any q P N . The
proof of this version is best expressed in terms of Poincaré duality and homological intersection
theory; see e.g. [Bre93, §VI.12]. As a consequence, one can then extend Corollary 40.23 to the
statement that on a closed oriented manifoldM , for any vector field that has at most finitely many
zeroes, the algebraic count of these zeroes is χpMq; this is known as the Poincaré-Hopf theorem.

Remark 40.26. It is easy to see that the compactness of X in Theorem 40.22 is essential:
for instance, R has finitely-generated homology and f : R Ñ R : x ÞÑ x ` 1 is homotopic to the
identity, hence Lpfq “ χpRq “ 1, even though f has no fixed points.

Remark 40.27. Figure 19 shows a compact space X that violates the Lefschetz fixed point
theorem because it is not a polyhedron. Indeed, X has three path-components, two (the outer and
inner circle) that are homeomorphic to S1 and one (the spiral in between) homeomorphic to R,
thus

H˚pXq – H˚pS1q ‘H˚pS1q ‘H˚pRq,
implying χpXq “ χpS1q`χpS1q`χpRq “ 0`0`1 “ 1. But it is easy to visualize a map f : X Ñ X

that is homotopic to the identity and has no fixed points, e.g. define f by a small rotation, with
radii adjusted appropriately so that it preserves the spiral. (You may notice that X is also an
example of a space that is connected but not path-connected—that is a property that polyhedra
never have.)

The idea behind the proof of Theorem 40.22 is that a map f : X Ñ X with no fixed points can
be modified to a cellular map whose induced chain map has no diagonal terms, and must therefore
have Lefschetz number zero. The main tool needed for this is the simplicial approximation theorem
(see Theorem 31.9).

Proof of Theorem 40.22. Assume X is a compact polyhedron, K is a field and f : X Ñ X

has no fixed points. Compact polyhedra are metrizable, so we can choose a metric dp¨, ¨q on X and
observe that since X is compact, there exists a number ǫ ą 0 such that

dpx, fpxqq ě ǫ ą 0 for all x P X.
After repeated subdivisions, we can assume without loss of generality that every simplex in the
triangulation of X has diameter less than ǫ{2. Now let X 1 denote the same space but with its
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Figure 19. A compact space X with χpXq “ 1 admitting maps homotopic to
the identity that have no fixed point.

triangulation further subdivided so that the simplicial approximation theorem applies, giving a
simplicial map

g : X 1 Ñ X

that is homotopic to f as a continuous map. Since the n-skeleton ofX is contained in the n-skeleton
of X 1 for every n ě 0, one can also regard g as a cellular (though not simplicial) map

g : X 1 Ñ X 1.
Now, every simplex in either X 1 or X has diameter less than ǫ{2, and since gpxq and fpxq always
lie in a common simplex of X , it follows that dpgpxq, fpxqq ă ǫ{2 for every x P X . Therefore,

dpx, gpxqq ě dpx, fpxqq ´ dpfpxq, gpxqq ą ǫ´ ǫ

2
“ ǫ

2
,

implying that x and gpxq never belong to the same simplex of X 1. It follows that the diagonal
incidence numbers renα : enαs vanish for every n-cell enα Ă X 1 defined as the interior of an n-simplex
in our subdivided triangulation, implying that the induced chain map

CCW˚ pX 1;Kq g˚ÝÑ CCW˚ pX 1;Kq
has only zeroes along the diagonal, and its trace in every dimension is therefore 0. By the Hopf
trace formula, it follows that LKpgq “ LKpfq “ 0. �

40.5. Exercises.

Exercise 40.1. Prove Lemma 40.14 on covering spaces of CW-complexes.
Hint: The key point here is that characteristic maps Dn Ñ X will always lift to the cover since Dn

is simply connected. It’s probably easiest if you argue by induction on n.

Exercise 40.2. Suppose A Ă X is a subspace with inclusion i : A ãÑ X and a retraction
r : X Ñ A, and X has finite-dimensional homology with coefficients in some field K. Show that
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H˚pA;Kq is also finite dimensional, and for any map f : AÑ A, the induced maps f˚ : HnpA;Kq Ñ
HnpA;Kq and pi ˝ f ˝ rq˚ : HnpX ;Kq Ñ HnpX ;Kq for every n P Z satisfy

trpf˚q “ trppi ˝ f ˝ rq˚q.
Hint: Write pi ˝ f ˝ rq˚ “ i˚f˚r˚ as the composition of two homomorphisms f˚r˚ : HnpX ;Kq Ñ
HnpA;Kq and i˚ : HnpA;Kq Ñ HnpX ;Kq, and recall the formula trpABq “ trpBAq.

41. Singular cohomology

Motivation. Singular cohomology assigns to each topological space X and each R-module G
a sequence of R-modules HnpX ;Gq whose direct sum we denote by

H˚pX ;Gq “à
nPZ

HnpX ;Gq, or more succinctly, H˚pXq “ à
nPZ

HnpXq.

It is closely related to singular homology, and in many (though not all) cases is isomorphic to it, but
it has a slightly different structure. The most obvious difference is that as a collection of functors
from Top to R-Mod, cohomology is contravariant, meaning that continuous maps f : X Ñ Y

induce homomorphisms
f˚ : HnpY q Ñ HnpXq,

going the opposite direction from homology. You may at this stage rightfully question what is to
be gained from this cosmetic difference: as we will see, the most significant advantage is that if we
take coefficients in the ring G :“ R, then H˚pX ;Rq has a natural product structure, called the
cup product

HkpX ;Rq bHℓpX ;Rq YÝÑ Hk`ℓpX ;Rq.
This structure can be extremely useful in computations. Moreover, we will see that in the special
case where X is a closed oriented n-manifold, Y gives rise to a product structure on homology that
has deep geometric meaning, the intersection product

Hn´kpX ;Zq bHn´ℓpX ;Zq Ñ Hn´k´ℓpX ;Zq : rM s b rN s ÞÑ rM s ¨ rN s :“ rM XN s.
This expression assumes that M and N are closed oriented submanifolds of codimension k and ℓ
respectively in X , and the right hand side should be taken with a grain of salt at the moment since
extra conditions are required in order for it to make sense, i.e. in order for the intersectionMXN Ă
X to be a submanifold of the correct dimension and thus represent a homology class. Before
explaining this, we will need to introduce Poincaré duality, which gives natural isomorphisms

HkpX ;Zq –ÝÑ Hn´kpX ;Zq
whenever X is a closed oriented n-manifold, and thus implies various unexpected relations among
the numerical invariants that one can define out of homology, e.g. the fact that every closed odd-
dimensional manifold has Euler characteristic zero. These relations can be motivated geometrically
in terms of triangulations, thus they were at least partially understood long before the develop-
ment of cohomology theory, but the proper formulation of the isomorphism requires that we first
define H˚pXq.

As further motivation, I would like to start by explaining a concrete topological application
to a familiar problem, but one that cannot be solved using homology alone. The proof below is
complete modulo a few major technical details that we will have to work through over the next
several lectures, so you may consider this as motivation for the effort that will go into those details.
We recall from Exercise 37.5 the complex projective space CPn, defined as the space of all complex
lines through the origin in Cn`1, meaning literally the quotient space

CP
n “ pCn`1zt0uqLC˚,
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where the multiplicative group C˚ :“ Czt0u is understood to act on Cn`1zt0u by scalar multipli-
cation.

Theorem 41.1. For every even n ě 0, every continuous map f : CPn Ñ CPn has a fixed
point.

Proof (modulo technical details). We saw in Exercise 37.5 that CPn has a cell decom-
position of the form e0Ye2Y . . .Ye2n, i.e. it has a single k-cell for each even k from 0 to 2n, which
makes its cellular homology trivial to compute since the boundary map is necessarily zero. We will
see that its singular cohomology can be computed in the same way via this cell decomposition,
and gives the same answer:

HkpCPn;Zq – HkpCPn;Zq –
#
Z for k “ 0, 2, 4, . . . , 2n,

0 for all other k.

We will also see that there is a universal coefficient theorem expressingHkpX ;Gq up to isomorphism
in terms of HkpX ;Zq, Hk´1pX ;Zq and G, and one deduces from this theorem two things: first,
that the Lefschetz number Lpfq P Z of a map f : X Ñ X can be computed equally well using
homology or cohomology, and second, that we are free to use H˚pX ;Zq modulo torsion in place of
H˚pX ;Qq for this computation. Thus for a map f : CPn Ñ CP

n, we can write

Lpfq “ ÿ
kPZ
p´1qk tr `HkpCPn;Zq f˚ÝÑ HkpCPn;Zq˘ “ nÿ

k“0

tr
`
H2kpCPn;Zq f˚ÝÑ H2kpCPn;Zq˘.

Now we take advantage of the cup product on H˚pCPn;Zq, which has the following properties:
‚ It is natural, i.e. for all α, β P H˚pCPn;Zq, f˚pα Y βq “ f˚α Y f˚β. (This is a general
property of the cup product with respect to continuous maps between arbitrary spaces.)

‚ If α P H2pCPn;Zq – Z is a generator, then for each k “ 0, 1, . . . , n,

αk :“ αY . . .Y αlooooomooooon
k

P H2kpCPn;Zq – Z

is also a generator. We will prove this as a corollary of Poincaré duality, which holds
since CP

n is a closed and oriented manifold.
Now fixing a generator α P H2pCPn;Zq, every continuous map f : CPn Ñ CPn gives rise to a
unique integer m P Z such that

f˚α “ mα

since H2pCPn;Zq – Z. It follows via the two properties above that for each k “ 0, . . . , n, the
generator αk P H2kpCPn;Zq satisfies

f˚pαkq “ f˚pα Y . . .Y αq “ f˚αY . . .Y f˚α “ mkαk,

and the Lefschetz number of f is therefore

Lpfq “ 1`m` . . .`mn P Z.

This is clearly not equal to 0 if m “ 1. On the other hand, if m ‰ 1, then we can rewrite it as

Lpfq “ 1´mn`1

1´m
,

which is zero if and only if mn`1 “ 1. Since m is an integer and we have already excluded the case
m “ 1, this can only happen if m “ ´1, and then only if n is odd. The result thus follows from
the Lefschetz fixed point theorem. �
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41.1. The functor Homp¨, Gq and cochains. Let’s talk about algebra. Given a chain com-
plex pC˚, Bq of R-modules, we obtain its homology in degree n P Z by applying the functor
Hn : Ch Ñ R-Mod, which discards some of the information in pC˚, Bq in the hope of obtain-
ing something more computable. The algebraic idea behind cohomology is to pre-process the chain
complex via a dualization functor before passing it to the functor Hn.

You are certainly already familiar with the notion of the dual space of a vector space. More
generally, the dual of a module A over a commutative ring R is defined as the module of R-module
homomorphisms to R,

HompA,Rq “ HomRpA,Rq “ tR-module homomorphisms AÑ Ru ,
which reproduces the definition familiar from linear algebra if R is a field. In particular, the dual
of an abelian group A is the abelian group of group homomorphisms AÑ Z.

More generally, we can fix an arbitrary R-module G and consider the functor

R-ModÑ R-Mod : A ÞÑ HompA,Gq.
This is perhaps the simplest example of a contravariant functor, as one can naturally associate
to each homomorphism Φ : AÑ B a homomorphism in the other direction

Φ˚ : HompB,Gq Ñ HompA,Gq
defined by

Φ˚pλq :“ λ ˝ Φ P HompA,Gq for λ P HompB,Gq.
You should take a moment to convince yourself that this satisfies the relations characteristic of a
contravariant functor (see Definition 27.15): the identity map 1 : AÑ A induces the identity map
1
˚ : HompA,Gq Ñ HompA,Gq, and pΦΨq˚ “ Ψ˚Φ˚ whenever Φ and Ψ can be composed.

If A is a free R-module with basis B, then homomorphisms ϕ : A Ñ G are uniquely deter-
mined by the elements ϕpbq P G for every b P B, and HompA,Gq thus has a natural bijective
correspondence with the set of all functions B Ñ G,

HompA,Gq – tfunctions ϕ : B Ñ Gu , assuming A –à
bPB

R.

This special case is important, because the modules that we feed into Homp¨, Gq in order to define
singular cohomology will always be free R-modules.

We next define what HompC˚, Gq should mean when C˚ is a chain complex with boundary
operator B : C˚ Ñ C˚´1. Since C˚ is a Z-graded R-module, we would like HompC˚, Gq to be
another Z-graded R-module: the obvious definition is then

HompC˚, Gq :“
à
nPZ

HompCn, Gq,

so that HompCn, Gq is the submodule of elements with degree n in HompCn, Gq.63 Now we can
dualize the map B : C˚ Ñ C˚ to obtain a map

B˚ : HompC˚, Gq Ñ HompC˚, Gq : α ÞÑ α ˝ B,
which sends HompCn, Gq to HompCn`1, Gq for each n P Z and clearly satisfies pB˚q2 “ 0. For
reasons that are best not to worry about right now (but see Remark 41.3), we’re going to introduce

63If you know enough algebra and are paying close attention, you might now notice an incongruity in our
notation: unless C˚ happens to be nonzero in only finitely many degrees, HompC˚, Gq as we’ve defined it is not
literally the module of all homomorphisms C˚ Ñ G. That would be

ś
nPZ HompCn, Gq, as dualizing infinite direct

sums generally gives rise to direct products. This should not be a cause for concern, you just need to keep in mind
that the notation HompC˚, Gq is not to be interpreted too literally.
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an extra sign and define

(41.1) δ : HompC˚, Gq Ñ HompC˚, Gq : α ÞÑ p´1q|α|`1B˚α,
where α P HompC˚, Gq here is assumed to be a homogeneous element of degree |α|, i.e. it belongs
to HompCn, Gq for n “ |α|. This clearly also satisfies the relation

δ2 “ 0,

and it is a map of degree `1, meaning it sends HompCn, Gq to HompCn`1, Gq for every n P Z.
We shall refer to any Z-graded R-module A˚ “ À

nPZAn endowed with a homomorphism
δ : A˚ Ñ A˚ of degree `1 satisfying δ2 “ 0 as a cochain complex. Up to a minor matter of
bookkeeping, this is the same thing as a chain complex, and the notions of chain map and chain
homotopy carry over in obvious ways: in particular, a chain homotopy between two chain maps
ϕ, ψ : A˚ Ñ B˚ of cochain complexes pA˚, δAq and pB˚, δBq is a homomorphism h : A˚ Ñ B˚ of
degree ´1 that satisfies the usual chain homotopy relation

ϕ´ ψ “ hδA ` δBh.

The cohomology of a cochain complex pA˚, δq is the Z-graded R-module

H˚pA˚, δq “à
nPZ

HnpA˚, δq :“ ker δ{ im δ,

so in other words HnpA˚, δq “ ker δn{ im δn´1 if An δnÑ An`1 denotes the restriction of δ for each
n P Z. With these notions in place, we can associate to any chain complex pC˚, Bq its cohomology
with coefficients in G: this is the collection of R-modules

HnpC˚, B;Gq :“ HnpHompC˚, Gq, δq, n P Z.

The functor that replaces a chain complex with its cohomology in any given degree n P Z can
be expressed as the composition of two functors:

Ch
Homp¨,GqÝÑ CoCh

HnÝÑ R-Mod.

Here CoCh denotes the category whose objects are cochain complexes, with morphisms defined as
chain maps, and Hn : CoCh Ñ R-Mod is a covariant functor, in fact exactly the same functor as
Hn : Ch Ñ R-Mod, but with the cosmetic difference that it is fed with cochain complexes instead
of chain complexes. The functor

Homp¨, Gq : ChÑ CoCh

replaces a chain complex pC˚, Bq with the cochain complex pHompC˚, Gq, δq as defined above, and
it is contravariant: it associates to each chain map ϕ : pA˚, BAq Ñ pB˚, BBq the dual map

ϕ˚ : pHompB˚, Gq, δAq Ñ pHompA˚, Gq, δBq,
which is a chain map since for β P HompBn, Gq,

ϕ˚δBβ “ ϕ˚
`p´1qn`1BB̊β

˘ “ p´1qn`1ϕ˚BB̊β “ p´1qn`1pBBϕq˚β “ p´1qn`1pϕBAq˚β
“ p´1qn`1BÅϕ˚β “ δAϕ

˚β.

As a consequence, the composition functors Hnp¨;Gq : Ch Ñ R-Mod are also contravariant: they
associate to each chain map ϕ : pA˚, BAq Ñ pB˚, BBq the homomorphisms HnpHompB˚, Gq, δBq Ñ
HnpHompA˚, Gq, δAq induced by the chain map ϕ˚, and we shall also denote the induced morphism
of Z-graded R-modules by

ϕ˚ : H˚pB˚, BB;Gq Ñ H˚pA˚, BA;Gq.
Two further algebraic observations are worth recording before we go back to topology.
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Proposition 41.2. If ϕ, ψ : pA˚, BAq Ñ pB˚, BBq are chain maps between chain complexes and
h : A˚ Ñ B˚ is a chain homotopy between ϕ and ψ, then the map η : HompB˚, Gq Ñ HompA˚, Gq
defined for each n P Z by

HompBn, Gq ηÝÑ HompAn´1, Gq : β ÞÑ p´1qnh˚β
is a chain homotopy between ϕ˚ and ψ˚.

Proof. We have ϕ˚ ´ ψ˚ “ pϕ ´ ψq˚ “ phBA ` BBhq˚ “ BÅh˚ ` h˚BB̊, thus for any β P
HompBn, Gq,

pδAη ` ηδBqβ “ BÅh˚β ` h˚BB̊β “ pϕ˚ ´ ψ˚qβ.
�

In category-theoretic terms, the proposition means that Homp¨, Gq descends to a well-defined
functor

Homp¨, Gq : hChÑ hCoCh,

where hCoCh is the category with cochain complexes as objects and chain homotopy classes of
chain maps as morphisms. As a consequence, Hnp¨;Gq : Ch Ñ R-Mod for each n P Z likewise
descends to a functor

Hnp¨;Gq : hChÑ R-Mod.

The second observation is that for any chain complex pC˚, Bq, the canonical pairing
(41.2) HompCn, Gq ˆ Cn Ñ G : pα, cq ÞÑ αpcq
descends to homology to give a well-defined pairing

(41.3) HnpC˚, B;Gq ˆHnpC˚, Bq Ñ G : prαs, rcsq ÞÑ xrαs, rcsy :“ αpcq.
To see that this is well defined, we observe that if δα and Bc are both assumed to be zero, then in
the case c “ Ba for some a P Cn`1, we have

αpBaq “ pB˚αqpaq “ ˘pδαqpaq “ 0,

and similarly if α “ δβ for some β P HompCn´1, Gq,
pδβqpcq “ ˘pB˚βqpcq “ ˘βpBcq “ 0.

We will often refer to (41.3) as the evaluation of cohomology classes on homology classes.

Remark 41.3. The reason for the sign in (41.1) can be understood in terms of the “chain-level”
evaluation map (41.2). Since it is bilinear, it can be expressed as a homomorphism

HompCn, Gq b Cn Ñ G,

which extends in a trivial way to all degrees as a homomorphism

(41.4) HompC˚, Gq b C˚ Ñ G

if we define αpcq :“ 0 whenever α P HompCk, Gq and c P Cℓ for k ‰ ℓ. With a little care, we can
then rephrase the fact that (41.3) is well defined as a corollary of the fact that (41.4) is a chain
map. For this, we need to make sense of HompC˚, Gq b C˚ as a chain complex. Given two chain
complexes pA˚, BAq and pB˚, BBq, there is a natural way to make A˚ b B˚ into a chain complex
with

pA˚ bB˚qn :“ à
k`ℓ“n

Ak bBℓ

by defining B : A˚bB˚ Ñ A˚bB˚ on tensor products of homogeneous elements ab b P AkbBℓ Ă
A˚ bB˚ by

Bpab bq :“ Bab b` p´1q|a|ab Bb.
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The sign in this definition is in keeping with the Koszul sign convention (cf. Remark 31.4), and we
will see more motivation for it when we later study product structures on homology; one can easily
check in any case that the presence of the sign p´1q|a| ensures the relation B2 “ 0, thus making
pA˚ b B˚, Bq a chain complex. Now, before we can regard HompC˚, Gq b C˚ as a chain complex,
we must also face the fact that HompC˚, Gq strictly speaking is not a chain complex, but a cochain
complex. However, any cochain complex becomes a chain complex if we simply reverse the degrees
by a sign, so let us write

HompC˚, Gqn :“ HompC´n, Gq
and think of δ as a homomorphism that sends HompC˚, Gqn to HompC˚, Gqn´1. The fact that
αpcq “ 0 whenever α P HompCk, Gq and c P Cℓ with k ‰ ℓ then means that the map (41.4) vanishes
on all elements of degree nonzero in the tensor product chain complex, so it becomes natural to
understand the right hand side as a chain complex that has G in degree 0 and the trivial group in
all other degrees. With this convention in place, the boundary map on the right hand side is zero,
so the chain map condition demands that for all α P HompCk, Gq and c P Cℓ,

Bpαb cq “ δαb c` p´1qkαb Bc ÞÑ pδαqpcq ` p´1qkαpBcq “ 0,

leading in the case k “ ℓ´ 1 “ n to the formula

pδαqpcq “ ´p´1qnαpBcq “ p´1qn`1pB˚αqpcq.
The sign in (41.1) is therefore necessary in order to make the evaluation HompC˚, Gq bC˚ Ñ G a
chain map in this sense.

It is not strictly necessary to adopt this sign convention, and many textbooks do not; you will
notice of course that the definition of H˚pC˚, B;Gq does not care whether the sign is included since
it does not change ker δ or im δ. But if we don’t include the sign here, we will be forced to insert
a different unwanted sign somewhere later in the development of the theory. I am trying to stay
consistent with the conventions in [Bre93].

41.2. The singular cochain complex. The singular cohomology of a pair of spaces
pX,Aq with coefficients in an R-module G is now defined by applying the algebraic processing
described above to the singular chain complex with coefficients in the ring R: that is,

H˚pX,Aq “ H˚pX,A;Gq :“ H˚`C˚pX,A;Rq;G˘ “ H˚`HompC˚pX,A;Rq, Gq˘.
As we do with homology, we shall follow the practice of omitting the coefficient group G from the
notation for cohomology in most situations where the choice of coefficients is unimportant. It is
standard to abbreviate the cochain complex HompC˚pX,A;Rq, Gq by

C˚pX,Aq “ C˚pX,A;Gq :“ Hom
`
C˚pX,A;Rq, G˘

and refer to elements of C˚pX,Aq as singular cochains with coefficients in G. Elements of
ker δ Ă C˚pX,Aq and im δ Ă C˚pX,Aq are likewise called (singular) cocycles and coboundaries
respectively. The reason to use C˚pX,A;Rq in the definition rather than chain groups with a
different choice of coefficients is that for each n ě 0, CnpX,A;Rq is a free R-module. In particular,
homomorphisms ϕ P CnpXq from CnpX ;Rq to G are uniquely determined by their values on the
generators of CnpX ;Rq, i.e. the singular n-simplices σ P KnpXq, and we therefore have a canonical
identification

CnpXq “ GKnpXq “ ź
σPKnpXq

G “ tfunctions ϕ : KnpXq Ñ Gu .

We will often use this identification to regard cochains ϕ P CnpXq simply as functions ϕ : KnpXq Ñ
G. With this understood, we plug in (41.1) and the usual formula for the boundary operator
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B : Cn`1pX ;Rq Ñ CnpX ;Rq to find a corresponding formula for the coboundary operator
δ : CnpXq Ñ Cn`1pXq, in the form

(41.5) pδϕqpσq “ p´1qn`1
n`1ÿ
k“0

p´1qkϕ`σ|Bpkq∆n`1

˘
for ϕ : KnpXq Ñ G, σ P Kn`1pXq.

In the relative case, we can think of a homomorphism ϕ : CnpX,A;Rq “ CnpX ;Rq{CnpA;Rq Ñ G

as equivalent to a homomorphism ϕ : CnpX ;Rq Ñ G that vanishes on the submodule CnpA;Rq Ă
CnpX ;Rq, so this is the same thing as a function KnpXq Ñ G that vanishes on the subset KnpAq Ă
KnpXq:

CnpX,Aq “
!
ϕ : KnpXq Ñ G

ˇ̌̌
ϕ|KnpAq “ 0

)
.

The formula (41.5) then gives the correct homomorphism δ : CnpX,Aq Ñ Cn`1pX,Aq by restric-
tion.

As a functor, Hn “ Hnp¨;Gq : Toprel Ñ R-Mod is the composition of three functors,

Toprel
C˚p¨;RqÝÑ Ch

Homp¨,GqÝÑ CoCh
HnÝÑ R-Mod,

one of which is contravariant, thus Hnp¨;Gq is also contravariant. Concretely, this means that
continuous maps of pairs f : pX,Aq Ñ pY,Bq induce “pullback” homomorphisms

f˚ : HnpY,Bq Ñ HnpX,Aq
for every n P Z. These maps are induced by the chain map f˚ : C˚pY,Bq Ñ C˚pX,Aq defined by

pf˚ϕqpcq :“ ϕpf˚cq for ϕ P CnpY,Bq, c P CnpX,A;Rq.
By the previous algebraic discussion, there is a natural pairing

H˚pX,A;Gq bH˚pX,A;Rq Ñ G : rϕs b rcs ÞÑ xrϕs, rcsy :“ ϕpcq,
which we call the evaluation of the cohomology class rϕs on the homology class rcs, and it satisfies

(41.6) xf˚rϕs, rcsy “ xrϕs, f˚rcsy for rϕs P H˚pY,B;Gq, rcs P H˚pX,A;Rq, pX,Aq fÑ pY,Bq.
Let us conclude this lecture with two straightforward but revealing computations of HnpXq

for particular values of n. We start with the case n “ 0.
For any space X , C´1pXq “ 0, thus H0pXq is simply the kernel of the map C0pXq δÑ C1pXq,

also known as the group of 0-cocycles. Under the usual identification of K0pXq with X and K1pXq
with the set of paths γ : I Ñ X , (41.5) gives

pδϕqpγq “ ˘ rϕpγp1qq ´ ϕpγp0qqs for ϕ : X Ñ G, γ : I Ñ X,

which vanishes for all paths γ if and only if ϕpxq “ ϕpyq for every pair of points x, y P X that are
in the same path-component of X . A function ϕ : X Ñ G is therefore a 0-cocycle if and only if it
is constant on path-components, meaning it is equivalent to a function π0pXq Ñ G. We’ve proved:

Theorem 41.4. For any space X and R-module G, there is a canonical isomorphism

H0pX ;Gq – ź
π0pXq

G.

�

Remark 41.5. This proves that H0pX ;Gq – H0pX ;Gq if X has only finitely-many path-
components, but otherwiseH0pX ;Gq is larger thanH0pX ;Gq. Indeed, for any collection of modules
tGαuαPJ , the direct sum

À
αPJ Gα can be identified with the submodule of the direct productś

αPJ Gα consisting of tuples tgαuαPJ that have at most finitely-many nonzero coordinates. For
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example, if the index set J is N and Gα “ Z2 for every α P J , then À
αPJ Gα is countably infinite

but
ś
αPJ Gα is uncountable.

The second computation relates H1pX ;Gq to π1pXq; we shall give a brief sketch and leave the
details as exercises. Assume X is a path-connected space, and identify ∆1 with I “ r0, 1s as usual
so that singular 1-cochains ϕ P C1pX ;Gq can be interpreted as functions from the set of paths
tγ : I Ñ Xu to G.

Theorem 41.6. For any path-connected pointed space pX, xq and any R-module G, there exists
an isomorphism

Ψ : H1pX ;Gq Ñ Hom
`
π1pX, xq, G˘ : rϕs ÞÑ Ψϕ,

defined via the formula

Ψϕprγsq :“ ϕpγq for paths γ : I Ñ X with γp0q “ γp1q “ x.

The proof of the theorem is divided up into Exercises 41.1, 41.2 and 41.3.

41.3. Exercises.

Exercise 41.1. Show that a singular 1-cochain ϕ P C1pX ;Gq is a cocycle if and only if it
satisfies both of the following:

(i) For all paths γ : I Ñ X , ϕpγq P G depends only on the homotopy class of γ with fixed
end points;

(ii) For every pair of paths α, β : I Ñ X with αp1q “ βp0q, ϕpα ¨ βq “ ϕpαq ` ϕpβq.
Hint: If σ : ∆2 Ñ X is a singular 2-simplex, one can identify its three boundary faces with paths
α, β, γ : I Ñ X such that α ¨ β is homotopic to γ with fixed end points.

Exercise 41.2. Show that a singular 1-cochain ϕ P C1pX ;Gq is a coboundary if and only if
there exists a function64 ψ : X Ñ G such that for all paths γ : I Ñ X , ϕpγq “ ψpγp1qq ´ ψpγp0qq.

Exercise 41.3. Prove that for any x P X , there is a well-defined homomorphism

Ψ : H1pX ;Gq Ñ Hompπ1pX, xq, Gq : rϕs ÞÑ Ψϕ

such that for each 1-cocycle ϕ P C1pX ;Gq, Ψϕ : π1pX, xq Ñ G is given by

Ψϕprγsq “ ϕpγq for x
γ
 x.

Then prove that Ψ is injective and surjective.
Hint: For injectivity, you need to show that if ϕpγq “ 0 for all loops γ then ϕ satisfies the
condition in Exercise 41.2. For surjectivity, it might help to observe that since H1pX ;Zq is the
abelianization of π1pX, xq and G is abelian, Hompπ1pX, xq, Gq “ HompH1pX ;Zq, Gq, so the map
Ψ : H1pX ;Gq Ñ Hompπ1pX, xq, Gq can then be identified with

H1pX ;Gq Ñ HompH1pX ;Zq, Gq : rϕs ÞÑ xrϕs, ¨y.
You then need to show that every homomorphism to G from the group Z1 of 1-cycles that vanishes
on the subgroup B1 Ă Z1 of boundaries can be extended to a homomorphism C1pX ;Zq Ñ G. Use
the fact that 0Ñ Z1 ãÑ C1pX ;Zq BÑ B0 Ñ 0 is a split exact sequence. (Why?)

64Note that since neither G nor the set of singular 0-simplices K0pXq – X in this discussion is understood to
be endowed with a topology, there is no continuity assumption on the function ψ : X Ñ G.
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42. Axioms for cohomology

Eilenberg-Steenrod revisited. Each of the Eilenberg-Steenrod axioms for homology the-
ories has an analogue that is satisfied by singular cohomology, thus giving rise to the notion of
axiomatic cohomology theories. The proof that H˚p¨;Gq satisfies the axioms is at this point quite
easy; it is mostly a matter of reusing the same lemmas that were used for proving properties of
H˚p¨;Gq, but with most of the arrows reversed.

Definition 42.1. An axiomatic cohomology theory h˚ valued in the category of R-
modules is a collection thnunPZ of contravariant functors

Toprel
hnÝÑ R-Mod : pX,Aq ÞÑ hnpX,Aq,

which also determine functors hn : TopÑ R-Mod by defining

hnpXq :“ hnpX,Hq,
with maps of pairs f : pX,Aq Ñ pY,Bq inducing homomorphisms

hnpY,Bq f˚ÝÑ hnpX,Aq.
The data of the theory also includes natural transformations δ˚ from the functor Toprel Ñ R-Mod :

pX,Aq ÞÑ hnpAq to the functor Toprel Ñ R-Mod : pX,Aq ÞÑ hn`1pX,Aq for each n P Z, such that
the following axioms are satisfied:

‚ (Homotopy) For any two homotopic maps of pairs f, g : pX,Aq Ñ pY,Bq, the induced
morphisms f˚, g˚ : h˚pY,Bq Ñ h˚pX,Aq are identical.

‚ (Exactness) For all pairs pX,Aq with inclusion maps i : A ãÑ X and j : pX,Hq ãÑ
pX,Aq, the sequence
. . . ÝÑ hn´1pAq δ˚ÝÑ hnpX,Aq j˚ÝÑ hnpXq i˚ÝÑ hnpAq δ˚ÝÑ hn`1pX,Aq ÝÑ . . .

is exact.
‚ (Excision) For any pair pX,Aq and any subset B Ă X such that there exists a continuous
function u : X Ñ I equal to 0 on B and 1 on XzA, the map induced by the inclusion
pXzB,AzBq ãÑ pX,Aq is an isomorphism

hnpX,Aq –ÝÑ hnpXzB,AzBq for every n P Z.

‚ (Dimension) For any one-point space t˚u, hnpt˚uq “ 0 for all n ‰ 0. The group h0pt˚uq
is then called the coefficient group of the cohomology theory.

‚ (Additivity) For any collection of spaces tXαuαPJ with inclusion maps iα : Xα ãÑš
βPJ Xβ , the induced homomorphisms iα̊ : h˚

´š
βPJ Xβ

¯
Ñ h˚pXαq determine an

isomorphism ź
αPJ

iα̊ : h˚
˜ž
βPJ

Xβ

¸
–ÝÑ ź

αPJ
h˚pXαq.

Theorem 42.2. For any R-module G, the singular cohomology H˚p¨;Gq is an axiomatic co-
homology theory with coefficient group G.

Proof. The main reason for the homotopy axiom is Proposition 41.2 in the previous lecture,
which implies that if the two chain maps f˚, g˚ : C˚pX,A;Rq Ñ C˚pY,B;Rq are chain homotopic,
then so are the two chain maps f˚, g˚ : C˚pY,B;Gq Ñ C˚pX,A;Gq.
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Exactness follows from the fact that if we dualize the usual short exact sequence of singular
chain complexes 0 Ñ C˚pA;Rq i˚Ñ C˚pX ;Rq j˚Ñ C˚pX,A;Rq Ñ 0, then the resulting sequence of
chain maps

(42.1) 0ÐÝ C˚pA;Gq i˚ÐÝ C˚pX ;Gq j˚ÐÝ C˚pX,A;Gq ÐÝ 0

is also exact. Indeed, under the canonical identifications of these groups with sets of functions
KnpXq Ñ G or KnpAq Ñ G, j˚ becomes the obvious inclusion

j˚ :
!
ϕ : KnpXq Ñ G

ˇ̌̌
ϕ|KnpAq “ 0

)
ãÑ tϕ : KnpXq Ñ Gu ,

and i˚ becomes the restriction map

i˚ : tϕ : KnpXq Ñ Gu Ñ tϕ : KnpAq Ñ Gu : ϕ ÞÑ ϕ|KnpAq,
which is manifestly surjective and has kernel equal to im j˚. I should caution you against thinking
that the exactness of this dualized sequence follows automatically from abstract nonsense—we will
see when we study the universal coefficient theorem that not every short exact sequence remains
exact after it is dualized. But this one does. As a result, (42.1) is what we may sensibly call
a short exact sequence of cochain complexes, which is the same thing as a short exact sequence
of chain complexes except that the coboundary operator raises degrees instead of lowering them.
The usual diagram-chasing argument therefore produces from this a long exact sequence of the
homology groups of the complexes, with a connecting homomorphism that raises the degree by 1.

The excision property is where we need to make use of the chain-level excision result established
in Theorem 33.9. Indeed, if B Ă sB Ă Å Ă A Ă X , then the inclusion i : pXzB,AzBq ãÑ
pX,Aq induces a chain homotopy equivalence i˚ : C˚pXzB,AzB;Rq Ñ C˚pX,A;Rq, meaning in
particular that there is a chain map ρ˚ : C˚pX,A;Rq Ñ C˚pXzB,AzB;Rq such that ρ˚i˚ and
i˚ρ˚ are each chain homotopic to the identity. Dualizing both i˚ and ρ˚ then produces chain maps
i˚ : C˚pX,A;Gq Ñ C˚pXzB,AzB;Gq and ρ˚ : C˚pXzB,AzB;Gq Ñ C˚pX,A;Gq such that by
Proposition 41.2, i˚ρ˚ and ρ˚i˚ are also chain homotopic to the identity, hence

i˚ : C˚pX,A;Gq Ñ C˚pXzB,AzB;Gq
is a chain homotopy equivalence and induces an isomorphism H˚pX,A;Gq Ñ H˚pXzB,AzB;Gq.

The dimension axiom and the computation of the coefficient group are straightforward since
there is only one singular n-simplex σn P Knpt˚uq for each n ě 0, giving canonical isomorphisms

Cnpt˚u;Gq –ÝÑ G : ϕ ÞÑ ϕpσnq.
The map δ : Cnpt˚u;Gq Ñ Cn`1pt˚u;Gq then becomes

δn : GÑ G : g ÞÑ p´1qn`1
n`1ÿ
k“0

p´1qkg “
#
0 if n is even,
p´1qn`1g if n is odd.

For n ą 0 even, this means ker δn “ im δn´1 and thus Hnpt˚u;Gq “ 0. For n ą 0 odd, we
instead have ker δn “ 0 and thus Hnpt˚u;Gq “ 0. The only special case is n “ 0, for which
H0pt˚u;Gq “ ker δ0 “ G.

The additivity axiom is a straightforward consequence of the fact that since no individual
singular simplex can have image in more than one component of a disjoint union, the chain complex
C˚

`š
βXβ ;R

˘
splits naturally into a direct sum of chain complexes

À
β C˚pXβ ;Rq. Dualizing

then changes the direct sum to a direct product as we saw in the computation of H0pX ;Gq in the
previous lecture. We leave the details as an exercise. �

We mention in passing that there is also a cohomological version of the exact sequence of
triples (34.3); see Exercise 42.1.
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42.1. Reduced cohomology. Every cohomology theory h˚ also has a reduced version,
which is again defined in terms of the unique map

ǫ : X Ñ t˚u.
Choosing any embedding i : t˚u Ñ X , the fact that ǫ ˝ i is the identity map implies that

pǫ ˝ iq˚ “ i˚ǫ˚ : h˚pt˚uq Ñ h˚pt˚uq
is also the identity, so ǫ˚ : h˚pt˚uq Ñ h˚pXq is injective and has i˚ as a left-inverse. We then
define rh˚pXq :“ coker ǫ˚ “ h˚pXqL im ǫ˚,
so that the quotient projection h˚pXq Ñ rh˚pXq fits into a split exact sequence

0 ÝÑ h˚pt˚uq ǫ˚ÝÑ h˚pXq ÝÑ rh˚pXq ÝÑ 0,

implying via the dimension axiom that if h˚ has coefficient group G,

hnpXq –
#rhnpXq ‘G for n “ 0,rhnpXq for n ‰ 0.

If X is contractible, then ǫ is a homotopy equivalence and ǫ˚ : h˚pt˚uq Ñ h˚pXq is thus an
isomorphism, so its cokernel is trivial:

Theorem 42.3. For any axiomatic cohomology theory h˚, if X is contractible, rh˚pXq “ 0. �

As with homology, this result is mainly useful because of the role that trivial homology groups
play in exact sequences. We showed in Lecture 28 via diagram-chasing arguments that the homol-
ogy long exact sequence of a pair pX,Aq is also exact if all homology groups are replaced by their
reduced versions, where the reduced homology of a pair pX,Aq with A ‰ H is defined to match
the ordinary homology. We can do the same thing here: if we definerh˚pX,Aq :“ h˚pX,Aq if A ‰ H,
then repeating the arguments of Lecture 28 with reversed arrows gives:

Theorem 42.4. For any pair pX,Aq and any axiomatic cohomology theory, the sequence

. . . ÝÑ rhn´1pAq δ˚ÝÑ rhnpX,Aq j˚ÝÑ rhnpXq i˚ÝÑ rhnpAq δ˚ÝÑ rhn`1pX,Aq ÝÑ . . .

is also well defined and exact. �

It is a straightforward exercise to verify:

Proposition 42.5. For any space X and R-module G, the reduced singular cohomology rH˚pX ;Gq
is also the cohomology (with coefficients in G) of the augmented chain complex

. . . ÝÑ C2pX ;Rq BÝÑ C1pX ;Rq BÝÑ C0pX ;Rq ǫÝÑ rC´1pX ;Rq :“ R ÝÑ 0 ÝÑ 0 ÝÑ . . . ,

described in Exercise 33.4. �

Other useful features of axiomatic homology that carry over to axiomatic cohomology with
minimal effort include the computation

hkpSnq –
#
G if k “ 0 or k “ n,

0 otherwise,

the suspension isomorphisms rhnpXq – rhn`1pΣXq,
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and also the isomorphisms
hnpX,Aq – rhnpX{Aq

for good pairs pX,Aq. The details are worked out in the exercises at the end of this lecture.

Remark 42.6. You may by now be getting the impression that cohomology is always iso-
morphic to homology, especially in light of the computation of h˚pSnq quoted above. There is a
grain of truth in this, but the whole story is more complicated: e.g. we will see from the universal
coefficient theorem that H˚pX ;Gq is fully determined up to isomorphism by H˚pX ;Rq and G,
but it is not always isomorphic to H˚pX ;Gq, especially e.g. if we work over the ring R “ Z and
H˚pX ;Zq has torsion. It also deserves to be emphasized that for arbitrary axiomatic theories,
the premise does not always make sense: in contrast to the obvious “duality” between H˚p¨;Gq
and H˚p¨;Rq, not every axiomatic cohomology theory h˚ has a corresponding axiomatic homology
theory h˚ (cf. Remark 42.10 at the end of ths lecture).

42.2. The Mayer-Vietoris sequence. Under suitable assumptions on a space X “ AYB

that is the union of two subsets, one can use a diagram chase as in Theorem 34.21 to derive from
the axioms a Mayer-Vietoris sequence for any axiomatic cohomology theory. This is essentially
just a matter of redoing all the arguments of §34.5 with reversed arrows, and we shall leave the
details as an exercise.

For singular cohomology, the Mayer-Vietoris sequence can be also be seen more directly, and
under the same assumptions as its homological counterpart. Suppose A,B Ă X are subsets with
inclusion maps

(42.2)

A

AXB X

B

jAiA

iB jB

such that X “ A Y B and pA,Bq is an excisive couple for singular homology, e.g. because the
interiors of A and B cover X . Let

C˚pA;Rq C˚pA`B;Rq C˚pB;RqJA JB

denote the obvious inclusions of subcomplexes of C˚pX ;Rq, where we recall the notation
C˚pA`B;Rq :“ C˚pA;Rq ` C˚pB;Rq Ă C˚pX ;Rq.

The Mayer-Vietoris sequence in singular homology was derived in §34.4 from a short exact sequence
of chain complexes in the form

0 C˚pAXBq C˚pAq ‘ C˚pBq C˚pA`Bq 0.
ppiAq˚,´piBq˚q JA‘JB

For the present discussion, we take the coefficient module in the singular chain complex to be
the ring R, and apply the functor Homp¨;Gq to this short exact sequence; in light of the natural
isomorphism

Hom
`
C˚pAq, G˘‘Hom

`
C˚pBq, G˘ –Ñ Hom

`
C˚pAq ‘ C˚pBq, G˘

pϕ, ψq ÞÑ ϕ‘ ψ

the result can be written as

0 C˚pAXB;Gq C˚pA;Gq ‘ C˚pB;Gq C˚pA`B;Gq 0,
i˚
A
‘p´i˚

B
q pJ˚

A
,J˚

B
q
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where we are abbreviating

C˚pA`B;Gq :“ Hom
`
C˚pA`B;Rq, G˘.

The dual maps

iÅ : C˚pA;Gq Ñ C˚pAXB;Gq, iB̊ : C˚pB;Gq Ñ C˚pAXB;Gq,
JÅ : C˚pA`B;Gq Ñ C˚pA;Gq, JB̊ : C˚pA`B;Gq Ñ C˚pB;Gq

are all canonical restriction maps, e.g. JÅ replaces a homomorphism ϕ : C˚pA ` B;Rq Ñ G with
its restriction to the submodule C˚pA;Rq. It is now an easy exercise to check that the dualized
sequence is also exact.

To make use of this, we need to identify the cohomology of the cochain complex C˚pA`B;Gq
with something more familiar. The assumption that pA,Bq is an excisive couple means that the
inclusion C˚pA ` B;Zq ãÑ C˚pX ;Zq induces an isomorphism on homology, but as explained in
Remark 34.13, this implies the seemingly stronger statement that the inclusion of chain complexes
is a chain homotopy equivalence, and it follows in turn that the inclusion J : C˚pA ` B;Rq ãÑ
C˚pX ;Rq is likewise a chain homotopy equivalence. Now by Proposition 41.2, so is its dualization

J˚ : C˚pX ;Gq Ñ C˚pA`B;Gq,
which therefore induces an isomorphism

H˚pX ;Gq –ÝÑ H˚`C˚pA`B;Gq˘.
Combining this with the usual diagram-chasing result gives:

Theorem 42.7 (Mayer-Vietoris sequence for cohomology). If A,B Ă X are subsets with
inclusions written as in (42.2) such that X “ AYB and pA,Bq is an excisive couple for singular
homology, then there exist connecting homomorphisms δ˚ : HnpAXB;Gq Ñ Hn`1pX ;Gq for every
n P Z such that the sequence

. . .ÐÝ Hn`1pX ;Gq δ˚ÐÝ HnpAXB;Gq i
˚
A
‘p´i˚

B
qÐÝ HnpA;Gq ‘HnpB;Gq

pj˚A,j˚BqÐÝ HnpX ;Gq δ˚ÐÝ Hn´1pAXB;Gq ÐÝ . . .

is exact, and this sequence is also natural with respect to maps f : X Ñ X 1 “ Å1 Y B̊1 satisfying
fpAq Ă A1 and fpBq Ă B1. �

42.3. Cellular cohomology. The cellular cohomology of a CW-pair pX,Aq with coefficients
in G is defined as the cohomology of the cellular chain complex, or equivalently,

HC̊WpX,A;Gq :“ H˚
`
CC̊WpX,A;Gq

˘
,

where we define the cellular cochain complex

CC̊WpX,A;Gq :“ Hom
`
CCW˚ pX,A;Rq, G˘.

This gives a collection of contravariant functors Hn
CW : CWrel Ñ R-Mod that are typically not very

hard to compute. The coboundary map δ : CnCWpX,A;Gq Ñ Cn`1
CW pX,A;Gq can be expressed in

terms of the same incidence numbers that describe the cellular boundary map: indeed, for each
n-cell enα Ă X , define its dual cochain

ϕnα P CnCWpX ;Rq, ϕnαpenβq :“
#
1 if β “ α,

0 otherwise.

These generators form a basis of CnCWpX ;Rq if there are only finitely many n-cells, and any
element of CnCWpX ;Gq can then similarly be described as a linear combination of the ϕnα with
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coefficients in G. Formally, the latter remains true when there are infinitely-many n-cells, so long
as we adopt a suitable interpretation of infinite sums of the form

ř
enαĂX gαϕ

n
α, which have well-

defined evaluations on CCW
n pX ;Rq even if infinitely-many of the coefficients gα P G are nonzero.

A more precise way to say this is that dualizing direct sums gives direct products, so in light of the
isomorphism HompR,Gq – G defined by evaluation on the generator 1 P R, there are canonical
isomorphisms

CnCWpX ;Gq “ HompCCW
n pX ;Rq, Gq “ Hom

ˆ à
enαĂX

R,G

˙
– ź

enαĂX
HompR,Gq – ź

enαĂX
G,

and
ř
enαĂX gαϕ

n
α P CnCWpX ;Gq is to be interpreted as the element that corresponds canonically

with tgαu PśenαĂX G. With this understood, we shall abuse terminology by calling the elements ϕnα
a “basis” of CnCWpX ;Rq, and observe that the coboundary operator δ : CnCWpX ;Gq Ñ Cn`1

CW pX ;Gq
is uniquely determined if we write down a formula for δϕnα P Cn`1pX ;Rq for each n-cell enα Ă X .
For any pn` 1q-cell en`1

β Ă X , we have

pδϕnαqpen`1
β q “ p´1qn`1ϕnαpBen`1

β q “ p´1qn`1
ÿ

enγĂX
ϕnα

`renγ : en`1
β senγ

˘ “ p´1qn`1renα : en`1
β s,

thus the required formula is

δϕnα “ p´1qn`1
ÿ

en`1
β

ĂX
renα : en`1

β sϕn`1
β .

As with homology, cellular cohomology provides a powerful tool for computing arbitrary ax-
iomatic cohomology theories on spaces that have cell decompositions:

Theorem 42.8. For any axiomatic cohomology theory h˚ with coefficient group G and every
CW-pair pX,Aq, there exist isomorphisms Hn

CWpX,A;Gq Ñ hnpX,Aq for every n P Z, and they
are natural in the sense that every cellular map f : pX,Aq Ñ pY,Bq gives rise to a commutative
diagram

Hn
CWpX,A;Gq hnpX,Aq

Hn
CWpY,B;Gq hnpY,Bq

–

f˚

–
f˚

For finite-dimensional complexes, this theorem can be proved in a way that closely parallels the
corresponding argument for cellular homology carried out in Lectures 38. One starts by deriving
from the axioms (in particular the correspondence h˚pX,Aq – rh˚pX{Aq for good pairs) a natural
isomorphism

hkpXn, Xn´1q – ź
enαĂX

hkpDn, BDnq

for every k and n; here the direct product takes on the role formerly played by the direct sum,
due to its appearance in the cohomological version of the additivity axiom. One then uses the
long exact sequence of pDn, BDnq in cohomology to prove that the right hand side is zero for all
k ‰ n but (since hnpDn, BDnq – rhn´1pSn´1q – G) is identical to the cellular n-cochain group
CnCWpX ;Gq – ś

enαĂX G when k “ n. Putting hnpXn, Xn´1q for each n ě 0 in the role of
CnCWpX ;Gq, one then assembles the long exact sequences of pXn`1, Xnq and pXn, Xn´1q into the
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diagram

0 hnpXn´1q 0

hn`1pXnq hn`1pXn`1q hn`1pXn`1, Xnq hnpXnq hnpXn`1q hnpXn`1, Xnq

hnpXn, Xn´1q 0

hn´1pXn´1q

j˚
n`1 δn̊

γn

in̊

jn̊

δ˚
n´1

in which the diagonal arrow defines maps γn so that the sequence

h0pX0q γ0ÝÑ h1pX1, X0q γ1ÝÑ h2pX2, X1q ÝÑ . . .

becomes a cochain complex. One can check that γn is equivalent to the cellular coboundary map
CnCWpX ;Gq δÑ CCW

n`1pX ;Gq under the natural isomorphisms hnpXn, Xn`1q – CnCWpX ;Gq. The
diagram then allows us to deduce that the map in̊ : hnpXn`1q Ñ hnpXnq is injective and jn̊
descends to an isomorphism

kerγn{ imγn´1

jn̊ÝÑ im in̊ – hnpXn`1q – hnpXn`2q – . . . ,

thus giving an isomorphism Hn
CWpX ;Gq – hnpXq if X “ XN for some N P N sufficiently large.

To handle CW-pairs pX,Aq with A ‰ H, one carries out this same argument with hnpXn, Xn´1q
replaced by hnpXn Y A,Xn´1 Y Aq, and the long exact sequence of pXn, Xn´1q replaced by the
sequence of the triple pXn YA,Xn´1 YA,Aq.

42.4. Alexander-Spanier cohomology. We have not yet had occasion to mention any
specific axiomatic homology or cohomology theories outside of the singular theory. Most of them
have suffered in popularity since singular (co)homology became pre-eminent in the mid-twentieth
century, but some are still used routinely in certain fields, especially the Čech theory, which we
will discuss in the next lecture. We now give a brief description of the absolute version of another
cohomology theory that is somewhat simpler to define.

For integers n ě 0 and a fixed choice of R-module G, let sCnpXq “ sCnpX ;Gq denote the
R-module of equivalence classes of functions

ϕ : Xn`1 “ X ˆ . . .ˆXloooooomoooooon
n`1

Ñ G,

where we say ϕ „ ψ whenever ϕ and ψ are identical on some neighborhood of the diagonal

∆ :“ tpx, . . . , xq P Xn`1 | x P Xu.
The addition operation and R-module structure of sCnpXq are defined pointwise, so e.g. for two
equivalence classes rϕs, rψs P sCnpXq, rϕs ` rψs P sCnpXq is represented by the function ϕ ` ψ :

Xn`1 Ñ G defined by

pϕ` ψqpx0, . . . , xnq :“ ϕpx0, . . . , xnq ` ψpx0, . . . , xnq.
You should take a moment to assure yourself that the equivalence class of ϕ`ψ is independent of the
choice of representatives ϕ P rϕs and ψ P rψs. Note that since G is not assumed to have a topology,
there is no continuity condition on the functions Xn`1 Ñ G representing elements of sCnpXq.
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Instead, sCnpXq detects the topology of X via the notion of “neighborhoods of ∆ Ă Xn`1” that is
used to define the equivalence relation.

To make the collection of modules sCnpXq for n ě 0 into a cochain complex, we associate to
each function ϕ : Xn`1 Ñ G the function δϕ : Xn`2 Ñ G defined by

pδϕqpx0, . . . , xn`1q :“
n`1ÿ
k“0

p´1qkϕpx0, . . . , xk´1, xk`1, . . . , xn`1q.

This defines a homomorphism from the module of pn ` 1q-functions to the module of pn ` 2q-
functions such that δ2 “ 0, and it preserves the submodule of functions that vanish near the
diagonal, thus it descends to a coboundary homomorphism

δ : sCnpXq Ñ sCn`1pXq.
Extending this to all n P Z by defining sCnpXq “ 0 for n ă 0, we obtain a cochain complex
p sC˚pXq, δq, and its cohomology is the Alexander-Spanier cohomology of X with coefficients
in G, denoted by sHnpXq “ sHnpX ;Gq :“ Hn

` sC˚pX ;Gq˘, for n P Z.

It is not hard to give sH˚ the structure of a contravariant functor: given a continuous map f : X Ñ
Y , one defines a chain map

f˚ : sC˚pY q Ñ sC˚pXq : ϕ ÞÑ ϕ ˝ pf ˆ . . .ˆ fq,
thus inducing homomorphisms f˚ : sH˚pY q Ñ sH˚pXq. With some more effort, one can also define
relative groups sH˚pX,Aq and prove that sH˚ satisfies all of the Eilenberg-Steenrod axioms for a
cohomology theory. A good exposition of the details can be found e.g. in [Spa95, §6.4–6.5].

It is instructive to unpack more explicitly the conditions that define cocycles and coboundaries
in sC0pXq and sC1pXq. Elements ϕ P sC0pXq are simply functions ϕ : X Ñ G; here the equivalence
relation is trivial since the diagonal in X1 “ X is the whole space. Acting on such a function with
δ gives the equivalence class of functions X ˆX Ñ G represented by

pδϕqpx, yq “ ϕpyq ´ ϕpxq,
hence δϕ “ 0 P sC1pXq means that ϕpyq “ ϕpxq for all px, yq P X ˆ X in some neighborhood of
the diagonal. In other words, the 0-cocycles in sC˚pXq are precisely the locally constant functions
X Ñ G, i.e. those which are constant on the connected components ofX , and sH0pX ;Gq is therefore
naturally isomorphic to the group of locally constant functions X Ñ G, or equivalently, the direct
product of copies of G over the set of connected components of X . This, of course, often matches
the description of the singular cohomology group H0pX ;Gq that we gave in Theorem 41.4, but not
always: sH0pXq and H0pXq differ on spaces whose connected components and path-components
do not match.

Elements of sC1pXq are represented by functions ϕ : XˆX Ñ G, and such a function represents
a coboundary if and only if there exists a function ψ : X Ñ G such that

ϕpx, yq “ ψpyq ´ ψpxq
for all x, y P X sufficiently close together, i.e. for px, yq P X ˆ X in some neighborhood of the
diagonal. More generally, ϕ represents a 1-cocycle if and only if it satisfies

pδϕqpx, y, zq “ ϕpy, zq ´ ϕpx, zq ` ϕpx, yq “ 0,

or equivalently
ϕpx, zq “ ϕpx, yq ` ϕpy, zq,

for all triples of points x, y, z P X that are sufficiently close to each other. Looking at special
cases with z “ x, this relation forces ϕpx, yq to be an antisymmetric function of x and y in some
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neighborhood of the diagonal. I recommend thinking through the proof of the following result
in order to gain some intuition on what this cocycle condition means, and what sH1pXq actually
measures.

Proposition 42.9. For any path-connected space X and any choice of base point p P X, there
is a well-defined and injective homomorphismsH1pX ;Gq Ñ HompπpX, pq, Gq : rϕs ÞÑ Ψrϕs
such that for any representative cocycle ϕ P sC1pX ;Gq and loop γ : r0, 1s Ñ X from p to itself, one
can choose a sufficiently fine partition 0 “: t0 ă t1 ă . . . ă tN´1 ă tN :“ 1 of r0, 1s to compute

Ψrϕsprγsq “
Nÿ
j“1

ϕpγptjq, γptj´1qq.

The Alexander-Spanier theory sH˚ satisfies an “extra” axiom that singular cohomology does
not, the so-called continuity axiom, which we will come back to in the next lecture since it involves
inverse limits (cf. Theorem 43.25). For this reason, sH˚ is sometimes useful in applications that
involves spaces which cannot be assumed to be as nice as CW-complexes.

Remark 42.10. It is interesting to note that sC˚pX ;Gq is not in any obvious way the dual com-
plex of a chain complex, thus it is far from obvious at this stage what the definition of “Alexander-
Spanier homology” might be. A corresponding homology theory was defined in an appendix of
[Spa48], but its definition is much more complicated, requiring inverse limits, and as a result, it
suffers from certain technical drawbacks that we will also see in the next lecture in the context of
Čech homology, namely it fails in general to satisfy the exactness axiom.

42.5. Exercises.

Exercise 42.1. Describe a cohomological version of the “braid” diagram (34.2) and use it to
prove that for every triple of spaces pX,A,Bq with B Ă A Ă X and every axiomatic cohomology
theory h˚, the maps induced by the inclusions i : pA,Bq ãÑ pX,Bq and j : pX,Bq ãÑ pX,Aq fit
into a long exact sequence

. . .ÐÝ hn`1pX,Aq δ˚ÐÝ hnpA,Bq i˚ÐÝ hnpX,Bq j˚ÐÝ hnpX,Aq δ˚ÐÝ hn´1pA,Bq ÐÝ . . . .

Give also an alternative proof of this for singular cohomology using a short exact sequence of
cochain complexes.

Exercise 42.2 (*). Adapt the proof of Theorem 28.24 to prove that for any axiomatic coho-
mology theory h˚ and any space X , there is a natural isomorphism rhnpXq Ñ rhn`1pΣXq for every
n P Z.

Exercise 42.3 (*). For any axiomatic cohomology theory h˚ and two spaces X and Y with
maps ǫX : X Ñ t˚u and ǫY : Y Ñ t˚u, show that the isomorphism h˚pX > Y q – h˚pXq ˆ h˚pY q
given by the additivity axiom identifies rh˚pX > Y q with the cokernel of the map

pǫX̊ , ǫY̊ q : h˚pt˚uq Ñ h˚pXq ˆ h˚pY q.
Then apply this in the case X “ Y “ t˚u to identify rh0pt˚u>t˚uq with the cokernel of the diagonal
map GÑ GˆG, where G “ h0pt˚uq. Conclude in particular

rhnpS0q –
#
G if n “ 0,
0 if n ‰ 0.
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Exercise 42.4 (*). Combine the previous two exercises to prove by induction on n P N that
for any axiomatic cohomology theory h˚ with coefficient group G,

hkpSnq –
#
G if k “ 0 or k “ n,

0 otherwise.

Exercise 42.5 (*). Adapt the proof of Theorem 34.7 to prove that for any axiomatic coho-
mology theory h˚ and any good pair pX,Aq, there is a natural isomorphism

h˚pX,Aq – rh˚pX{Aq.
Exercise 42.6. Adapt the diagram-chasing arguments in Lecture 34 to show that every ax-

iomatic cohomology theory h˚ admits a Mayer-Vietoris sequence under a suitable hypothesis on
X “ AYB, and that it also works if h˚ is replaced by rh˚.

Exercise 42.7 (*). Work out the further details of the proof of Theorem 42.8 for finite-
dimensional CW-pairs.

Exercise 42.8. Prove Proposition 42.9, and show moreover that the map sH1pX ;Gq Ñ
Hompπ1pX, pq, Gq is an isomorphism if X is S1 or R.

43. Inverse limits, CW-complexes and Čech theory

As an initial goal in this lecture, we’d like to do for cohomology what was done for homology in
Lecture 39: extend the isomorphism HC̊WpX,A;Gq – h˚pX,Aq so that it also applies to infinite-
dimensional CW-pairs pX,Aq. This necessitates a quick introduction to inverse limits, and we will
observe a peculiarity of inverse limits in comparison with direct limits that makes the discussion
slightly more complicated than its homological counterpart. Having inverse limits in the picture
also gives us an opportunity to sketch a first example of an axiomatic homology theory other than
singular homology: we will give a brief overview of Čech homology, and see in the process that
it fails for technical reasons to satisfy all of the Eilenberg-Steenrod axioms without substantial
caveats. On the other hand, its cohomological counterpart does not have this drawback: Čech
cohomology is a fully legitimate axiomatic cohomology theory, and is a popular tool in certain
branches of mathematics, especially algebraic geometry.

43.1. Inverse systems, targets and limits. It is easy to see how inverse limits naturally
arise in the context of cellular cohomology. For an infinite-dimensional CW-complex X , we saw in
Lecture 39 that X is the direct limit of a direct system of topological spaces tXnu8n“0, consisting of
the finite-dimensional skeleta of X with their obvious inclusions. Applying any homology functor
hk : TopÑ R-Mod to this system gives a direct system of R-modules thkpXnqu8n“0, but something
different happens if we instead apply a cohomology functor hk, due to contravariance: we obtain
a sequence of R-modules thkpXnqu8n“0 together with the homomorphisms

hkpXnq hkpXmq induced by inclusions Xm Xn .

The key detail here is that the maps hkpXnq Ñ hkpXmq are defined whenever n ě m rather
than n ď m, thus thkpXnqu8n“0 with these maps does not define a direct system over the directed
set pN0,ďq. It is instead an example of an inverse system, and therefore requires a different notion
of limit.

Definition 43.1. Given a category C and a directed set pJ,ăq, an inverse system (projek-
tives System) tXα, ϕαβu in C over pJ,ăq associates to each α P J an object Xα of C , along with
morphisms

ϕαβ P HompXβ , Xαq for each α ă β
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such that
ϕαα “ IdXα

and the diagram
Xα Xβ Xγϕαβ

ϕαγ

ϕβγ

commutes for every triple α, β, γ P J with α ă β ă γ.

Remark 43.2. In terms of the category J corresponding to the directed set pJ,ăq as in
Remark 39.2, an inverse system in C over pJ,ăq is the same thing as a contravariant functor
J Ñ C .

Convergence of inverse systems is defined analogously to direct systems, the main difference
being that most arrows go the other way.

Definition 43.3. For an inverse system tXα, ϕαβu in C over pJ,ăq, a target tY, fαu of the
system consists of an object Y of C together with associated morphisms fα P HompY,Xαq for each
α P J such that the diagram

Xα Xβ

Y

ϕαβ

fα fβ

commutes for every pair α, β P J with α ă β.

Definition 43.4. A target tX8, ϕαu of the inverse system tXα, ϕαβu is called an inverse
limit65(projektiver Limes) of the system and written as

X8 “ limÐÝtXαu
if it satisfies the following “universal” property: for all targets tY, fαu of tXα, ϕαβu, there exists a
unique morphism f8 P HompY,X8q such that the diagram

Xα X8

Y

ϕα

fα
f8

commutes for every α P J .
The meaning of an inverse limit can be encoded in the diagram

Xα Xβ Xγ . . . limÐÝtXαu

Y

ϕαβ ϕβγ

where we assume α ă β ă γ ă . . . P J , and the defining feature of limÐÝtXαu is that the morphism
indicated by the dashed arrow must exist and be unique whenever all the other morphisms in the
diagram are given.

As with direct limits, there is no guarantee from these definitions that an inverse limit must
exist, but for the categories we are most interested in, its existence can be established by describing
it more concretely. One should not confuse the statement that an inverse limit exists with any

65Inverse limits are also sometimes called projective limits, and they constitute a special case of the general
category-theoretical notion of limits (as opposed to colimits, cf. Exercise 39.8).
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claim that it is nonempty—the empty set is also a topological space and can appear as the limit
of an inverse system in Top (see Example 43.10 below).

The proofs of the following propositions are worthwhile exercises.

Proposition 43.5. If tXα, ϕαβu is an inverse system in Top over pJ,ăq, then its inverse limit
is the space

limÐÝtXαu “
#
txαu P

ź
αPJ

Xα

ˇ̌̌̌
xα “ ϕαβpxβq for all α, β P J with α ă β

+
,

with the associated morphisms ϕα : limÐÝtXβu Ñ Xα defined via the natural projections
ś
βPJ Xβ Ñ

Xα for each α P J . Moreover, the topology on limÐÝtXαu is the weakest for which the maps ϕα :

limÐÝtXβu Ñ Xα are all continuous. �

Remark 43.6. Proposition 43.5 extends in obvious ways to describe inverse limits in the
categories Set of sets and Toprel of pairs of spaces.

Proposition 43.7. Consider an inverse system tXα, ϕαβu in Top for which the spaces Xα are
all subspaces of some fixed topological space X, β ą α holds if and only if Xβ Ă Xα, and the maps
ϕαβ : Xβ Ñ Xα are all inclusions. Then limÐÝtXαu “ Ş

αPJ Xα, with the associated morphisms
ϕα : limÐÝtXβu Ñ Xα given by the obvious inclusions. �

Remark 43.8. The obvious analogue of Proposition 43.7 involving direct limits and unions is
only sometimes true, e.g. it works for viewing any CW-complex as the direct limit of its skeleta,
but Exercise 39.7 shows an example in which the direct limit and the union are the same set
with different topologies. In this sense, inverse systems in the category Top are somewhat better
behaved than direct systems.

The following result about inverse limits of compact Hausdorff spaces is a consequence of
Tychonoff’s theorem (see Exercise 43.3):

Proposition 43.9. For any inverse system tXα, ϕαβu of topological spaces such that every
Xα is nonempty, compact and Hausdorff, limÐÝtXαu ‰ H. �

Example 43.10. Combining the previous two propositions produces the well-known fact that
in any Hausdorff space, the intersection of any collection of nonempty compact subsets that all
have nonempty pairwise intersections is nonempty. It is easy to see that the compactness condition
cannot be dropped from this statement: for instance, taking the collection of intervals tp0, 1{nsunPN
as an inverse system in the sense of Proposition 43.7, the inverse limit is

limÐÝtp0, 1{nsunPN “
č
nPN

p0, 1{ns “ H.

Proposition 43.11. If tGα, ϕαβu is an inverse system in R-Mod over pJ,ăq, its inverse limit
is a module of the form

limÐÝtGαu “
#
tgαu P

ź
αPJ

Gα

ˇ̌̌̌
gα “ ϕαβpgβq for all α, β P J with α ă β

+
,

with the associated homomorphisms ϕα : limÐÝtGβu Ñ Gα defined via the projections
ś
βPJ Gβ Ñ Gα

all α P J . �

Remark 43.12. There is an obvious analogue of Proposition 43.11 for inverse systems in the
category Ch “ ChpR-Modq of chain complexes of R-modules.

For the following result, we say that a subset J0 Ă J of a directed set pJ,ăq is cofinal if for
every α P J there exists some β P J0 such that β ą α.
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Proposition 43.13. Assume tXα, ϕαβu is an inverse system over pJ,ăq in any category,
and suppose J0 Ă J is a cofinal set with the property that for every α, β P J0 with α ă β,
ϕαβ P HompXβ , Xαq is an isomorphism. Then limÐÝtXαu is isomorphic to Xγ for any γ P J0. �

43.2. Exactness and the derived inverse limit functor. I want to point out a technical
issue that sometimes makes inverse limits in the category of R-modules a bit trickier to deal with
than direct limits.

The following pleasant feature of direct limits in R-Mod was observed in Proposition 39.21:
for a direct system of chain complexes, the homology of the direct limit is naturally isomorphic to
the direct limit of the homologies. This was used in §39.4 to give a direct proof that

H˚pXq – H˚
`
limÝÑtXnu˘ – limÝÑtH˚pXnqu – limÝÑ

 
HCW˚ pXnq( – HCW˚ pXq

for the direct system tXnu consisting of the finite-dimensional skeleta of a CW-complex X . If you
try to prove the analogous result about inverse limits of chain complexes, you’ll find that you get
stuck: homology and inverse limits are two functors that, in general, do not commute with each
other.

The problem can be distilled to a special case involving chain complexes with trivial homology,
i.e. exact sequences. Consider first a direct system tAnu8n“0 of R-modules given in the form of a
sequence

A0
φ0ÝÑ A1

φ1ÝÑ A2
φ2ÝÑ . . . .

By Proposition 39.14, the direct limit of tAnu can be expressed as the cokernel of the homomor-
phism

(43.1) Φ :“

¨̊
˚̊̊̊
˚̋̊

1 0 0 0 ¨ ¨ ¨
´φ0 1 0 0 ¨ ¨ ¨
0 ´φ1 1 0 ¨ ¨ ¨
0 0 ´φ2 1 ¨ ¨ ¨
0 0 0 ´φ3 ¨ ¨ ¨
...

...
...

...
. . .

‹̨‹‹‹‹‹‹‚ :
8à
n“0

An ÝÑ
8à
n“0

An.

In the mapping telescope discussion in §39.3, we made use of the fact that Φ is always injective,
because its kernel appeared in an exact sequence, thus giving rise to an isomorphism between its
cokernel (i.e. a direct limit) and the homology of the mapping torus.

Here is another way in which the injectivity of Φ is useful. Suppose we have a short exact
sequence of sequences 0Ñ tAnu fÑ tBnu gÑ tCnu Ñ 0, meaning a diagram of the form

0 A0 B0 C0 0

0 A1 B1 C1 0

0 A2 B2 C2 0

...
...

...

limÝÑtAnu limÝÑtBnu limÝÑtCnu

f0

φ0

g0

ψ0 θ0

f1

φ1

g1

ψ1 θ1

f2

φ2

g2

ψ2 θ2

f g
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in which all the rows are exact, except possibly the bottom row, containing the direct limits. Note
that the maps f : limÝÑtAnu Ñ limÝÑtBnu and g : limÝÑtBnu Ñ limÝÑtCnu are uniquely determined by
the commutativity of this diagram, due to the universal property of direct limits, e.g. the diagram
makes limÝÑtBnu a target of tAnu and thus determines uniquely a map limÝÑtAnu Ñ limÝÑtBnu. If you
like Proposition 39.21, then you can apply it here—we have a special case involving chain complexes
with trivial homology—and the conclusion will be that the bottom row of the this diagram must
in fact form a short exact sequence

(43.2) 0 ÝÑ limÝÑtAnu
fÝÑ limÝÑtBnu

gÝÑ limÝÑtCnu ÝÑ 0.

But without using Proposition 39.21, we can also see this as follows. The three direct limits can
be expressed as cokernels of injective homomorphisms

8à
n“0

An
ΦÝÑ

8à
n“0

An,
8à
n“0

Bn
ΨÝÑ

8à
n“0

Bn,
8à
n“0

Cn
ΘÝÑ

8à
n“0

Cn,

defined as in (43.1), and the commutativity of the diagram implies that the following diagram also
commutes:

...
...

...

0 0 0 0 0

0
à
n

An
à
n

Bn
à
n

Cn 0

0
à
n

An
à
n

Bn
à
n

Cn 0

0 0 0 0 0

...
...

...

À
n fn

Φ

À
n gn

Ψ ΘÀ
n fn

À
n gn

Here the rows are all short exact sequences, and extra rows of trivial modules have been added so
that we can view each column in a trivial way as a chain complex, i.e. the diagram is a short exact
sequence of chain complexes. Applying Proposition 32.13 then gives a long exact sequence that
is not actually very long, since most of its terms are trivial: a priori, the only terms that can be
nontrivial are

(43.3) 0 ÝÑ kerΦ
fÝÑ kerΨ

gÝÑ kerΘ ÝÑ cokerΦ
fÝÑ cokerΨ

gÝÑ cokerΘ ÝÑ 0,

where the map kerΘ Ñ cokerΦ is a connecting homomorphism arising from Proposition 32.13,
and all other maps are determined by fn and gn in obvious ways. Using the knowledge that Φ,
Ψ and Θ are actually injective, and identifying their cokernels with direct limits, the conclusion is
precisely the short exact sequence written in (43.2).

So what happens if we try to do the same trick with inverse limits? For an inverse system of
the form

A0 A1 A2 . . .
φ1 φ2 φ3

,
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the inverse limit of tAnu is identified via Proposition 43.11 with the kernel of the homomorphism

(43.4) Φ :“

¨̊
˚̊̊̊
˚̋̊
1 ´φ1 0 0 ¨ ¨ ¨
0 1 ´φ2 0 ¨ ¨ ¨
0 0 1 ´φ3 ¨ ¨ ¨
0 0 0 1 ¨ ¨ ¨
0 0 0 0 ¨ ¨ ¨
...

...
...

...
. . .

‹̨‹‹‹‹‹‹‚
:

8ź
n“0

An ÝÑ
8ź
n“0

An.

You will find if you investigate it that the map Φ cannot be assumed surjective in general, and we
shall therefore give its cokernel a name,

limÐÝ 1tAnu :“ cokerΦ.

Now suppose we have a diagram of the form

0 A0 B0 C0 0

0 A1 B1 C1 0

0 A2 B2 C2 0

...
...

...

limÐÝtAnu limÐÝtBnu limÝÑtCnu

f0 g0

f1

φ1

g1

ψ1 θ1

f2

φ2

g2

ψ2 θ2

f g

,

in which the maps on the bottom row are again uniquely determined by the universal property, and
every row except that one is assumed exact. Identifying the three inverse limits with the kernels
of maps

8ź
n“0

An
ΦÝÑ

8ź
n“0

An,

8ź
n“0

Bn
ΨÝÑ

8ź
n“0

Bn,

8ź
n“0

Cn
ΘÝÑ

8ź
n“0

Cn
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defined as in (43.4), we can produce from this a short exact sequence of chain complexes

...
...

...

0 0 0 0 0

0
ź
n

An
ź
n

Bn
ź
n

Cn 0

0
ź
n

An
ź
n

Bn
ź
n

Cn 0

0 0 0 0 0

...
...

...

ś
n fn

Φ

ś
n gn

Ψ Θś
n fn

ś
n gn

resulting in a long exact sequence of the same form as in (43.3), which can be rewritten as

0 ÝÑ limÐÝtAnu
fÝÑ limÐÝtBnu

gÝÑ limÐÝtCnu ÝÑ limÐÝ 1tAnu fÝÑ limÐÝ 1tBnu gÝÑ limÐÝ 1tCnu ÝÑ 0.

The bad news we derive from this discussion is that taking the inverse limit of an inverse system
of short exact sequences 0 Ñ tAnu Ñ tBnu Ñ tCnu Ñ 0 does not automatically produce a short
exact sequence 0 Ñ limÐÝtAnu Ñ limÐÝtBnu Ñ limÐÝtCnu Ñ 0. Exactness can fail in particular at
the rightmost nontrivial term limÐÝtCnu, and its failure is measured by the term limÐÝ 1tAnu, which
depends only on the first inverse system in the sequence. For this reason and others, it is useful to
be able to recognize circumstances in which limÐÝ 1tAnu vanishes; here is one that will be relevant
for the discussion of CW-complexes:

Lemma 43.14. Suppose A0 A1 A2 . . .
φ1 φ2 φ3 is an inverse system of R-modules

such that for some N P N, the maps φn are isomorphisms for all n ě N . Then limÐÝ 1tAnu “ 0.

Proof. One needs to show that the map Φ :
ś
nAn Ñ

ś
nAn in (43.4) is surjective, i.e. that

given any tbnu P śnAn, the equations an ´ φn`1pan`1q “ bn can be solved for tanu8n“0. In fact,
there exists a unique solution satisfying aN “ bN , which can be found by solving the equations
for n ą N and n ă N recursively; the cases with n ą N require the assumption that φn is
invertible. �

We’ve touched in this section upon a few subjects that are large topics in homological algebra:
the fact that direct limits of exact sequences are exact gets summarized by saying that limÝÑ is an
exact functor, whereas the functor limÐÝ is only left-exact, and its failure to be exact is measured via
the derived functor limÐÝ 1. These notions will appear again in a slightly different context when we
study the universal coefficient theorem.

43.3. Cohomology of the mapping telescope. With the subtle aspects of limÐÝ and limÐÝ 1 out
of the way, we can now quickly finish the proof that HC̊WpX ;Gq – h˚pXq for infinite-dimensional
CW-complexes and axiomatic cohomology theories with coefficient group G.



43. INVERSE LIMITS, CW-COMPLEXES AND ČECH THEORY 343

As in §39.3, we start by forming the mapping telescope T of the sequence

X0 ãÑ X1 ãÑ X2 ãÑ . . . ,

which is also the mapping torus of a map f :
š8
n“0X

n Ñ š8
n“0X

n. There is a cohomological
version of the exact sequence of mapping tori discussed in Lecture 35, and in the present setting,
it produces a long exact sequence of the form

hk´1
´ ž
ně0

Xn
¯

Φk´1ÝÑ hk´1
´ ž
ně0

Xn
¯
ÝÑ hkpT q ÝÑ hk

´ ž
ně0

Xn
¯

ΦkÝÑ hk
´ ž
ně0

Xn
¯
,

with Φk :“ 1´ f˚. The usual algebraic trick turns this into a short exact sequence

0 ÝÑ cokerpΦk´1q ÝÑ hkpT q ÝÑ kerpΦkq ÝÑ 0,

and using the additivity axiom to identify h˚
`š

nX
n
˘
with

ś
n h

˚pXnq puts Φk in precisely the
form considered in the previous subsection, giving natural isomorphisms

kerΦk – limÐÝthkpXnqu8n“0, cokerΦk – limÐÝ 1thkpXnqu8n“0.

Our short exact sequence can thus be written as

0 ÝÑ limÐÝ 1thk´1pXnqu8n“0 ÝÑ hkpT q ÝÑ limÐÝthkpXnqu8n“0 ÝÑ 0.

If we had no further information about the sequence X0 ãÑ X1 ãÑ X2 ãÑ . . ., then we would
not be able to say now that we have computed the cohomology of its mapping telescope; a short
exact sequence with hkpT q at the center is typically a weaker result than a full computation
of hkpT q. But we do have more information, because just as in the homological case, the vanishing
of hkpXn, Xn´1q for k ‰ n implies that the maps hkpXn`1q Ñ hkpXnq induced by inclusions
Xn ãÑ Xn`1 are isomorphisms for all n ą k. Lemma 43.14 therefore implies

limÐÝ 1thk´1pXnqu “ 0,

and we therefore have a natural isomorphism

hkpT q – limÐÝthkpXnqu.
The rest of the story is the same as in §39.3: the mapping telescope T is a deformation retract of
X ˆ r0,8q, giving rise to natural isomorphisms

hkpXq – hkpX ˆ r0,8qq – hkpT q – limÐÝthkpXnqu8n“0 – limÐÝtHk
CWpXnqu8n“0 – Hk

CWpXq.
43.4. Čech homology and cohomology. Now that we have inverse limits, we can describe

another axiomatic homology theory besides the singular theory. The caveat is that it doesn’t quite
work: the failure of limÐÝ to preserve exactness of sequences prevents the theory sketched below from
satisfying the exactness axiom without some restrictions. On the other hand, its cohomological
variant depends on direct limits instead of inverse limits, and consequently does not have this
drawback.

The idea behind Čech homology is to measure the topology of a space X in terms of the
combinatorial data formed by the overlaps of open sets in an arbitrarily fine open covering of X .
The starting point is the observation that for any given open covering, the overlaps can be encoded
in the form of an abstract simplicial complex.

For a space X , let OpXq denote the set of open coverings of X , so each element U P OpXq is
a set whose elements are open subsets of X with the property thatď

UPU
U “ X.
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Similarly, for any pair of spaces pX,Aq, we define OpX,Aq to be the set of all pairs pU,UAq such
that

U P OpXq, UA Ă U and A Ă ď
UPUA

U .

Definition 43.15. For each open covering U P OpXq of a space X , the nerve of U is the
simplicial complex N pUq whose set of vertices is U, and whose simplices are the finite subsets
σ Ă U such that č

UPσ
U ‰ H.

More generally, for each pair of spaces pX,Aq and pU,UAq P OpX,Aq, the nerve of pU,UAq is the
simplicial pair

N pU,UAq :“ pN pUq,N pUAqq ,
where N pUAq Ă N pUq denotes the subcomplex whose set of vertices is UA, and whose simplices
are the finite subsets σ Ă UA such that

AX č
UPσ

U ‰ H.

You should take a moment to contemplate why N pUq satisfies all the conditions of a simplicial
complex, with N pUAq as a subcomplex; in particular, every subset of a simplex is also a simplex
since the condition

Ş
UPσ U ‰ H clearly remains true after deleting some sets from the collection

in σ. Notice also that N pUAq is the nerve of the open covering of A formed by the sets tUXAuUPUA
.

The Čech homology theory will be defined in terms of the (ordered) simplicial homology of the
nerves N pU,UAq of open coverings of pX,Aq, denoted by

Ho˚pN pU,UAqq “ Ho˚pN pUq,N pUAqq “ Ho˚pN pUq,N pUAq;Gq.
Here we are fixing an arbitrary choice of R-module G to be used for coefficients in simplicial
homology, and it will then also serve as the coefficient group of Čech homology. As usual, G will
be omitted from the notation whenever nothing important depends on this choice.

Figure 20 shows some examples of open coverings U of S1 and the polyhedra |N pUq| that arise
from their nerves. We see that in one case, |N pUq| is homeomorphic to S1; this is not a coincidence,
and we’ll come back to it shortly. In general, however, |N pUq| need not be homeomorphic, nor
even homotopy equivalent, to the space that is being covered, and in fact, the nerve of an open
covering of X can easily be an infinite-dimensional simplicial complex, even when X is something
as tame as a compact polyhedron. Thus we clearly cannot hope in general to use the nerve of a
single covering of X in order to define a topological invariant of X . What seems more promising,
however, is to consider an open covering together with all of its possible refinements.

A refinement of an open covering U P OpXq is another open covering U1 P OpXq such that
every U 1 P U1 is a subset of some U P U. For pairs pX,Aq, we say similarly that a refinement of
pU,UAq P OpX,Aq is an element pU1,U1Aq P OpX,Aq such that U1 is a refinement of U and U1A is a
refinement of UA. The definition means that there exists a function

F : U1 Ñ U, F pU1Aq Ă UA

such that for every U P U1, U Ă F pUq. It follows that if σ Ă U1 is a simplex of N pU1q, thenč
UPσ

F pUq Ą č
UPσ

U ‰ H,

hence F pσq Ă U is a simplex of N pUq, and similarly, F maps simplices of N pU1Aq to simplices
of N pUAq. In other words, F is a simplicial map from N pU1q to N pUq, and in the relative case, a
map of simplicial pairs:

F : N pU1,U1Aq Ñ N pU,UAq.



43. INVERSE LIMITS, CW-COMPLEXES AND ČECH THEORY 345

PSfrag replacements

–

U1U1U1

U2U2

U2
U3

U3

U4U4

U5

1

1

1

2

2

2

3

3

4

4

5

Figure 20. Three examples of open coverings of S1 and their nerves, with
vertices labeled k P t1, 2, 3, 4, 5u in correspondence with the open sets Uk Ă S1.
The rightmost example includes two 2-simplices in addition to vertices and 1-simplices.

It therefore induces a chain map between the corresponding ordered simplicial chain complexes

(43.5) F˚ : Co˚pN pU1,U1Aqq Ñ Co˚pN pU,UAqq.
One obvious concern in this discussion is that F is not uniquely determined by the refinement,
i.e. for each U 1 P U

1, there may be more than one U P U containing U 1. But the following result
gives an enormous hint as to what we should do next:

Proposition 43.16 ([ES52, Corollary IX.2.14]). Given an open covering pU,UAq P OpX,Aq
and a refinement pU1,U1Aq of pU,UAq, the chain homotopy class of the induced chain map (43.5) on
ordered simplicial chain complexes is independent of choices. �

It follows that we can associate to any refinement β :“ pU1,U1Aq P OpX,Aq of an open covering
α :“ pU,UAq P OpX,Aq a natural homomorphism of simplicial homology groups

ϕαβ : Ho˚pN pβqq Ñ Ho˚pN pαqqq.
One can view this as defining an inverse system: indeed, let us define a pre-order on OpX,Aq by
writing

β ą α

whenever β is a refinement of α. (Note that it is not a partial order, as two open coverings can
easily be refinements of each other without being identical.) Since any two open coverings have
a common refinement, this makes pOpX,Aq,ăq a directed set, and the result above associates
homomorphisms ϕαβ of homology groups in each degree to any pair α, β P OpX,Aq with β ą α.



346 SECOND SEMESTER (TOPOLOGIE II)

Definition 43.17. The Čech homology of a pair of spaces pX,Aq with coefficients in an
R-module G is defined as the collection of R-modulesqHnpX,Aq “ qHnpX,A;Gq :“ limÐÝtHo

npN pU,UAq;GqupU,UAqPOpX,Aq , n P Z.

It is slightly harder than for singular homology to see why this should define a collection of
functors Toprel Ñ R-Mod, but still not so hard. The main point is that whenever f : pX,Aq Ñ
pY,Bq is a continuous map of pairs and α “ pU,UAq P OpY,Bq is an open covering of pY,Bq, there
is an induced open covering f˚α P OpX,Aq of pX,Aq consisting of the subsets f´1pUq for U P U,
and whenever β P OpY,Bq is a refinement of α, f˚β P OpX,Aq is clearly also a refinement of f˚α.
The obvious correspondence between the open sets in f˚α and those in α then defines a simplicial
map N pf˚αq Ñ N pαq, giving a homomorphism

f˚ : Ho˚
`
N pf˚αq˘Ñ Ho˚

`
N pαq˘

for every α P OpY,Bq. Using the universal property of the inverse limit, one can derive from this
a morphism

f˚ : qH˚pX,Aq Ñ qH˚pY,Bq
between the corresponding inverse limits, and prove that it satisfies the usual conditions for qH˚ to
be a functor. This implies in particular that homeomorphic pairs have the same Čech homology.

What is probably harder to see at this stage is why one should ever expect qH˚pX,Aq to be
isomorphic to the singular homology H˚pX,Aq. To this end, consider the case where X is the
polyhedron of a finite simplicial complex K “ pV, Sq. We saw in Lecture 31.5 the notion of the
open star of a vertex v in K, which defines an open set

st v Ă X

containing all points that lie in simplices that have v as a vertex (see Figure 21). These sets define
a distinguished open covering of X ,

UK :“ tst v | v P V u ,
and recall from Exercise 31.3 that for any finite collection of vertices v0, . . . , vn P V , we have

nč
k“0

st vk ‰ H ô tv0, . . . , vnu P S.

In other words, the nerve of UK is naturally isomorphic to the complex K itself. Now if U P OpXq
is another open covering, since X is compact, we can always find a refinement of U in the form UK1
by applying barycentric subdivision to the simplices of K enough times, producing a new simplicial
complex K 1 with more and smaller simplices but a homeomorphic polyhedron |K 1| “ X , and since
barycentric subdivision induces chain homotopy equivalences, the induced map

H˚
`
N pUK1q˘Ñ H˚

`
N pUKq˘

resulting from the fact that UK1 ą UK is always an isomorphism. In other words, the open coverings
that arise from successive barycentric subdivisions of K form a cofinal set in OpXq that satisfies
the hypotheses of Proposition 43.13, and thus provides enough information to compute the inverse
limit. The result is:

Theorem 43.18. For any compact polyhedron X “ |K| with underlying simplicial complex K,qH˚pX ;Gq – Ho˚pK;Gq for every choice of coefficients G. �

Since Ho˚pK;Gq – H∆˚ pK;Gq – HCW˚ pX ;Gq – H˚pX ;Gq, it follows in particular that Čech
homology is isomorphic to singular homology on compact polyhedra. Notice, by the way, that
this implies yet another new proof that simplicial homology is independent of the triangulation of
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Figure 21. The open stars of two neighboring vertices v0 and v1 in a simplicial complex.

a compact polyhedron, with no need to pass through any axiomatic homology theory—it follows
now from the fact Čech homology is a topological invariant.

It is not always true however that qH˚pXq – H˚pXq.
Lemma 43.19. If X is a connected space, then for every open covering U of X, the nerve N pUq

is connected.

Proof. If N pUq is not connected then it can be decomposed as a disjoint union of two
nonempty subcomplexes N pUq – K0 >K1. Let X0 Ă X denote the union of all the sets U P U that
are vertices of K0, and define X1 Ă X similarly via K1. Then both are nonempty open sets, their
union is X , and they are disjoint, since otherwise N pUq would have to contain a 1-simplex with
one vertex in K0 and one in K1. This proves that X is not connected. �

Theorem 43.20. For any connected space X and any choice of coefficients G, qH0pX ;Gq – G.

Proof. Lemma 43.19 implies that for every U P OpXq, Ho
0 pN pUq;Gq – H∆

0 pN pUq;Gq – G. It
is similarly easy to show that the canonical map Ho

0 pN pU1q;Gq Ñ Ho
0 pN pUq;Gq for any refinement

U1 of U is an isomorphism, and that the inverse limit is therefore isomorphic to G. �

This result is different in general from singular homology in degree 0, which splits over a direct
sum of the path-components (not connected components) of each space. So, for instance, Figure 19
in Lecture 40 shows an example of compact space X Ă R2 with

H0pX ;Zq – Z3 but qH0pX ;Zq – Z.

Needless to say, that space is not a CW-complex, and one should expect better results in general
for CW-complexes, as we saw with polyhedra in Theorem 43.18. At least qH˚ and H˚ will match on
all CW-pairs if they have the same coefficient group and qH˚p¨;Gq satisfies the Eilenberg-Steenrod
axioms. So does it? The answer is a bit surprising.

Theorem 43.21. For every choice of coefficient module G, the functors qHnp¨;Gq : Toprel Ñ
R-Mod satisfy all of the Eilenberg-Steenrod axioms except for exactness, but they do not satisfy
exactness in general.

An actual counterexample to the exactness axiom is explained in [ES52, §X.4]. It would take
at least a few lectures to either explain that counterexample or prove that the rest of the axioms
are satisfied, so we’ll mostly skip it since this discussion of Čech theory is only meant to be a brief
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digression away from the main topic of the course. But it’s worth taking a closer look at how one
would naturally try to prove the exactness axiom, and why it fails in general. It also succeeds in
some cases, so the negative statement in Theorem 43.21 is not the end of the story.

The problem with the exactness axiom results from the failure of inverse limits to preserve
exactness of sequences. If pX,Aq is a pair of spaces and pU,UAq P OpX,Aq, then N pUAq Ă N pUq
is a subcomplex and the short exact sequence of ordered simplicial chain complexes

0 ÝÑ Co˚pN pUAqq ÝÑ Co˚pN pUqq ÝÑ Co˚
`
N pU,UAq˘ “ Co˚

`
N pUq,N pUAq˘ ÝÑ 0

gives rise to a long exact sequence of simplicial homology groups

(43.6) . . .Ñ Ho
npN pUAqq Ñ Ho

npN pUqq Ñ Ho
n

`
N pU,UAq˘Ñ Ho

n´1pN pUAqq Ñ . . .

If pU1,U1Aq P OpX,Aq is a refinement of pU,UAq, it is not hard to show that the canonical maps in
the inverse systems fit together with the long exact sequences for these two pairs into a commutative
diagram

. . . Ho
npN pUAqq Ho

npN pUqq Ho
n

`
N pU,UAq˘ Ho

n´1pN pUAqq . . .

. . . Ho
npN pU1Aqq Ho

npN pU1qq Ho
n

`
N pU1,U1Aq

˘
Ho
n´1pN pU1Aqq . . .

The universal property uniquely determines from this data a sequence

(43.7) . . .Ñ qHnpAq Ñ qHnpXq Ñ qHnpX,Aq Ñ qHn´1pAq Ñ . . . ,

but it need not be exact in general. The following concrete example shows that, at least alge-
braically, this danger is real:

Example 43.22. For every n P N, denote by 0 Ñ An Ñ Bn Ñ Cn Ñ 0 the short exact
sequence 0Ñ Z

¨2Ñ Z
prÑ Z2 Ñ 0, and define homomorphisms ϕn´1,n for each n ě 2 by

An
¨3Ñ An´1, Bn

¨3Ñ Bn´1, Cn
1Ñ Cn´1.

Then the resulting diagram

. . . 0 A1 B1 C1 0 . . .

. . . 0 A2 B2 C2 0 . . .

. . . 0 A3 B3 C3 0 . . .

...
...

...
...

...

¨2 pr

¨3
¨2 pr

¨3 1

¨3
¨2 pr

¨3 1

commutes. By Proposition 43.11, the inverse limits of the individual columns are as follows: first,

limÐÝtAnu “
#
pa1, a2, a3, . . .q P

ź
nPN

Z

ˇ̌̌̌
an´1 “ 3an for all n ě 2

+
“ 0,

and limÐÝtBnu similarly vanishes since no integer is divisible by arbitrarily large powers of 3. On the
other hand,

limÐÝtCnu “
#
pc1, c2, c3, . . .q P

ź
nPN

Z2

ˇ̌̌̌
cn´1 “ cn for all n ě 2

+
– Z2,
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so the resulting sequence of inverse limits is of the form

. . . 0 0 0 Z2 0 . . . ,

which is not an exact sequence.

In general, suppose we are given an inverse system of chain complexes tCα˚ , ϕαβu indexed by
α in some directed set pJ,ăq, so we have a commuting diagram for every β ą α in the form

(43.8)

. . . Cαn`1 Cαn Cαn´1 . . .

. . . C
β
n`1 Cβn C

β
n´1 . . .

Bα Bα Bα

Bβ
ϕαβ

Bβ
ϕαβ

Bβ
ϕαβ

and assume moreover that the rows of these diagrams are always exact. By Proposition 43.11 and
Remark 43.12, the inverse limit is a chain complex

C8̊ :“ limÐÝtCα˚ u “
#
txαu P

ź
αPJ

Cα˚
ˇ̌̌̌
ϕαβpxβq “ xα for all β ą α

+
,

where the chain complex boundary map can be written as

B8 :“ ź
αPJ

Bα
ˇ̌̌̌
ˇ
C8̊

: C8̊ Ñ C8̊,

the restriction to the submodule C8̊ Ăś
α C

α˚ being well defined since ϕαβpBβxβq “ Bαϕαβpxβq “
Bαxα for all β ą α and xβ P Cβ˚ . Given x “ txαuαPJ P C8

n with B8txαu “ 0, we have Bαxα “ 0

for all α P J , and the exactness of the rows in (43.8) then implies xα “ Bαyα for some yα P Cαn`1.
We can now observe a concrete reason why the exactness of . . .Ñ Cαn`1 Ñ Cαn Ñ Cαn´1 Ñ . . . for
every α might fail to imply the exactness of . . .Ñ C8

n`1 Ñ C8
n Ñ C8

n´1 Ñ . . .: the trouble is that
the elements yα are not generally unique, and if they are chosen arbitrarily, then they need not
satisfy

(43.9) ϕαβpyβq “ yα for all β ą α,

without which tyαuαPJ will not be an element of C8
n`1.

To get a firmer handle on this problem, define for each α P J the nonempty subset

Kα :“ pBαq´1pxαq Ă Cαn`1.

The chain map relation and the condition ϕαβpxβq “ xα then imply

ϕαβpKβq Ă Kα for all β ą α,

which makes the collection of sets tKαuαPJ with maps Kβ
ϕαβÑ Kα into an inverse system in

Set over pJ,ăq. By Proposition 43.5 and Remark 43.6, limÐÝtKαu is then the set of all elements
tyαu P ś

αPJ Kα such that (43.9) is satisfied, in which case we then have tyαu P C8
n`1 with

B8tyαu “ txαu. The essential question thus boils down to this:

Is limÐÝtKαu nonempty?

Example 43.22 implies that the answer must sometimes be no, and indeed, we know from Ex-
ample 43.10 that an inverse limit of nonempty sets or topological spaces can easily be the empty
set.

To make progress, we need to add more assumptions. Suppose first of all that the individual
groups Cαn for each n P Z and α P J are finite. Then the sets Kα are also finite, and if we assign
them the discrete topology, we can view them all as nonempty compact Haudroff spaces. In this
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case there is a positive result we can use: Proposition 43.9 implies that limÐÝtKαu will then always
be nonempty, which fills the gap at the end of our proof that the limit sequence is exact!

I would like to point out that this trick for the case of finite groups is fairly abstract: hidden
inside Proposition 43.9 is Tychonoff’s theorem on the compactness of arbitrary products of compact
spaces (cf. Lecture 6 from last semester), which depends on Zorn’s lemma and thus the axiom of
choice. As a consequence, we are guaranteed the existence of some y P pB8q´1pxq whenever
B8x “ 0, but we cannot even begin to suggest how one might find y in practice. In the classic
book of Eilenberg and Steenrod (see [ES52, Theorem 5.7 and Lemma 5.8 in Chapter VIII]), there
is a linear-algebraic variation on this trick that also uses Zorn’s lemma, and similarly solves the
problem whenever the modules Cαn are all assumed to be finite-dimensional vector spaces over a
field K, with Bα and ϕαβ as K-linear maps. These two scenarios are relevant to Čech homology
under certain assumptions: in particular, suppose the coefficient group G is either finite or a
finite-dimensional vector space over a field, and pX,Aq is a compact pair, meaning X is a compact
Hausdorff space and A Ă X is closed. In this case, our open coverings of pX,Aq always have finite
refinements, whose nerves are then finite simplicial pairs, and the groups in the sequence (43.6) are
therefore all either finite or are finite-dimensional vector spaces over a field K. These conditions
imply that exactness is preserved under the inverse limit, and we obtain:

Theorem 43.23. If G is either a finite abelian group or a finite-dimensional vector space over
a field, then the restriction of Čech homology qH˚p¨;Gq to the category Cpctrel of compact pairs
defines an axiomatic homology theory on Cpctrel. �

Having defined Čech homology, you will have little trouble guessing how to define Čech co-
homology: we must replace the simplicial homology of the nerve of an open covering pU,UAq of
pX,Aq with its (ordered) simplicial cohomology,

Ho̊ pN pU,UAq;Gq :“ H˚`Co˚pU,UA;Rq;G˘.
For any refinement pU1,U1Aq of pU,UAq, the resulting simplicial map F : N pU1,U1Aq Ñ N pU,UAq
induces a chain map F˚ : Co˚pN pU1,U1Aq;Rq Ñ Co˚pN pU,UAq;Rq uniquely up to chain homotopy,
which therefore dualizes to a map of cochain complexes that is (by Proposition 41.2) likewise
unique up to chain homotopy, producing a canonically defined morphism

F˚ : Ho̊ pN pU,UAq;Gq Ñ Ho̊ pN pU1,U1Aq;Gq.
Notice what has happened as a result of dualization: the collection of simplicial homology groups
tHo˚pN pU,UAq;GqupU,UAqPOpX,Aq was an inverse system, but the reversal of arrows now means that
the corresponding cohomology groups

tHo̊ pN pU,UAq;GqupU,UAqPOpX,Aq

form a direct system, and we define the Čech cohomology of pX,Aq with coefficients in G to be
the direct limit qH˚pX,Aq “ qH˚pX,A;Gq :“ limÝÑtHo̊ pN pU,UAq;GqupU,UAqPOpX,Aq .

There is a huge technical advantage in the fact that qH˚pX,Aq is defined via a direct limit instead
of an inverse limit: limÝÑ is an exact functor, and one can use this to prove that unlike qH˚, the
cohomology qH˚ satisfies the exactness axiom without any restrictions.

Theorem 43.24 (see [ES52,Spa95]). For any choice of R-module G, the Čech cohomologyqH˚ “ qH˚p¨;Gq is an axiomatic cohomology theory with coefficient group G. �
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It follows that qH˚pX ;Gq and H˚pX ;Gq are isomorphic whenever X is a CW-complex. To
find examples in which qH˚pX ;Gq and H˚pX ;Gq differ, it suffices again to consider a space X that
is connected but not path-connected. Recall from Lemma 43.19 that whenever U P OpXq is an
open covering of a connected space X , the nerve N pUq is also connected, thus H0pN pUq;Gq – G.
One can deduce from this that if X is connected, then qH0pX ;Gq – G, and the reduced Čech
cohomology of X in degree zero vanishes. Exercise 42.2 then implies qH1pΣX ;Gq “ 0. But if X
has more than one path-component, then rH0pX ;Gq and H1pΣX ;Gq are both nontrivial; the latter
is isomorphic to Hompπ1pΣXq, Gq since the suspension ΣX is always path-connected, thus ΣX is
an example of a space for which qH1pΣX ;Gq fl Hompπ1pΣXq, Gq – H1pΣX ;Gq.

The Čech theory also has one nice property that the singular theory does not: it is continuous
with respect to inverse limits of spaces. The condition can be formulated for any axiomatic ho-
mology theory h˚ as follows: suppose tpXα, Aαq, ϕαβu is an inverse system of pairs of spaces over
some directed set pJ,ăq. The associated morphisms ϕα : limÐÝtpXβ , Aβqu Ñ pXα, Aαq then induce
homomorphisms

pϕαq˚ : hn
`
limÐÝtpXβ, Aβqu˘Ñ hnpXα, Aαq,

for each n P Z, which make
 
hn

`
limÐÝtpXβ , Aβqu˘, pϕαq˚( a target of the inverse system

thnpXα, Aαq, pϕαβq˚u
in the category of R-modules. By the universal property of inverse limits, there is then a canonical
limit morphism

hn
`
limÐÝtpXα, Aαqu˘Ñ limÐÝthnpXα, Aαqu .

For a cohomology theory h˚, an inverse system of pairs of spaces instead gives rise to a direct
system of cohomologies thnpXα, Aα;Gq, ϕα̊βu, for which the maps hnpXα, Aαq Ñ hn

`
limÐÝtXβ , Aβu˘

induced by limÐÝtXβ, Aβu Ñ pXα, Aαq make hn
`
limÐÝtXβ , Aβu

˘
into a target and thus determine a

canonical limit morphism

limÝÑthnpXα, Aαqu Ñ hn
`
limÐÝtpXα, Aαqu˘.

The following result is often quoted as a selling point of the Čech theory in comparison with
singular homology and cohomology. One can show in fact that every compact pair is the inverse
limit of some inverse system of compact pairs that are homotopy equivalent to CW-pairs, thus the
theorem can be used to understand the topology of very “wild” spaces for which singular homology
cannot be expected to give a reasonable answer.

Theorem 43.25 (continuity in Čech theory; see [ES52, Chapter X]). For any inverse system
of compact pairs tpXα, Aαq, ϕαβu and any choice of coefficients G, the canonical mapsqHn

`
limÐÝtpXα, Aαqu;G˘ ÝÑ limÐÝ

! qHnpXα, Aα;Gq
)
,

limÝÑ
! qHnpXα, Aαq

)
ÝÑ qHn

`
limÐÝtpXα, Aαqu˘.

are isomorphisms for all n P Z. �

For the failure of singular homology or cohomology to satisfy the continuity condition described
above, see Exercise 43.5.

Remark 43.26. In the previous lecture, we gave a brief sketch of yet another axiomatic co-
homology theory sH˚, the Alexander-Spanier cohomology. One can show that sH˚ also has the
continuity property described in Theorem 43.25. Since all compact Hausdorff spaces are inverse
limits of spaces homotopy equivalent to CW-complexes, it follows that up to isomorphism, there
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is only one cohomology theory on compact Hausdorff spaces that satisfies all of the Eilenberg-
Steenrod axioms plus continuity. In particular, qH˚pX ;Gq – sH˚pX ;Gq whenever X is compact
and Hausdorff, though both may be different from H˚pX ;Gq. (This result can be generalized
beyond compact spaces using sheaf cohomology; details are carried out in [Spa95, Chapter 6].)

43.5. Exercises.

Exercise 43.1 (*). Prove Propositions 43.5 and 43.11, giving explicit descriptions of inverse
limits in the categories Top and R-Mod.

Exercise 43.2. Prove Proposition 43.7, on the intersection of a family of subspaces as an
inverse limit.

Exercise 43.3. Prove Proposition 43.9 on nonempty inverse limits of compact Hausdorff
spaces.
Hint: By Tychonoff’s theorem,

ś
αXα is compact, which means that every net in

ś
αXα has a

cluster point (see Lecture 5 from last semester). For every index β, one can choose an element
xβ “ txβαu P

ś
αXα whose coordinates satisfy xβα “ ϕαβpxββq for every α ă β and are arbitrary for

all other α. The collection txβ P ś
αXαuβPJ then defines a net in

ś
αXα, which therefore has a

cluster point. Prove that the cluster point belongs to limÐÝtXαu. (For a slightly different argument
that does not use nets, see [ES52, Theorem VIII.3.6]; it does still require Tychonoff’s theorem.)

Exercise 43.4 (*). Prove Proposition 43.13 on limits of inverse systems that are “eventually
constant,” and describe the associated morphisms limÐÝtXβu ϕαÝÑ Xα for every α P J .
Advice: This problem becomes a bit easier if you work in any of the categories Top, R-Mod or Ch so
that you can use the results of Propositions 43.5 or 43.11 (plus Remark 43.12). But it can also be
done without that assumption, just by using the universal property and playing with commutative
diagrams.

Exercise 43.5. Find an example of a compact space X that is connected but not path-
connected and is the inverse limit of a system tXαu of path-connected spaces. Conclude that for
this example,

H˚
`
limÐÝtXαu˘ fl limÐÝtH˚pXαqu .

Hint: Use Proposition 43.7.

Exercise 43.6. Find an example of a path-connected space X for which qH1pX ;Z2q “ 0 but
H1pX ;Z2q ‰ 0. Can you also describe a specific nontrivial element of π1pXq?
Hint: Take the suspension of something that is connected but not path-connected.

44. Universal coefficient theorems and exact functors

Our goal in this and the next lecture is to clarify precisely how H˚pX ;G1q and H˚pX ;G2q or
the corresponding cohomologies are related to each other for different choices of coefficient modules
G1 and G2. In fact, we are stating this question for singular (co)homology, but the answer will
apply equally well to simplicial or cellular (co)homology. It is, in reality, an algebraic question,
and the methods we need in order to answer it come from homological algebra.

There are two versions of the universal coefficient theorem: one for homology, and one for
cohomology. Both posit the existence of a natural split exact sequence that reduces in favorable
cases to the statement that a certain natural map is an isomorphism. In the case of singular
cohomology with coefficients in an abelian group G, the natural map in question is

HnpX ;Gq hÝÑ HompHnpX ;Zq, Gq : rαs ÞÑ xrαs, ¨y,
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defined in terms of the evaluation pairing xrαs, rcsy :“ αpcq, and the theorem gives a split exact
sequence of the form

0 ÝÑ ExtpHn´1pX ;Zq, Gq ÝÑ HnpX ;Gq hÝÑ HompHnpX ;Zq, Gq ÝÑ 0,

where Ext : Ab ˆ Ab Ñ Ab is a functor that is guaranteed to vanish under various conditions.
When it vanishes, the conclusion is that h is an isomorphism, and more generally, the theorem
implies that h is always surjective, and in light of the splitting,

HnpX ;Gq – HompHnpX ;Zq, Gq ‘ ExtpHn´1pX ;Zq, Gq.
The version described above assumes only that G is an abelian group, but this is where it can

become extremely useful to distinguish between abelian groups and modules over a commutative
ring R other than Z. If G is viewed as an R-module, then the natural map arising from the
evaluation pairing takes the form

HnpX ;Gq hÝÑ HompHnpX ;Rq, Gq,
and we will see that whenever R is a principal ideal domain (e.g. Z or a field), the universal
coefficient theorem gives a split exact sequence

0 ÝÑ ExtpHn´1pX ;Rq, Gq ÝÑ HnpX ;Gq hÝÑ HompHnpX ;Rq, Gq ÝÑ 0,

where Ext is in this case a functor R-Mod ˆ R-Mod Ñ R-Mod. The usefulness of this added
generality is that one obtains a wider range of criteria for the vanishing of Ext, e.g. it turns out
that it always vanishes if R is a field K, and the universal coefficient theorem then reduces to the
straightforward statement that for any vector space G over K, the natural map

HnpX ;Gq hÝÑ HompHnpX ;Kq, Gq
is a vector space isomorphism. That is one of the results that will be proved in the present lecture.

For singular homology with coefficients in an R-module G, the natural map to consider takes
the form

HnpX ;Rq bG
hÝÑ HnpX ;Gq :

«ÿ
i

aiσi

ff
b g ÞÑ

«ÿ
i

aigσi

ff
,

and the homological version of the universal coefficient theorem gives a natural split exact sequence

0 ÝÑ HnpX ;Rq bG
hÝÑ HnpX ;Gq ÝÑ TorpHn´1pX ;Rq, Gq ÝÑ 0,

where Tor : R-Mod ˆ R-Mod Ñ R-Mod is another functor that is guaranteed to vanish under
various conditions, e.g. whenever either of the R-modules Hn´1pX ;Rq or G is free, implying in
such cases that h : HnpX ;Rq bGÑ HnpX ;Gq is an isomorphism.

Analogous results hold for simplicial or cellular (co)homology, as consequences of the algebraic
versions of the universal coefficient theorem. In the present lecture, we will prove the special cases
of these results in which the extra Tor or Ext terms vanish, implying that the natural maps labelled
above as h are isomorphisms. The definitions of the functors Tor and Ext will be given in the next
lecture, along with the general versions of the universal coefficient theorems.

Remark 44.1. Readers who have not previously encountered tensor products in the category
of abelian groups or R-modules may want to look at Exercise 44.1 before continuing.
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44.1. Principal ideal domains. Up until this point in our development of homology and
cohomology, there has always been a fixed commutative ring R in the background: most algebraic
objects we’ve considered have been modules over R, and the choice of the ring R has typically been
completely arbitrary. In the universal coefficient theorems, the choice of R is no longer arbitrary,
because we will need to assume that R is a principal ideal domain. If you’ve forgotten what
a principal ideal domain is, then there is no pressing need to look up the definition right now, so
long as you are willing to accept the following basic fact about them:

Proposition 44.2 (see [Lan02, §III.7]). If R is a principal ideal domain, then every submodule
of a free R-module is also free. �

In particular, this is true when R is Z, hence subgroups of free abelian groups are also free,
and it also holds whenever R is a field K, since all vector spaces over K are free K-modules. Those
are the main cases typically of interest.

44.2. The functors bG and Homp¨, Gq. For any space X and any R-module G, there is an
obvious relationship betweenH˚pX ;Rq andH˚pX ;Gq at the level of their underlying chain/cochain
complexes: the cochain complex C˚pX ;Gq is obtained by feeding the chain complex C˚pX ;Rq into
the contravariant functor

Homp¨, Gq : ChpR-Modq Ñ CoChpR-Modq.
In fact, Homp¨, Gq is, in the first place, a contravariant functor

Homp¨, Gq : R-ModÑ R-Mod,

and it has certain properties that we will formalize in the next subsection such that any chain
complex

(44.1) . . . ÝÑ Cn`1
Bn`1ÝÑ Cn

BnÝÑ Cn´1 ÝÑ . . .

can be fed term-by-term into Homp¨, Gq in order to produce a cochain complex

(44.2) . . .ÐÝ HompCn`1, Gq B
˚
n`1ÐÝ HompCn, Gq Bn̊ÐÝ HompCn´1, Gq ÐÝ . . . ,

with each of the maps Bn̊ defined by feeding Bn into the functor. The way that we actually defined
the cochain complex HompC˚, Gq in Lecture 41 was slightly different: the coboundary operators
were given some extra signs depending on the degree, but the cohomology is unchanged by this
detail, so if our goal is to relate H˚pC˚q and H˚pC˚;Gq, we may as well regard H˚pC˚;Gq as the
cohomology of the complex in (44.2).

Convention. For this and the next lecture, we will use the notation HompC˚, Gq to denote
the cochain complex in (44.2) rather than the variant with extra signs defined in Lecture 41. This
is a harmless abuse of notation since the cohomology does not depend on the extra signs.

For homology, it is also possible to obtain the chain complex underlying H˚pX ;Gq by feeding
the chain complex underlying H˚pX ;Rq into a functor, this time one that is covariant. For this
purpose, we use the tensor product of R-modules and consider the functor

bG : R-ModÑ R-Mod,

which sends a module A P R-Mod to the module A b G P R-Mod, and sends a homomorphism
φ : AÑ B to the homomorphism

φb 1 : AbGÑ B bG : ab g ÞÑ φpaq b g.



44. UNIVERSAL COEFFICIENT THEOREMS AND EXACT FUNCTORS 355

Feeding the chain complex C˚ in (44.1) term-by-term into bG produces a new chain complex

. . . Cn`1 bG Cn bG Cn´1 bG . . . ,
Bn`1b1 Bnb1

which we will denote by
C˚ bG P ChpR-Modq.

We observe that for the singular chain complex C˚pX ;Rq of a space X and any R-module G, there
is a natural isomorphism of chain complexes

C˚pX ;Rq bG
–ÝÑ C˚pX ;Gq :

˜ÿ
i

riσi

¸
b g ÞÑÿ

i

prigqσi.

For the relative singular homology of a pair of spaces pX,Aq, there is a similar isomorphism
C˚pX,A;RqbG – C˚pX,A;Gq, and there are also analogous isomorphisms for cellular or simplicial
chain complexes.

In summary: chain or cochain complexes with coefficients in an arbitrary R-module G can be
obtained by starting from C˚pX ;Rq (or its cellular or simplicial counterparts) and applying the
functors bG or Homp¨, Gq. The following detail will turn out to be important: the chain groups
CnpX ;Rq are free modules over R, thus all versions of singular/cellular/simplicial homology or
cohomology can be obtained algebraically from one that is built out of free R-modules.

44.3. Additive and exact functors. Both bG and Homp¨, Gq are examples of additive
functors R-ModÑ R-Mod, a notion that we shall now make precise.

Remark 44.3. Several of the definitions in this section can be extended to the more general
context of functors F : A Ñ B between a pair of arbitrary abelian categories. Philosophically,
abelian categories are the correct setting in which to study exact sequences and diagram-chasing
arguments, though for our present purposes, working in that general setting would impose an
unnecesarily extreme level of abstraction. We will therefore keep things more concrete by working
only in the specific abelian category R-Mod, and considering only functors from R-Mod to itself.

Definition 44.4. A functor F : R-Mod Ñ R-Mod is called additive if for every pair of R-
modules A and B, the map that F defines from HompA,Bq to either HompFpAq,FpBqq (in the
covariant case) or HompFpBq,FpAqq (in the contravariant case) is a homomorphism of abelian
groups.

Additive functors have two crucial properties that we will need to make use of. First, if
A

fÑ B
gÑ C are two homomorphisms whose composition g ˝ f : A Ñ C vanishes, then in the

covariant case, the fact that F defines a group homomorphism HompA,Cq Ñ HompFpAq,FpCqq
implies

Fpgq ˝ Fpfq “ Fpg ˝ fq “ 0 P HompFpAq,FpCqq,
simply because group homomorphisms preserve the 0 element. It follows that covariant additive
functors preserve the property of being a chain complex, i.e. any chain complex

. . . An`1 An An´1 . . .
fn`1 fn

gives rise to a chain complex

. . . FpAn`1q FpAnq FpAn´1q . . . .
Fpfn`1q Fpfnq

If F is instead a contravariant additive functor, then one obtains a cochain complex

. . . FpAn`1q FpAnq FpAn´1q . . . .
Fpfn`1q Fpfnq
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For a chain complex A˚, we will denote by FpA˚q the chain complex or cochain complex obtained
by feeding A˚ into an additive functor F .

The second important property is that additive functors preserve finite direct sums: in par-
ticular, for every pair of R-modules A and B, one obtains a natural isomorphism FpA ‘ Bq –
FpAq ‘FpBq. To understand why, we can write down a relation between certain maps that char-
acterizes direct sums uniquely up to isomorphism. Indeed, consider the canonical inclusion and
projection maps

(44.3)

A A

A‘B

B B

iA πA

πBiB

i.e. iApaq “ pa, 0q, πApa, bq “ a and so forth. Abbreviating C :“ A‘B, these maps satisfy the five
relations

(44.4) πAiA “ 1A, πBiB “ 1B, πAiB “ 0, πBiA “ 0, iAπA ` iBπB “ 1C .

Conversely, suppose C is some other R-module, and that we are given four homomorphisms

A A

C

B B

iA πA

πBiB

that likewise satisfy the five relations in (44.4). It then follows that the maps

A‘B C
iA‘iB and C A‘B

pπA,πBq

are inverse to each other, and thus determine an isomorphism C – A‘B that identifies the maps
iA, iB and πA, πB with the canonical inclusions and projections respectively. The point is this: if
F is a covariant additive functor, then plugging the diagram (44.3) into F gives us four maps

FpAq FpAq

FpA‘Bq

FpBq FpBq

FpiAq FpπAq

FpπBqFpiBq

that similarly satisfy the five relations

FpπAqFpiAq “ 1FpAq, FpπBqFpiBq “ 1FpBq,
FpπAqFpiBq “ 0, FpπBqFpiAq “ 0,

FpiAqFpπAq ` FpiBqFpπBq “ 1C ,

where C now denotes FpA‘Bq, and the last three relations all depend crucially on the fact that
F preserves addition of morphisms. One therefore obtains an isomorphism

FpA‘Bq – FpAq ‘ FpBq
that identifies FpiAq,FpiBq and FpπAq,FpπBq with the canonical inclusions and projections re-
spectively. If F is instead a contravariant additive functor, then both the arrows and the order
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of composition get reversed when plugging the maps from (44.3) into F , thus producing four
homomorphisms

FpAq FpAq

FpA‘Bq

FpBq FpBq

FpπAq FpiAq

FpiBqFpπBq

that satisfy the relations

FpiAqFpπAq “ 1FpAq, FpiBqFpπBq “ 1FpBq,
FpiBqFpπAq “ 0, FpiAqFpπBq “ 0,

FpπAqFpiAq ` FpπBqFpiBq “ 1FpCq
for C :“ FpA‘Bq. These relations again determine a natural isomorphism

FpA‘Bq – FpAq ‘ FpBq,
but the roles of the inclusions and projections have been reversed: the isomorphism identifies
FpπAq : FpAq Ñ FpA‘ Bq with the inclusion FpAq Ñ FpAq ‘ FpBq, FpiAq : FpA‘Bq Ñ FpAq
with the projection FpAq ‘ FpBq Ñ FpAq, and so forth.

Recall that if 0 Ñ A Ñ C Ñ B Ñ 0 is a split exact sequence, then C can be identified
isomorphically with A‘B so that the map AÑ C becomes the inclusion iA and C Ñ B becomes
the projection πB . One easy consequence of the natural isomorphisms explained above is then that
split-exactness is preserved by additive functors:

Proposition 44.5. For any additive functor F and any split exact sequence 0 Ñ A
fÑ B

gÑ
C Ñ 0, the sequence

0 ÝÑ FpAq FpfqÝÑ FpBq FpgqÝÑ FpCq ÝÑ 0, if F is covariant, or

0 ÝÑ FpCq FpgqÝÑ FpBq FpfqÝÑ FpAq ÝÑ 0, if F is contravariant

is also split exact. �

The main examples of additive functors you should have in mind at the moment are bG and
Homp¨, Gq for any fixed R-module G, and there are indeed natural isomorphisms

pA‘Bq bG – pAbGq ‘ pB bGq, HompA‘B,Gq – HompA,Gq ‘HompB,Gq
for any pair of R-modules A,B. The word “natural” in this context can be given a precise meaning
in terms of commuting diagrams; I will leave it as an exercise to spell out the details.

If the sequence 0Ñ AÑ B Ñ C Ñ 0 in Proposition 44.5 is assumed exact but not split exact,
then there is no guarantee that the sequence obtained by feeding it into an additive functor will
also be exact. We will see in particular that this is not true in general for either bG or Homp¨, Gq,
but it is true sometimes, and this property is useful enough to deserve a name:

Definition 44.6. An additive functor F : R-ModÑ R-Mod is called an exact functor if for
every short exact sequence 0Ñ A

fÑ B
gÑ C Ñ 0, the sequence

0 ÝÑ FpAq FpfqÝÑ FpBq FpgqÝÑ FpCq ÝÑ 0, if F is covariant, or

0 ÝÑ FpCq FpgqÝÑ FpBq FpfqÝÑ FpAq ÝÑ 0, if F is contravariant

is also exact.
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Definition 44.6 appears to give a special role to short exact sequences, but the following result
shows that this appearance is deceptive:

Proposition 44.7. An additive functor F is exact if and only if it preserves exactness for all
(not just short) exact sequences. Equivalently: F is exact if and only if for every exact sequence
AÑ B Ñ C, the induced sequence FpAq Ñ FpBq Ñ FpCq is also exact.

Proof. See Exercise 44.2. �

We will see in the next lecture that the functors bG and Homp¨, Gq are not exact in general,
and this is the reason why both versions of the universal coefficient theorem assert the existence of
natural split exact sequences rather than straightforward isomorphisms. On the other hand, it is
useful to note that they are exact under certain circumstances, such as when the ring R is assumed
to be a field:

Proposition 44.8. For any field K, every additive functor F : K-VectÑ K-Vect is exact.

Proof. Every short exact sequence 0 Ñ A Ñ B Ñ C Ñ 0 splits since C admits a basis, so
Proposition 44.5 implies that the sequence remains exact after feeding it into F . �

44.4. The main argument. We now explain the core of the argument behind both versions
of the universal coefficient theorem.

We saw above that any additive functor F : R-Mod Ñ R-Mod turns a chain complex C˚ of
R-modules

. . . ÝÑ Cn`1
Bn`1ÝÑ Cn

BnÝÑ Cn´1 ÝÑ . . .

into a new chain complex FpC˚q if F is covariant, or a cochain complex if F is contravariant. We
now ask:

Question 44.9. For each n P Z, what relation is there between FpHnpC˚qq and HnpFpC˚qq
or HnpFpC˚qq (in the covariant or contravariant case respectively)?

We will be interested mainly in two specific examples: in the first, F is bG, and the problem is
thus to find a relation between HnpC˚qbG and HnpC˚bGq, so for instance, we would in this way
find a relation between HnpX ;RqbG and HnpX ;Gq. In the second example, F is the contravariant
functor Homp¨, Gq, so we are looking to relate HompHnpC˚q, Gq to HnpC˚;Gq “ HnpHompC˚, Gqq;
in the setting of singular (co)chain complexes, this will mean a relation between HompHnpX ;Rq, Gq
and HnpX ;Gq. We shall impose two general assumptions that make the problem somewhat more
tractable:

‚ Assumption 1: The chain groups Cn Ă C˚ are free R-modules;
‚ Assumption 2: The ring R is a principal ideal domain.

Both assumptions hold, for instance, whenever C˚ is a singular/cellular/simplicial chain complex
with coefficients in either an abelian group or a vector space over a field. They imply in particular
that not only the modules Cn for each n P Z but also their submodules

Bn :“ im
´
Cn`1

Bn`1ÝÑ Cn

¯
, Zn :“ ker

´
Cn

BnÝÑ Cn´1

¯
consisting of boundaries and cycles respectively are free R-modules. Let

Bn Zn Cn
in jn

denote the inclusion maps, and observe that since Bn vanishes on both Bn and Zn, we can regard

B˚ :“ à
nPZ

Bn and Z˚ :“à
nPZ

Zn
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as chain complexes with trivial boundary operators, so that the inclusions

B˚ Z˚ C˚i j

are chain maps.
Consider first the case where the additive functor F is covariant. The boundary operator

Cn
BnÑ Cn´1 has image Bn´1 Ă Cn´1 by definition, so let us denote by

C˚ B1ÝÑ B˚´1

the resulting surjective chain map, and write its restriction to the degree n level as

Cn
B1nÝÑ Bn´1.

This notation may seem pedantic at first, because Cn
BnÑ Cn´1 and Cn

B1nÑ Bn´1 are the same map,
just with different understandings of what their targets are. But it will be useful to have this
notational distinction when we feed them into the functor F , because FpBn´1q cannot necessarily
be understood as a submodule of FpCn´1q: indeed, applying F to the inclusion jn´1in´1 : Bn´1 ãÑ
Cn´1 produces a homomorphism

FpBn´1q FpCn´1qFpjn´1in´1q

that need not be injective in general! What we can say instead is the following: the obvious
commutative diagram

(44.5)
Cn Bn´1

Cn´1

B1n

Bn
jn´1in´1

remains commutative after applying F , thus producing

(44.6) FpBnq “ Fpjn´1in´1qFpB1nq “ Fpjn´1qFpin´1qFpB1nq

as the essential relation between FpCnq FpCn´1qFpBnq and FpCnq FpBn´1qFpB1nq .
With that bit of preparation out of the way, the next step in finding a relation between

FpHnpC˚qq and HnpFpC˚qq is to observe that

(44.7) 0 ÝÑ Z˚
jÝÑ C˚ B1ÝÑ B˚´1 ÝÑ 0

is a short exact sequence of chain maps, and it splits since B˚´1 is free, being a submodule of a
free module over a principal ideal domain. If follows via Proposition 44.5 that

0 ÝÑ FpZ˚q FpjqÝÑ FpC˚q FpB1qÝÑ FpB˚´1q ÝÑ 0

is also a split exact sequence of chain maps, and the boundary operators on the chain complexes
FpZ˚q and FpB˚´1q are still trivial, so the resulting long exact sequence of homologies takes the
form

. . . ÝÑ FpBnq ΦnÝÑ FpZnq Fpjq˚ÝÑ HnpFpC˚qq FpB1q˚ÝÑ FpBn´1q Φn´1ÝÑ FpZn´1q ÝÑ . . . ,

where Φn and Φn´1 are connecting homomorphisms. Let’s take a closer look at what the map
Φn : FpBnq Ñ FpZnq actually is. If you recall how connecting homomorphisms were constructed
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in Proposition 32.13, the diagram that we need to chase is:

...
...

...

0 FpZn`1q FpCn`1q FpBnq 0

0 FpZnq FpCnq FpBn´1q 0

...
...

...

Fpjn`1q

0

FpB1n`1q

FpBn`1q 0

Fpjnq FpB1nq

FpBnq

Every element b P FpBnq is a cycle (of degree n ` 1) in the chain complex FpB˚´1q and is also
FpB1n`1qc for some c P FpCn`1q, and Φnpbq P FpZnq will then be determined by the condition that
for a suitable choice of c P FpCn`1q,

FpjnqΦnpbq “ FpBn`1qc.
Now notice: according to (44.6), FpBn`1qc “ FpjnqFpinqFpB1n`1qc “ FpjnqFpinqb, thus the re-
quired condition is satisfied by Φnpbq :“ Fpinqb, and our long exact sequence therefore becomes

. . . ÝÑ FpBnq FpinqÝÑ FpZnq Fpjq˚ÝÑ HnpFpC˚qq FpB1q˚ÝÑ FpBn´1q Fpin´1qÝÑ FpZn´1q ÝÑ . . . .

Letting Fpjq˚ descend to the quotient by its kernel and rewriting the image of FpB1q˚ as a kernel
gives the short exact sequence

(44.8) 0 cokerFpinq HnpFpC˚qq kerFpin´1q 0.
Fpjq˚ FpB1q˚

We will eventually deduce the general version of the universal coefficient theorem for homology
from this short exact sequence.

In order to understand more precisely what cokerFpinq and kerFpin´1q are, it helps to examine
a second short exact sequence

(44.9) 0 Bn Zn HnpC˚q 0,
in qn

in which qn denotes the quotient projection. Feeding this into the functor F produces a chain
complex

(44.10) 0 FpBnq FpZnq FpHnpC˚qq 0,
Fpinq Fpqnq

though since HnpC˚q need not by a free R-module, there is no guarantee that the sequence (44.9)
splits, and therefore no guarantee that (44.10) will be exact. It will thus be helpful at this point to
impose a third assumption on our setting, though we will put considerable effort into lifting this
assumption in the next lecture:

‚ Assumption 3: The functor F is exact.
The added assumption guarantees that (44.10) is indeed an exact sequence for every value of n P Z.
One immediate consequence is that Fpin´1q is injective, thus

kerFpin´1q “ 0,

and another is that Fpqnq is surjective and descends to an isomorphism

cokerFpinq FpHnpC˚qqFpqnq
– .
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Using these to replace the first and last nontrivial terms in the short exact sequence (44.8), the
sequence now contains only two nontrivial terms, and we conclude that there is a natural isomor-
phism

FpHnpC˚qq HnpFpC˚qq.h

–
At this level of generality, one cannot quite write down an explicit formula for the map h, but

the argument above characterizes h as the unique map such that

(44.11) hpxq “ rFpjnqzs P HnpFpC˚qq for any z P FpZnq with Fpqnqz “ x P FpHnpC˚qq.
Indeed, it will be useful to note for later that this characterization of h does not require F to be
an exact functor, but only requires the sequence (44.10) to be exact at its middle and last terms,
which makes Fpqnq : FpZnq Ñ FpHnpC˚qq a surjective map that descends to an isomorphism
cokerFpinq – FpHnpC˚qq. This means in particular that one can choose a suitable z P FpZnq for
any given x P FpHnpC˚qq, and its equivalence class in the quotient FpZnq{ imFpinq “ cokerFpinq
is unique. The map cokerFpinq Ñ HnpFpC˚qq in the exact sequence (44.8) then arises by letting
the chain map Fpjq : FpZ˚q Ñ FpC˚q descend to homology as the map FpZnq Ñ HnpFpC˚qq :
z ÞÑ rFpjnqzs, and then letting the latter descend to the quotient of FpZnq by imFpinq. The result
is precisely the characterization in (44.11). For the special case F “ bG, one easily deduces from
this that h is the canonical map

(44.12) HnpC˚q bG
hÝÑ HnpC˚ bGq : rcs b g ÞÑ rcb gs.

We’ve proved a first special case of the universal coefficient theorem for homology:

Theorem 44.10. Suppose C˚ is a chain complex of free modules over a principal ideal do-
main R, and G is an R-module such that bG : R-Mod Ñ R-Mod is an exact functor. Then the
natural map h : HnpC˚q b G Ñ HnpC˚ b Gq described in (44.12) is an isomorphism for every
n P Z. �

By Proposition 44.8, the extra hypothesis that bG is exact holds in particular whenever R is
a field K, so for any vector space G over K, we obtain natural vector space isomorphisms

HnpX,A;Kq bG – HnpX,A;Gq
for all n ě 0 and all pairs of spaces pX,Aq, and similarly in cellular or simplicial homology.

Adapting the argument above for the case of a contravariant exact functor F is straightforward.
Instead of a chain complex, FpC˚q is now a cochain complex

. . . FpCn´1q FpCnq FpCn`1q . . . ,
FpBnq FpBn`1q

and applying F to the diagram (44.5) produces

(44.13) FpBnq “ FpB1nqFpjn´1in´1q “ FpB1nqFpin´1qFpjn´1q
as a relation between FpCn´1q FpBnqÝÑ FpCnq and FpBn´1q FpB1nqÝÑ FpCnq. Plugging the split exact
sequence (44.7) into F produces a short exact sequence of cochain complexes

0ÐÝ FpZ˚q FpjqÐÝ FpC˚q FpB1qÐÝ FpB˚´1q ÐÝ 0,

and therefore a long exact sequence

. . .ÐÝ FpBnq ΦnÐÝ FpZnq Fpjq˚ÐÝ HnpFpC˚qq FpB1q˚ÐÝ FpBn´1q Φn´1ÐÝ FpZn´1q ÐÝ . . . .

One needs to do another quick diagram-chasing exercise to figure out what the connecting homo-
morphisms Φn are, but the answer will not surprise you: as in the covariant case, one finds

Φn “ Fpinq : FpZnq Ñ FpBnq,
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and the proof depends on the relation (44.13). Turning the long exact sequence into a short exact
sequence with HnpFpC˚qq as the middle term thus gives

0 ÝÑ cokerFpin´1q ÝÑ HnpFpC˚qq ÝÑ kerFpinq ÝÑ 0.

If the functor F is exact, then it also turns the short exact sequence 0Ñ Bn
inÑ Zn

qnÑ HnpC˚q Ñ 0

into a short exact sequence

0 FpHnpC˚qq FpZnq FpBnq 0,
Fpqnq Fpinq

implying that cokerFpinq “ 0 for all n P Z and giving a natural isomorphism

FpHnpC˚qq kerFpinq Ă FpZnq.Fpqnq
–

Our previous short exact sequence thus becomes an isomorphism

(44.14) HnpFpC˚qq FpHnpC˚qq.h

–

The map h : HnpFpC˚qq Ñ FpHnpC˚qq is characterized uniquely by the relation

(44.15) Fpqnqhprϕsq “ Fpjnqϕ for all ϕ P kerFpBn`1q Ă FpCnq,
due to the fact that Fpqnq maps FpHnpC˚qq isomorphically to kerFpinq. In the special case
F “ Homp¨, Gq, this makes h the map HnpC˚;Gq hÝÑ HompHnpC˚q, Gq defined via evaluation of
cochains on chains,

(44.16) hprαsqrcs “ αpcq.
The resulting special case of the universal coefficient theorem for cohomology reads:

Theorem 44.11. Suppose C˚ is a chain complex of free modules over a principal ideal do-
main R, and G is an R-module such that Homp¨, Gq : R-ModÑ R-Mod is an exact functor. Then
the natural map h : HnpC˚;Gq Ñ HompHnpC˚q, Gq described in (44.16) is an isomorphism for
every n P Z. �

Once again, Proposition 44.8 provides the exactness hypothesis for free whenever R is a field K,
so for the singular cohomology of a pair of spaces pX,Aq and any vector space G overK, one obtains
vector space isomorphisms

HnpX,A;Gq – HompHnpX,A;Kq, Gq,
and similarly for cellular or simplicial homology. This result is already interesting when G is taken
to be the field K itself, because it then identifies the cohomology HnpX,A;Kq with the dual vector
space of the homology HnpX,A;Kq. One immediate application is that we can freely replace
homology by cohomology in order to compute the Betti numbers of a space,

bkpXq “ dimQHkpX ;Qq “ dimQH
kpX ;Qq,

and since every matrix has the same trace as its transpose, one can similarly use cohomology
to compute Lefschetz numbers, as mentioned in the motivational introduction to Lecture 41; for
details on the latter result, see Exercise 44.3.
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44.5. Exercises.
Exercise 44.1. The following exercise is for readers who have not previously encountered

tensor products in the categories of abelian groups or R-modules. We first recall the definition.
Given a set S, let F pSq :“À

ePS R P R-Mod denote the free R-module generated by this set; each
of its elements can be written as

ř
ePS ree for a unique set of coefficients re P R, assuming that

only finitely-many of them are nonzero so that the sum is well defined. The tensor product of
two R-modules A and B is then defined as a certain quotient of the free R-module generated by
AˆB, namely

AbB :“ F pAˆBqLN,
where N Ă F pA ˆ Bq is the smallest submodule containing all elements of the form pa ` a1, bq ´
pa, bq ´ pa1, bq, pa, b` b1q ´ pa, bq ´ pa, b1q, pra, bq ´ rpa, bq and pa, rbq ´ rpa, bq for a, a1 P A, b, b1 P B
and r P R. We denote the equivalence class represented by pa, bq P F pAˆBq in the quotient by

ab b :“ rpa, bqs P AbB.

Recall that for R-modules A,B,C, a map Φ : A ‘ B Ñ C is called bilinear if the maps A Ñ
C : a ÞÑ Φpa, b0q and B Ñ C : b ÞÑ Φpa0, bq are R-module homomorphisms for all choices of fixed
elements a0 P A and b0 P B.

(a) Show that the map G ‘H Ñ G bH : pg, hq ÞÑ g b h is bilinear, and deduce from this
that for any g P G and h P H , 0b h “ g b 0 “ 0 P GbH .

(b) Show that for any bilinear map Φ : G‘H Ñ K of R-modules, there exists a unique R-
module homomorphismΨ : GbH Ñ K such that Φpg, hq “ Ψpgbhq for all pg, hq P G‘H .

(c) Show that for any R-module G, the map G Ñ G b R : g ÞÑ g b 1 is an isomorphism.
Write down its inverse.
Hint: Use part (b) to write down homomorphisms in terms of bilinear maps.

(d) Find a natural isomorphism from pG‘Hq bK to pGbKq ‘ pH bKq.
(e) Given two sets S and T , find a natural isomorphism from F pSq b F pT q to F pS ˆ T q.
(f) For any R-modules A,B,C,D and homomorphisms f : A Ñ B, g : C Ñ D, show that

there exists a homomorphism

f b g : Ab C Ñ B bD

defined uniquely by the condition pf b gqpab cq “ fpaq b gpcq for all a P A and c P C.
(g) In the case R “ Z, an element a P G of an abelian group G is said to be torsion if ma “ 0

for somem P N. Show that if every element of G is torsion and K is a field of characteristic
zero (regarded as an abelian group with respect to addition), then GbK “ 0.

Exercise 44.2 (*). Prove Proposition 44.7 on conditions equivalent to the exactness of an
additive functor.
Hint: First show that if F is exact, then it preserves injectivity or surjectivity of morphisms. Then
replace any given exact sequence A fÑ B

gÑ C with one that takes the form 0Ñ A{ kerpfq Ñ B Ñ
impgq Ñ 0.

Exercise 44.3 (*). Fix an R-module G and an integer n ě 0.
(a) Show that the canonical homomorphisms h : HnpX ;Rq b G Ñ HnpX ;Gq and h :

HnpX ;Gq Ñ HompHnpX ;Rq, Gq have the following naturality properties: for any con-
tinuous map f : X Ñ Y , the diagrams

HnpX ;Rq bG HnpX ;Gq

HnpY ;Rq bG HnpY ;Gq

h

f˚b1 f˚
h

and
HnpX ;Gq HompHnpX ;Rq, Gq

HnpY ;Gq HompHnpY ;Rq, Gq

h

h

f˚ f˚
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both commute, where f˚ : HompHnpY ;Rq, Gq Ñ HompHnpX ;Rq, Gq denotes the dual-
ization of f˚ : HnpX ;Rq Ñ HnpY ;Rq.

(b) Prove that for any field K, the Lefschetz number LKpfq of a map f : X Ñ X defined in
§40.4 satisfies

LKpfq “
ÿ
nPZ

p´1qn tr `HnpX ;Kq f˚ÝÑ HnpX ;Kq˘.
Remark: For the computation of Lefschetz numbers in terms of homology or cohomology with
coefficients in Z, see Exercises 45.11 and 45.12 in the next lecture.

45. The derived functors Tor and Ext

Now comes the bad news: the natural maps

HnpX ;Rq bG
hÝÑ HnpX ;Gq, and HnpX ;Gq hÝÑ HompHnpX ;Rq, Gq

are not always isomorphisms. We proved in the previous lecture that they are isomorphisms when-
ever R is a principal ideal domain and G is an R-module for which bG or Homp¨, Gq respectively
is an exact functor R-Mod Ñ R-Mod. We saw that both are exact when R is a field, but in the
present lecture, we shall confront the reality that both can, in general, fail to be exact functors.
On the other hand, this failure is not catastrophic, and it can be measured in precise terms via
the nontriviality of certain auxiliary functors called

Torp¨, Gq : R-ModÑ R-Mod, and Extp¨, Gq : R-ModÑ R-Mod.

Once these have been defined and their main properties elucidated, they will furnish us with a
third term in each of the short exact sequences that constitute the general versions of the universal
coefficient theorems.

45.1. The properties of Tor and Ext. We now state two theorems whose proofs will occupy
the bulk of this lecture.

Theorem 45.1. Assume R is a commutative ring with unit. There exists a sequence of functors

Torn : R-ModˆR-ModÑ R-Mod, n P N,

which are canonically defined up to natural isomorphisms and covariant in both variables, and have
the following properties:

(1) For every short exact sequence of R-modules 0 ÝÑ A
fÝÑ B

gÝÑ C ÝÑ 0 and every fixed
R-module G, the maps f˚ : TornpA,Gq Ñ TornpB,Gq and g˚ : TornpB,Gq Ñ TornpC,Gq
defined by feeding f and g respectively into the functors Tornp¨, Gq : R-ModÑ R-Mod fit
into a long exact sequence

. . . ÝÑ Tor2pA,Gq f˚ÝÑ Tor2pB,Gq g˚ÝÑ Tor2pC,Gq ÝÑTor1pA,Gq f˚ÝÑ Tor1pB,Gq g˚ÝÑ Tor1pC,Gq
ÝÑ AbG

fb1ÝÑ B bG
gb1ÝÑ C bG ÝÑ 0.

(2) For every fixed R-module G and each n P N, the functors Tornp¨, Gq and TornpG, ¨q are
additive; in particular, there are natural isomorphisms

TornpA‘B,Gq – TornpA,Gq ‘ TornpB,Gq,
TornpG,A‘Bq – TornpG,Aq ‘ TornpG,Bq

for all pairs of R-modules A,B.
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(3) TornpA,Gq “ 0 for all n ě 1 whenever either of A or G is a free R-module.66

(4) TornpA,Gq “ 0 for all n ě 2 and all A,G whenever R is a principal ideal domain.
(5) In the case R “ Z, Tor1pA,Gq “ 0 whenever either A or G has no torsion.
(6) If k P N has the property that no nonzero element x P R satisfies kx “ 0, then for every

R-module G, one has

Tor1pR{kR,Gq – ker
´
G

¨kÝÑ G
¯
, and TornpR{kR,Gq “ 0 for n ě 2.

(7) There are natural isomorphisms TornpA,Gq – TornpG,Aq for all n ě 1 and all A,G.

A few comments on this statement before we continue. First, the words “canonically defined
up to natural isomorphisms” may seem mysterious at first, but the proof of the theorem will
make their meaning clear (see in particular Remark 45.27). The definitions of the functors Torn
depend on choices, but the resulting functors are canonical in the sense that for any two such
functors Torn and Tor1n defined via different choices, there is a natural isomorphism Torn ñ Tor1n,
meaning a natural transformation such that the resulting morphisms TornpA,Gq Ñ Tor1npA,Gq
are isomorphisms for every A,G.

Second, we will be concerned mainly with cases where R is a principal ideal domain, so that
the “higher” Tor functors Torn all vanish for n ě 2, leaving only the case n “ 1, which gets a
special name

TorpA,Gq :“ Tor1pA,Gq.
The long exact sequence arising from any short exact sequence 0Ñ AÑ B Ñ C Ñ 0 then becomes
a sequence with at most six nontrivial terms,

0Ñ TorpA,Gq Ñ TorpB,Gq Ñ TorpC,Gq Ñ AbGÑ B bGÑ C bGÑ 0.

Third, if you are familiar with the classification of finitely-generated abelian groups, then you
will notice that the properties listed in the theorem make computations of TorpA,Gq a straight-
forward matter in the case R “ Z, i.e. when A and G are just abelian groups, at least if they are
finitely generated. In light of additivity and the vanishing of Tor on torsion-free groups, TorpA,Gq
can always be expressed as a direct sum of terms arising from the formula

TorpZk,Zℓq – ker
´
Zℓ

¨kÝÑ Zℓ

¯
– Zgcdpk,ℓq.

Lastly: just like the symbol A b G, TorpA,Gq and TornpA,Gq have different meanings de-
pending on whether A and G are regarded as mere abelian groups (i.e. Z-modules) or as modules
over some other ring R ‰ Z. In situations where this distinction is important, one sometimes sees
notation such as

TorRpA,Gq :“ TorpA,Gq
to specify that we are working with a functor on R-Mod rather than Ab. I prefer to avoid such
notational clutter and let the context determine the precise meaning of TorpA,Gq, but one should
be aware that in some books, the convention is to reserve this notation for the case TorZpA,Gq,
and write TorR explicitly whenever any ring R other than Z is to be used.

Here’s the contravariant cousin of Theorem 45.1.

Theorem 45.2. Assume R is a commutative ring with unit. There exists a sequence of functors

Extn : R-ModˆR-ModÑ R-Mod, n P N,

which are canonically defined up to natural isomorphisms and contravariant in the first variable
but covariant in the second variable, and have the following properties:

66We will see in §45.4 that this statement also holds under a somewhat weaker hypothesis, namely that A or G
is a projective R-module, though in typical cases of interest, the two conditions are equivalent (cf. Remark 45.19).
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(1) For every short exact sequence of R-modules 0 ÝÑ A
fÝÑ B

gÝÑ C ÝÑ 0 and every
fixed R-module G, the maps f˚ : ExtnpB,Gq Ñ ExtnpA,Gq and g˚ : ExtnpC,Gq Ñ
ExtnpB,Gq defined by feeding f and g respectively into the functors Extnp¨, Gq : R-ModÑ
R-Mod fit into a long exact sequence

0 ÝÑ HompC,Gq g˚ÝÑ HompB,Gq f˚ÝÑ HompA,Gq ÝÑ Ext1pC,Gq g˚ÝÑ Ext1pB,Gq f˚ÝÑ Ext1pA,Bq
ÝÑ Ext2pC,Gq g˚ÝÑ Ext2pB,Gq f˚ÝÑ Ext2pA,Gq ÝÑ . . . .

(2) For every fixed R-module G and each n P N, the functors Extnp¨, Gq and ExtnpG, ¨q are
additive; in particular, there are natural isomorphisms

ExtnpA‘B,Gq – ExtnpA,Gq ‘ ExtnpB,Gq,
ExtnpG,A‘Bq – ExtnpG,Aq ‘ ExtnpG,Bq

for all pairs of R-modules A,B.
(3) ExtnpA,Gq “ 0 for all n ě 1 whenever A is a free R-module67 or Homp¨, Gq is an exact

functor.
(4) ExtnpA,Gq “ 0 for all n ě 2 and all A,G whenever R is a principal ideal domain.
(5) If k P N has the property that no nonzero element x P R satisfies kx “ 0, then for every

R-module G, one has

Ext1pR{kR,Gq – coker
´
HompR,Gq ¨kÝÑ HompR,Gq

¯
, and ExtnpR{kR,Gq “ 0 for n ě 2.

The same remarks made above for the Tor functors regarding their uniqueness up to natural
isomorphism and their computability in the case R “ Z apply equally well to the Ext functors. In
light of the vanishing of Extn for n ě 2 when R is a principal ideal domain, we similarly adopt the
notation

ExtpA,Gq :“ Ext1pA,Gq,
thus turning the long exact sequence arising from any short exact sequence 0Ñ AÑ B Ñ C Ñ 0

into another six-term sequence

0Ñ HompC,Gq Ñ HompB,Gq Ñ HompA,Gq Ñ ExtpC,Gq Ñ ExtpB,Gq Ñ ExtpA,Gq Ñ 0.

In the case R “ Z, computing ExtpA,Gq when A is a finitely-generated abelian group reduces to
taking direct sums of terms arising from the formula

ExtpZk, Gq – coker
´
HompZ, Gq ¨kÝÑ HompZ, Gq

¯
– G

L
kG.

The symmetry isomorphism TornpA,Gq – TornpG,Aq also has an analogue for the Ext func-
tors, but it is less straightforward to state; it involves an alternative definition of ExtnpA,Gq that
will be sketched in §45.6.

45.2. Left- and right-exact functors. The most important features of Theorems 45.1
and 45.2 are the long exact sequences, which quantify the failure of bG and Homp¨, Gq to be
exact functors, e.g. we see from Theorem 45.1 that for any given short exact sequence 0 Ñ A Ñ
B Ñ C Ñ 0 and any R-module G, the induced sequence 0Ñ AbGÑ B bGÑ C bGÑ 0 will
be exact whenever TorpC,Gq “ 0. Even when this is not the case, the theorem implies that the
sequence

AbG ÝÑ B bG ÝÑ C bG ÝÑ 0

67As in Theorem 45.1, this statement also holds under the seemingly weaker (but typically equivalent) hypoth-
esis that A is projective.
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will be exact in any case, i.e. exactness always holds at the second and third nontrivial terms, and
we see in Theorem 45.2 that Homp¨, Gq has a similar property with the arrows reversed. There is
terminology to describe additive functors with these properties.

Definition 45.3. An additive covariant functor F : R-Mod Ñ R-Mod is called right-exact
if for every exact sequence A iÝÑ B

jÝÑ C Ñ 0, the sequence

FpAq FpiqÝÑ FpBq FpjqÝÑ FpCq ÝÑ 0

is also exact, and left-exact if for every exact sequence 0 ÝÑ A
iÝÑ B

jÝÑ C, the sequence

0 ÝÑ FpAq FpiqÝÑ FpBq FpjqÝÑ FpCq
is also exact. Similarly, if F is additive and contravariant, it is called right-exact if for every
exact sequence 0 ÝÑ A

iÝÑ B
jÝÑ C, the sequence

FpCq FpjqÝÑ FpBq FpiqÝÑ FpAq ÝÑ 0

is also exact, and left-exact if for every exact sequence A iÝÑ B
jÝÑ C ÝÑ 0, the sequence

0 ÝÑ FpCq FpjqÝÑ FpBq FpiqÝÑ FpAq
is also exact.

Recalling Definition 44.6 from the previous lecture, we see that a functor is exact if and only
if it is both right-exact and left-exact.

Proposition 45.4. For any R-module G, the functors bG : R-ModÑ R-Mod and Homp¨, Gq :
R-ModÑ R-Mod are right-exact and left-exact respectively.

Proof. Exactness of a sequence A iÑ B
jÑ C Ñ 0 means that j vanishes on impiq and

descends to an isomorphism

(45.1) cokerpiq “ B
L
impiq C.

j

–
The goal is now to show that the induced sequences

AbG B bG C bG 0
ib1 jb1

and

0 HompC,Gq HompB,Gq HompA,Gqj˚ i˚

are both exact. The first is equivalent to showing that the map

(45.2) cokerpib 1q “ pB bGqL impib 1q C bG
jb1

to which j b 1 descends is an isomorphism, while the second is equivalent showing that j˚ defines
an isomorphism

(45.3) HompC,Gq kerpi˚q Ă HompB,Gq.j˚

We can establish both by writing down explicit inverses: first, one easily checks that the map

C bGÑ cokerpib 1q : cb g ÞÑ rbb gs
defined by choosing any b P j´1pcq is a well-defined homomorphism inverse to the map in (45.2).
To write down an inverse of (45.3), it is useful to note that kerpi˚q Ă HompB,Gq consists of all
homomorphisms ϕ : B Ñ G that vanish on impiq Ă B and thus descend to maps cokerpiq Ñ G,
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giving a natural identification of kerpi˚q with Hompcokerpiq, Gq. Using this identification, the
inverse of (45.3) is the map

Hompcokerpiq, Gq Ñ HompC,Gq : ϕ ÞÑ ϕ ˝ j´1,

where j´1 in this context denotes the inverse of the isomorphism (45.1). �

The reason that bG and Homp¨, Gq can each fail in general to be exact is that the injectivity of
a map i : A ãÑ B does not guarantee the injectivity of ib1 : AbGÑ BbG, nor the surjectivity
of i˚ : HompB,Gq Ñ HompA,Gq. Both can be framed as conditions on the R-module G.

Definition 45.5. An R-module G is flat if for every pair of R-modules A,B with an injective
homomorphism i : A ãÑ B, the homomorphism ib 1 : AbGÑ B bG is also injective.

Definition 45.6. An R-module G is injective if for every pair of R-modules A,B with an
injective homomorphism i : A Ñ B and a homomorphism ϕ : A Ñ G, one can find a third
homomorphism rϕ : B Ñ G such that the diagram

B

A G

rϕ
i

ϕ

commutes. In other words: Every injection A
iãÑ B has a surjective dual HompB,Gq i˚ÝÑ

HompA,Gq.
The right-exactness of bG and left-exactness of Homp¨, Gq now imply:

Corollary 45.7. An R-module G is flat if and only if the functor bG is exact, and G is
injective if and only if the functor Homp¨, Gq is exact. �

Example 45.8. Consider the exact sequence of abelian groups

(45.4) 0 2Z Z Z2 0
i pr

formed by the inclusion i and quotient projection. Feeding it into the functor bZ2 : AbÑ Ab gives

0 ÝÑ 2Zb Z2 – Z2
¨2ÝÑ Z2 – Zb Z2

prb1ÝÑ Z2 b Z2 Ñ 0,

which is not exact since multiplication by 2 is the trivial map on Z2, hence the map ib1 : 2ZbZ2 Ñ
Zb Z2 fails to be injective. This shows that Z2 is not a flat Z-module and bZ2 : AbÑ Ab is not
an exact functor.

Example 45.9. The isomorphism of Z-modules 2ZÑ Z : m ÞÑ m{2 cannot be extended from
the subgroup 2Z Ă Z to a homomorphism ZÑ Z. This shows that Z is not an injective Z-module,
and in particular, feeding the exact sequence (45.4) into Homp¨,Zq : AbÑ Ab produces a non-exact
sequence

0 HompZ2,Zq HompZ,Zq Homp2Z,Zq 0
pr˚ i˚

,

with exactness failing at the term Homp2Z,Zq because the map i˚ : HompZ,Zq Ñ Homp2Z,Zq
dual to the inclusion i : 2Z ãÑ Z is not surjective.

In the previous lecture, we made use of the fact that feeding a short exact sequence 0Ñ AÑ
B Ñ C Ñ 0 into any additive functor F does produce an exact sequence 0 Ñ FpAq Ñ FpBq Ñ
FpCq Ñ 0 whenever the original sequence splits, which is true for instance if C is a free R-module.
It will be useful to note that this trick also works under a somewhat weaker assumption than
freeness. As you’ve seen in covering space theory, it is often useful to be able to recognize when



45. THE DERIVED FUNCTORS Tor AND Ext 369

“lifting” problems can be solved, and the following dualization of Definition 45.6 does something
similar in algebraic settings.

Definition 45.10. An R-module G is called projective if for every surjective homomorphism
π : B Ñ A, every homomorphism ϕ : GÑ A can be lifted to a homomorphism rϕ : GÑ B so that
the following diagram commutes:

B

G A

π
rϕ
ϕ

The following result makes more precise the sense in which the notions of projectivity and
injectivity are dual to each other; its proof is an exercise.

Proposition 45.11. For any R-module G, the covariant functor HompG, ¨q : R-ModÑ R-Mod

is left-exact, and it is exact if and only if G is projective. �

Example 45.12. Every free R-module is also projective. Indeed, if G has a basis B Ă G, then
the required lift rϕ : G Ñ B can be defined by choosing any rϕpeq P π´1pϕpeqq for each e P B and
extending rϕ to the unique homomorphism with these values on the basis elements.

Example 45.13. The abelian group Z2 is not a projective Z-module. For instance, the lift in
the diagram

Z

Z2 Z2

pr
rϕ
1

can never exist since HompZ2,Zq “ 0.

Now suppose 0 Ñ A
iÑ B

jÑ C Ñ 0 is a short exact sequence of R-modules and, instead of
assuming C is free, suppose it is projective. The identity map C Ñ C then admits a lift ϕ : C Ñ B

satisfying j ˝ ϕ “ 1, so ϕ is a right-inverse of j. We conclude:

Proposition 45.14. If C is a projective R-module and 0Ñ AÑ B Ñ C Ñ 0 is a short exact
sequence, then the sequence splits, and the sequence induced by feeding it into any additive functor
is therefore also split exact. �

Let us now collect some tools for recognizing the flatness of a module.

Lemma 45.15. For any collection tGαuαPJ of R-modules, G :“À
αPJ Gα is flat if and only if

Gα is flat for every α P J .
Proof. Given an injective homomorphism i : A Ñ B, tensoring with the direct sum G

produces a “diagonal” homomorphism

Ab
˜à
αPJ

Gα

¸
“ à

αPJ
pAbGαq

à
αPJ

pB bGαq “ B b
˜à
αPJ

Gα

¸À
α ib1

which is injective if and only if all of its diagonal entries ib1 : AbGα Ñ BbGα are injective. �

Lemma 45.16. Every free R-module is flat.

Proof. Free modules are isomorphic to direct sums of copies of R, so thanks to Lemma 45.15,
this follows from the trivial observation that R itself is a flat R-module. �

Lemma 45.17. Every projective R-module is a direct summand of a free R-module.
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Proof. Given an R-module G, choose any free R-module F that admits a surjective homo-
morphism π : F Ñ G, e.g. one could take F to be the free R-module on the set of all elements
of G, with π as the unique homomorphism determined by the inclusions of those elements. We
now have a short exact sequence

0Ñ kerπ ãÑ F
πÑ G ÝÑ 0,

and if G is projective, then Proposition 45.14 gives a splitting of this sequence, and therefore an
isomorphism F – G‘ kerπ. �

Corollary 45.18. All projective R-modules are flat. �

Remark 45.19. If R is a principal ideal domain, then Lemma 45.17 and Proposition 44.2
together imply that projective R-modules and free R-modules are the same thing. But we will
not need to make any concrete use of this fact, as projectivity on its own is already a quite useful
condition.

The following result lies in the background of the fact stated in Theorem 45.1 that TorpA,Bq “
0 whenever A or B is a torsion-free Z-module; its proof is Exercise 45.3.

Proposition 45.20. Every torsion-free abelian group is a flat Z-module. �

45.3. Projective resolutions. By now we have some motivation to believe that there is
something special about R-modules that are projective: in particular, Proposition 45.14 and Corol-
lary 45.18 imply that the results of the previous lecture produce a natural isomorphism

HnpC˚q bG – HnpC˚ bGq
whenever either Hn´1pC˚q or G happens to be projective. Unfortunately, plenty of interesting R-
modules (such as the abelian group Z2) are not projective, and the natural map h : HnpC˚qbGÑ
HnpC˚ bGq will then sometimes fail to be an isomorphism; we still need a better understanding
of what what happens in such cases.

As an attempt at motivating the next definition, here is an unnecessarily verbose way of
restating the observation that everything is fine if Hn´1pC˚q is projective: everything is fine if
there exists an exact sequence

0Ñ P Ñ Hn´1pC˚q Ñ 0

in which all terms to the left of Hn´1pC˚q are projective. This is clear: an exact sequence of
this form is equivalent to an isomorphism P Ñ Hn´1pC˚q, and P is then projective if and only
if Hn´1pC˚q is projective. The point of framing the issue in these terms is that in homological
algebra, exact sequences can be regarded as generalizations of isomorphisms, but they exist in
many situations where actual isomorphisms do not.

Definition 45.21. A projective resolution A˚ αÝÑ A of an R-module A consists of an exact
sequence

. . . ÝÑ A2
α2ÝÑ A1

α1ÝÑ A0
αÝÑ A ÝÑ 0

such that all of the An for n “ 0, 1, 2, . . . are projective R-modules and the final nontrivial term
is A.

The notation A˚ αÝÑ A for a projective resolution makes sense from the following perspective.
Let A˚ denote the chain complex

. . . ÝÑ A2
α2ÝÑ A1

α1ÝÑ A0 ÝÑ A´1 :“ 0 ÝÑ A´2 :“ 0 ÝÑ . . .

obtained by truncating the exact sequence after A0, and identify A with the trivial chain complex
that has A itself in degree 0 and the trivial module in all other degrees. The fact that α is surjective
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and satisfies α ˝ α1 “ 0 then allows us to regard α as a surjective chain map A˚ Ñ A, also known
as an augmentation of the chain complex A˚, for which the resulting augmented chain complex

rA˚ :“
8à

n“´1

rAn with rA´1 :“ A and rAn :“ An for n ě 0

is the original exact sequence in the projective resolution. In these terms, a projective resolution
of A is the same thing as a chain complex A˚ of projective modules that is trivial in all negative
degrees and has trivial homology in all positive degrees, together with an augmentation α : A˚ Ñ A

for which the reduced homology rH˚pA˚q :“ H˚p rA˚q is trivial.
Proposition 45.22. Every R-module A admits a projective resolution A˚ αÝÑ A. Moreover,

if R is a principal ideal domain, the resolution can be chosen such that An is the trivial R-module
for every n ě 2.

Proof. Pick any generating set S0 Ă A, i.e. a set such that every element of A can be written
(perhaps non-uniquely) as

ř
ePS0

ree for some coefficients re P R, at most finitely-many of which
are nonzero. This can always be done, since e.g. it would suffice to choose S0 “ A, though smaller
subsets are also possible. We then consider the free R-module A0 :“ À

ePS0
R generated by the

set S0, and define α : A0 Ñ A as the unique R-module homomorphism that extends the inclusion
S0 ãÑ A, noting that α is surjective by construction. Next, pick S1 to be a generating subset of
kerα Ă A0, and define A1 :“À

ePS1
R and α1 : A1 Ñ kerα analogously; this defines α1 : A1 Ñ A0

such that imα1 “ kerα. Now continue this process inductively: all of the modules An produced
in this way are free, and therefore projective.

If R is a principal ideal domain, then after defining A0
αÝÑ A as described above, we can

exploit Proposition 44.2 to conclude that kerα Ă A0 is also a free R-module, and thus simplify the
construction by defining A1 :“ kerα with A1

α1ÝÑ A0 as the inclusion, and then set An :“ 0 for all
n ě 2. �

There seem to be quite a lot of arbitrary choices involved in constructing projective resolutions,
but the next result shows that they are more unique than one might expect.

Proposition 45.23. Given an R-module homomorphism ϕ : AÑ B and any projective reso-
lutions A˚ αÝÑ A of A and B˚

βÝÑ B of B, there exists a sequence of R-module homomorphisms
ϕn : An Ñ Bn for n ě 0 which, together with ϕ : AÑ B, form a chain map ϕ˚ : rA˚ Ñ rB˚ between
the corresponding augmented chain complexes, i.e. the diagram

(45.5)
. . . A2 A1 A0 A

. . . B2 B1 B0 B

α2

ϕ2

α1

ϕ1

α

ϕ0 ϕ

β2 β1 β

commutes. Moreover, this chain map is unique up to chain homotopy.

Corollary 45.24. For any two projective resolutions A˚ αÝÑ A and A1̊ α1ÝÑ A of the same
R-module A, the chain complexes A˚ and A1̊ admit a chain homotopy equivalence ϕ˚ : A˚ Ñ A1̊
whose restriction ϕ0 : A0 Ñ A10 to degree 0 satisfies α1 ˝ ϕ0 “ α.

Proof. Proposition 45.23 can be applied with ϕ : A Ñ A as the identity map to produce
chain maps between A˚ and A1̊ in both directions, and uniqueness of up to chain homotopy then
implies that both of their compositions are chain homotopic to the identity. �

Proof of Proposition 45.23. For convenience, we can treat A and B as the degree ´1
terms in augmented chain complexes and thus write A´1 :“ A, B´1 :“ B, ϕ´1 :“ ϕ, α0 :“ α and
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β0 :“ β. Arguing by induction, assume for some integer k ě 0 that the maps ϕ´1, . . . , ϕk´1 in
(45.5) have already been constructed so that all the relevant squares commute. We must then find
a map ϕk : Ak Ñ Bk such that βkϕk “ ϕk´1αk. Notice that

βk´1ϕk´1αk “ ϕk´2αk´1αk “ 0,

thus impϕk´1αkq Ă kerβk´1 “ imβk, and we can therefore define ϕk to be any solution to the
lifting problem

Bk

Ak kerβk´1

βk

ϕk

ϕk´1αk

A solution exists since Ak is projective. The existence of the complete chain map ϕ˚ now follows
by induction on k.

For uniqueness, suppose ϕ˚ and ψ˚ are two chain maps as above, and we want to define a
chain homotopy between them, i.e. a sequence of maps hk : Ak Ñ Bk`1 for k ě 0 satisfying

ϕk ´ ψk “ βk`1hk ` hk´1αk

for every k. For this to make sense when k “ 0, we need also a map h´1 : A Ñ B0, which we
define as h´1 :“ 0. Assume for some k ě 0 that h´1, . . . , hk´1 have already been constructed, so
we now need to find a map hk : Ak Ñ Bk`1 such that

βk`1hk “ ϕk ´ ψk ´ hk´1αk.

We observe that by commutativity and the chain homotopy relation for k ´ 1,

βkpϕk ´ ψk ´ hk´1αkq “ pϕk´1 ´ ψk´1qαk ´ βkhk´1αk

“ pβkhk´1 ` hk´2αk´1 ´ βkhk´1qαk “ hk´2αk´1αk “ 0,

so impϕk ´ ψk ´ hk´1αkq Ă kerβk “ imβk`1, and hk can now be defined as any solution to the
lifting problem

Bk`1

Ak kerβk

βk`1
hk

ϕk´ψk´hk´1αk

The result now follows again by induction on k. �

The next result serves as the technical engine behind the long exact sequences in Theorems 45.1
and 45.2.

Proposition 45.25 (horseshoe lemma). Suppose 0 ÝÑ A
fÝÑ B

gÝÑ C ÝÑ 0 is a short
exact sequence of R-modules and A˚ αÝÑ A and C˚

γÝÑ C are projective resolutions of A and
C respectively. Then there exists a projective resolution B˚

βÝÑ B of B and maps An
fnÝÑ Bn

and Bn
gnÝÑ Cn for each n ě 0 such that the diagram in Figure 22 commutes, and the rows

0Ñ An Ñ Bn Ñ Cn Ñ 0 for all n ě 0 are split exact sequences.

Proof. Let us label the given exact sequence 0 ÝÑ A´1
f´1ÝÑ B´1

g´1ÝÑ C´1 ÝÑ 0 and,
arguing by induction, suppose for some n ě 0 that rows k “ ´1, . . . , n ´ 1 of the diagram above
have already been constructed and have the desired properties. For convenience, label α0 :“ α,
β0 :“ β and γ0 :“ γ, and define α´1, β´1, γ´1 to be the unique maps from A,B,C respectively to
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...
...

...

0 A2 B2 C2 0

0 A1 B1 C1 0

0 A0 B0 C0 0

0 A B C 0

0 0 0

f2

α2

g2

β2 γ2

f1

α1

g1

β1 γ1

f0

α

g0

β γ

f g

Figure 22. The diagram constructed in the horseshoe lemma. The modules Bn
and the dashed arrows need to be constructed; everything else is given.

the trivial module. As a preliminary observation, we claim that the short exact sequence at row
n´ 1 restricts to a short exact sequence

(45.6) 0 ÝÑ kerαn´1
fn´1ÝÑ kerβn´1

gn´1ÝÑ ker γn´1 ÝÑ 0.

If n “ 0 this just means that the original sequence 0Ñ AÑ B Ñ C Ñ 0 is exact, and for n ě 1,
we can deduce this from a long exact sequence of homologies obtained as follows. Consider the
short exact sequence of chain complexes obtained by adding to rows ´1, . . . , n´ 1 of the diagram
infinitely many rows that contain only trivial modules. The exactness of the original columns then
forces the homology in degree n ´ 2 to vanish, while the homologies in degree n ´ 1 are just the
kernels of the respective maps, and (45.6) thus arises as the portion of the long exact sequence
corresponding to row n ´ 1. Most importantly, we conclude from this that gn´1 maps kerβn´1

surjectively onto kerγn´1.
Now we proceed with the inductive step. What makes the construction of row n of the diagram

relatively straightforward is the expectation that the exact sequence 0Ñ An Ñ Bn Ñ Cn Ñ 0 we
are looking for should split: indeed, any short exact sequence with Cn as its last nontrivial term will
automatically split, since Cn is projective (cf. Prop. 45.14). We can therefore construct Bn with
this in mind, i.e. we define Bn :“ An‘Cn, with fn : An ãÑ An‘Cn and gn : An‘Cn Ñ Cn as the
obvious inclusion and projection respectively. Note that by Exercise 45.2, An ‘ Cn is projective.
The remaining task is thus to find a map

An ‘ Cn
βnÝÑ Bn´1

that satisfies

(45.7) imβn “ kerβn´1, γn ˝ gn “ gn´1 ˝ βn, and βn ˝ fn “ fn´1 ˝ αn.
Denote the natural inclusions into the direct sum by

iA : An ãÑ An ‘ Cn, iC : Cn ãÑ An ‘ Cn,

so we have
iA “ fn and gn ˝ iC “ 1Cn

.
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Any pair of maps βA : An Ñ Bn´1 and βC : Cn Ñ Bn´1 will determine a unique βn : An ‘ Cn Ñ
Bn´1 via the relations

βA :“ βn ˝ iA : An Ñ Bn´1 βC :“ βn ˝ iC : Cn Ñ Bn´1,

and the relation βn´1 ˝ βn “ 0 then holds trivially if n “ 0, and for n ě 1, it holds if and only if

βn´1 ˝ βA “ 0 and βn´1 ˝ βC “ 0.

Since iA “ fn, (45.7) demands that βA satisfy the relation

βA “ βn ˝ fn “ fn´1 ˝ αn,
which uniquely determines it, i.e. we now define βA :“ fn´1 ˝ αn and observe that for n ě 1, it
conveniently satisfies

βn´1 ˝ βA “ βn´1 ˝ fn´1 ˝ αn “ fn´2 ˝ αn´1 ˝ αn “ 0.

The relation βn ˝ fn “ fn´1 ˝ αn in (45.7) will now be satisfied regardless of how βC is defined,
and the additional conditions γn ˝ gn “ gn´1 ˝ βn and βn´1 ˝ βn “ 0 will hold if and only if βC is
a map Cn Ñ kerβn´1 satisfying

(45.8) gn´1 ˝ βC “ γn ˝ gn ˝ iC “ γn.

Since γn has image in kerγn´1 and gn´1 maps kerβn´1 surjectively onto ker γn´1, the fact that Cn is
projective now guarantees the existence of a map βC : Cn Ñ kerβn´1 that lifts γn : Cn Ñ ker γn´1

via the surjection gn´1 : kerβn´1 Ñ kerγn´1 in precisely the sense of (45.8), so let us choose βC
to be any map with this property. The definition of row n in the diagram is now complete: by
construction the diagram still commutes, and βn´1 ˝ βn “ 0.

The only remaining question is whether imβn “ kerβn´1, but in fact, this now follows for more-
or-less formal reasons. Indeed, consider the short exact sequence of chain complexes obtained by
replacing everything in the diagram except for rows n´1 and n with trivial modules, and replacing
row n´1 with 0Ñ kerαn´1 Ñ kerβn´1 Ñ γn´1 Ñ 0, i.e. the diagram in Figure 23. The resulting
long exact sequence of homologies68 takes the form

. . .Ñ 0Ñ 0Ñ kerαn Ñ kerβn Ñ ker γn Ñ kerαn´1

imαn
Ñ kerβn´1

imβn
Ñ ker γn´1

im γn
Ñ 0Ñ 0Ñ . . . ,

and of the three quotients in this sequence, two of them are already assumed to be trivial, implying
that the third must be as well. �

45.4. Left and right derived functors. Your first instinct when you see a chain map like
ϕ˚ : A˚ Ñ B˚ as in Proposition 45.23 might be to look at the homomorphisms it induces between
the homologies of the two chain complexes, but that is not very interesting in this situation since by
exactness, those homologies can only be nontrivial in degree 0, where the original exact sequences
of the projective resolutions have been truncated. Something much more interesting happens,
however, if we now feed those exact sequences into an additive functor

F : R-ModÑ R-Mod

that is covariant and right-exact, or contravariant and left-exact.

68What we are using here is a version of a popular result in homological algebra called the snake lemma. We
are deducing it from the fact that short exact sequences of chain complexes give long exact sequences on homology,
but it is also possible to do things the other way around, i.e. to prove the snake lemma directly via a diagram chase
and then derive from it the usual result about short and long exact sequences.
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...
...

...

0 0 0 0 0

0 An Bn Cn 0

0 kerαn´1 kerβn´1 kerγn´1 0

0 0 0 0 0

...
...

...

fn

αn

gn

βn γn

fn´1 gn´1

Figure 23. The short exact sequence of chain complexes that implies imβn “ kerβn´1.

We consider first the covariant case. Given any projective resolution A˚ αÝÑ A of an R-
module A, we can let F operate on the chain complex A˚ to obtain a chain complex FpA˚q with
terms

. . . ÝÑ FpA2q Fpα2qÝÑ FpA1q Fpα1qÝÑ FpA0q ÝÑ 0 ÝÑ 0 ÝÑ . . . ,

along with a homomorphism

FpA0q FpαqÝÑ FpAq.
If F is an exact functor, then by Proposition 44.7, the sequence

. . . ÝÑ FpA2q Fpα2qÝÑ FpA1q Fpα1qÝÑ FpA0q FpαqÝÑ FpAq ÝÑ 0

will also be exact, implying that the homologies HnpFpA˚qq of the chain complex FpA˚q are all
trivial for n ą 0. The only nontrivial homology here will be in degree 0, where the exactness of F
forces Fpαq : FpA0q Ñ FpAq to be a surjective map that descends to an isomorphism

(45.9) H0pFpA˚qq “ FpA0qL impFpα1qq “ FpA0qL kerpFpαqq –ÝÑ FpAq.
In fact, the latter is still true if F is not exact but only right-exact, because FpA1q Fpα1qÝÑ FpA0q FpαqÝÑ
FpAq ÝÑ 0 is then still an exact sequence. But if F is not left-exact, then we no longer have
any reason to expect HnpFpA˚qq to be trivial for n ą 0, and in fact, these homologies can be
regarded as measurements of the failure of F to be an exact functor. The crucial consequence of
Proposition 45.23 and Corollary 45.24 is now that, up to isomorphism, these homologies are all
independent of the choice of projective resolution! Indeed, one can operate with F on the entirety
of the diagram (45.5) to produce a diagram

. . . FpA2q FpA1q FpA0q FpAq

. . . FpB2q FpB1q FpB0q FpBq

Fpα2q

Fpϕ2q

Fpα1q

Fpϕ1q

Fpαq

Fpϕ0q Fpϕq
Fpβ2q Fpβ1q Fpβq
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that represents a chain map Fpϕ˚q : FpA˚q Ñ FpB˚q associated to any homomorphism ϕ : AÑ B,
and applying F also to the chain homotopy relation shows that such chain maps are similarly
unique up to chain homotopy. Letting the chain maps descend to homology now associates to each
ϕ : AÑ B a sequence of R-module homomorphisms

HnpFpA˚qq ϕ˚ÝÑ HnpFpB˚qq for each n ě 0,

which are defined independently of the choices of chain maps in Proposition 45.23, and at the
degree 0 level, the relation ϕ ˝α “ β ˝ϕ0 implies that they match Fpϕq : FpAq Ñ FpBq under the
natural isomorphisms H0pFpA˚qq – FpAq and H0pFpB˚qq – FpBq, i.e. the diagram

H0pFpA˚qq FpAq

H0pFpB˚qq FpBq

–

ϕ˚ ϕ

–

commutes. If we now apply this construction with ϕ : A Ñ B as the identity map A Ñ A but

with two different choices of projective resolution A˚ αÝÑ A and A1̊ α1ÝÑ A, then the fact that it
can be done in both directions implies that the maps on homology are isomorphisms

HnpFpA˚qq –ÝÑ HnpFpA1̊ qq for each n ě 0,

which for n “ 0 fit into the diagram

H0pFpA˚qq FpAq

H0pFpA1̊ qq FpAq

–

–
–

This discussion justifies the following definition.

Definition 45.26. Fix a choice of projective resolution A˚ αÝÑ A for each R-module A. Given
a covariant right-exact functor F : R-ModÑ R-Mod, the associated left derived functors

LnF : R-ModÑ R-Mod

are defined for each integer n ě 0 by associating to each R-module A the R-module

LnFpAq :“ HnpFpA˚qq,
and to each homomorphism ϕ : AÑ B the homomorphism

LnFpAq “ HnpFpA˚qq ϕ˚ÝÑ HnpFpB˚qq “ LnFpBq
determined by the unique chain homotopy class of chain maps A˚ Ñ B˚ provided by Proposi-
tion 45.23.

Remark 45.27. You would be within your rights to find something slightly unsatisfactory
about the way Definition 45.26 is stated: On the one hand, making arbitrary choices of projective
resolutions in advance for every conceivable R-module requires an unnecessarily broad invocation
of the axiom of choice, and it seems to make the definition of the functors LnF : R-ModÑ R-Mod

rather far from unique or canonical. On the other hand, Corollary 45.24 ensures that this ambiguity
is never really going to matter, because while making different choices of projective resolution for a
single module A leads technically to two different definitions of the module LnFpAq for each n ě 0,
these two modules come equipped with a canonical isomorphism between them. In practice, one
does not actually make choices of projective resolutions in advance; one typically rather finds that



45. THE DERIVED FUNCTORS Tor AND Ext 377

in whatever application one is interested in, particular projective resolutions arise naturally, and
are therefore the most convenient choices to use.

Definition 45.28. For any R-module G and each integer n ě 0, the functor

Tornp¨, Gq : R-ModÑ R-Mod : A ÞÑ TornpA,Gq
is defined as the left derived functor Tornp¨, Gq :“ LnF associated to the right-exact functor
F :“ bG. More explicitly,

TornpA,Gq :“ HnpA˚ bGq
for any R-module A with a choice of projective resolution A˚ αÝÑ A.

Aside from some details involving the functoriality of TornpA,Gq with respect to G, the follow-
ing result about left derived functors implies most of the properties of Torn listed in Theorem 45.1:

Theorem 45.29. For any covariant right-exact functor F : R-ModÑ R-Mod, the left derived
functors LnF have the following properties:

(1) Every short exact sequence 0 ÝÑ A
fÝÑ B

gÝÑ C ÝÑ 0 gives rise to a long exact sequence

. . . ÝÑ L2FpAq L2FpfqÝÑ L2FpBq L2FpgqÝÑ L2FpCq ÝÑL1FpAq L1FpfqÝÑ L1FpBq L1FpgqÝÑ L1FpCq
ÝÑ FpAq FpfqÝÑ FpBq FpgqÝÑ FpCq ÝÑ 0.

(2) The functors LnF are additive; in particular, there are natural isomorphisms

LnFpA‘Bq – LnFpAq ‘ LnFpBq
for all pairs of R-modules A,B.

(3) LnFpAq “ 0 for all n ě 1 whenever A is projective or F is exact.
(4) LnFpAq “ 0 for all n ě 2 and all A whenever R is a principal ideal domain.
(5) There are natural isomorphisms L0FpAq – FpAq for all R-modules A.
(6) If k P N has the property that no nonzero element x P R satisfies kx “ 0, then one has

L1FpR{kRq – ker
´
FpRq ¨kÝÑ FpRq

¯
, and LnFpR{kRq “ 0 for n ě 2.

Proof. The natural isomorphisms L0FpAq – FpAq asserted in property (5) were already
explained in the discussion surrounding (45.9).

For property (1), given a short exact sequence 0 ÝÑ A
fÝÑ B

gÝÑ C ÝÑ 0, the horseshoe
lemma (Proposition 45.25) allows us to choose suitable projective resolutions so that we get a
corresponding short exact sequence of chain complexes

0 ÝÑ A˚
f˚ÝÑ B˚

g˚ÝÑ C˚ ÝÑ 0.

Even better, this sequence splits, due to the fact that its last nontrivial term is projective, so
we can plug it into any additive functor F and obtain yet another short exact sequence of chain
complexes

0 ÝÑ FpA˚q Fpf˚qÝÑ FpB˚q Fpg˚qÝÑ FpC˚q ÝÑ 0.

Passing to homology via Proposition 32.13 and replacing L0F with F via the natural isomorphisms
now gives a long exact sequence of derived functors as claimed.

Property (2) requires proving that for any two R-module homomorphisms f, g : A Ñ B and
each n ě 0, the homomorphisms LnFpAq Ñ LnFpBq given by LnFpf ` gq and LnFpfq `LnFpgq
are identical. In fact, if f˚, g˚ : A˚ Ñ B˚ denote the corresponding chain maps as provided by
Proposition 45.23, one can take f˚` g˚ as the chain map associated to f ` g : AÑ B, from which
the result follows.
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For property (3), note first that if A is projective, then it admits a projective resolution of the
form . . . Ñ 0 Ñ 0 Ñ A

1Ñ A Ñ 0, in which An “ 0 for all n ě 1, hence LnFpAq “ HnpFpAnqq
also vanishes. If on the other hand F is an exact functor, then LnFpAq “ HnpFpAnqq vanishes
for all n ě 1 because for any projective resultion A˚ Ñ A, the induced sequence . . . Ñ FpA2q Ñ
FpA1q Ñ FpA0q is exact.

Property (4) follows by choosing a projective resolution A˚ Ñ A with An “ 0 for all n ě 2, as
provided by Proposition 45.22.

Property (6) is an interesting exercise; specifically, it is Exercise 45.4. �

Next, suppose that F : R-ModÑ R-Mod is contravariant and left-exact. Starting from a choice
of projective resolution A˚ αÝÑ A for each R-module A, one feeds the chain complex A˚ into F

and obtains a cochain complex FpA˚q, whose cohomologies define the right derived functors

RnFpAq :“ HnpFpA˚qq, n ě 0.

These are contravariant functors due to Proposition 45.23, which associates to any homorphism
ϕ : A Ñ B a chain map ϕ˚ : A˚ Ñ B˚, giving rise to a chain map Fpϕ˚q : FpB˚q Ñ FpA˚q that
induces maps RnFpBq Ñ RnFpAq for each n ě 0. The chain map ϕ˚ : A˚ Ñ B˚ is of course not
unique, but any other such map ψ˚ : A˚ Ñ B˚ is related to it by a chain homotopy h˚ : A˚ Ñ B˚`1,
which can similarly be fed into F to produce a chain homotopy Fph˚q : FpB˚q Ñ FpA˚´1q between
Fpϕ˚q and Fpψ˚q, showing that the induced map RnFpBq Ñ RnFpAq is independent of choices.
Applying the same argument to 1 : AÑ A with two different choices of projective resolution gives
canonical isomorphisms between the two versions of RnFpAq defined via these choices.

The left-exactness of F implies that the sequence

0 ÝÑ FpAq FpαqÝÑ FpA0q Fpα1qÝÑ FpA1q Fpα2qÝÑ . . .

is exact at the first two nontrivial terms, meaning that Fpαq defines an isomorphism of FpAq onto
kerFpα1q Ă FpA0q. Since FpA0q is the first nontrivial term in the cochain complex FpA˚q, this
kernel is just the zeroth cohomology of that complex, and we therefore have a natural isomorphism

FpAq R0FpAq.Fpαq
–

The contravariant analogue of Theorem 45.29 is proved by variations on the same arguments, which
we shall leave as an exercise:

Theorem 45.30. For any contravariant left-exact functor F : R-Mod Ñ R-Mod, the right
derived functors RnF : R-ModÑ R-Mod have the following properties:

(1) Every short exact sequence 0 ÝÑ A
fÝÑ B

gÝÑ C ÝÑ 0 gives rise to a long exact sequence

0 ÝÑ FpCq FpgqÝÑ FpBq FpfqÝÑ FpAq ÝÑ R1FpCq R1FpgqÝÑ R1FpBq R1FpfqÝÑ R1FpAq
ÝÑ R2FpCq R2FpgqÝÑ R2FpBq R2FpfqÝÑ R2FpAq ÝÑ . . . .

(2) The functors RnF are additive; in particular, there are natural isomorphisms

RnFpA‘Bq – RnFpAq ‘RnFpBq
for all pairs of R-modules A,B.

(3) RnFpAq “ 0 for all n ě 1 whenever A is projective or F is exact.
(4) RnFpAq “ 0 for all n ě 2 and all A whenever R is a principal ideal domain.
(5) There are natural isomorphisms R0FpAq – FpAq for all R-modules A.
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(6) If k P N has the property that no nonzero element x P R satisfies kx “ 0, then one has

R1FpR{kRq – coker
´
FpRq ¨kÝÑ FpRq

¯
, and RnFpR{kRq “ 0 for n ě 2.

�

45.5. Symmetry of Tor. We have not yet discussed in what sense TornpA, ¨q : R-Mod Ñ
R-Mod is also a functor for each n ě 0, but this is not hard to understand. The first important
observation is that the tensor product AbG can also be regarded in an obvious way as a functor
Ab : R-Mod Ñ R-Mod with respect to G for any fixed R-module A. In fact, this works just as
well if one fixes not just a single module but a chain complex C˚, producing a functor

C˚b : R-ModÑ ChpR-Modq
that sends any R-module G to the chain complex C˚ bG and any homomorphism ϕ : GÑ H to
a chain map of the form

1b ϕ : C˚ bGÑ C˚ bH,

thus inducing maps
HnpC˚ bGq ϕ˚ÝÑ HnpC˚ bHq

for each n. Applying this in particular to the chain complex A˚ arising from a projective resolution
A˚ αÝÑ A of any R-module A produces natural maps

TornpA,Gq ϕ˚ÝÑ TornpA,Hq
induced by any homomorphism ϕ : G Ñ H , and one easily checks that for n “ 0, the natural
isomorphism identifies ϕ˚ with 1b ϕ : A bG Ñ A bH . We leave it as an exercise to show that
the functors TornpA, ¨q : R-ModÑ R-Mod are also additive for every n ě 0 and A P R-Mod.

With that understood, one can now show that any short exact sequence of “coefficient” modules

0 ÝÑ G
ϕÝÑ H

ψÝÑ K ÝÑ 0

naturally gives rise to a long exact sequence

. . .Ñ Tor2pA,Gq Ñ Tor2pA,Hq Ñ Tor2pA,Kq Ñ Tor1pA,Gq Ñ Tor1pA,Hq Ñ Tor1pA,Kq
Ñ AbGÑ AbH Ñ AbK Ñ 0,

(45.10)

much as in the first property listed in Theorem 45.1. The proof does not require the horseshoe
lemma; see Exercise 45.6.

The last detail of Theorem 45.1 remaining to be addressed is the symmetry isomorphism

TornpA,Bq – TornpB,Aq.
This symmetry is the reason why any criterion on B that implies the vanishing of TornpA,Bq
can be applied equally well to A or vice versa, e.g. according to Proposition 45.20, B is a flat
Z-module whenever it has no torsion, hence bB is an exact functor, and it follows via symmetry
that TornpA,Bq also vanishes whenever A is torsion free.

The isomorphism TornpA,Bq – TornpB,Aq should not be surprising since there is already a
natural isomorphism AbB – B bA for every pair of R-modules, which is the special case n “ 0.
Here is a nice way to see the general case.

After choosing projective resolutions A˚ αÝÑ A and B˚
βÝÑ B, we can form the commutative

diagram in Figure 24, which is called a double complex, because of each its rows and each of its
columns is a chain complex. Let us number the rows and columns with integers so that Am bBn
is in row m and column n. Since Am and Bn are projective for each m,n ě 0, Corollary 45.18
implies that the functors Amb and bBn are exact, which makes the mth row and nth column for
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...
...

...
...

...

¨ ¨ ¨ A2 bB2 A2 bB1 A2 bB0 A2 bB 0 ¨ ¨ ¨

¨ ¨ ¨ A1 bB2 A1 bB1 A1 bB0 A1 bB 0 ¨ ¨ ¨

¨ ¨ ¨ A0 bB2 A0 bB1 A0 bB0 A0 bB 0 ¨ ¨ ¨

¨ ¨ ¨ AbB2 AbB1 AbB0 0 0 ¨ ¨ ¨

¨ ¨ ¨ 0 0 0 0 0 ¨ ¨ ¨

...
...

...
...

...

α2b1

1bβ2

α2b1

1bβ1

α2b1

1bβ

α2b1

α1b1

1bβ2

α1b1

1bβ1

α1b1

1bβ

α1b1

αb1

1bβ2

αb1

1bβ1

αb1

1bβ

1bβ2 1bβ1

Figure 24. The double complex that implies TornpA,Bq – TornpB,Aq.

each m,n ě 0 into an exact sequence. The only potentially non-exact sequences we can see are
therefore the chain complex A˚ bB in column ´1, whose homology is

HmpA˚ bBq “ TormpA,Bq,
and similarly the complex AbB˚ in row ´1, whose homology we can identify with

HnpAbB˚q – TornpB,Aq
using the natural isomorphism AbB˚ – B˚ bA. The rest is a diagram-chasing exercise:

Proposition 45.31. Suppose pC˚, dq and pC˚, Bq are chain complexes with C´1 “ C´1 “: C
which form row ´1 and column ´1 respectively of a double complex tCijui,jPZ as shown in Figure 25,
with the property that all other rows and columns are exact, and Cij “ 0 whenever i ă ´1 or j ă ´1.
Then there is a natural isomorphism

HnpC˚, Bq – HnpC˚, dq
for every n P Z. �

Applying Proposition 45.31 to the specific double complex in Figure 24 yields the promised
isomorphisms TornpA,Bq – TornpB,Aq. The proof of Theorem 45.1 is now complete.

45.6. The other definition of Ext. We will not need the following detail in subsequent
developments, but it would seem criminal not to mention the property of the functors Extn :

R-ModˆR-ModÑ R-Mod that is analogous to the symmetry of Torn.
Since Extn is contravariant in one of its variables but covariant in the other, symmetry is out

of the question. The key instead is to fix an R-module G and develop derived functors for the
covariant functor HompG, ¨q.
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...
...

...
...

...

¨ ¨ ¨ C2
2 C2

1 C2
0 C2 0 ¨ ¨ ¨

¨ ¨ ¨ C1
2 C1

1 C1
0 C1 0 ¨ ¨ ¨

¨ ¨ ¨ C0
2 C0

1 C0
0 C0 0 ¨ ¨ ¨

¨ ¨ ¨ C2 C1 C0 C 0 ¨ ¨ ¨

¨ ¨ ¨ 0 0 0 0 0 ¨ ¨ ¨

...
...

...
...

...

B22

d22

B21

d21

B20

d20

B2

B12

d12

B11

d11

B10

d10

B1

B02

d02

B01

d01

B00

d00

B0
d2 d1 d0

Figure 25. The abstract double complex in Exercise 45.8.

According to Proposition 45.11, HompG, ¨q is left-exact, and it is exact if and only if G is
projective. The theory of left derived derived functors developed so far is not appropriate for left-
exact covariant functors, but one can develop an analogous theory, in which most of the arrows are
reversed. The main idea is to replace projective resolutions A˚ αÝÑ A of a module A by injective
resolutions A αÝÑ A˚, which are exact sequences

0 ÝÑ A
αÝÑ A0 α0ÝÑ A1 α1ÝÑ A2 ÝÑ . . .

in which the modules An for all n ě 0 are injective. It is pretty easy to think of modules that are not
injective, e.g. we saw in Example 45.9 that Z is not an injective Z-module, since the isomorphism
2Z Ñ Z : m ÞÑ m{2 cannot be extended from the subgroup 2Z Ă Z to a homomorphism Z Ñ Z.
In this regard, the obvious problem with Z is that it is not divisible, meaning it contains elements
m P Z that cannot be written as m “ kℓ for some ℓ P Z and arbitrary natural numbers k. Any
abelian group G that is not divisble will fail to be injective due to examples such as ϕ : kZ Ñ G

for k ě 2 as described above. A somewhat less obvious fact is that the converse also holds:
every divisible abelian group is an injective Z-module (see e.g. [Bre93, Proposition V.6.2]), thus
producing simple examples of injective Z-modules such as the rational numbers Q. With this
knowledge, in fact, it is not so difficult to show that every abelian group is isomorphic to a
subgroup of one that is injective, and there are also relatively simple ways of extending that result
to the context of modules over an arbitrary commutative ring (see [Bae40,ES53]). I do not intend
to either prove or make essential use of such a fact, but let us record it here for future reference,
since it forms an important component of the big picture:

Lemma 45.32. Every R-module is isomorphic to a submodule of one that is injective. �

If you believe Lemma 45.32, then you will easily convince yourself that every R-module admits
an injective resolution: the lemma can be used to define α : A Ñ A0 as the inclusion of A into
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a larger injective module A0, whose quotient by impαq Ă A0 can then be included into another
injective module A1, and so forth. An injective resolution of A yields a cochain complex

. . . ÝÑ 0 ÝÑ A0 α0ÝÑ A1 α1ÝÑ A2 ÝÑ . . . ,

which we shall abbreviate by A˚, and plugging this into an additive covariant functor F then yields
another cochain complex FpA˚q. If F is left-exact, then the right derived functors of F are defined
for each n ě 0 by

RnFpAq :“ HnpFpA˚qq.
It is straightforward to prove an injective analogue of Proposition 45.23, so that any homomorphism
ϕ : A Ñ B gives rise to a unique chain homotopy class of chain maps ϕ˚ : A˚ Ñ B˚ between
the corresponding injective resolutions. Feeding such a chain map into F gives a chain map
FpA˚q Ñ FpB˚q, thus inducing a natural homomorphism RnFpAq Ñ RnFpBq that is independent
of choices, and proving at the same time that RnF is (up to natural isomorphisms) independent
of the choices of injective resolutions. There is also an injective analogue of the horseshoe lemma
(Proposition 45.25), turning any short exact sequence 0 Ñ A Ñ B Ñ C Ñ 0 into a short exact
sequence of cochain complexes 0 Ñ FpA˚q Ñ FpB˚q Ñ FpC˚q Ñ 0; the exactness of the latter
follows from the observation that a short exact sequence 0Ñ An Ñ Bn Ñ Cn Ñ 0 splits whenever
An is injective, because injectivity guarantees the existence of a left-inverse for the injective map
An Ñ Bn. The result is that for a left-exact covariant functor F , any short exact sequence
0Ñ AÑ B Ñ C Ñ 0 gives rise to a long exact sequence

0Ñ FpAq Ñ FpBq Ñ FpCq Ñ R1FpAq Ñ R1FpBq Ñ R1FpCq
Ñ R2FpAq Ñ R2FpBq Ñ R2FpCq Ñ . . . .

The functors RnF are easily shown to be additive, and the left-exactness of F gives rise to a
natural isomorphism

FpAq – R0FpAq.
Moreover, RnFpAq “ 0 for every n ě 1 whenever F is exact or A is injective.

Since HompA, ¨q is left-exact for any A, we can apply this machinery to define a second variant
of the sequence of Ext functors, which we shall denote for now by

ExtnpA, ¨q :“ RnpHompA, ¨qq,
so explicitly,

ExtnpA,Bq “ HnpHompA,B˚qq
for the cochain complex HompA,B˚q arising from any injective resolution B

βÝÑ B˚ of B. We
can then observe that Extn has several properties matching those of Extn, though seemingly for
different reasons. Indeed,

ExtnpA,Bq “ 0 for every n ě 1 if A is projective or B is injective,

the reason being that HompA, ¨q is exact if A is projective, and 0 Ñ B
1Ñ B Ñ 0 Ñ . . . is an

injective resolution if B is injective. Similarly, a short exact sequence 0 Ñ G Ñ H Ñ K Ñ 0

produces a long exact sequence

0Ñ HompA,Gq Ñ HompA,Hq Ñ HompA,Kq Ñ Ext1pA,Gq Ñ Ext1pA,Hq
Ñ Ext1pA,Kq Ñ Ext2pA,Gq Ñ Ext2pA,Hq Ñ Ext2pA,Kq Ñ . . .

due to the general properties of right derived functors, and a similar sequence for the functors
Extn can be obtained via more direct arguments (with no need of the horseshoe lemma), using
the covariant functoriality of Extn in the second variable; see Exercise 45.6. The analogous result
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...
...

...
...

...

¨ ¨ ¨ 0 HompA2, Bq HompA2, B
0q HompA2, B

1q HompA2, B
2q ¨ ¨ ¨

¨ ¨ ¨ 0 HompA1, Bq HompA1, B
0q HompA1, B

1q HompA1, B
2q ¨ ¨ ¨

¨ ¨ ¨ 0 HompA0, Bq HompA0, B
0q HompA0, B

1q HompA0, B
2q ¨ ¨ ¨

¨ ¨ ¨ 0 0 HompA,B0q HompA,B1q HompA,B2q ¨ ¨ ¨
¨ ¨ ¨ 0 0 0 0 0 ¨ ¨ ¨

...
...

...
...

...

Figure 26. The double complex that implies ExtnpA,Bq – ExtnpA,Bq.

for Extn shows that it is likewise a contravariant functor in its first variable, and that short exact
sequences 0Ñ AÑ B Ñ C Ñ 0 give rise to long exact sequences

0Ñ HompC,Gq Ñ HompB,Gq Ñ HompA,Gq Ñ Ext1pC,Gq Ñ Ext1pB,Gq
Ñ Ext1pA,Gq Ñ Ext2pC,Gq Ñ Ext2pB,Gq Ñ Ext2pA,Gq Ñ . . . ,

thus matching the form of the sequence for Extn obtained from the general theory of contravariant
right derived functors. All this provides strong evidence that Extn and Extn are, secretly, the same
thing.

We will leave the details as an exercise, but an explicit (and natural) isomorphism ExtnpA,Bq –
ExtnpA,Bq can be obtained from the double complex in Figure 26. Here, A˚ αÝÑ A is a projective

resolution of A, B βÝÑ B˚ is an injective resolution of B, and the vertical and horizontal maps
are all obtained via the contravariant and covariant functoriality of Hom in its first and second
variables respectively. The nth cohomology of the cochain complex HompA˚, Bq in the leftmost
nontrivial column is ExtnpA,Bq, the nth cohomology of the complex HompA,B˚q in the lowest
nontrivial row is ExtnpA,Bq, and all the other rows and columns are exact, due to the fact that
each An is projective and each Bn is injective, making HompAn, ¨q and Homp¨, Bnq exact functors.
The rest, as they say, is diagram chasing (cf. Proposition 45.31).

45.7. The universal coefficient theorems. We now have more than enough machinery in
place to prove the general versions of the universal coefficient theorems.

The setting is again as follows: R is a principal ideal domain, C˚ is a chain complex of free
R-modules, G is a fixed R-module, and F is either the covariant functor bG or the contravariant
functor Homp¨, Gq. In contrast with the previous lecture, we will now avoid assuming that F is an
exact functor.

In the covariant case F “ bG, the arguments in the previous lecture produced a short exact
sequence

(45.11) 0 cokerFpinq HnpC˚ bGq kerFpin´1q 0
Fpjq˚ FpB1q˚

,

where in : Bn ãÑ Zn is the inclusion and B1 denotes the chain map C˚ Ñ B˚´1 defined via the
boundary operator on C˚, which induces a chain map FpB1q : C˚ b G Ñ B˚´1 b G and then
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descends to homology as a homomorphism FpB1q˚ : HnpC˚ bGq Ñ Bn´1 bG whose image is the
kernel of

Fpin´1q “ in´1 b 1 : Bn´1 bGÑ Zn´1 bG.

The step where exactness was used was when the short exact sequence

(45.12) 0 Bn Zn HnpC˚q 0
in qn

was fed into the functor F . Without exactness, the resulting chain complex will not generally be
an exact sequence, but for F “ bG, we can instead extract from Theorem 45.1 a long (but not
very long) exact sequence

0 TorpHnpC˚q, Gqq Bn bG Zn bG HnpC˚q bG 0
inb1 qnb1

,

in which the initial term is actually TorpZn, Gq, which vanishes because Zn is a free R-module.
This sequence is only slightly more complicated than what we had in the exact case: we can still
conclude from it that Fpqnq “ qn b 1 is surjective and descends to an isomorphism

cokerpin b 1q HnpC˚q bG,
qnb1

–
but the major difference is that while the kernel of Fpinq “ in b 1 was previously trivial, we now
instead have an isomorphism

TorpHnpC˚q, Gq kerpin b 1q–
.

Making these substitutions in (45.11) gives a short exact sequence

0 HnpC˚q bG HnpC˚ bGq TorpHn´1pC˚q, Gq 0
h

,

in which the map h admits the same characterization as in (44.11) and is thus the usual canonical
homomorphism rcs b g ÞÑ rcb gs.

One further detail should be addressed before we state a theorem: the sequence obtained
above splits. One sees this by choosing left-inverses pn : Cn Ñ Zn for the inclusions jn : Zn ãÑ Cn
for every n P Z, and using them to write down a left-inverse for the injection h : FpHnpC˚qq Ñ
HnpFpC˚qq. Indeed, the existence of left-inverses pn : Cn Ñ Zn is guaranteed because the exact
sequence 0 Ñ Zn ãÑ Cn Ñ Bn´1 Ñ 0 splits, due to the fact that Bn´1 is free. Put these
left-inverses together for all n to define a left-inverse of the chain map j : Z˚ Ñ C˚, denoted
by p : C˚ Ñ Z˚. Unfortunately, p is not typically a chain map, for fairly obvious reasons: the
boundary operator on Z˚ is trivial, but pn´1Bn : Cn Ñ Zn´1 sends Cn onto Bn´1 and then simply
includes it into Zn´1, giving a nontrivial map. But if we compose pn with the quotient projection
qn : Zn Ñ HnpC˚q and regard H˚pC˚q as a chain complex with trivial boundary operator, then
the composition qn´1pn´1Bn vanishes, giving rise to a chain map

C˚
qpÝÑ H˚pC˚q,

which at degree n is the composition qn ˝ pn : Cn Ñ HnpC˚q. Feeding this into F and regarding
the Z-graded module FpH˚pC˚qq “ À

nPZ FpHnpC˚qq similarly as a chain complex with trivial
boundary operators, we obtain a chain map

FpC˚q FpqpqÝÑ FpH˚pC˚qq,
and the map that this induces on homology at degree n takes the form

Fpqpq˚ : HnpFpC˚qq Ñ FpHnpC˚qq : rys ÞÑ Fpqnpnqy.
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We claim that this map is a left-inverse of h : FpHnpC˚qq Ñ HnpFpC˚qq. Indeed, for any x P
FpHnpC˚qq, choosing z P FpZnq with Fpqnqz “ x and applying (44.11), we find

Fpqpq˚hpxq “ Fpqpq˚ prFpjnqzsq “ FpqnpnqFpjnqz “ FpqnqFppnjnqz “ Fpqnqz “ x,

due to the fact that pn is a left-inverse of jn.
I will leave it as an exercise to verify naturality in the following statement, but otherwise,

we’ve proved:

Theorem 45.33 (universal coefficient theorem for homology). For any chain complex C˚ of
free modules over a principal ideal domain R, any fixed R-module G and any n P Z, there exists a
split exact sequence

0 ÝÑ HnpC˚q bG
hÝÑ HnpC˚ bGq ÝÑ TorpHn´1pC˚q, Gq ÝÑ 0,

where h is the natural map rcs b g ÞÑ rc b gs. Moreover, the sequence (but not its splitting) is
natural, in the sense that for any chain map Φ : A˚ Ñ B˚ between two chain complexes of free
R-modules, the diagram

0 HnpA˚q bG HnpA˚ bGq TorpHn´1pA˚q, Gq 0

0 HnpB˚q bG HnpB˚ bGq TorpHn´1pB˚q, Gq 0

h

Φ˚b1 pΦb1q˚
h

commutes, where TorpHn´1pA˚q, Gq Ñ TorpHn´1pB˚q, Gq is the map induced by Φ˚ : Hn´1pA˚q Ñ
Hn´1pB˚q via the functoriality of Tor. �

The cohomological variant of this result follows by analogous arguments, most of which already
appeared in the previous lecture: for the left-exact functor F :“ Homp¨, Gq, we obtain a short exact
sequence

(45.13) 0 ÝÑ cokerFpin´1q ÝÑ HnpFpC˚qq ÝÑ kerFpinq ÝÑ 0,

while feeding (45.12) into F gives the not-very-long exact sequence

0 HompHnpC˚q, Gq HompZn, Gq HompBn, Gq ExtpHnpC˚q, Gq 0
qn̊ in̊

,

in which the rightmost term is ExtpZn, Gq, again vanishing because Zn is free. This sequence
identifies the kernel of Fpinq “ in̊ with HompHnpC˚q, Gq and the cokernel of Fpin´1q “ in̊´1 with
ExtpHn´1pC˚q, Gq, so that (45.13) becomes

0 ÝÑ ExtpHn´1pC˚q, Gq ÝÑ HnpC˚;Gq hÝÑ HompHnpC˚q, Gq ÝÑ 0.

To see that this sequence splits, we can again make use of a left-inverse p : C˚ Ñ Z˚ of the inclusion
chain map j : Z˚ Ñ C˚. Feeding qp : C˚ Ñ H˚pC˚q into F produces a chain map

Fpqpq : FpH˚pC˚qq Ñ FpC˚q
between two cochain complexes, where FpH˚pC˚qq “ À

nPZ FpHnpC˚qq is regarded as a cochain
complex with trivial coboundary operator. The induced map on cohomology in degree n is then a
homomorphism

Fpqpq˚ : FpHnpC˚qq Ñ HnpFpC˚qq,
which can be verified to be a right-inverse of the surjective map h : HnpFpC˚qq Ñ FpHnpC˚qq.

We conclude:
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Theorem 45.34 (universal coefficient theorem for cohomology). For any chain complex C˚ of
free modules over a principal ideal domain R, any fixed R-module G and any n P Z, there exists a
split exact sequence

0 ÝÑ ExtpHn´1pC˚q, Gq ÝÑ HnpC˚;Gq hÝÑ HompHnpC˚q, Gq ÝÑ 0,

where h is the natural map rαs ÞÑ xrαs, ¨y. Moreover, the sequence (but not its splitting) is natural,
in the sense that for any chain map Φ : A˚ Ñ B˚ between two chain complexes of free R-modules,
the diagram

0 ExtpHn´1pA˚q, Gq HnpA˚;Gq HompHnpA˚q, Gq 0

0 ExtpHn´1pB˚q, Gq HnpB˚;Gq HompHnpB˚q, Gq 0

h

Φ˚ Φ˚

commutes, where ExtpHn´1pB˚q, Gq Ñ ExtpHn´1pA˚q, Gq is the map induced by Φ˚ : Hn´1pA˚q Ñ
Hn´1pB˚q via the contravariant functoriality of Ext in its first variable. �

In both of Theorems 45.33 and 45.34, one of the most useful features is the splitting, which
gives us isomorphisms

HnpC˚ bGq – pHnpC˚q bGq ‘ Tor
`
Hn´1pC˚q, G˘,

HnpC˚;Gq – HompHnpC˚q, Gq ‘ ExtpHn´1pC˚q, Gq,
or e.g. for the singular (co)homology of a space X ,

HnpX ;Gq – pHnpX ;Rq bGq ‘ Tor
`
Hn´1pX ;Rq, G˘,

HnpX ;Gq – HompHnpX ;Rq, Gq ‘ ExtpHn´1pX ;Rq, Gq.
It should be emphasized however that these splittings are not natural : they depend on arbitrary
choices and thus cannot be expected to be preserved by the homomorphisms induced by maps
between different spaces.

45.8. Applications. We briefly sketch here a few useful applications of the universal coeffi-
cient theorems, leaving the proofs as exercises.

Recall that for any path-connected space X , there is a natural map π1pXq Ñ H1pX ;Zq that
descends to the abelianization of π1pXq as an isomorphism; moreover, Theorem 41.6 then gives
a natural isomorphism H1pX ;Gq – Hompπ1pXq, Gq for any coefficient group G. Since G is nec-
essarily abelian, every homomorphism π1pXq Ñ G descends to the abelianization of π1pXq, thus
identifying Hompπ1pXq, Gq with HompH1pX ;Zq, Gq. But in fact, the isomorphism

H1pX ;Gq – HompH1pX ;Zq, Gq
can be obtained without mentioning π1pXq, and without assuming X is path-connected; it follows
directly from the universal coefficient theorem for cohomology, according to Exercise 45.9.

Another application concerns the definition of the Betti numbers bnpXq of a space: we defined
bnpXq in Lecture 40 as the dimension of the rational vector space HnpX ;Qq, but in Exercises 45.11
and 45.12, one uses the universal coefficient theorems to deduce several alternative formulas for
bnpXq, namely

bnpXq “ rankHnpX ;Zq “ rankHnpX ;Zq “ dimKHnpX ;Kq “ dimKH
npX ;Kq,

where K is allowed to be any field of characteristic zero. This formula is false in general if K has
finite characteristic, but remarkably, the usual formula for the Euler characteristic

χpXq “ ÿ
nPZ

p´1qnbnpXq “
ÿ
nPZ
p´1qn dimKHnpX ;Kq “ ÿ

nPZ
p´1qn dimKH

npX ;Kq
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turns out to be valid nonetheless for coefficients in an arbitrary field K, even in cases where bnpXq
and dimKHnpX ;Kq do not match for individual values of n. These exercises also reveal that the
Lefschetz number Lpfq of a map f : X Ñ X , which was defined in §40.4 using homology with
rational coefficients, can be computed in terms of the homomorphism induced by f on the free part
of H˚pX ;Zq or H˚pX ;Zq,

H free
n pXq :“ HnpX ;ZqLtorsion, Hn

freepXq :“ HnpX ;ZqLtorsion,
namely

Lpfq “
8ÿ
n“0

p´1qn tr
´
H free
n pXq f˚ÝÑ H free

n pXq
¯
“

8ÿ
n“0

p´1qn tr
ˆ
Hn

freepXq f˚ÝÑ Hn
freepXq

˙
.

This proves on the one hand that Lpfq is always an integer (not just a rational number), and it
also provides the freedom to compute Lpfq in terms of cohomology, as in the application sketched
at the beginning of Lecture 41.

Finally, Exercise 45.13 establishes a technical result that lies somewhere in the background
of the famous Poincaré conjecture. When combined with some results about the homology of
manifolds to be proved later in this semester, it will imply that for every closed topological n-
manifold M ,

torsionpHn´1pM ;Zqq “ 0.

This will serve as one step in a somewhat intricate argument proving that every simply-connected
closed 3-manifold is homotopy equivalent to S3, thus motivating the most popular statement of the
Poincaré conjecture in dimension three: every simply-connected closed 3-manifold is homeomorphic
to S3. The obvious analogue of that statement in dimensions four and upward is easily seen to
be false—the correct statement of the Poincaré conjecture for arbitrary dimensions is rather that
every closed n-manifold homotopy equivalent to Sn is also homeomorphic to it. This is in fact a
known theorem, and is highly nontrivial for every n ě 3: the cases n ě 5 were established by
Smale in the 1960’s, the case n “ 4 followed by work of Friedman in the 1980’s, and the hardest
case is n “ 3, proved by Perelman at the beginning of the current century.

45.9. Exercises.

Exercise 45.1. Prove Proposition 45.11 on the left-exactness of HompG, ¨q and exactness in
the case that G is projective.

Exercise 45.2. Show that if A and B are both projective R-modules, then A ‘ B is also
projective.
Remark: If you’re already a fan of universal properties, you may want to try proving this statement
without using the concrete definition of the direct sum of two R-modules, but instead using the fact
that it is a coproduct in the category R-Mod (cf. Exercise 39.8). Using this language essentially
makes the result valid not just for R-modules but in arbitrary abelian categories.

Exercise 45.3 (*). Prove Proposition 45.20, stating that torsion-free Z-modules are flat.
Hint: Given abelian groups A,B,G and an injective homomorphism i : A ãÑ B, show that any
nontrivial element in the kernel of ib 1 : AbGÑ B bG is also in the kernel of the restriction of
this map to AbG0 Ñ B bG0 for some finitely-generated subgroup G0 Ă G. If G is torsion free,
what does the classification of finitely-generated abelian groups tell you about G0?

Exercise 45.4 (*). Prove the formula for LnFpR{kRq stated in Theorem 45.29.
Hint: Every additive functor F : R-Mod Ñ R-Mod has the following property (why?). For every
R-module A and every integer k P Z, F sends the morphism A Ñ A : x ÞÑ kx to the morphism
FpAq Ñ FpAq : y ÞÑ ky.
Further hint: you already know this for k “ 1, just because F is a functor.
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Exercise 45.5 (*). Prove Theorem 45.30, the contravariant analogue of Theorem 45.29 on
the properties of derived functors.

Exercise 45.6. Suppose 0 ÝÑ G
ϕÝÑ H

ψÝÑ K ÝÑ 0 is a short exact sequence of R-modules,
and A is another R-module.

(a) Derive the long exact sequence (45.10) that ends with . . . Ñ Tor1pA,Kq Ñ A b G Ñ
AbH Ñ AbK Ñ 0.
Hint: Show that for any projective resolution A˚ αÝÑ A of A, there is a short exact
sequence of chain complexes

0 ÝÑ A˚ bG
1bϕÝÑ A˚ bH

1bψÝÑ A˚ bK ÝÑ 0.

The fact that the modules An are projective is relevant here; it implies that each of the
functors Anb : R-ModÑ R-Mod is exact.

(b) Derive a similar long exact sequence of the form . . . Ñ Ext1pA,Kq Ñ HompA,Gq Ñ
HompA,Hq Ñ HompA,Kq Ñ 0.

Exercise 45.7. Set R :“ Z, and show that for an abelian group G with torsion subgroup
T pGq Ă G and any other abelian group A, the map

TorpA, T pGqq Ñ TorpA,Gq
induced by the inclusion T pGq ãÑ G is an isomorphism.
Hint: Use a long exact sequence.

Exercise 45.8. Prove Proposition 45.31 on the isomorphism HnpC˚, Bq – HnpC˚, dq arising
from a double complex, and clarify what it means to call this isomorphism natural.
Hint: Chasing the diagram should feel a bit like climbing stairs.

Exercise 45.9. Show that for every space X and abelian group G, the natural map h :

H1pX ;Gq Ñ HompH1pX ;Zq, Gq is an isomorphism.
Hint: The computation of H0pX ;Zq tells you something about ExtpH0pX ;Zq, Gq.

Exercise 45.10 (*). In this exercise, K is a field, but it will be regarded as merely an abelian
group for the purposes of tensor products and Tor and Ext functors.

(a) Show that for any m P N, the three abelian groups Zm bK, TorpZm,Kq and ExtpZm,Kq
are all isomorphic to each other, and are all either trivial or isomorphic to K.
Hint: KÑ K : k ÞÑ mk is a linear map between two 1-dimensional vector spaces.

(b) Deduce that for any finite abelian group T , T b K, TorpT,Kq and ExtpT,Kq are all
isomorphic abelian groups, and they also all have natural K-module structures that make
them isomorphic vector spaces.

Exercise 45.11 (*). Assume in this exercise that K is a field of characteristic zero.
(a) Show that for any chain complex C˚ of free abelian groups, the canonical map

H˚pC˚q bK
hÝÑ H˚pC˚ bKq : rcs b k ÞÑ rcb ks

is an isomorphism. Note that on both sides of this map, K should be regarded as an
abelian group rather than a K-module (since H˚pC˚q and C˚ are not assumed to be
K-modules), thus b denotes the tensor product of abelian groups.
Remark: It follows in particular that for any space X and any field K of characteristic
zero, the canonical map h : H˚pX ;Zq bKÑ H˚pX ;Kq is an isomorphism.

(b) Where does the proof in part (a) fail if K is a field with finite characteristic? What
happens, for instance, if K “ Z2 and C˚ “ C˚pRP2;Zq?
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(c) Recall that the rank of a finitely-generated abelian group G with torsion subgroup T Ă G

is the unique integer r ě 0 such that G{T – Zr . Deduce from part (a) that for any
space X with finitely-generated homology groups over Z, the Betti numbers bnpXq “
dimQHnpX ;Qq satisfy

bnpXq “ dimKHnpX ;Kq “ dimKH
npX ;Kq “ rankHnpX ;Zq.

Find a counterexample showing that this need not hold if K has finite characteristic.
(d) Let H free

n pXq denote the quotient of HnpX ;Zq by its torsion subgroup, and observe that
for any map f : X Ñ X , the induced homomorphism f˚ : HnpX ;Zq Ñ HnpX ;Zq
descends to a map f˚ : H free

n pXq Ñ H free
n pXq. If HnpX ;Zq is finitely generated, then

H free
n pXq is isomorphic to Zr for r :“ rankHnpX ;Zq, thus f˚ : H free

n pXq Ñ H free
n pXq

can be represented by an r-by-r matrix with integer entries whose trace trpf˚q P Z is
independent of choices. Using the naturality of the map h : HnpX ;Zq bQÑ HnpX ;Qq,
show that the Lefschetz number Lpfq P Q of a map f : X Ñ X as defined in §40.4 satisfies

Lpfq “
8ÿ
n“0

p´1qn tr
´
H free
n pXq f˚ÝÑ H free

n pXq
¯
.

This proves in particular that Lpfq is an integer.

Exercise 45.12 (*). Suppose n P Z and C˚ is a chain complex of free abelian groups such
that the homology groups HnpC˚q and Hn´1pC˚q are finitely generated. For k P tn ´ 1, nu, the
classification of finitely-generated abelian groups allows us to write

HkpC˚q “ H free
k ‘ Tk,

where Tk Ă HkpC˚q is a finite subgroup (the torsion) and H free
k :“ HkpC˚q{Tk is a free abelian

group of finite rank. Let Hk
free in turn denote the quotient of HkpC˚;Zq by its torsion subgroup.

(a) Show that the map h : HnpC˚;Zq Ñ HompHnpC˚q,Zq determines a natural isomorphism

Hn
free HompH free

n ,Zqh

– ,

implying in particular that there is a (non-natural) isomorphism Hn
free – H free

n . One
obtains from this yet another new formula for the nth Betti number of a space X ,

bnpXq “ rankHnpX ;Zq.
(b) Show that the torsion subgroup of HnpC˚;Zq is isomorphic to the torsion subgroup of

Hn´1pC˚q.
(c) Show that for any space X with finitely-generated homology, the formula

χpXq “ ÿ
kPZ
p´1qk dimKHkpX ;Kq “ ÿ

kPZ
p´1qk dimKH

kpX ;Kq

holds for arbitrary fields K (not just with characteristic zero).
Hint: Exercise 45.10 will be helpful here.

(d) Show that the Lefschetz number of a map f : X Ñ X satisfies

Lpfq “
8ÿ
n“0

p´1qn tr
ˆ
Hn

freepXq f˚ÝÑ Hn
freepXq

˙
.

Exercise 45.13 (*). Suppose C˚ is a chain complex of free abelian groups such that for some
n P N, HnpC˚q is finitely generated and satisfies

HnpC˚ b Zpq – HnpC˚q b Zp

for every prime p P N. Prove that Hn´1pC˚q is torsion free.
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46. The cross product

The main question for this lecture is straightforward: if we understand H˚pXq and H˚pY q,
can we use them to compute H˚pX ˆ Y q?

In the bordism theory sketched in Lecture 27, it is easy to see that there is a product operation

Ω‚mpXq b Ω‚npY q Ý̂Ñ Ω‚m`npX ˆ Y q,
rpM,ϕqs b rpN,ψqs ÞÝÑ rpM,ϕqs ˆ rpN,ψqs :“ rpM ˆN,ϕˆ ψqs.

The reason this is straightforward to define is that the product of two closed manifolds is also a
closed manifold. We will see in this lecture that one can define a similarly straightforward product
in cellular homology, using the fact that k-cells ek – D̊k can be identified homeomorphically with
cubes, so that the product of a k-cell with an ℓ-cell becomes a pk` ℓq-cell. Defining such a product
in singular homology is less straightforward, because the product of two simplices is not a simplex
in any obvious way, but here we can make use of the triangulation of ∆mˆ∆n introduced in §31.2,
or as a purely algebraic alternative, the method of acyclic models (see Lecture 32).

46.1. The product of two CW-complexes. Suppose X and Y are both compact CW-
complexes, and consider the product X ˆ Y . This has a natural cell decomposition such that

pX ˆ Y qn “ ď
0ďkďn

Xk ˆ Y n´k.

It is easiest to see this if we choose a homeomorphism of the disk Dn with the n-dimensional cube
In and thus regard In as the domain of the characteristic maps of n-cells. Since Ik`ℓ “ Ik ˆ Iℓ,
any pair consisting of a k-cell ekα Ă X and ℓ-cell eℓβ Ă Y with characteristic maps Φα : Ik Ñ X

and Φβ : Iℓ Ñ Y respectively gives rise to a pk ` ℓq-cell
ekα ˆ eℓβ Ă X ˆ Y

with characteristic map

Φα ˆ Φβ : Ik`ℓ Ñ X ˆ Y : ps, tq ÞÑ pΦαpsq,Φβptqq.
Using coefficients in a commutative ring R, the bilinear operation

CCW
k pX ;Rq ˆ CCW

ℓ pY ;Rq Ý̂Ñ CCW
k`ℓ pX ˆ Y ;Rq

defined on the cellular chain complex by sending a pair of generators pekα, eℓβq to ekα ˆ eℓβ is called
the (chain-level) cellular cross product. The following formula for the boundary map arises
from the geometric intuition that the boundary of a product of manifolds M ˆ N consists of all
points px, yq P M ˆN such that either x P BM or y P BN ; in particular, this description can be
applied to the boundary of the cube Ik`ℓ “ Ikˆ Iℓ, which is the domain of the characteristic map
for a product cell ekα ˆ eℓβ . One then has to think somewhat more carefully about orientations to
get the signs right (see Exercise 46.3).69

Proposition 46.1. For any pair of CW-complexes X and Y with a k-cell ekα Ă X and an ℓ-cell
eℓβ Ă Y , the cellular chain complex of X ˆ Y with its induced cell decomposition and coefficients
in any commutative ring R satisfies

Bpekα ˆ eℓβq “ Bekα ˆ eℓβ ` p´1qkekα ˆ Beℓβ P CCW
k`ℓ´1pX ˆ Y ;Rq.

�

69An explicit proof of the formula in Prop. 46.1 can also be found in [Hat02, Prop. 3B.1].
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Being a bilinear map of R-modules, the cross product is equivalent to an R-module homomor-
phism

CCW
k pX ;Rq b CCW

ℓ pY ;Rq Ñ̂ CCW
k`ℓ pX ˆ Y ;Rq,

namely the unique homomorphism that sends ekα b eℓβ to ekα ˆ eℓβ for every pair of cells of the
appropriate dimensions in X and Y . More generally, one can include two arbitrary coefficient
modules G,H P R-Mod in the picture and define

CCW
k pX ;Gq b CCW

ℓ pY ;Hq Ñ̂ CCW
k`ℓ pX ˆ Y ;GbHq,

gekα b heℓβ ÞÑ pg b hq `ekα ˆ eℓβ
˘

for g P G and h P H . The first version follows from this one by taking G “ H :“ R and using
the canonical R-module isomorphism R b R – R : r b s ÞÑ rs. Taking the direct sum of these
maps over all pairs of integers k, ℓ ě 0, the chain-level cellular cross product now determines an
R-module homomorphism

CCW˚ pX ;Gq b CCW˚ pY ;Hq Ý̂Ñ CCW˚ pX ˆ Y ;GbHq.
In the case G “ H :“ R, this map is in fact an R-module isomorphism, due to the easy observation
that both sides are free R-modules with canonical bases that are in bijective correspondence with
each other.

46.2. The Künneth formula. The following purely algebraic definition should now hope-
fully seem quite natural.

Definition 46.2. Given chain complexes pA˚, BAq and pB˚, BBq of R-modules, the tensor
product chain complex pA˚ bB˚, Bq is defined by

(46.1) pA˚ bB˚qn “
à

k`ℓ“n
Ak bBℓ,

where the direct sum is understood to be over the set of all pairs pk, ℓq P Z2 with k ` ℓ “ n, and
the boundary map is determined by the formula

(46.2) Bpab bq “ BAab b` p´1qkab BBb for a P Ak, b P Bℓ.
You should take a moment to assure yourself that this really defines a chain complex: B2

includes some terms that vanish because pBAq2 and pBBq2 both vanish, but also cross terms BAab
BBb that disappear due to sign cancelations. Here is another easy thing to check: given chain maps
f : A˚ Ñ A1̊ and g : B˚ Ñ B 1̊ , there is a chain map

(46.3) f b g : A˚ bB˚ Ñ A1̊ bB 1̊ : ab b ÞÑ fpaq b gpbq.
We can now rephrase Proposition 46.1 as follows:

Proposition 46.3. For any choices of coefficient modules G,H P R-Mod, the chain-level
cellular cross product determines a chain map

CCW˚ pX ;Gq b CCW˚ pY ;Hq Ñ CCW˚ pX ˆ Y ;GbHq : ab bÑ aˆ b,

and it is an isomorphism of chain complexes in the case G “ H :“ R. �

Remark 46.4. The signs in formulas such as (46.2) can be deduced consistently from the
Koszul sign convention, which made a previous appearance when we were constructing oriented
triangulations of products of simplices (see Remark 31.4). The idea is to regard every element
a P Ak in a chain complex A˚ as even or odd depending on whether k is even or odd, while also
regarding boundary maps such as B : A˚ Ñ A˚ as having degree ´1 (and thus odd) since they
send Ak to Ak´1. The rule is then that a sign changes every time the order of two odd objects is
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interchanged. In other words, the sign in the formula Bpab bq “ Bab b` p´1qkab Bb comes from
the fact that in the last term, we have interchanged the order of B and a, which produces a sign if
and only if a is odd (since B is always odd). Similar sign conventions appear in many branches of
mathematics, and they are often determined by the signs of permutations, e.g. a familiar example
in differential geometry is the formula for the exterior derivative of a wedge product of differential
forms.

With product cell complexes as motivation, it is important to be able to compute the homology
of a tensor product chain complex, and it seems a good guess that the answer should be related
to the tensor product of the individual homologies of the two complexes. As with the universal
coefficient theorem, we can begin by observing that there is a canonical map: for any two chain
complexes A˚, B˚ and each k, ℓ P Z, we can define

HkpA˚q bHℓpB˚q Ñ Hk`ℓpA˚ bB˚q : ras b rbs ÞÑ rab bs.
It is an easy exercise to check that this is a well-defined homomorphism, and taking the direct sum
of these maps for all choices of k, ℓ P Z with a fixed sum produces a canonical map

(46.4)
à

k`ℓ“n
HkpA˚q bHℓpB˚q Ñ HnpA˚ bB˚q

for each n P Z. It seems reasonable to hope that this will at least sometimes be an isomorphism.
What’s actually true is in fact a direct generalization of the universal coefficient theorem.

Theorem 46.5 (algebraic Künneth formula). Assume R is a principal ideal domain, C˚, C 1̊
are chain complexes of R-modules, and C˚ is free. Then the map (46.4) for every n P Z fits into
a natural short exact sequence

0Ñ à
k`ℓ“n

HkpC˚q bHℓpC 1̊ q Ñ HnpC˚ b C 1̊ q Ñ à
k`ℓ“n´1

TorpHkpC˚q, HℓpC 1̊ qq Ñ 0,

and the sequence splits (but not naturally).

As usual, the word “natural” in this statement has a technical meaning in terms of natural
transformations, so that for any two pairs of chain complexes A˚, A1̊ and B˚, B 1̊ satisfying the
hypotheses of the theorem, the maps in the two exact sequences will fit into commutative diagrams
together with the maps induced by any pair of chain maps A˚ Ñ B˚ and A1̊ Ñ B 1̊ .

The statement becomes a bit more concise if we define the operation b and the functor Tor

on pairs of Z-graded R-modules A˚ “ À
kPZAk and B˚ “À

ℓPZBℓ, i.e. a grading on A˚ b B˚ is
defined via (46.1), and similarly,

TorpA˚, B˚q :“
à
nPZ

pTorpA˚, B˚qqn , where pTorpA˚, B˚qqn :“ à
k`ℓ“n

TorpAk, Bℓq.

We will have some further comments below on why this is a sensible definition, but one immediate
practical reason is that the exact sequence in Theorem 46.5 can now be written as

0Ñ H˚pC˚q bH˚pC 1̊ q Ñ H˚pC˚ b C 1̊ q Ñ `
TorpH˚pC˚q, H˚pC 1̊ q˘˚´1

Ñ 0,

where the subscript “˚ ´ 1” on the last term indicates the downward degree shift. The splitting
gives rise to a (non-canonical) isomorphism

H˚pC˚ b C 1̊ q – `
H˚pC˚q bH˚pC 1̊ q˘‘ `

TorpH˚pC˚q, H˚pC 1̊ q˘˚´1
,

which can be used in practice to compute the cellular homology of products. We will see at the
end of this lecture how this can also be applied directly to singular homology, without needing to
know that singular and cellular homologies are isomorphic.

Both the statement and the proof of the Künneth formula can be regarded as direct general-
izations of the universal coefficient theorem for homology if we extend the range of our definitions
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accordingly. Indeed, if one takes the chain complex C 1̊ to be a single R-module G in degree 0 and
trivial in every other degree, then its homology is itself, and Theorem 46.5 reduces to precisely the
universal coefficient theorem. Replacing G with a chain complex C 1̊ does not actually add much
complication to the proof, if one adopts the right perspective.

Let us first clarify why it is sensible to extend Tor to a functor on the category

R-ModZ

of Z-graded R-modules A˚ “À
nPZAn, whose morphisms consist of R-module homomorphisms

A˚ Ñ B˚ that map An to Bn for every n P Z. One can speak of additive, exact, left-exact and
right-exact functors on R-ModZ in exactly the same way as for functors on R-Mod: the direct sum
A˚ ‘ B˚ of two Z-graded R-modules has an obvious Z-grading with pA˚ ‘ B˚qn :“ An ‘ Bn,
and exact sequences of Z-graded R-modules are simply exact sequences of R-modules that each
carry the grading as extra structure and thus require the morphisms in the sequence to preserve
it. Given any Z-graded R-module G˚ “À

nPZGn, the functor

bG˚ : R-ModZ Ñ R-ModZ : A˚ ÞÑ A˚ bG˚
is right-exact for the same reasons that bG : R-ModÑ R-Mod is right-exact, and one can similarly
define left derived functors Tornp¨, G˚q :“ LnpbG˚q : R-ModZ Ñ R-ModZ as a way of measuring
its failure to be left-exact. This requires choosing for any Z-graded R-module A˚ a projective
resolution

. . . ÝÑ A˚,2
α2ÝÑ A˚,1

α1ÝÑ A˚,0 αÝÑ A˚ ÝÑ 0,

i.e. an exact sequence in which each A˚,n “À
kPZAk,n is a Z-graded R-module that is projective,

meaning that the lifting problem

H˚

A˚,n G˚

π
rϕ
ϕ

can be solved in the category R-ModZ whenever ϕ : A˚,n Ñ G˚ and π : H˚ Ñ G˚ are homomor-
phisms that preserve gradings and π is surjective. It is straightforward to check that a Z-graded
R-moduleG˚ “À

nPZGn is projective if and only if the individual R-modulesGn are all projective,
and a projective resolution A˚,˚ αÝÑ A˚ in R-ModZ is thus equivalent to a collection of projective
resolutions Ak,˚ αÝÑ Ak in R-Mod, one for each k P Z. For this reason, defining TornpA˚, G˚q as a
left derived functor in the category R-ModZ gives the same result as the more naive definition, in
which we simply regard A˚ “À

k Ak and G˚ “À
ℓGℓ as R-modules and assign to the R-module

TornpA˚, G˚q the Z-grading such that

TornpA˚, G˚qm “ à
k`ℓ“m

TornpAk, Gℓq

for each m P Z.
With those formalities out of the way, let us go ahead and repeat the main details of the proof

of the universal coefficient theorem in terms that are general enough to prove the Künneth formula
as well.

Proof of Theorem 46.5. As in the proof of the universal coefficient theorem, we abbreviate
the submodules of boundaries and cycles in Cn by Bn Ă Zn Ă Cn, and think of B˚ :“À

nBn and
Z˚ :“À

n Zn as chain complexes with trivial boundary maps, so their homologies areHnpZ˚q “ Zn
and HnpB˚q “ Bn. We shall denote by B˚´1 the chain complex that is the same as B˚ but
with all degrees shifted one step downward, meaning pB˚´1qn “ Bn´1. Since R is a principal
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ideal domain and C˚ (and therefore also its submodule B˚ Ă C˚) is free, the exact sequence
0Ñ Z˚ ãÑ C˚ BÑ B˚´1 Ñ 0 splits, and so therefore does the sequence

0 Z˚ b C 1̊ C˚ b C 1̊ Ñ B˚´1 b C 1̊ 0,

which is also a short exact sequence of chain complexes. One detail that is now different from the
universal coefficient theorem is that the boundary operators on the first and third of these chain
complexes may be nontrivial, though their homologies are still easy to write down. For instance,
the submodules of homogeneous elements in Z˚ b C 1̊ are`

Z˚ b C 1̊ ˘
n
“ à

k`ℓ“n
Zk b C 1

ℓ,

and since Z˚ is a free chain complex with trivial boundary, we can choose a basis Bk of each Zk
and thus obtain an isomorphism of this to`

Z˚ b C 1̊ ˘
n
– à

k`ℓ“n

à
ePBk

Rb C 1
ℓ –

à
k`ℓ“n

à
ePBk

C 1
ℓ,

so that pZ˚ b C 1̊ qn BÝÑ pZ˚ b C 1̊ qn´1 becomes the corresponding direct sum of the boundary
maps C 1

ℓ Ñ C 1
ℓ´1. The homology of this complex is thus

Hn

`
Z˚ b C 1̊ ˘ – à

k`ℓ“n

à
ePBk

HℓpC 1̊ q – à
k`ℓ“n

Zk bHℓpC 1̊ q,

a formula that can be written concisely as a natural isomorphism of Z-graded R-modules

H˚
`
Z˚ b C 1̊ ˘ – Z˚ bH˚pC 1̊ q.

Since B˚´1 Ă Z˚´1 Ă C˚´1 is also free, the homology of B˚´1 b C 1̊ admits a similar description,
except that the degree shift gives`

B˚´1 b C 1̊ ˘
n
“ à

k`ℓ“n
Bk´1 b C 1

ℓ “
à

k`ℓ“n´1

Bk b C 1
ℓ

for each n P Z, and we therefore have natural isomorphisms

HnpB˚´1 b C 1̊ q “ Hn´1pB˚ b C 1̊ q – à
k`ℓ“n´1

Bk bHℓpC 1̊ q,

or in concise form,

H˚pB˚´1 b C 1̊ q “ H˚´1pB˚ b C 1̊ q – `
B˚ bH˚pC 1̊ q˘˚´1

.

The short exact sequence of chain complexes now gives rise as usual to a long exact sequence of
homologies

. . .Ñ HnpB˚bC 1̊ q ΦnÑ HnpZ˚bC 1̊ q Ñ HnpC˚bC 1̊ q Ñ Hn´1pB˚bC 1̊ q Φn´1Ñ Hn´1pZ˚bC 1̊ q Ñ . . . ,

where the maps labeled Φn,Φn´1 are the connecting homomorphisms, and we can then turn this
into a short exact sequence centered around HnpC˚ b C 1̊ q in the usual way, namely

0Ñ cokerΦn Ñ HnpC˚ b C 1̊ q Ñ kerΦn´1 Ñ 0,

or if we take the direct sum over all n P Z, a short exact sequence of Z-graded R-modules

(46.5) 0Ñ cokerΦ˚ Ñ H˚pC˚ b C 1̊ q Ñ kerΦ˚´1 Ñ 0.

Inspecting the diagram chase behind the long exact sequence reveals that the map Φ˚ : H˚pB˚ b
C 1̊ q Ñ H˚pZ˚ b C 1̊ q is the obvious thing: it is the map

H˚pB˚ b C 1̊ q – B˚ bH˚pC 1̊ q i˚b1ÝÑ Z˚ bH˚pC 1̊ q – H˚pZ˚ b C 1̊ q
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induced by the inclusions B˚
i˚ãÑ Z˚. In order to understand the kernel and cokernel of i˚b1, one

feeds the short exact sequence

0Ñ B˚
i˚ãÑ Z˚

q˚Ñ H˚pC˚q Ñ 0

into the functor bH˚pC 1̊ q : R-ModZ Ñ R-ModZ and obtains a long (but not very long) exact
sequence

0 TorpH˚pC˚q, H˚pC 1̊ qq B˚ bH˚pC 1̊ q Z˚ bH˚pC 1̊ q

H˚pC˚q bH˚pC 1̊ q 0,

i˚b1

q˚b1

in which the leftmost term TorpZ˚, H˚pC 1̊ qq “ 0 vanishes because Z˚ Ă C˚ is free. This leads to
the isomorphisms

cokerpi˚ b 1q – H˚pC˚q bH˚pC 1̊ q,
and

kerpi˚ b 1q – TorpH˚pC˚q, H˚pC 1̊ qq.
The sequence we were looking for is now obtained by plugging these isomorphisms into (46.5), with
attention to the downward degree shift in the third term.

The proofs of naturality and the splitting proceed as similar generalizations of the proof of the
universal coefficient theorem, so we shall leave those steps as exercises. �

It’s worth taking special note of what the Künneth formula implies if we take R to be a field K,
so that all chain complexes in the discussion are vector spaces over K. All such spaces are free
K-modules, since vector spaces always admit bases, thus

TorpA,Bq “ 0 for all vector spaces A,B over K,

and we therefore obtain:

Corollary 46.6. For any field K and any two chain complexes C˚ and C 1̊ of vector spaces
over K, the canonical map à

k`ℓ“n
HkpC˚q bHℓpC 1̊ q Ñ HnpC˚ b C 1̊ q

is a K-linear isomorphism for every n P Z. �

This result is one of the reasons why it is often easier to compute homology with field coefficients
than over the integers.

46.3. The cross product on cellular homology. We’ve seen that if X and Y are CW-
complexes and we assign the product cell decomposition to XˆY , there is an obvious isomorphism
of chain complexes of R-modules

(46.6) CCW˚ pX ;Rq b CCW˚ pY ;Rq –ÝÑ CCW˚ pX ˆ Y ;Rq : ab b ÞÑ aˆ b,

determined by the rule that for each pair of cells ekα Ă X and eℓβ Ă Y , ekαbeℓβ is sent to the product
pk ` ℓq-cell ekα ˆ eℓβ Ă X ˆ Y . Composing the induced R-module isomorphism on homology with
the natural map

HCW
k pX ;Rq bHCW

ℓ pY ;Rq Ñ Hk`ℓ
`
CCW˚ pX ;Rq b CCW˚ pY ;Rq˘ : rxs b rys ÞÑ rxb ys

gives rise to a bilinear cross product on homology,

HCW
k pX ;Rq bHCW

ℓ pY ;Rq Ý̂Ñ HCW
k`ℓ pX ˆ Y ;Rq.
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If R is additionally a principal ideal domain, then the Künneth formula also holds, producing for
each integer n ě 0 a natural (and non-naturally split) short exact sequence of R-modules

0 ÝÑ à
k`ℓ“n

HCW
k pX ;Rq bHCW

ℓ pY ;Rq Ý̂Ñ HCW
n pX ˆ Y ;Rq

ÝÑ à
k`ℓ“n´1

TorpHCW
k pX ;Rq, HCW

ℓ pY ;Rqq ÝÑ 0,

with the pleasing feature that the Tor term vanishes whenever R is taken to be a field. This exact
sequence is the cellular version of the topological Künneth formula. We will discuss in the next
section how to establish such an exact sequence directly in singular homology, without needing to
assume that X and Y are CW-complexes.

Remark 46.7. There is an annoying point that we’ve been glossing over so far in our discussion
of product CW-complexes: if X and Y are two CW-complexes, then the product topology on XˆY
might not always match the topology defined on X ˆ Y via its product cell decomposition. The
difference, however, is subtle: it turns out that both topologies are the same if X and Y are
compact, and more generally, the two topologies always define the same notion of compact subsets
in XˆY , and their induced subspace topologies on any compact subset of XˆY are the same. In
particular, this means that if our main concern is to determine when a map K Ñ XˆY from some
compact space K is continuous, then both topologies give the same answer (see Exercise 46.2).
Applying this observation for maps ∆n Ñ X ˆ Y , it follows that the singular homology of X ˆ Y

does not depend on whether we use the product topology or the CW-complex topology, hence the
isomorphism H˚pXˆY ;Gq – HCW˚ pXˆY ;Gq holds as usual. With this in mind, we shall assume
from now on that X ˆ Y carries the product topology.

46.4. The singular cross product. Since cellular and singular homologies are isomorphic,
the cellular cross product determines a homomorphism

(46.7) HkpX ;Rq bHℓpY ;Rq Ý̂Ñ Hk`ℓpX ˆ Y ;Rq
whenever X and Y come with cell decompositions. It is far from obvious at this stage whether
ˆ is independent of the choices of cell decompositions of X and Y . We shall deal with this by
replacing the cellular cross product with an operation on singular homology that can be defined
without reference to any cell decompositions. It should be emphasized that the construction we
are about to give is distinctly for singular homology, i.e. it relies on the definition of H˚ and not
just on the Eilenberg-Steenrod axioms, so it does not give us anything for more general axiomatic
homology theories. This does not mean that a cross product on other homology theories cannot
be defined, but only that it must be defined for each theory separately, with the final step being
to prove that it matches the cellular cross product when applied to CW-complexes.

There are good geometric reasons to expect that a product map (46.7) should exist. If you like
to think about elements of HkpX ;Zq as represented by closed oriented k-dimensional submanifolds
M Ă X as in Lecture 30, then since the product of two closed oriented manifolds is also a closed
oriented manifold, it would make sense to define

rM s ˆ rN s :“ rM ˆN s P Hk`ℓpX ˆ Y ;Zq
for a k-manifold M Ă X and ℓ-manifold N Ă Y . It will be easy to see that the singular cross
product has this property when rM s and rN s are defined via oriented triangulations, and we will
be able to generalize this to a statement independent of triangulations once we have learned how
to define fundamental classes on topological manifolds in general. But not every singular homology
class can be represented by a submanifold, so the question remains: how should (46.7) be defined
in general?
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Since there is always a canonical homomorphism H˚pX ;Rq b H˚pY ;Rq Ñ H˚pC˚pX ;Rq b
C˚pY ;Rqq, we would obtain a map (46.7) if we had a chain map

C˚pX ;Rq b C˚pY ;Rq Ý̂Ñ C˚pX ˆ Y ;Rq
to play the role in singular homology that (46.6) plays in cellular homology. In order to write down
such a map, we need to decide what σˆ τ P Ck`ℓpX ˆY ;Zq should mean if we are given a pair of
singular simplices σ : ∆k Ñ X and τ : ∆ℓ Ñ Y . Unfortunately, ∆k ˆ∆ℓ is not a simplex in any
canonical way, so we cannot simply write down the continuous map

(46.8) σ ˆ τ : ∆k ˆ∆ℓ Ñ X ˆ Y : ps, tq ÞÑ pσpsq, τptqq
and call it a generator of Ck`ℓpX ˆ Y ;Rq. But we’ve dealt with this kind of thing before using
subdivision: a natural approach is to fix a reasonable oriented triangulation of ∆k ˆ∆ℓ for every
pair of integers k, ℓ ě 0, giving rise to a relative fundamental cycle c∆kˆ∆ℓ P Ck`ℓp∆k ˆ ∆ℓ;Zq,
and then use the continuous map (46.8) to push this fundamental cycle forward, defining

σ ˆ τ :“ pσ ˆ τq˚c∆kˆ∆ℓ P Ck`ℓpX ˆ Y ;Zq.
What this does in practice is make σˆ τ P Ck`ℓpXˆY ;Zq a sum of singular simplices obtained by
restricting the map (46.8) to the pk`ℓq-simplices in the triangulation, and if σˆτ can be defined in
this way for the chain complex with integer coefficients, then the definition extends immediately to
coefficients in any commutative ring R. A good triangulation to use for this purpose was described
in §31.2, and the formula (31.2) for Bc∆kˆ∆ℓ guarantees that the unique R-module homomorphism
C˚pXqbC˚pY q Ý̂Ñ C˚pXˆY q obtained by defining σˆτ in this way will be a chain map. This will
serve as our first (but not last) definition of the chain-level singular cross product. The definition
has a strong geometric advantage: if M and N are closed manifolds with oriented triangulations,
then the cross product of their fundamental cycles by this definition will be the fundamental cycle
for a triangulation of M ˆN , thus justifying the formula rM s ˆ rN s “ rM ˆN s.

One may wonder, of course, whether defining cross products via the particular subdivision
algorithm in §31.2 is the only sensible way to do things: there might be other good subdivision
algorithms that produce different definitions of a chain-level cross product. This will be okay if
it turns out that the dependence on choices disappears after descending from chain complexes
to homology. In practice, the most convenient way to see how this works is to avoid mentioning
triangulations at all, but instead employ an algebraic trick: the method of acylic models, which was
used in Lecture 32 to show that the natural chain map from the ordered to the oriented versions
of the simplicial chain complex is a chain homotopy equivalence. In the setting of singular chain
complexes, acyclic model arguments produce an abundance of natural chain maps that descend to
product structures on homology and cohomology.

Remark 46.8. One can find in various textbooks (e.g. [Vic94,Spa95]) a result called the
acyclic model theorem, which is applicable to a wide variety of problems, but is difficult to digest,
as it is typically expressed in heavily abstract category-theoretic language. We prefer in these notes
to follow the approach of [Bre93] and demonstrate the method by example.

A preparatory comment is in order before we continue. If we can define a cross product on the
singular chain complex with integer coefficients, then for the reasons explained in Remark 32.10,
the definition and its important properties will almost immediately extend to coefficients in an
arbitrary commutative ring R.

Lemma 46.9. One can assign to every tuple of topological spaces X,Y a chain map

Φ : C˚pX ;Zq b C˚pY ;Zq Ñ C˚pX ˆ Y ;Zq
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that satisfies Φpxbyq “ px, yq on 0-chains under the canonical identification of singular 0-simplices
with points, and is natural in the sense that for any continuous maps f : X Ñ X 1 and g : Y Ñ Y 1,
the diagram

C˚pX ;Zq b C˚pY ;Zq C˚pX ˆ Y ;Zq

C˚pX 1;Zq b C˚pY 1;Zq C˚pX 1 ˆ Y 1;Zq

Φ

f˚bg˚ pfˆgq˚
Φ

commutes. Moreover, Φ with these properties is unique up to chain homotopy.

Proof. In the following proof, the coefficient group is always assumed to be Z but will be
omitted from the notation. We observe first that if Φ : C0pXq bC0pY q Ñ C0pX ˆ Y q is defined as
required, then it trivially satisfies the chain map relation Φ ˝ B “ B ˝Φ on chains of degree 0 since
they are all annihilated by the boundary maps, and it also satisfies the naturality condition

pf ˆ gq˚Φpxb yq “ pfpxq, gpyqq “ Φpf˚ b g˚qpxb yq
for any maps f : X Ñ X 1, g : Y Ñ Y 1 and points x P X , y P Y (regarded as singular 0-simplices).
We shall now argue by induction and assume that maps Φ : CkpXq bCℓpY q Ñ Ck`ℓpX ˆ Y q have
been defined for all spaces X,Y and all integers k, ℓ ě 0 with k ` ℓ ď n´ 1 for some n ě 1, such
that the chain map and naturality conditions are satisfied on chains up to degree n´ 1. To extend
this to chains of degree n, we start by defining Φ on a particular collection of models: for each
integer k ě 0, let ik : ∆k Ñ ∆k denote the identity map on the standard k-simplex, and regard
this as a singular k-chain in the space ∆k:

ik P Ckp∆kq.
Given integers k, ℓ ě 0 with k ` ℓ “ n, let us consider ik b iℓ P Ckp∆kq bCℓp∆ℓq and try to define

Φpik b iℓq P Cnp∆k ˆ∆ℓq.
To satisfy the chain map relation, Φpik b iℓq needs to have the property that

(46.9) BΦpik b iℓq “ ΦpBpik b iℓqq P Cn´1p∆k ˆ∆ℓq,
where ΦpBpikb iℓqq is given by the inductive hypothesis since Φ has already been defined on chains
up to degree n´ 1. Since it also satisfies the chain map relation up to degree n´ 1, we have

(46.10) BΦBpik b iℓq “ ΦB2pik b iℓq “ 0,

so ΦBpik b iℓq is a singular pn´ 1q-cycle in ∆k ˆ∆ℓ. This is a vacuous statement when n “ 1, but
in this case it can also be improved: letting ǫ : C0p∆k ˆ∆ℓq Ñ Z denote the augmentation in the
augmented chain complex rC˚p∆kˆ∆ℓq, we observe that if k “ 1 and ℓ “ 0, then Bpi1bi0q “ Bi1bi0
is a sum of two generators of C0p∆1qbC0p∆0q with coefficients 1 and ´1 respectively, so ΦBpi1bi0q
is similarly a sum of two generators with coefficients 1 and ´1. The same holds in the case k “ 0

and ℓ “ 1, proving that in either case,

(46.11) ǫΦBpik b iℓq “ 0 when n “ 1.

Now comes the crucial point: ∆k ˆ ∆ℓ is contractible, so its reduced singular homology is
trivial. In light of (46.10) and (46.11), this means

rΦBpik b iℓqs “ 0 P rHn´1p∆k ˆ∆ℓq,
implying ΦBpik b iℓq is in the image of Cnp∆k ˆ∆ℓq BÑ Cn´1p∆k ˆ∆ℓq, hence the relation (46.9)
has solutions, and we can define Φpik b iℓq P Cnp∆k ˆ∆ℓq to be any element such that

(46.12) Φpik b iℓq P B´1
`
ΦBpik b iℓq

˘
.
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This is an arbitrary choice, but such an element certainly exists.
Having chosen Φpik b iℓq P Cnp∆k ˆ ∆ℓq for every k, ℓ ě 0 with k ` ℓ “ n, we claim that

the general extension of Φ : C˚pXq b C˚pY q Ñ C˚pX ˆ Y q to all chains of degree n is uniquely
determined by the naturality condition. Indeed, given any pair of spaces X and Y and singular
simplices σ : ∆k Ñ X and τ : ∆ℓ Ñ Y with k ` ℓ “ n, we have

σ “ σ˚ik P CkpXq, τ “ τ˚iℓ P CℓpY q,
so naturality requires Φ : CkpXq b CℓpY q Ñ CnpX ˆ Y q to have the property that

Φpσ b τq “ Φpσ˚ b τ˚qpik b iℓq “ pσ ˆ τq˚Φpik b iℓq.
Let us take this as a definition of Φpσbτq, and verify that Φ now satisfies all the required properties
on chains up to degree n. Keeping σ and τ as above, the fact that σ˚ : C˚p∆kq Ñ C˚pXq,
τ˚ : C˚p∆ℓq Ñ C˚pY q and pσ ˆ τq˚ : C˚p∆k ˆ ∆ℓq Ñ C˚pX ˆ Y q are chain maps and the
naturality of Φ up to degree n´ 1 implies

BΦpσ b τq “ Bpσ ˆ τq˚Φpik b iℓq “ pσ ˆ τq˚BΦpik b iℓq
“ pσ ˆ τq˚ΦBpik b iℓq “ Φpσ˚ b τ˚qBpik b iℓq
“ ΦBpσ˚ b τ˚qpik b iℓq “ ΦBpσ b τq,

where we have also used the fact that the tensor product of two chain maps induces a chain map
on the tensor product chain complex (see (46.3)). This establishes the chain map property. To see
that naturality also holds, consider two continuous maps f : X Ñ X 1 and g : Y Ñ Y 1: then

Φpf˚ b g˚qpσ b τq “ Φppf ˝ σq˚ b pg ˝ τq˚qpik b iℓq “ ppf ˝ σq ˆ pg ˝ τqq˚ Φpik b iℓq
“ pf ˆ gq˚pσ ˆ τq˚Φpik b iℓq “ pf ˆ gq˚Φpσ b τq.

This completes the inductive step and thus proves the existence of the natural chain map Φ.
The same approach will establish uniqueness up to chain homotopy. Assuming Φ and Ψ are

two natural chain maps as in the statement of the theorem, we would like to associate to each pair
of spaces X and Y a collection of maps

h : CkpXq b CℓpY q Ñ Cn`1pX ˆ Y q
for every pair of integers k, ℓ ě 0 and n “ k ` ℓ, such that

Bh` hB “ Φ´Ψ.

We claim that this can be done so that the obvious naturality property is also satisfied, i.e. so that
the diagram

CkpXq b CℓpY q Cn`1pX ˆ Y q

CkpX 1q b CℓpY 1q Cn`1pX 1 ˆ Y 1q

h

f˚bg˚ pfˆgq˚
h

commutes for every pair of continuous maps f : X Ñ X 1 and g : Y Ñ Y 1.
Since Φ and Ψ match precisely on all 0-chains, we are free to define h : C0pXq b C0pY q Ñ

C1pXˆY q as the trivial map, and the naturality property is obviously also satisfied for this choice.
Now by induction, assume h has been defined so as to satisfy both the chain map relation and
naturality on all chains up to degree n´ 1 for some n ě 1. To extend this to degree n, we proceed
as before by trying first to define h on the models ik b iℓ P Ckp∆kq b Cℓp∆ℓq for k ` ℓ “ n. We
need hpik b iℓq P Cn`1p∆k ˆ∆ℓq to satisfy

Bhpik b iℓq “ p´hB ` Φ´Ψqpik b iℓq,
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where the right hand side is already determined since Bpik b iℓq has degree n ´ 1. Applying B to
the right hand side, we use the chain homotopy relation in degree n ´ 1 and the fact that Φ and
Ψ are chain maps to prove

Bp´hB ` Φ´Ψqpik b iℓq “ p´Bh` Φ´ΨqBpik b iℓq “ phBqBpik b iℓq “ 0,

hence p´hB ` Φ ´ Ψqpik b iℓq is a cycle in Cnp∆k ˆ ∆ℓq. It is therefore also a boundary since
Hnp∆k ˆ∆ℓq “ 0, so we can define hpik b iℓq P Cn`1p∆k ˆ∆ℓq to be any element satisfying

hpik b iℓq P B´1
`p´hB ` Φ´Ψqpik b iℓq˘.

Now we extend this definition to all possible σb τ P CkpXqbCℓpY q by requiring naturality, i.e. we
define hpσ b τq P Cn`1pX ˆ Y q by

hpσ b τq “ hpσ˚ b τ˚qpik b iℓq :“ pσ ˆ τq˚hpik b iℓq.
We must then check that the chain homotopy relation is satisfied on σ b τ , and indeed, we have

pBh` hBqpσ b τq “ Bpσ ˆ τq˚hpik b iℓq ` hBpσ˚ b τ˚qpik b iℓq
“ pσ ˆ τq˚Bhpik b iℓq ` hpσ˚ b τ˚qBpik b iℓq
“ pσ ˆ τq˚pBh` hBqpik b iℓq “ pσ ˆ τq˚pΦ´Ψqpik b iℓq
“ pΦ´Ψqpσ˚ b τ˚qpik b iℓq “ pΦ´Ψqpσ b τq,

where we’ve used the fact that pσ ˆ τq˚ and σ˚ b τ˚ are chain maps, the naturality of h on
pn ´ 1q-chains, and the naturality of Φ and Ψ. Finally, we need to verify that our definition of h
on n-chains satisfies naturality: given f : X Ñ X 1 and g : Y Ñ Y 1, we have

hpf˚ b g˚qpσ b τq “ h
`pf ˝ σq˚ b pg ˝ τq˚˘pik b iℓq “ `pf ˝ σq ˆ pg ˝ τq˘˚hpik b iℓq

“ pf ˆ gq˚pσ ˆ τq˚hpik b iℓq “ pf ˆ gq˚hpσ b τq.
This completes the inductive step and finishes the proof. �

The proof above was a bit long, but not conceptually difficult once the basic idea is understood,
and we will need to make use of this idea several more times. The general pattern is always as
follows. We want to define a chain map that is typically not unique or canonical, but should take
a specific form on 0-chains and should also be “natural” in the sense of category theory; the latter
is always a precise condition that can be expressed in terms of commutative diagrams. We then
proceed by induction on the degree of the chains, where at each step in the induction, we start by
trying to define the map on a specific set of “models,” which are acyclic in the sense that their
(reduced) homology vanishes. The latter makes it possible to define our map on the models so that
the required conditions are satisfied, and the rest of the definition is then uniquely determined by
naturality. Having extended the definition up by one degree in this way, we must then check that
it still satisfies both the chain map and the naturality conditions. With this induction complete,
one can then use the same approach again to prove that any two chain maps with the required
properties are chain homotopic. I wanted to show you one last example of this method with every
step worked out in detail, but when I need to use this from now on, I will typically only tell you
the main idea and leave the remaining details as exercises.

The chain map Φ : C˚pX ;ZqbC˚pY ;Zq Ñ C˚pXˆY ;Zq from Lemma 46.9 uniquely determines
a chain map of R-modules

C˚pX ;Rq b C˚pY ;Rq Ñ C˚pX ˆ Y ;Rq
for any commutative ring R. For any two choices of the chain map Φ with coefficients in Z, a chain
homotopy between them similarly determines a chain homotopy between the resulting chain maps
C˚pX ;Rq b C˚pY ;Rq Ñ C˚pX ˆ Y ;Rq. The induced map on homology is therefore independent
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of choices, and it can be composed with the canonical map from H˚pX ;Rq bH˚pY ;Rq to define
what we will henceforth call the singular cross product

H˚pX ;Rq bH˚pY ;Rq H˚
`
C˚pX ;Rq b C˚pY ;Rq˘ H˚pX ˆ Y ;Rq.

ˆ

Φ˚

This definition is not only independent of choices, but is also natural in the sense that there is a
commutative diagram

H˚pX ;Rq bH˚pY ;Rq H˚pX ˆ Y ;Rq

H˚pX 1;Rq bH˚pY 1;Rq H˚pX 1 ˆ Y 1;Rq

ˆ

f˚bg˚ pfˆgq˚
ˆ

for any pair of continuous maps f : X Ñ X 1 and g : Y Ñ Y 1.
Before we can feed this into the algebraic Künneth formula as we did with cellular homology,

there is a missing ingredient. The cellular version of Φ : C˚pX ;Rq b C˚pY ;Rq Ñ C˚pX ˆ Y ;Rq
was not only a chain map, but was in fact an isomorphism of chain complexes, which allowed
us to replace the homology of a tensor product of chain complexes in the Künneth formula with
the cellular homology of a product CW-complex. There is no obvious reason why Φ should be
an isomorphism, except on 0-chains, for which it clearly is one; moreover, the cellular counterpart
of Φ was canonically defined, whereas Φ itself depends on many choices and is canonical only up
to chain homotopy. What we can therefore reasonably expect is for Φ to be a chain homotopy
equivalence. This is where the method of acyclic models really demonstrates its power.

Lemma 46.10. One can assign to every tuple of topological spaces X,Y chain maps

C˚pX ˆ Y ;Zq θÝÑ C˚pX ;Zq b C˚pY ;Zq,
C˚pX ;Zq b C˚pY ;Zq αÝÑ C˚pX ;Zq b C˚pY ;Zq,

C˚pX ˆ Y ;Zq βÝÑ C˚pX ˆ Y ;Zq,
which are uniquely determined up to chain homotopy by a naturality condition and their definitions
on 0-chains,

θpx, yq “ xb y, αpx b yq “ xb y, βpx, yq “ px, yq.
Here, naturality of θ means that there is a commutative diagram

C˚pX ˆ Y ;Zq C˚pX ;Zq b C˚pY ;Zq

C˚pX 1 ˆ Y 1;Zq C˚pX 1;Zq b C˚pY 1;Zq

θ

pfˆgq˚ f˚bg˚
θ

for any pair of continuous maps f : X Ñ X 1 and g : Y Ñ Y 1, and naturality is defined similarly
for α and β.

Notice that for each of the last two maps, the identity is an example of a map satisfying the
required conditions, and so are the compositions Φ ˝ θ and θ ˝ Φ, thus the uniqueness up to chain
homotopy implies that Φ and θ are chain homotopy inverses. This proves:

Corollary 46.11 (Eilenberg-Zilber theorem). The natural chain maps

C˚pX ;Zq b C˚pY ;Zq C˚pX ˆ Y ;ZqΦ

θ
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are chain homotopy inverses, and are thus both chain homotopy equivalences. Moreover, for any
commutative ring R, the same holds for the chain maps of R-modules between C˚pX ;RqbC˚pY ;Rq
and C˚pX ˆ Y ;Rq that these determine. �

Proof of Lemma 46.10. As before, we shall omit the coefficient group Z from the notation,
but the fact that we are using this particular coefficient group will be relevant for the following
reason: since Z is a principal ideal domain, the Künneth formula holds for chain complexes of
abelian groups. The statement of the lemma uniquely specifies the definitions of the desired chain
maps on 0-chains, and these clearly satisfy the naturality condition, so we use the method of
acyclic models to extend the definition to chains of all degrees n ě 1 by induction on n. For
θ : C˚pX ˆ Y q Ñ C˚pXq b C˚pY q, assume we already have a definition on CkpX ˆ Y q for all
k “ 0, . . . , n´ 1. We extend it to n-chains starting with the model

dn : ∆n Ñ ∆n ˆ∆n : t ÞÑ pt, tq,
interpreted as an element in Cnp∆n ˆ∆nq. The definition of θpdnq P À

k`ℓ“n Ckp∆nq b Cℓp∆nq
should be chosen to satisfy

Bθpdnq “ θpBdnq P
à

k`ℓ“n´1

Ckp∆nq b Cℓp∆nq,

where the right hand side is already determined since Bdn has degree n´1. To see if this is possible,
we observe that since θ is a chain map up to degree n´ 1,

BpθBdnq “ θB2pdnq “ 0,

so θBdn is an pn ´ 1q-cycle in C˚p∆nq b C˚p∆nq. Now observe that since ∆n is contractible, the
algebraic Künneth formula implies

Hm

`
C˚p∆nq b C˚p∆nq˘ – à

k`ℓ“m
Hkp∆nq bHℓp∆nq –

#
Z if m “ 0,

0 otherwise,

where all the Tor terms have vanished because every Hkp∆nq is a free abelian group. In particular
this implies that the cycle θBdn is also a boundary if n ě 2, and we can therefore choose θpdnq to
satisfy

(46.13) θpdnq P B´1pθBdnq.
The case n “ 1 is special since H0p∆nqbH0p∆nq “ Z is not trivial, but if we identify ∆1 with the
unit interval I “ r0, 1s, then it is easy to check that

θBpd1q “ θ
`p1, 1q ´ p0, 0q˘ “ 1b 1´ 0b 0

is a boundary, e.g. of 1b i1 ` i1 b 0 if i1 P C1p∆1q is the singular 1-simplex given by the identity
map.70 In either case, θpdnq can be defined so that (46.13) holds.

Now for an arbitrary singular n-simplex σ : ∆n Ñ X ˆ Y , we can use the projection maps
πX : X ˆ Y Ñ X and πY : X ˆ Y Ñ Y to write

∆n ∆n ˆ∆n X ˆ Y,
dn

σ

pπX˝σqˆpπY ˝σq

so naturality requires that we define

θpσq “ θ ppπX ˝ σq ˆ pπY ˝ σqq˚ dn :“ ppπX ˝ σq˚ b pπY ˝ σq˚q θpdnq.
70Equivalently, at this step one could introduce a natural augmentation on the complex C˚p∆1q b C˚p∆1q

such that the resulting reduced homology vanishes and θBpd1q is in its kernel.
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It is then a straightforward matter to check that this extension of θ to all n-chains satisfies the
chain map and naturality conditions, and one can use the same method to construct a chain
homotopy between any two such natural chain maps. We leave these steps as exercises, along with
the uniqueness up to chain homotopy of α and β, as none of these steps require any new ideas. �

Remark 46.12. I will give you the same advice about acyclic models that I typically give
about diagram chasing: the next time you find yourself bored on a long flight or train ride, finish
the proof of Lemma 46.10. It’s relaxing.

Corollary 46.11 implies that for any commutative ring R, the natural map

Φ˚ : H˚
`
C˚pX ;Rq b C˚pY ;Rq˘Ñ H˚pX ˆ Y ;Rq

used in the definition of the singular cross product is an isomorphism, so we can now use it to
replace the middle term in the algebraic Künneth formula, proving:

Corollary 46.13 (topological Künneth formula). For any principal ideal domain R, any
spaces X,Y and every integer n ě 0, the singular cross product fits into a natural short exact
sequence

0 ÝÑ à
k`ℓ“n

HkpX ;Rq bHℓpY ;Rq Ý̂Ñ HnpX ˆ Y ;Rq

ÝÑ à
k`ℓ“n´1

TorpHkpX ;Rq, HℓpY ;Rqq ÝÑ 0,

and the sequence splits (but not naturally). �

In particular, we can always choose field coefficients to make the Tor terms vanish:

Corollary 46.14. For any spaces X and Y and any field K, the cross product on singular
homology with coefficients in K defines natural K-vector space isomorphisms

ˆ :
à

k`ℓ“n
HkpX ;Kq bHℓpY ;Kq –ÝÑ HnpX ˆ Y ;Kq.

for every integer n ě 0. �

The alert reader may notice that there is at least one important question we have not addressed
yet: if X and Y are CW-complexes, are the singular and cellular cross products the same? The
answer is of course yes, but we will not discuss it at length, since we don’t plan to carry out any
serious applications of the cellular cross product—it is useful to have in mind for intuition and
motivation, but the product on singular homology will play a much more important role in further
developments. One other (and closely related) question we have not addressed is how to define the
cross product on relative singular homology. We will come back to this next week, after introducing
the cohomology cup product.

46.5. Exercises.

Exercise 46.1. Using product cell complexes, describe a cell decomposition of the torus Tn

for every n P N such that the cellular boundary map vanishes. Use this to prove that for any
axiomatic homology theory h˚ with coefficient group G,

hkpTnq – Gpnkq
for all n P N and 0 ď k ď n.
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Exercise 46.2. Recall that the topology of a CW-complex X is defined normally as the
strongest topology for which the characteristic maps of all cells Φα : Dk Ñ X are continuous.
Given another CW-complex Y , let Z and Z 1 denote the set X ˆY with two (potentially) different
topologies: we assign to Z the product topology, and to Z 1 the topology of the product CW-complex
induced by the cell decompositions of X and Y .

(a) Prove that every open set in Z is also an open set in Z 1, i.e. the identity map Z 1 Ñ Z is
continuous.
Remark: In general, the identity map Z 1 Ñ Z might not be a homeomorphism!71

(b) Prove that the identity map Z 1 Ñ Z is a homeomorphism if X and Y are both compact.
(c) Prove that a subset K Ă Z is compact if and only if it is compact in Z 1, and the two

subspace topologies induced by Z and Z 1 on K are the same. Deduce from this that Z
and Z 1 have the same singular homology groups.

Exercise 46.3. This problem is intended to elucidate in differential-geometric terms the intu-
itive reason behind the formula Bpekα ˆ eℓβq “ Bekα ˆ eℓβ ` p´1qkekα ˆ Beℓβ stated in Proposition 46.1
for the boundary map on product CW-complexes.

Recall first that an orientation of a real n-dimensional vector space V means an equivalence
class of bases, where two bases are equivalent if they are connected to each other by a continuous
family of bases. The fact that the group GLpn,Rq has two connected components (determined by
whether the determinant is positive or negative) means that every real vector space of dimension
n ą 0 has exactly two choices of orientation.72 On an oriented vector space, we call a basis positive
whenever it belongs to the equivalence class determined by the orientation. A linear isomorphism
V Ñ W between two oriented vector spaces is called orientation preserving if it maps positive
bases to positive bases, and is otherwise orientation reversing.

A smooth n-manifoldM has a tangent space TxM at every point x, which is an n-dimensional
vector space. If you haven’t seen this notion in differential geometry, then you should just pictureM
as a regular level-set f´1p0q Ă Rk of some smooth function f : Rk Ñ Rk´n for some k P N; a famous
theorem of Whitney says that every smooth n-manifold can be described in this way if k ě 2n. The
tangent space TxM at each point x PM is then the n-dimensional linear subspace ker dfpxq Ă Rk.
With this notion understood, an orientation of M means a choice of orientation for every tangent
space TxM such that the orientations vary continuously with x, i.e. every point x0 P M has a
neighborhood U ĂM admitting a continuous family of bases tpv1pxq, . . . , vnpxqquxPU of the tangent
spaces TxM such that all of them are positive. If M and N are smooth manifolds of the same
dimension, then any smooth map f : M Ñ N has a derivative dfpxq : TxM Ñ TfpxqN at every
point x PM , and we call f an immersion if dfpxq is an isomorphism for every x PM . If M and
N are both oriented, then an immersion f :M Ñ N is called orientation preserving/reversing
if dfpxq : TxM Ñ TfpxqN is orientation preserving/reversing for every x PM .

(a) Convince yourself that S2 admits an orientation (i.e. it is orientable), but RP2 and the
Klein bottle do not.

If V and W are both oriented vector spaces, we define the product orientation of V ‘W to
be the one such that if pv1, . . . , vnq and pw1, . . . , wmq are positive bases of V and W respectively,
then pv1, . . . , vn, w1, . . . , wmq is a positive basis of V ‘W . This notion carries over immediately to
a product of manifolds M and N since for each px, yq P M ˆN , Tpx,yqpM ˆ Nq can be naturally

71This is easily said, but writing down actual counterexamples is surprisingly difficult, e.g. it turns out that
they must involve uncountable many cells. For more on such bizarre issues, see [BT].

72Dimension zero must always be treated as a special case in orientation discussions. For this informal discussion
we make our lives easier by assuming all dimensions are positive.
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identified with TxM ‘ TyN , hence orientations of M and N give rise to a product orientation of
M ˆN .

(b) Show that if M and N are oriented manifolds of dimensions m and n respectively, then
for the natural product orientations, the map M ˆ N Ñ N ˆM : px, yq ÞÑ py, xq is
orientation preserving if either m or n is even, and orientation reversing if both m and n
are odd.

If M is an n-manifold with boundary, then its boundary BM is naturally an pn´ 1q-manifold, and
for each x P BM , the tangent space TxpBMq is naturally a codimension 1 linear subspace of TxM .
The set TxMzTxpBMq thus has two connected components, characterized as the tangent vectors in
TxM that point “outward” or “inward” with respect to the boundary. Now ifM has an orientation,
this induces on BM the so-called boundary orientation, defined such that for any choice of
outward pointing vector ν P TxM , a basis pX1, . . . , Xn´1q of TxpBMq is positive (with respect to
the orientation of BM) if and only if the basis pν,X1, . . . , Xn´1q of TxM is positive with respect
to the orientation of M . Take a moment to convince yourself that this notion is well defined.

The simplest example is also the most relevant for our discussion of cell complexes: the closed
n-disk Dn is a compact n-dimensional smooth manifold with boundary BDn “ Sn´1. Since all the
tangent spaces to Dn are canonically isomorphic to Rn, Dn has a canonical orientation, and this
determines a canonical orientation for Sn´1.

Finally, consider a productMˆN of two smooth manifolds with boundary, with dimensions m
and n respectively. This is a slightly more general object called a “smooth manifold with boundary
and corners”; rather than defining this notion precisely, let us simply agree that in the complement
of the “corner” BM ˆ BN , the object M ˆN is a smooth manifold whose boundary BpM ˆNq is
the union of two smooth manifolds BM ˆN and M ˆ BN of dimension m` n´ 1. The question
is: what orientations should these two pieces of BpM ˆNq carry?

(c) Assume M and N are both oriented, M ˆ N is endowed with the resulting product
orientation and BM and BN are each endowed with the boundary orientation. Show that
the induced boundary orientation on BpM ˆNq always matches the product orientation
of BM ˆN , and that it matches the product orientation of M ˆ BN if and only if m is
even.

Remark: The result of part (c) can be summarized as follows. If M has an orientation and we
denote the same manifold with the opposite orientation by´M , then for any two oriented manifolds
M and N of dimensions m and n respectively,

BpM ˆNq “ pBM ˆNq Y p´1qmpM ˆ BNq.
If you apply this to the case M “ Dm and N “ Dn and consider that the degree of a map
Sk Ñ Sk changes sign if you compose it with an orientation-reversing homeomorphism, you may
now be able to imagine the reason for the sign in the cellular boundary formula Bpekα ˆ eℓβq “
Bekα ˆ eℓβ ` p´1qkekα ˆ Beℓβ.

47. Products in singular cohomology

The main goal of this lecture is to define the cup product on singular cohomology and establish
its basic properties, so that for any space X and any choice of commutative coefficient ring R,
H˚pX ;Rq becomes a graded-commutative ring with unit. Before that, we also have some loose
ends to tie up regarding the cross product on homology, including its extension to cohomology. In
this lecture, we will get more mileage than ever before out of the method of acyclic models: the
basic pattern is that in the singular chain and cochain complexes, acyclic model arguments give
rise to certain natural chain maps that are canonical up to chain homotopy, and letting these chain
maps descend to (co)homology tells us things about the cross and cup products.
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Convention. In this lecture, the coefficient module for singular homology and cohomology is
always—unless otherwise noted—a fixed commutative ring R with unit. Having a ring structure on
the coefficient group is important for several reasons, which I will endeavor to point out explicitly
whenever they are relevant. It will usually not be necessary to assume that R is a principal ideal
domain.

47.1. Properties of the cross product. Recall that the singular cross product HkpXq b
HℓpY q Ý̂Ñ Hk`ℓpX ˆ Y q was defined in the previous lecture in terms of a natural chain map

(47.1) C˚pXq b C˚pY q C˚pX ˆ Y qˆ:“Φ
,

which we will refer to henceforth as the chain-level singular cross product. It gives rise to the
homological cross product via the simple formula

ras ˆ rbs :“ raˆ bs P Hk`ℓpX ˆ Y q
for cycles a P CkpXq and b P CℓpY q, where the homology class ra ˆ bs is independent of choices
because the chain-level cross product is canonically defined up to chain homotopy, even though
the chain map itself depends on a multitude of arbitrary choices. These definitions do not depend
in any essential way on the choice to use ring coefficients: the acyclic model argument behind the
construction of (47.1) was carried out with coefficients in Z, but one can immediately deduce from
it the existence of a canonical (up to chain homotopy) chain map

C˚pX ;Gq b C˚pY ;Hq Ý̂Ñ C˚pX ˆ Y ;GbHq
for any pair of coefficient modules G,H , thus giving rise to a more general homological product of
the form

(47.2) HkpX ;Gq bHℓpY ;Hq Ý̂Ñ Hk`ℓpX ˆ Y ;GbHq.
This reduces to the case with arbitrary ring coefficients if one sets G “ H :“ R and uses the
canonical isomorphism RbR – R.

A crucial detail for which ring coefficients are important is that the chain map (47.1) is a
chain homotopy equivalence, because another acyclic model argument carried out in Lemma 46.10
produces a chain homotopy inverse

(47.3) C˚pX ˆ Y q C˚pXq b C˚pY qθ
.

The construction of θ was again carried out with integer coefficients, and it used the fact that
Z is a principal ideal domain, because the acyclicity of the complex C˚p∆n;Zq b C˚p∆n;Zq in
positive degrees was deduced from the algebraic Künneth formula. But defining the map (47.3)
over Z immediately determines a similar definition over any coefficient ring R, due to the fact that
C˚pX ˆ Y ;Rq and C˚pX ;Rq bC˚pY ;Rq are both free R-modules with the same set of generators
as their counterparts over Z; this obseration does not require R to be a principal ideal domain.

To take the discussion further, we shall now state three more results involving natural chain
maps that are canonical up to homotopy, each of which takes the form of a diagram that commutes
up to chain homotopy. Such statements always have the following meaning: for any two paths
between the same pair of terms in the diagram, the associated compositions of chain maps are
chain homotopic.
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Lemma 47.1. For any three spaces X,Y, Z, the diagram

C˚pXq b C˚pY q b C˚pZq C˚pX ˆ Y q b C˚pZq

C˚pXq b C˚pY ˆ Zq C˚pX ˆ Y ˆ Zq

ˆb1

1bˆ ˆ
ˆ

commutes up to chain homotopy.

Proof. We leave the details as an exercise, but the point is to show via an acyclic model
argument that natural chain maps C˚pXqbC˚pY qbC˚pZq Ñ C˚pX ˆY ˆZq that take the form
x b y b z ÞÑ px, y, zq at the degree 0 level are unique up to chain homotopy. The result follows
because ˆ ˝ pˆ b 1q and ˆ ˝ p1bˆq are both examples of chain maps with these properties. �

The two ways of proceeding from C˚pXq bC˚pY q bC˚pZq to C˚pX ˆ Y ˆZq in the diagram
of Lemma 47.1 represent two ways of computing the chain-level cross product of three chains
a P CkpXq, b P CℓpY q and c P CmpZq, either as pa ˆ bq ˆ c or as aˆ pbˆ cq. The result does not
say that these two products are equal, because the two chain maps are only chain homotopic, not
identical. But the chain homotopy implies that if we take the three chains a, b, c to be cycles and
care only about the homology class of the threefold product, we get equality, hence:

Corollary 47.2. The cross product on singular homology is associative, i.e. for any ras P
HkpXq, rbs P HℓpY q and rcs P HmpZq, one has

pras ˆ rbsq ˆ rcs “ ras ˆ prbs ˆ rcsq P Hk`ℓ`mpX ˆ Y ˆ Zq.
�

So much for associativity; let’s talk about commutativity. A straightforward relation such as
ras ˆ rbs “ rbs ˆ ras would not make sense, since X ˆ Y and Y ˆX are not technically the same
space, but of course there is a canonical homeomorphism between them, which we shall denote by

X ˆ Y
τÝÑ Y ˆX : px, yq ÞÑ py, xq.

On top of this detail, the following must be added: the obvious map C˚pXq b C˚pY q Ñ C˚pY q b
C˚pXq defined by a b b ÞÑ b b a is not a chain map, but it is an easy exercise to verify that it
becomes a chain map if we introduce an appropriate sign, an accordance with the Koszul sign
convention: the chain map we need will be denoted by

C˚pXq b C˚pY q σÝÑ C˚pY q b C˚pXq : ab b ÞÑ p´1q|a|¨|b|bb a.

The proof of the following lemma is then a straightforward acyclic model argument, showing the
uniqueness of certain natural chain maps C˚pXq b C˚pY q Ñ C˚pY ˆXq up to chain homotopy:

Lemma 47.3. For any two spaces X,Y , the diagram

C˚pXq b C˚pY q C˚pX ˆ Y q

C˚pY q b C˚pXq C˚pY ˆXq

ˆ

σ– τ˚–
ˆ

commutes up to chain homotopy. �

Corollary 47.4. The cross product on singular homology is graded commutative in the sense
that for any ras P HkpXq and rbs P HℓpY q,

τ˚
`ras ˆ rbs˘ “ p´1qkℓrbs ˆ ras.

�
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The next result gives us something akin to a “unit” element for the singular cross product.
Note that for a one-point space t˚u, there is a canonical R-module isomorphism

C0pt˚uq – R,

which we shall use in the following to identify R with a submodule of the chain complex C˚pt˚uq.
With that understood, one can use the unit 1 P R to define chain maps

C˚pXq uLÝÑ C˚pt˚uq b C˚pXq : a ÞÑ 1b a,

C˚pXq uRÝÑ C˚pXq b C˚pt˚uq : a ÞÑ ab 1.

Lemma 47.5. For any space X, the diagrams

C˚pXq C˚pt˚uq b C˚pXq

C˚pt˚u ˆXq

uL

– ˆ and

C˚pXq C˚pXq b C˚pt˚uq

C˚pX ˆ t˚uq

uR

– ˆ

commute up to chain homotopy, where the isomorphisms indicated by the diagonal arrows are
induced by the obvious homeomorphisms t˚u ˆX – X – X ˆ t˚u.

Proof. Acyclic models blablabla. �

Corollary 47.6. Under the obvious identifications t˚u ˆ X “ X “ X ˆ t˚u, the homology
class r1s P H0pt˚uq represented by the unit 1 P R Ă C0pt˚uq defines a unit for the cross product on
singular homology, in the sense that

r1s ˆ ras “ ras “ ras ˆ r1s
for all ras P H˚pXq. �

Remark 47.7. With the exception of the special role played by the unit element 1 P R

in Corollary 47.6, none of the three corollaries stated above really depends on the use of ring
coefficients; all three can be extended to statements about the cross product (47.2) on homology
with arbitrary coefficients. We do not plan to make use of such a generalization in this course, and
will thus leave the details as an exercise.

47.2. The cohomological cross product. In cellular cohomology with coefficients in the
ring R, there is a cross product

Hk
CWpXq bHℓ

CWpY q Ý̂Ñ Hk`ℓ
CW pX ˆ Y q : rϕs b rψs ÞÑ rϕs ˆ rψs :“ rϕˆ ψs

determined uniquely for any two CW-complexes X,Y by the condition that for all ϕ P CkCWpXq,
ψ P CℓCWpY q, a P CCW

k pXq and b P CCW
ℓ pY q,

(47.4) pϕˆ ψqpaˆ bq “ p´1q|a|¨|ψ|ϕpaqψpbq P R.
Here, the sign is motivated by the Koszul sign convention, and we will see below why it must appear
in order for certain natural maps to satisfy the chain map condition. Defining a cochain-level cross
product via (47.4) uses the ring structure of R in two ways: most obviously, that structure is the
reason why the product ϕpaqψpbq P R is well defined. More subtly, (47.4) uniquely determines
ϕˆψ P Ck`ℓCW pXˆY q due to the fact that for ring coefficients, the chain-level cellular cross product
CCW˚ pXqbCCW˚ pY q Ñ CCW˚ pXˆY q is an isomorphism, so that evaluating ϕˆψ on pk` ℓq-chains
of the form a ˆ b determines its evaluation on all other pk ` ℓq-chains in X ˆ Y . For a more
direct formula, we could denote the inverse of the chain-level cross product by θ : CCW˚ pX ˆY q Ñ
CCW˚ pXq b CCW˚ pY q and write

pϕˆ ψqpcq :“ pϕb ψq ˝ θpcq
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for c P CCW˚ pXˆY q, where the evaluation of ϕbψ P CC̊WpXqbCC̊WpY q on elements of CCW˚ pXqb
CCW˚ pY q is determined by the formula

(47.5) pϕb ψqpab bq :“ p´1q|a|¨|ψ|ϕpaqψpbq P R,
with the understanding that evaluations such as ϕpaq vanish for any homogeneous elements ϕ P
CC̊WpXq and a P CCW˚ pXq whose degrees do not match. This notion of evaluation determines a
natural homomorphism

(47.6) CC̊WpXq b CC̊WpY q FÝÑ HompCCW˚ pXq b CCW˚ pY q, Rq.
We can now explain the reason for the sign in (47.5), which gives rise to the sign in (47.4): this
sign makes (47.6) into a chain map, which it would not otherwise be. The cochain-level cellular
cross product is therefore a composition of two chain maps

CC̊WpXq b CC̊WpY q Hom
`
CCW˚ pXq b CCW˚ pY q, R˘ Hom

`
CCW˚ pX ˆ Y q, R˘ “ CC̊WpX ˆ Y qF

ˆ

θ˚
,

and is thus a chain map in itself, which is why it descends to a well-defined operation rϕsˆ rψs on
cohomology classes.

In singular homology, the chain-level cross product is not an isomorphism, but it is a chain
homotopy equivalence, and it therefore makes sense to use its chain homotopy inverse θ in the
same way that its cellular counterpart was used above. This leads to a cochain-level singular
cross product

(47.7) C˚pXq b C˚pY q HompC˚pXq b C˚pY q, Rq HompC˚pX ˆ Y q, Rq “ C˚pX ˆ Y qF

ˆ

θ˚
,

where F denotes the canonical chain map

C˚pXq b C˚pY q FÝÑ HompC˚pXq b C˚pY q, Rq
defined via the evaluation pairing in (47.5). Since ˆ is a chain map, it gives rise to a well-defined
cross product on singular cohomology with ring coefficients,

HkpXq bHℓpY q Ý̂Ñ Hk`ℓpX ˆ Y q : rϕs b rψs ÞÑ rϕs ˆ rψs :“ rϕˆ ψs.
Theorem 47.8. The cross product on singular cohomology satisfies the obvious analogues of

the associativity, graded commutativity and unit properties stated for the homological cross product
in Corollaries 47.2, 47.4 and 47.6, with the role of the unit element played by r1s P H0pt˚uq for
1 P R – C0pt˚uq.

Proof. Since the chain-level cross product is a chain homotopy equivalence, one can invert
and then dualize the diagrams in Lemmas 47.1, 47.3 and 47.5 to produce similar diagrams for the
cochain-level cross product, namely

C˚pXq b C˚pY q b C˚pZq C˚pX ˆ Y q b C˚pZq

C˚pXq b C˚pY ˆ Zq C˚pX ˆ Y ˆ Zq

ˆb1

1bˆ ˆ
ˆ

,

C˚pXq b C˚pY q C˚pX ˆ Y q

C˚pY q b C˚pXq C˚pY ˆXq

ˆ

σ–
ˆ

τ˚–
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C˚pXq C˚pt˚uq b C˚pXq

C˚pt˚u ˆXq
–

u˚
L
˝F

ˆ
C˚pXq C˚pXq b C˚pt˚uq

C˚pX ˆ t˚uq
–

u˚
R
˝F

ˆ ,

where σ : C˚pXq b C˚pY q Ñ C˚pY q b C˚pXq is the chain map ϕ b ψ ÞÑ p´1q|ϕ|¨|ψ|ψ b ϕ. After
descending to cohomology, these diagrams imply associativity, graded commutativity, and the
formulas r1s ˆ rϕs “ rϕs and rϕs ˆ r1s “ rϕs respectively. �

In contrast to cellular (co)homology, the relation (47.4) between the homological and cohomo-
logical cross products is not strictly true at the chain level—indeed, a precise relation of this form
makes no sense when the (co)chain-level cross products are defined only up to chain homotopy.
The next lemma says, however, that the relation holds up to chain homotopy. This is where the
particular sign choice made in the definition of the cochain complex C˚pXq “ HompC˚pXq, Rq in
Lecture 41 becomes important, as it allows us to interpret the evaluation pairing

x , y : C˚pXq b C˚pXq Ñ R˚
as a chain map, after viewing C˚pXq as a chain complex with its grading inverted, and defining
R˚ to be the chain complex that has R in degree 0 and trivial modules in all other degrees
(cf. Remark 41.3). Note that since the R-modules R and R b R are canonically isomorphic, the
same is true of the chain complexes R˚ and R˚ bR˚.

Lemma 47.9. For any two spaces X,Y , the diagram

C˚pXq b C˚pY q b C˚pXq b C˚pY q C˚pX ˆ Y q b C˚pX ˆ Y q

R˚

C˚pXq b C˚pXq b C˚pY q b C˚pY q R˚ bR˚

ˆbˆ

1bσb1

x , y

x , ybx , y

commutes up to chain homotopy, where σ : C˚pY q bC˚pXq Ñ C˚pXq bC˚pY q denotes the chain
map ψ b a ÞÑ p´1q|a|¨|ψ|ab ψ.

Proof. The proof is a straightforward computation using the definition of the cochain-level
cross product in (47.7) and the fact that θ composed with the chain-level cross product is chain
homotopic to the identity. �

Corollary 47.10. The cross products on singular homology and cohomology are related by
the formula

xrϕs ˆ rψs, ras ˆ rbsy “ p´1q|a|¨|ψ|xrϕs, rasy ¨ xrψs, rbsy
for homogeneous elements rϕs P H˚pXq, rψs P H˚pY q, ras P H˚pXq and rbs P H˚pY q. �

47.3. The cup product. The cup product on H˚pXq with coefficients in a ring R can be
defined in terms of the cross product, but it is more general and more useful to regard it as
yet another structure arising from a natural chain map that is canonical up to chain homotopy.
The following theorem is proved by a succession of straightforward acyclic models arguments, in
which one can (as usual) specialize to the case of integer coefficients and then deduce from it the
generalization to coefficients in R. As a preliminary remark, note that for any space X , there is a
natural inclusion of R-modules

R ãÑ C0pXq “ C0pX ;Rq,
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identifying each r P R with the cochain whose value on every singular 0-simplex is r. In slightly
fancier terms, the unique map ǫ : X Ñ t˚u admits a right-inverse, implying that the induced
chain map ǫ˚ : C˚pt˚uq Ñ C˚pXq is injective, and the inclusion described above identifies R with
the image of the injection ǫ˚ : R “ C0pt˚uq ãÑ C0pXq. Regarding each r P R in this way as a
0-cochain, it is also a 0-cocycle, giving rise to a natural inclusion

R ãÑ H0pXq “ H0pX ;Rq : r ÞÑ rrs.
In particular, the unit element 1 P R is now identified with the homomorphism

C0pXq 1ÝÑ R :
ÿ
i

riσi ÞÑ
ÿ
i

ri for ri P R and σi : ∆0 Ñ X,

which you may recognize as the augmentation that is used in constructing the augmented chain
complex rC˚pX ;Rq. Extending this map trivially to chains of nonzero degrees makes it a chain
map

C˚pXq 1ÝÑ R˚.

Theorem 47.11. One can associate to every space X a chain map C˚pXq ΨÝÑ C˚pXqbC˚pXq
that takes the form Ψpxq “ x b x on generators of degree 0 and is natural in the sense that any
map f : X Ñ Y gives rise to a commutative diagram

C˚pXq C˚pXq b C˚pXq

C˚pY q C˚pY q b C˚pY q

Ψ

f˚ f˚bf˚
Ψ

.

Moreover, these two properties determine Ψ uniquely up to chain homotopy, and the following
diagrams commute up to chain homotopy:

C˚pXq C˚pXq b C˚pXq

C˚pXq b C˚pXq C˚pXq b C˚pXq b C˚pXq

Ψ

Ψ Ψb1

1bΨ

,

C˚pXq C˚pXq b C˚pXq

C˚pXq b C˚pXq

Ψ

Ψ
σ ,

C˚pXq C˚pXq b C˚pXq

R˚ b C˚pXq

Ψ

–
1b1

.

C˚pXq C˚pXq b C˚pXq

C˚pXq bR˚

Ψ

–
1b1

.

Here, the chain map σ is defined as in Lemma 47.3, and the downward arrows in the last two
diagrams represent the canonical isomorphisms between C˚pXq and its tensor products with R˚. �

The chain map Ψ : C˚pXq Ñ C˚pXqbC˚pXq in Theorem 47.11 is called a diagonal approx-
imation.

Definition 47.12. Given a diagonal approximation Ψ, the cochain-level cup product

C˚pXq b C˚pXq YÝÑ C˚pXq : ϕb ψ ÞÑ ϕY ψ

on the singular cochain complex of a space X with coefficients in a commutative ring R is the
chain map defined as the composition

C˚pXq b C˚pXq HompC˚pXq b C˚pXq, Rq HompC˚pXq, Rq “ C˚pXqF

Y

Ψ˚
.
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This determines the cup product on singular cohomology,

rϕs Y rψs :“ rϕY ψs P Hk`ℓpXq for rϕs P HkpXq, rψs P HℓpXq.
As you’ve hopefully come to expect by now, the cochain-level cup product is dependent on

choices, but as a chain map C˚pXq b C˚pXq Ñ C˚pXq it is independent of those choices up to
chain homotopy, implying that the induced product on cohomology is canonically defined.

As a slightly more direct formula for the cochain-level cup product, we can write

pϕY ψqpcq “ pϕb ψq ˝Ψpcq for ϕ P CkpXq, ψ P CℓpXq, c P Ck`ℓpXq.
This still seems a bit abstract if one only has a general acyclic models argument to provide the
diagonal approximation Ψ, but it is also possible to write down explicit examples of diagonal ap-
proximations. A favorite choice for this is known as the Alexander-Whitney diagonal approxi-
mation, and can be defined as follows. Number the vertices of the standard n-simplex ∆n Ă Rn`1

as 0, . . . , n, and given any integers 0 ď j0 ă j1 ă . . . ă jk ď n, let

rj0, . . . , jks Ă ∆n

denote the k-dimensional face of ∆n spanned by the vertices j0, . . . , jk, which is identified naturally
with the standard k-simplex. For instance, in this notation, the jth boundary face of ∆n is
Bpjq∆n “ r0, . . . , j´1, j`1, . . . , ns for each j “ 0, . . . , n. Now define Ψ : C˚pXq Ñ C˚pXqbC˚pXq
via the formula

Ψpσq :“ ÿ
k`ℓ“n

`
σ|r0,...,ks

˘b `
σ|rk,...,ns

˘
for each singular n-simplex σ : ∆n Ñ X . It is a straightforward exercise to verify that this satisfies
the conditions of a diagonal approximation.

Plugging the Alexander-Whitney approximation into ϕY ψ “ pϕb ψq ˝Ψ gives the following
formula for the cup product of cochains: for any singular n-simplex σ : ∆n Ñ X with n “ k` ℓ,73

pϕY ψqpσq “ p´1qkℓϕpσ|r0,...,ksqψpσ|rk,...,nsq.
On its own, this formula is seldom very useful, since explicit computations with singular cochains
are almost never practical. What is slightly more reasonable, however, is to use the same formula
for computing the cup product in the simplicial cohomology of a simplicial complex, which of course
is a special case of cellular cohomology and is therefore isomorphic to its singular cohomology. This
trick is sometimes used for explicit computations of singular cohomology rings; see for instance
[Hat02, Examples 3.7 and 3.8], or [Bre93, Example VI.4.6]. I will avoid computations like that in
these notes, essentially for two reasons: first, they depend on a nontrivial fact we have not proved
about the natural product structures on singular and simplicial cohomology being the same; second,
they are ugly. We will see that there are more elegant ways to carry out all the computations we
need.

To that end, let us now establish some properties of the cup product that will be essential in
further developments.

Theorem 47.13. The cup product Y : H˚pXq bH˚pXq Ñ H˚pXq on cohomology with coeffi-
cients in the ring R has the following properties.

(1) It is natural: for all continuous maps f : Y Ñ X and rϕs, rψs P H˚pXq,
f˚prϕs Y rψsq “ f˚rϕs Y f˚rψs.

(2) It is associative: for all rϕs, rψs, rηs P H˚pXq,
prϕs Y rψsq Y rηs “ rϕs Y prψs Y rηsq.

73The formula we have derived here for the cochain ϕYψ matches a formula in [Bre93] but differs from [Hat02]
by a sign if k and ℓ are both odd. This is due to the sign convention in (41.1) for the definition of coboundary maps.
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(3) It is graded commutative: for all rϕs P HkpXq and rψs P HℓpXq,
rϕs Y rψs “ p´1qkℓrψs Y rϕs.

(4) It has a unit: under the canonical inclusion R ãÑ H0pXq : r ÞÑ rrs, the unit 1 P R and
any rϕs P H˚pXq satisfy

r1s Y rϕs “ rϕs Y r1s “ rϕs.
(5) It determines the cohomological cross product for two spaces X,Y via the formula

rϕs ˆ rψs “ πX̊ rϕs Y πY̊ rψs
for rϕs P H˚pXq and rψs P H˚pY q, where πX : X ˆY Ñ X and πY : X ˆY Ñ Y are the
natural projections.

(6) It is determined by the cohomological cross product via the formula

rϕs Y rψs “ d˚prϕs ˆ rψsq
for rϕs, rψs P H˚pXq, where d : X Ñ X ˆX denotes the diagonal map x ÞÑ px, xq.

Proof. Naturality is a consequence of the naturality property of diagonal approximations
and of the canonical chain map F : C˚pXq b C˚pXq Ñ HompC˚pXq b C˚pXq, Rq. Associativity,
graded commutativity and the unit property can all be deduced from diagrams of chain maps that
commute up to chain homotopy, and are constructed by dualizing the diagrams in Theorem 47.11,
namely,

C˚pXq C˚pXq b C˚pXq

C˚pXq b C˚pXq C˚pXq b C˚pXq b C˚pXq

Y

Y Yb1

1bY

C˚pXq C˚pXq b C˚pXq

C˚pXq b C˚pXq

Y

σY

C˚pXq C˚pXq
¨Y1

1

C˚pXq C˚pXq
1Y¨

1

where σ : C˚pXq b C˚pXq Ñ C˚pXq b C˚pXq denotes the chain map ϕb ψ ÞÑ p´1q|ϕ|¨|ψ|ψ b ϕ.
For the two properties relating the cup and cross products, we need two more diagrams involv-

ing diagonal approximations, which can be shown to commute up to chain homotopy by straight-
forward acyclic model arguments, namely

C˚pX ˆ Y q C˚pX ˆ Y q b C˚pX ˆ Y q

C˚pXq b C˚pY q

Ψ

θ
pπXq˚bpπY q˚

C˚pXq C˚pXq b C˚pXq

C˚pX ˆXq

Ψ

d˚
θ .

This is an unimportant detail, but it may be amusing to note that each of these diagrams implies
the other (exercise!), so it is only really necessary to carry out one acyclic model argument here.
What’s more important is that both diagrams can be dualized, producing the diagrams

C˚pX ˆ Y q C˚pX ˆ Y q b C˚pX ˆ Y q

C˚pXq b C˚pY q

Y

π˚
X
bπ˚

Yˆ

C˚pXq C˚pXq b C˚pXq

C˚pX ˆXq

Y

ˆ
d˚

,

which imply the last two properties. �
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47.4. Exercises.

Exercise 47.1 (*). Prove the formula

prαs Y rϕsq ˆ prβs Y rψsq “ p´1q|ϕ|¨|β| prαs ˆ rβsq Y prϕs ˆ rψsq
for homogeneous elements rαs, rϕs P H˚pXq and rβs, rψs P H˚pY q.

Exercise 47.2. In this exercise we compute the cohomology ring H˚pTn;Rq for every n ě 1,
with coefficients in any commutative ring R with unit. The idea is to derive the cup product from
information about the homological cross product

HkpTm;Rq bHℓpTn;Rq Ý̂Ñ Hk`ℓpTm`n;Rq
obtained via the Künneth formula.

The homology of Tn is fairly easy to compute because Tn “ S1 ˆ . . . ˆ S1 has a natural
structure as a product cell complex (cf. Exercise 46.1). Without mentioning cell complexes, we can
also use an inductive argument based on the Künneth formula. Indeed, the case n “ 1 is trivial
since T1 “ S1, so in particular, H˚pS1;Zq is a finitely generated free abelian group. Let’s call its
canonical generators

r˚s P H0pS1;Zq, rS1s P H1pS1;Zq,
i.e. r˚s is the homology class represented by any singular 0-simplex ∆0 Ñ S1, and rS1s is the class
represented by the identity map S1 Ñ S1 under the isomorphism H1pS1;Zq – π1pS1q.

(a) Derive from the Künneth formula an isomorphism

HmpTn;Zq – Hm´1pTn´1;Zq ‘HmpTn´1;Zq
for every n ě 2 and m P Z. Deduce that HmpTn;Zq is always a finitely-generated abelian
group, whose rank is an entry in Pascal’s triangle,

rankHmpTn;Zq “
ˆ
n

m

˙
.

Hint: Since you already know that H˚pS1;Zq is finitely generated and free, you can prove
by induction on n P N that the same is true for H˚pTn;Zq; this should remove any need
to worry about Tor terms.

(b) For each m P N and each choice of integers 1 ď j1 ă . . . ă jm ď n, define the homology
class

ej1,...,jm :“ A1 ˆ . . .ˆAn P HmpTn;Zq
by setting Aji :“ rS1s for each i “ 1, . . . ,m and Aj :“ r˚s for all other j P t1, . . . , nu.
Deduce from the Künneth formula that the set of all such elements forms a basis of
H˚pTn;Zq.

It will be useful to have an alternative description of the degree 1 generators ej P H1pTn;Zq that
appear in part (b). Pick a base point t0 P S1 and consider the embedding

(47.8) ij : S
1 ãÑ Tn : x ÞÑ pt0 ˆ . . .ˆ t0loooooomoooooon

j´1

, x, t0 ˆ . . .ˆ t0loooooomoooooon
n´j

q.

Note that different choices of the base point t0 P S1 give homotopic maps ij : S1 Ñ Tn, thus the
induced map pijq˚ : H˚pS1;Zq Ñ H˚pTn;Zq is independent of this choice.

(c) Show that for each j “ 1, . . . , n, pijq˚rS1s “ ej .
Hint: For the case j “ n, you can identify S1 in the obvious way with t˚uˆS1 and then
write in : S1 ãÑ Tn as

in “ ιˆ Id : t˚u ˆ S1 ãÑ Tn´1 ˆ S1,
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with ι : t˚u Ñ Tn´1 denoting the inclusion of the point pt0, . . . , t0q. The naturality of the
cross product then gives a commutative diagram

H0pt˚u;Zq bH1pS1;Zq H1pS1;Zq

H0pTn´1;Zq bH1pS1;Zq H1pTn;Zq.

ˆ

ι˚b1 pinq˚
ˆ

Use the fact that r˚s ˆ rS1s “ rS1s for the canonical generator r˚s P H0pt˚u;Zq, after
identifying t˚u ˆ S1 “ S1, while ι˚ : H0pt˚u;Zq Ñ H0pTn´1;Zq is an isomorphism
relating the canonical generators.

(d) Use the universal coefficient theorem to upgrade the computation of H˚pTn;Zq above to a
computation ofH˚pTn;Gq for arbitrary coefficient groupsG. Deduce in particular that for
any commutative ring R with unit, H˚pTn;Rq has the structure of a finitely-generated free
R-module, with a basis in bijective correspondence with the basis of H˚pTn;Zq described
above.
Remark: There is no need to assume that R is a principal ideal domain here, as we are
only using the universal coefficient theorem and Künneth formula for Z-modules.

(e) Show that for each m P Z, the natural map

HmpTn;Rq Ñ HompHmpTn;Rq, Rq : rϕs ÞÑ xrϕs, ¨y
is an R-module isomorphism, implying HmpTn;Rq – Rpnmq.
Hint: Again, you do not need to assume here that R is a principal ideal domain. Just
regard R at first as an abelian group, prove that the natural map from HmpTn;Rq to the
abelian group of group homomorphisms HmpTn;Zq Ñ R is a group isomorphism, and
then use what you know about the algebraic structure of HmpTn;Rq.

Henceforth, we fix R as the coefficient ring for both H˚pTnq and H˚pTnq and omit it from the
notation wherever possible, regarding these groups as R-modules. We can write down a canonical
basis for H˚pTnq as follows. For n “ 1, define

λ P H1pS1q
to be the unique cohomology class such that

xλ, rS1sy “ 1 P R.
Now for each choice of integers 1 ď j1 ă . . . ă jm ď n, define

λj1,...,jm :“ α1 ˆ . . .ˆ αn P HmpTnq,
where we choose αji :“ λ for each i “ 1, . . . ,m and αj “ r1s P H0pS1q for all other j P t1, . . . , nu.
By Corollary 47.10, we have

xλj1,...,jm , ek1,...,kmy “ xα1 ˆ . . .ˆ αn, A1 ˆ . . .ˆAny “ ˘xα1, A1y . . . xαn, Any

“
#
˘1 if ji “ ki for all i “ 1, . . . ,m,

0 otherwise,

proving that the collection of classes λj1,...,jm for all choices 1 ď j1 ă . . . ă jm ď n is a basis for
H˚pTnq as a free R-module.

To describe H˚pTnq as a ring, we now need to compute each product of the form λj1,...,jm Y
λk1,...,kq P Hm`qpTnq. We start with an observation about the 1-dimensional classes λj P H1pTnq.
Consider for each j “ 1, . . . , n the projection map

πj : T
n Ñ S1 : px1, . . . , xnq ÞÑ xj ,
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which is related to the inclusions ij : S1 ãÑ Tn defined in (47.8) above by

πj ˝ ik “
#
Id : S1 Ñ S1 if j “ k,

constant if j ‰ k.

(f) Show that πj̊ λ “ λj for each j “ 1, . . . , n.
Hint: Evaluate both πj̊ λ and λj on the generators ei P H1pTnq.

(g) Use Theorem 47.13(5) to prove that for any m P N and integers 1 ď j1 ă . . . ă jm ď n,

λj1 Y . . .Y λjm “ λj1,...,jm .

Conclude that the ring H˚pTn;Rq is isomorphic to the exterior algebra ΛRrλ1, . . . , λns
over R on n generators of degree 1.

48. Relative cross, cup and cap products

We have two issues to address before we can wrap up the discussion of products: first, there is
a product that intertwines homology and cohomology, called the cap product, which will be needed
in order to define the Poincaré duality isomorphism in a few lectures. Second, the entire discussion
of products so far has been restricted to absolute singular homology and cohomology, but we will
occasional also need products in relative (co)homology. The latter requires us to dust off the notion
of excisive couples, which appeared in Lecture 34 in the context of the Mayer-Vietoris sequence.

Convention. As in the previous lecture, the default assumption here will be that we use a
fixed commutative ring R with unit for the coefficients in singular homology and cohomology.

48.1. The cap product. The previous lecture stated several results about the existence and
uniqueness up to chain homotopy of natural chain maps, but there are still one or two interesting
results of this type that we have not seen. As preparation, recall that the evaluation pairing

x , y : C˚pXq b C˚pXq Ñ R˚ : ϕb c ÞÑ xϕ, cy,
defined by xϕ, cy :“ ϕpcq when |ϕ| “ |c| and xϕ, cy :“ 0 otherwise, is a chain map if we regard
C˚pXq as a chain complex by inserting minus signs in front of the degrees of homogeneous elements.
This convention will help you remember the correct subscripts to write in the following definition,
which generalizes the evaluation pairing.

Definition 48.1. Given a diagonal approximation Ψ : C˚pXq Ñ C˚pXqbC˚pXq, the chain-
level cap product

C˚pXq b C˚pXq XÝÑ C˚pXq : ϕb c ÞÑ ϕX c

on a space X is the chain map defined as the composition

C˚pXq b C˚pXq C˚pXq b C˚pXq b C˚pXq C˚pXq b C˚pXq b C˚pXq

C˚pXq bR˚ “ C˚pXq

1bΨ

X

σb1

1bx , y ,

where σ : C˚pXq b C˚pXq Ñ C˚pXq b C˚pXq denotes the chain map ϕ b c ÞÑ p´1q|c|¨|ϕ|c b ϕ.
This determines the cap product on singular cohomology and homology,

HkpXq bHℓpXq XÝÑ Hℓ´kpXq : rϕs b rcs ÞÑ rϕs X rcs :“ rϕX cs.
As usual, the homological cap product is independent of choices because the chain maps

appearing in its chain-level variant are canonical up to chain homotopy.
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Before continuing, let’s unpack the definition of the chain-level cap product. Given a cochain
ϕ P CkpXq and a chain c P CℓpXq, the result of plugging c into a diagonal approximation can be
written as a finite sum

Ψpcq “ÿ
i

ai b bi P C˚pXq b C˚pXq,

in which the degrees of the individual terms ai and bi may vary but always satisfy |ai| ` |bi| “ ℓ.
To obtain ϕX c, we carry out the composition

ϕb c ÞÑ ϕbΨpcq “ÿ
i

pϕb ai b biq ÞÑ
ÿ
i

p´1q|ai|¨|ϕ|ai b ϕb bi ÞÑ
ÿ
i

p´1q|ai|¨|ϕ|xϕ, biyai,

where in the last term, xϕ, biy can only be nonzero when |bi| “ k, implying |ai| “ ℓ´ k so that the
resulting chain is homogeneous with degree ℓ´ k. If we apply the Koszul sign convention to define
1b ϕ : C˚pXq b C˚pXq Ñ C˚pXq bR˚ “ C˚pXq by

p1b ϕqpab bq :“ p´1q|a|¨|ϕ|1paqxϕ, by,
we obtain the slightly more succinct formula

(48.1) ϕX c “ p1b ϕq ˝Ψpcq.
The real motivation to define the cap product in this way is that it satisfies the following chain-level
relation with the cup product:

(48.2) xψ Y ϕ, cy “ xψ, ϕX cy
for any ψ, ϕ P C˚pXq and c P C˚pXq. Indeed, in the simple case where Ψpcq takes the form ab b

for some a, b P C˚pXq, one computes ϕX c “ p´1q|a|¨|ϕ|xϕ, bya and thus

xψ, ϕX cy “ p´1q|a|¨|ϕ|xψ, ayxϕ, by “ pψ b ϕqpab bq “ pψ b ϕq ˝Ψpcq “ xψ b ϕ, cy.
It follows immediately via linearity that the relation also holds in the general case with Ψpcq of
the form

ř
i ai b bi. One can show in fact that the chain-level cup product uniquely determines

the chain-level cap product via the relation (48.2), and of course, the relation also holds at the
(co)homology level:

(48.3) xrψs Y rϕs, rcsy “ xrψs, rϕs X rcsy for rϕs, rψs P H˚pXq, rcs P H˚pXq.
We can now clarify in what sense the cap product generalizes the evaluation pairing: if the classes
rϕs P H˚pXq and rcs P H˚pXq have the same degree, then taking rψs :“ r1s P H0pXq in the latter
relation gives

(48.4) xr1s, rϕs X rcsy “ xrϕs, rcsy.
Note that in this situation, rϕs X rcs belongs to H0pXq, which is canonically isomorphic to the
coefficients R if X is path-connected, the canonical isomorphism being

xr1s, ¨y : H0pXq Ñ R,

which sends the class represented by any singular 0-simplex σ : ∆0 Ñ X to the unit 1 P R.
Remark 48.2. If desired, one can use the Alexander-Whitney diagonal approximation to turn

(48.1) into a more precise chain-level formula for ϕ X c. A formula of this type appears as the
definition of the cap product in [Hat02, §3.3], though with slightly different conventions than we
are using here.
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Lemma 48.3. The following diagrams commute up to chain homotopy:

C˚pXq b C˚pXq b C˚pXq C˚pXq b C˚pXq

C˚pXq b C˚pXq C˚pXq

1bX

Yb1 X
X

C˚pXq C˚pXq
1X¨

1

.

Proof. These can be deduced from the diagrams for diagonal approximations in Theo-
rem 47.11. �

Corollary 48.4. The cap and cup products on singular (co)homology are related by the as-
sociativity relation

prψs Y rϕsq X rcs “ rψs X prϕs X rcsq
for rψs, rϕs P H˚pXq and rcs P H˚pXq, and furthermore,

r1s X rϕs “ rϕs
for all rϕs P H˚pXq. �

We observe that in light of (48.4) the associativity relation of Corollary 48.4 generalizes the
relation (48.3) for cap and cup products under evaluation.

Two more properties of the cap product will be important to understand. The first is naturality:
the mixture of covariance and contravariance makes the statement look slightly more complicated
than for the cup product or cross products, but the correct relation is

f˚pf˚ϕX cq “ ϕX f˚c for X
fÝÑ Y, ϕ P C˚pY q and c P C˚pXq.

Indeed, one can use the naturality of diagonal approximations to verify this relation directly from
the definitions, and since it holds at the chain level, it also holds after descending to (co)homology:

(48.5) f˚pf˚rϕs X rcsq “ rϕs X f˚rcs for X
fÝÑ Y, rϕs P H˚pY q and rcs P H˚pXq.

For the second property, we need one more acyclic model argument, in which the uniqueness
up to chain homotopy of natural chain maps C˚pXqbC˚pY q Ñ C˚pXˆY qbC˚pXbY q satisfying
certain conditions implies the following:

Lemma 48.5. For any spaces X,Y and any diagonal approximation Ψ and chain/cochain-level
cross products, the diagram

C˚pXq b C˚pY q C˚pX ˆ Y q

C˚pXq b C˚pXq b C˚pY q b C˚pY q

C˚pXq b C˚pY q b C˚pXq b C˚pY q C˚pX ˆ Y q b C˚pX ˆ Y q

ˆ

ΨbΨ

Ψ

1bσb1

ˆbˆ

commutes up to chain homotopy, where σ : C˚pXq b C˚pY q Ñ C˚pY q b C˚pXq is the chain map
ab b ÞÑ p´1q|a|¨|b|bb a. �

Dualizing the appropriate pieces of this diagram and writing σ : C˚pY q b C˚pXq Ñ C˚pXq b
C˚pY q : ψ b a ÞÑ p´1q|a|¨|ψ|ab ψ, one deduces:
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Corollary 48.6. The diagram

C˚pXq b C˚pY q C˚pX ˆ Y q

C˚pXq b C˚pXq b C˚pY q b C˚pY q

C˚pXq b C˚pY q b C˚pXq b C˚pY q C˚pX ˆ Y q b C˚pX ˆ Y q

ˆ

XbX

1bσb1

ˆbˆ

X

commutes up to chain homotopy. �

Corollary 48.7. The cap product and cross products on homology and cohomology are related
by the formula

prϕs ˆ rψsq X pras ˆ rbsq “ p´1q|a|¨|ψ| prϕs X rasq ˆ prψs X rbsq
for homogeneous elements rϕs P H˚pXq, rψs P H˚pY q, ras P H˚pXq and rbs P H˚pY q. �

48.2. Relative cross products. Our whole discussion of products so far has focused on
absolute homology and cohomology, so you may be wondering how it extends to pairs relative
(co)homology for pairs pX,Aq with A ‰ H. In singular homology, the answer to this question
turns out to be surprisingly subtle, but one gets an important hint about what to do if one starts
by asking the same question about cellular homology, where the answer is much easier.

Relative chain complexes are quotient complexes, so let’s start with an algebraic observation.
If A and B are modules over a fixed ring, and A0 Ă A and B0 Ă B are submodules, then the
homomorphism

AbB
A

A0

b B

B0

πAbπB

determined by the quotient projections πA : AÑ A{A0 and πB : B Ñ B{B0 descends to a natural
isomorphism

AbB

pA0 bBq ` pAbB0q
A

A0

b B

B0

.
–

Indeed, its inverse is obtained by noticing that if we compose the canonical bilinear map A‘B Ñ
A b B with the quotient projection, it descends to a bilinear map pA{A0q ‘ pB{B0q Ñ pA b
Bq{ ppA0 bBq ` pAbB0qq.

If pX,Aq and pY,Bq are CW-pairs, then applying the algebraic observation above to their
relative cellular chain complexes with coefficients in a fixed ring R gives a natural isomorphism

CCW˚ pX,Aq b CCW˚ pY,Bq – CCW˚ pXq b CCW˚ pY q
pCCW˚ pAq b CCW˚ pY qq ` pCCW˚ pXq b CCW˚ pBqq .

As it happens, the denominator on the right hand side is not only a subcomplex of the chain complex
CCW˚ pXqbCCW˚ pY q, but its image under the isomorphism ˆ : CCW˚ pXqbCCW˚ pY q Ñ CCW˚ pXˆY q
is the cellular chain complex of the subset

pAˆ Y q Y pX ˆBq Ă X ˆ Y,

which is a subcomplex of the CW-complex X ˆ Y . It follows that ˆ descends to an isomorphism
of chain complexes

CCW˚ pX,Aq b CCW˚ pY,Bq Ý̂Ñ CCW˚ ppX,Aq ˆ pY,Bqq
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if we define the product of two CW-pairs to be

(48.6) pX,Aq ˆ pY,Bq :“ pX ˆ Y, pAˆ Y q Y pX ˆBqq .
The most general version of the cross product on relative cellular homology thus takes the form

HCW
k pX,Aq bHCW

ℓ pY,Bq Ý̂Ñ HCW
k`ℓ ppX,Aq ˆ pY,Bqq,

and the Künneth formula (in the case where R is a principal ideal domain) then becomes

0 ÝÑ à
k`ℓ“n

HCW
k pX,Aq bHCW

ℓ pY,Bq Ý̂Ñ HCW
k`ℓ ppX,Aq ˆ pY,Bqq

ÝÑ à
k`ℓ“n´1

TorpHCW
k pX,Aq, HCW

ℓ pY,Bqq ÝÑ 0.

Adapting this discussion for singular homology is slightly nontrivial, and it does not completely
work for arbitrary pairs pX,Aq and pY,Bq, but it will work for most pairs that we are actually
interested in. We shall adopt (48.6) as a definition of the product of two pairs of spaces.74 Applying
the naturality property of the chain-level cross product C˚pXq b C˚pY q Ý̂Ñ C˚pX ˆ Y q to the
inclusions A ãÑ X and B ãÑ Y , we see that ˆ maps C˚pAq bC˚pY q into C˚pAˆY q and C˚pXqb
C˚pBq into C˚pX ˆBq, thus it descends to a natural chain map

C˚pX,Aq b C˚pY,Bq Ý̂Ñ C˚ppX,Aq ˆ pY,Bqq,
so that the cross product on relative homology is well defined:

HkpX,Aq bHℓpY,Bq Ý̂Ñ Hk`ℓppX,Aq ˆ pY,Bqq.
This part of the story works without any further conditions, and it can also be made to work with
arbitrary coefficients.

We run into a complication, however, if we want either to define the cross product on relative
cohomology or to prove a relative Künneth formula. Both require the chain homotopy inverse
θ : C˚pX ˆ Y q Ñ C˚pXq b C˚pY q of the chain-level cross product, and this does not always
descend to a map

C˚ppX,Aq ˆ pY,Bqq Ñ C˚pX,Aq b C˚pY,Bq.
The problem is that if we are given a chain in the subspace pAˆY qYpXˆBq, there is generally no
reason to expect that θ will send it into the subcomplex pC˚pAq b C˚pY qq ` pC˚pXq b C˚pBqq Ă
C˚pXqbC˚pY q. What we can immediately say instead is that ˆ and θ descend to chain homotopy
inverses between the two quotient complexes

(48.7)
C˚pXq b C˚pY q

pC˚pAq b C˚pY qq ` pC˚pXq b C˚pBqq
C˚pX ˆ Y q

C˚pAˆ Y q ` C˚pX ˆBq .

ˆ

θ

74This definition of pX,AqˆpY,Bq is the right one for talking about the cross product and Künneth’s formula,
but for other purposes, it is not a good way of defining the “product” of two objects in the category Toprel. It
suffers in particular from the fact that the obvious projection maps from X ˆ Y to X or Y do not generally define
morphisms from pX,AqˆpY,Bq to pX,Aq or pY,Bq under this definition. (Think about it.) There is a more obvious
alternative definition of the product for an arbitrary collection of pairs of spaces which does not have this problem
with projection maps. That is the right definition to use if, say, one wants an explicit description of inverse limits
in Toprel, in the spirit of Proposition 43.5.
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The complex at the left is just C˚pX,Aq b C˚pY,Bq, which is what we want, but the one at the
right is not the same as C˚ppX,Aqˆ pY,Bqq. However, the identity map does descend to a natural
chain map

C˚pX ˆ Y q
C˚pAˆ Y q ` C˚pX ˆBq ÝÑ

C˚pX ˆ Y q
C˚

`pAˆ Y q Y pX ˆBq˘ “ C˚ppX,Aq ˆ pY,Bqq,
and it does happen sometimes that this chain map induces an isomorphism on homology. Recall
from Proposition 34.16: this is true whenever the two subsets A ˆ Y,X ˆ B Ă X ˆ Y form an
excisive couple for singular homology.

Now, using the quotient complex at the right hand side of (48.7) as a stand-in for C˚ppX,Aqˆ
pY,Bqq, we obtain a relative version of the Eilenberg-Zilber theorem and therefore a relative Kün-
neth formula:

Theorem 48.8. For relative singular homology with coefficients in a principal ideal domain R,
if pX,Aq and pY,Bq are pairs such that the subsets Aˆ Y and X ˆB in X ˆ Y form an excisive
couple, then there is a natural short exact sequence

0Ñ à
k`ℓ“n

HkpX,AqbHℓpY,Bq Ñ̂ Hk`ℓppX,AqˆpY,Bqq Ñ
à

k`ℓ“n´1

TorpHkpX,Aq, HℓpY,Bqq Ñ 0,

and the sequence splits. �

Adapting this discussion for cohomology requires the following lemma:

Lemma 48.9. If A,B Ă X is an excisive couple, then for any abelian group G, the map on
cohomology

H˚pX,AYB;Gq Ñ H˚
˜

C˚pX ;Zq
C˚pA`B;Zq ;G

¸
induced by the natural chain map C˚pX ;ZqLC˚pA`B;Zq Ñ C˚pX,AYB;Zq is an isomorphism.

Proof. Both C˚pX ;ZqLC˚pA`B;Zq and C˚pX,AYB;Zq are chain complexes of free abelian
groups, so Corollary 33.18 and Proposition 34.16 imply that C˚pX ;ZqLC˚pA`B;Zq Ñ C˚pX,AY
B;Zq is a chain homotopy equivalence. It follows via Proposition 41.2 that this remains true after
dualizing it. �

If A ˆ Y and X ˆ B form an excisive couple in X ˆ Y , the lemma now allows us to identify
the cohomology of the quotient complex C˚pXˆY qL pC˚pAˆ Y q ` C˚pX ˆBqq with H˚ppX,Aqˆ
pY,Bqq, so that dualizing the chain map θ in (48.7) gives rise to a cross product on relative singular
cohomology

HkpX,Aq bHℓpY,Bq Ý̂Ñ Hk`ℓppX,Aq ˆ pY,Bqq.
Let’s identify some concrete situations in which the technical condition required for relative

cross products is satisfied:

Lemma 48.10. Two subsets A,B Ă X form an excisive couple for singular homology whenever
any of the following conditions hold:

(1) A and B are both open in X;
(2) A “ H or B “ H;
(3) X is a CW-complex with A and B as subcomplexes.

Proof. The first case is immediate from Proposition 34.14, and the second case is trivial. For
the third case, we recall the homological characterization of excisive couples in Proposition 34.16:
A,B Ă X form an excisive couple if the inclusion of pairs pA,A X Bq ãÑ pA Y B,Bq induces
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an isomorphism in relative singular homology with integer coefficients. If A and B are both
subcomplexes of a CW-complex X , then pA,AXBq ãÑ pAYB,Bq is a map of CW-pairs, and the
relative cellular chain complexes of both are freely generated by the set of cells in A that are not
also cells in B, implying that the induced chain map is an isomorphism of cellular chain complexes.
The result then follows from the isomorphism between cellular and singular homology. �

Here is an interesting application of the relative Künneth formula. If pX, x0q and pY, y0q are
two pointed spaces, their smash product X ^ Y is defined as the quotient space

X ^ Y :“ pX ˆ Y qL pptx0u ˆ Y q Y pX ˆ ty0uqq .
Strictly speaking, this construction depends on the choice of base points, but we shall suppress
this in the notation. Notice that the subset being quotiented out is homeomorphic to the wedge
sum X _ Y , so it is sensible to write

X ^ Y “ pX ˆ Y qLpX _ Y q.
It is now straightforward to check that for any base-point preserving continuous maps f : pX, x0q Ñ
pX 1, x10q and g : pY, y0q Ñ pY 1, y10q, the product map f ˆ g : X ˆ Y Ñ X 1 ˆ Y 1 descends to the
quotient as a continuous map

f ^ g : X ^ Y Ñ X 1 ^ Y 1.

Example 48.11. For any integers k, ℓ ě 0, Sk ^ Sℓ – Sk`ℓ. This is obvious if either k or ℓ
is 0, and otherwise, we can identify Sn with Dn{BDn for every n P N and choose the equivalence
class of the boundary to be the base point. The claim then follows easily from the fact that there
is a homeomorphism Dk`ℓ – Dk ˆ Dℓ identifying BDk`ℓ with pBDk ˆ Dℓq Y pDk ˆ BDℓq.

Now assume X and Y are both CW-complexes, with base points chosen to be 0-cells in their
cell decompositions, so by Lemma 48.10, the subcomplexes tx0u ˆ Y,X ˆ ty0u Ă X ˆ Y form an
excisive couple, and the Künneth formula is thus valid for the pairs pX, tx0uq and pY, ty0uq. Since
pX, tx0uq ˆ pY, ty0uq “ pX ˆ Y,X _ Y q, the Künneth formula now takes the form

0Ñ à
k`ℓ“n

HkpX, tx0uq bHℓpY, ty0uq Ý̂Ñ HnpX ˆ Y,X _ Y q

ÝÑ à
k`ℓ“n´1

TorpHkpX, tx0uq, HℓpY, ty0uqq Ñ 0,

or under the natural isomorphisms H˚pX,Aq “ rH˚pX{Aq for good pairs,

(48.8) 0Ñ à
k`ℓ“n

rHkpXq b rHℓpY q Ý̂Ñ rHnpX ^ Y q ÝÑ à
k`ℓ“n´1

Torp rHkpXq, rHℓpY qq Ñ 0.

48.3. Relative cup and cap products. Recall that the cochain-level cup product CkpXqb
CℓpXq Ñ Ck`ℓpXq : ϕb ψ ÞÑ ϕY ψ produces a cochain of the form

(48.9) ϕY ψ “ pϕb ψq ˝Ψ : C˚pXq Ñ R,

where Ψ is any choice of diagonal approximation, meaning a natural chain map C˚pXq Ñ C˚pXqb
C˚pXq that acts on singular 0-simplices as the diagonal map. We claim that whenever A,B Ă X

are two subspaces that form an excisive couple for singular homology, this gives rise to a well-defined
relative cup product

HkpX,Aq bHℓpX,Bq YÝÑ Hk`ℓpX,AYBq.
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Indeed, under this assumption, Lemma 48.9 identifies H˚pX,A Y Bq with the cohomology of
the complex C˚pXq{ pC˚pAq ` C˚pBqq, and one can then choose any diagonal approximation Ψ :

C˚pXq Ñ C˚pXq b C˚pXq and make sense of

ϕY ψ “ pϕb ψq ˝Ψ :
C˚pXq

C˚pAq ` C˚pBq Ñ R

for ϕ P C˚pX,Aq and ψ P C˚pX,Bq, the point here being that since Ψ is natural, it sends any
chain in either C˚pAq or C˚pBq to something in C˚pAq bC˚pAq or C˚pBq bC˚pBq, which is then
annihilated by ϕ b ψ since ϕ vanishes on C˚pAq and ψ vanishes on C˚pBq. One can show that
this version of Y satisfies properties analogous to those listed in Theorem 47.13, as the homotopy-
commutative diagrams underlying those properties still make sense after descending to whichever
quotient complexes are permitted by the excisive couple assumption.

As a special case, the product

HkpX,Aq bHℓpX,Aq YÝÑ Hk`ℓpX,Aq
is well defined for every pair pX,Aq, as A,A Ă X always trivially forms an excisive couple.

Similarly, the relative cap product takes the form

(48.10) H˚pX,Aq bH˚pX,AYBq XÝÑ H˚pX,Bq
for any two subsets A,B Ă X that form an excisive couple. To see why this works, observe that
the chain-level cap product pairing

C˚pXq b C˚pXq Ñ C˚pXq : ϕb c ÞÑ ϕX c “ p1b ϕq ˝Ψpcq
always descends to a well-defined map on the relative complexes

C˚pX,Aq b C˚pXq
C˚pAq ` C˚pBq Ñ C˚pX,Bq,

as ϕ P C˚pX,Aq means ϕ : C˚pXq Ñ R vanishes on C˚pAq Ă C˚pXq, so if c P C˚pAq then
Ψpcq P C˚pAqbC˚pAq and ϕXc thus vanishes, whereas if c P C˚pBq, thenΨpcq P C˚pBqbC˚pBq and
ϕX c P C˚pBq. Now if A,B Ă X are an excisive couple, the homology of C˚pXq{ pC˚pAq ` C˚pBqq
has a natural identification with H˚pX,AY Bq, thus making sense of (48.10).

48.4. Exercises.

Exercise 48.1. Assuming the coefficient ring R to be field K, find an alternative proof of the
formula in Corollary 48.7 relating the cap and cross products, using Exercise 47.1.

Exercise 48.2. Show that for the cross product on reduced homology as described in (48.8)
and the identification of Sk ^ Sℓ with Sk`ℓ as indicated in Example 48.11, if rSks P rHkpSkq and
rSℓs P rHℓpSℓq are generators, then rSks ˆ rSℓs P rHk`ℓpSk`ℓq is also a generator.

Exercise 48.3. Suppose f : Sk Ñ Sk and g : Sℓ Ñ Sℓ are base-point preserving maps.

(a) Use the naturality of the Künneth formula to prove degpf ^ gq “ degpfq ¨ degpgq.
(b) Find an alternative proof of degpf ^ gq “ degpfq ¨ degpgq using the following fact from

differential topology: any continuous map f : Sk Ñ Sk admits a small perturbation to a
smooth map such that for almost every point x P Sk, f´1pxq is a finite set of points at
which the local degree of f is ˘1. (This follows from Sard’s theorem.)
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(c) Using the definition of cellular chain maps and the cellular cross product, prove that the
cellular cross product is natural, i.e. if f : X Ñ X 1 and g : Y Ñ Y 1 are cellular maps,
then the diagram

CCW˚ pXq b CCW˚ pY q CCW˚ pX ˆ Y q

CCW˚ pX 1q b CCW˚ pY 1q CCW˚ pX 1 ˆ Y 1q
f˚bg˚

ˆ

pfˆgq˚
ˆ

commutes.
Comment: With significantly more effort, one can proceed from this exercise to a proof that
the cellular cross product matches the cross product on singular homology under the natural
isomorphisms HCW˚ pX ;Rq – H˚pX ;Rq for all CW-complexes X . We will not go into this since we
do not intend to use the cellular cross product for anything beyond intuition, but the basic idea
(by reducing to the case of wedges of spheres and then computing both explicitly in that case) is
outlined in a slightly different context in [Hat02, p. 279].

49. The orientation bundle

The next few lectures will focus on a new topic: the global topology of finite-dimensional
topological manifolds.75

49.1. Finitely-generated homology. There is a basic fact about manifolds that was briefly
mentioned in the context of the Lefschetz fixed point theorem (Lecture 40), and now deserves to be
repeated: every compact manifold M admits a topological embedding into RN for N sufficiently
large (see [Hat02, Appendix A]), and is therefore a Euclidean neighborhood retract. In particular,
this means there exists a compact polyhedron P with a retraction r : P ÑM . Using coefficients in
a commutative ring R, the homology of P is a finitely-generated R-module, since its simplicial chain
complex is finitely generated, and it follows that the singular homology of M is likewise finitely
generated. Since this statement relies on knowledge of the homology of compact CW-complexes,
it is true not just for singular homology, but in fact for any axiomatic homology theory with ring
coefficients:

Theorem 49.1. For every compact manifold M and any axiomatic homology theory thn :

Toprel Ñ R-ModunPZ with coefficients h0pt˚uq – R, the homology h˚pMq “ À
nPZ hnpMq is a

finitely-generated R-module. �

As usual, the statement that h˚pMq is finitely generated is really two statements in one, namely
that hkpMq is finitely generated for every k P Z, and also that it vanishes for all k outside of a
finite range. One consequence of the main theorem in this lecture will be that, in fact, hkpMq must
always vanish when k ą dimM .

49.2. Orientations. I would now like to discuss what it means for a topological manifold to
be orientable. We discussed this somewhat in Lecture 30 through the lens of oriented triangulations,
but that characterization of orientations requires some extra data that might not exist, i.e. not every
topological manifold is triangulable. Another natural approach would be to generalize something
that we discussed specifically for surfaces in Lecture 20 last semester: one needs to first understand
what it means to say that a homeomorphism between two open subsets of Rn is “orientation
preserving,” so that an orientation on M can then be defined to mean a covering of M by charts
with the property that any two overlaping charts are related by a coordinate transformation that

75I will typically omit the word “topological” and just say “manifold”, as for most of this discussion it will not
be at all necessary to mention smooth structures.
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preserves orientations. If we work with smooth manifolds, then it is fairly easy to make this precise,
because we can say that a smooth coordinate transformation preserves orientations if and only if
its derivative at every point is a linear map Rn Ñ Rn with positive determinant. For maps that are
continuous but not differentiable, it takes more effort to say precisely what “orientation preserving”
means, and the most elegant way to do it uses homology.

Instead of working with coordinate transformations, the standard approach in algebraic topol-
ogy is via the notion of local orientations, which we saw already in our discussion of the mapping
degree (Lecture 36). Recall that if dimM “ n, then for every axiomatic homology theory h˚ and
every interior point x PMzBM , there is a locally Euclidean neighborhood Rn – Ux ĂM of x that
gives rise (via the usual axioms of homology) to natural isomorphisms

hkpM,Mztxuq – hkpUx,Uxztxuq – hkpRn,Rnzt0uq – hkpDn, BDnq

– rhk´1pSn´1q –
#
G if k “ n,

0 otherwise,

(49.1)

where G “ h0pt˚uq P R-Mod is the coefficient module. We call

hnpM |xq :“ hnpM,Mztxuq – G

the local homology group of M at x, and if h˚ has coefficients G “ Z, a local orientation of
M at x is defined to be a choice of generator

rM sx P hnpM |xq – HnpM |x;Zq – Z.

At every interior point x, there clearly are two possible choices of local orientations. The question
now is: if we have chosen a local orientation of M at every point x PMzBM , what should it mean
to say that these orientations vary continuously with x?

To answer this question, we can start by viewing the local homology groups h˚pM |xq :“
h˚pM,Mztxuq as an example of “restricting” the homology of M to smaller subsets—in this case,
the one-point subset txu Ă M . More generally, any subset A Ă M determines relative homology
groups

h˚pM |Aq :“ h˚pM,MzAq,
which we shall call the “homology of M restricted to A”. In singular homology, for instance, the
chain complex underlying H˚pM |Aq does not see any chains that fail to intersect A, and the
cycles in this complex are chains whose boundaries are disjoint from A. By subdivision, we can
also restrict our attention to arbitrarily “small” singular simplices, which means that H˚pM |Aq
really only depends on the topology of arbitrarily small neighborhoods of A in M . (One can of
course use the excision property to make this statement more precise.) For any further subset
B Ă A ĂM , the identity map on M defines a natural inclusion of pairs pM,MzAq ãÑ pM,MzBq,
which therefore induces natural “restriction” homomorphisms

jB,A : h˚pM |Aq Ñ h˚pM |Bq,
or in the case where B is a single point x P A,

jx,A : h˚pM |Aq Ñ h˚pM |xq.
Note that the absolute homology h˚pMq itself is also an example of a restricted homology group,
namely h˚pM |Mq.

Since the isomorphism hnpM |xq – G only holds when x P M lies in the interior MzBM , it
will be convenient to assume in most of the following discussion that M has empty boundary,

BM “ H.
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Now, in order to relate the local homology groups hnpM |xq to each other for two distinct but
nearby points x P M , suppose ϕ : U

–Ñ Rn is a chart defined on some open set U Ă M , and let
A Ă U denote the subset ϕ´1pDnq. Then for any point x P A, the maps induced by ϕ´1 and the
obvious inclusions of pairs fit together in a commutative diagram

hnpM |xq hnpU |xq hnpRn |ϕpxqq

hnpM |Aq hnpU |Aq hnpRn |Dnq,

–
ϕ˚
–

jx,A

–
ϕ˚
–

–

in which the two horizontal maps at the left are isomorphisms by excision, and the vertical map
at the right is an isomorphism due to a combination of homotopy equivalence and the five-lemma,
proving that

jx,A : hnpM |Aq Ñ hnpM |xq
is an isomorphism. We shall say in this situation that A Ă M is a disk-like neighborhood of
x PM .

Definition 49.2. An orientation of an n-dimensional topological manifold M with empty
boundary is a choice of local orientations rM sx P HnpM |x;Zq for every x P M satisfying the
following consistency condition: for every disk-like neighborhood A ĂM and all x, y P A,

j´1
x,ArM sx “ j´1

y,ArM sy P HnpM |A;Zq.
In the case BM ‰ H, we define an orientation of M to be an orientation of its interior MzBM .

Remark 49.3. The choice to use singular homology in Definition 49.2 is arbitrary; any ax-
iomatic homology theory with coefficient group Z would do just as well.

A manifold equipped with an orientation will be called an oriented manifold (orientierte
Mannigfaltigkeit). In light of (49.1), you can imagine an orientation as a choice for every x PMzBM
of a favorite generator rSxs P rHn´1pSx;Zq – Z for some small pn´ 1q-sphere Sx enclosing x, with
the property that translating Sx to Sy through a coordinate chart containing x and y produces
an isomorphism rHn´1pSx;Zq Ñ rHn´1pSy ;Zq sending rSxs to rSys. You should take a moment to
contemplate why this description matches Definition 49.2 in the case M “ Rn.

49.3. Orientation bundles. The notion of orientation described above admits fruitful gener-
alizations, and in order to express them in the most useful language, let us again assume BM “ H,
fix an axiomatic homology theory h˚ with coefficient module G :“ h0pt˚uq P R-Mod, and abbrevi-
ate

ΘGx :“ hnpM | xq – HnpM |x;Gq – G

for each point x PM , or simply
Θx :“ hnpM |xq

for situations where knowledge of the coefficient group is unimportant. This associates to each
point x PM an R-module Θx that is isomorphic to the fixed module G “ h0pt˚uq, though without
a canonical choice of isomorphism. The union of all these modules defines a set that we shall
denote by

Θ “ ΘG :“ ď
xPM

ΘGx .

In this definition, we are regarding Θx and Θy as disjoint sets whenever x ‰ y, so Θ is set-
theoretically their disjoint union; I am avoiding writing it as

š
xPM Θx since this notation normally

carries connotations about the topology of the union, and those connotations would be inconsistent
with the next definition.
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Definition 49.4. For an n-manifold M with empty boundary, the orientation bundle of
M with coefficients in G is the set Θ “ ΘG defined above, endowed with the topology generated
by the collection of subsets

B :“  
Uc Ă Θ

ˇ̌
U ĂM open and c P hnpM | sUq( ,

where for U ĂM and c P hnpM | sUq we define
Uc :“  

jx, sUpcq P Θx
ˇ̌
x P U

(
.

Proposition 49.5. The collection of subsets B “ tUcu appearing in Definition 49.4 is the base
of a topology on Θ for which the natural projection map

p : ΘÑM

sending Θx to x for each x PM is continuous and is a covering map.

Proof. To show that B is the base of a topology, we need to show first that these sets cover
all of Θ, and second that any finite intersection of such sets is also a union of such sets. The former
is true because for any x P M and c P Θx, we can pick an open set U Ă M whose closure is a
disk-like neighborhood sU ĂM of x, for which we showed above that jx, sU : hnpM | sUq Ñ Θx is an
isomorphism, thus c P Uc1 for c1 :“ j´1

x, sUpcq.
For finite intersections, consider two open sets U ,V Ă M and classes a P hnpM | sUq and

b P hnpM | sVq. Then Ua X Vb Ă Ť
xPUXV

Θx, and we observe that for x P U X V and any subset
A Ă U X V containing x, the maps jx, sU and jx,sV both factor through hnpM |Aq:

hnpM | sUq
hnpM |Aq Θx

hnpM | sVq

jA, sU

jx, sU

jx,A

jA, sV

jx, sV

Choose A Ă U XV to be a disk-like neighborhood, so that jx,A is an isomorphism for every x P A.
Now if x P A and c P Θx belongs to both Ua and Vb, it means

c “ jx, sU paq “ jx,sVpbq “ jx,Apc1q where c1 :“ j´1
x,Apcq “ jA, sU paq “ jA,sVpbq,

hence c P Åc1 , and conversely, the diagram also demonstrates that Åc1 Ă UaXVb. This proves that
UaXVb is a union of sets Åc P B, where A ranges over disk-like neighborhoods contained in U XV .

To prove that p : Θ Ñ M is continuous and is a covering space, the main idea is as follows:
for each x P M , choose a disk-like neighborhood A Ă M of x and observe that the isomorphism
jx,A : hnpM |Aq Ñ hnpM |xq factors through hnpM | sUq for any smaller open neighborhood U Ă Å

of x, implying that jx, sU : hnpM | sUq Ñ hnpM |xq is also an isomorphism. One can use this to show
that for each x P Å, assigning the discrete topology to Θx makes the map

pp, ψq : p´1pAq Ñ AˆΘx

a homeomorphism, where the map ψ : p´1pAq Ñ Θx is defined such that its restriction to Θy Ă
p´1pAq for each y P A is jx,A ˝ j´1

y,A : Θy Ñ Θx. Using this to identify p´1pAq with A ˆΘx turns

p´1pAq pÑ A into the trivial covering map AˆΘx Ñ A : pa, cq ÞÑ a. �
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Remark 49.6. The orientation bundle ΘG and covering map p : ΘG Ñ M obviously depend
on G “ h0pt˚uq, but up to isomorphism, they are otherwise independent of the choice of axiomatic
homology theory.

Remark 49.7. The word “bundle” is borrowed from differential geometry, where fiber bundles
p : E Ñ B generalize the notion of a covering space by allowing the fibers p´1pbq Ă E to be
more interesting topological spaces (typically manifolds or vector spaces), rather than just discrete
sets. In general, a fiber bundle whose fibers are discrete is equivalent to a covering map. The
orientation bundle also has a bit more structure than this, since its fibers Θx are R-modules—this
makes p : Θ Ñ M a sheaf of R-modules. For readers who may know what this means and find
it interesting: p : Θ Ñ M is the completion of the presheaf that associates to each open subset
U ĂM the R-module hnpM | sUq.

Definition 49.8. For each subset A ĂM , we denote

Θ|A :“ p´1pAq Ă Θ

and call the covering map Θ|A pÑ A the restriction of the orientation bundle to A. A section
(Schnitt) of Θ along A is by definition a continuous map s : A Ñ Θ such that p ˝ s “ IdA, i.e. it
continuously associates to each x P A an element spxq P Θx. The set of all sections of Θ along
A will be denoted by ΓpΘ|Aq, with the special case A “ M denoted simply by ΓpΘq. We say a
section s P ΓpΘ|Aq has compact support if it satisfies spxq “ 0 for all x outside some compact
subset of A, and denote the set of sections with this property by

ΓcpΘ|Aq Ă ΓpΘ|Aq.
The sets ΓpΘ|Aq and ΓcpΘ|Aq defined above are both R-modules in a natural way; see Exer-

cise 49.2 for details.
Our previous definition of orientations can now be recouched in the following terms.

Definition 49.9. An orientation of M along a subset A ĂM is a section s P ΓpΘZ|Aq such
that rM sx :“ spxq generates ΘZ

x – Z for every x P A.
More generally, if R is a commutative ring with unit, an R-orientation ofM along A ĂM is a

section s P ΓpΘR|Aq such that for every x P A, spxq generates ΘRx as an R-module, i.e. Rspxq “ ΘRx .
If such a section exists, we say that M is orientable over R along A, or simply R-orientable
along A. A manifold with nonempty boundary can be included in this definition by calling M
itself R-orientable if it is R-orientable along its interior MzBM .

Remark 49.10. When G “ h0pt˚uq is a ring R, one should not be misled by the isomorphism
ΘRx – rhn´1pSn´1q – R into thinking that ΘRx is a ring—it is an R-module, and the isomorphism
ΘRx – R respects that R-module structure, but ΘRx does not have any natural ring structure in
general.

The geometric meaning of R-orientations when R ‰ Z merits further comment, but let’s first
look a bit more closely at the case R “ Z. There are exactly two possible choices of generators
rM sx in each fiber ΘZ

x – Z, that is, the two local orientations of M at x. Let us writeĂM :“  
c P ΘZ

ˇ̌
c is a local orientation

( Ă ΘZ,

in other words, ĂM is the union for all x P M of the two generators of ΘZ
x – Z. Assigning toĂM Ă ΘZ the subspace topology, it is easy to see that the restriction of p : ΘZ Ñ M defines a

two-to-one covering map
π :“ p|ĂM : ĂM ÑM : rM sx ÞÑ x.
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It is called the orientation double cover of M . Observe now that if M is orientable over a
connected subset A ĂM , then there are exactly two choices of orientation, given by some section
s : A Ñ ĂM and its opposite, ´s : A Ñ ĂM , i.e. the section of ΘZ|A for which ´s ` s “ 0. The
images of these two sections are disjoint, but by the definition of the topology on ΘZ, they are both
also open subsets of π´1pAq Ă ĂM , implying that π´1pAq is disconnected. Conversely, the proof of
the following result is an exercise:

Lemma 49.11. If A Ă M is connected and π´1pAq Ă ĂM has more than one connected com-
ponent, then each component intersects ΘZ

x for every x P A. It follows in this situation that
π´1pAq Ă ĂM has exactly two components, each of which is the image of a section of ΘZ along A. �

Combining this with the previous remarks proves:

Proposition 49.12. For any connected subset A Ă M , π´1pAq Ă ĂM has either one or two
connected components, where the latter is the case if and only if M is orientable along A. �

Example 49.13. For M “ RP2, the orientation double cover is equivalent to the standard
covering S2 Ñ S2{Z2 “ RP

2 defined via the antipodal map on S2. In particular, RP2 is orientable
along a loop γ Ă RP

2 if and only if γ has a lift to S2 that is a loop (instead of a path with distinct
end points).

The main advantage of generalizing to other coefficient rings R ‰ Z arises from the following
observation about the case R “ Z2:

Proposition 49.14. Every manifold is orientable over Z2.

Proof. Each fiber ΘZ2
x of the orientation bundle consists only of the trivial element 0 P Z2

and the nontrivial element 1 P Z2, so there is a unique nontrivial section s P ΓpΘZ2q, defined by
spxq “ 1 for all x. �

Proposition 49.15. For every abelian group G, there is a natural group isomorphism

Φx : ΘZ
x bG

–ÝÑ ΘGx

for each x PM such that if s P ΓpΘZ|Aq is a section and g P G, then s1pxq :“ Φxpspxq b gq defines
a section s1 P ΓpΘG|Aq.

Proof. Since ΘG depends on G but not on the specific choice of axiomatic homology theory
with G as coefficients, we can choose to use singular homology and thus write ΘGx “ HnpM |x;Gq.
The map Φx then comes from the universal coefficient theorem, which applies because Z is a
principal ideal domain and ΘZ

x “ HnpM,Mztxu;Zq is the homology of a chain complex of free
Z-modules C˚pM,Mztxu;Zq. It is an isomorphism because TorpHn´1pM |x;Zq, Gq “ 0, since
Hn´1pM |x;Zq “ 0. �

Corollary 49.16. If M is orientable along A, then it is also R-orientable along A for every
choice of coefficient ring R. �

49.4. The compact support axiom. Before the most important result about orientation
bundles can be proved axiomatically, we will need to add one additional axiom to the usual list
from Eilenberg-Steenrod. Recall that a compact pair is a pair of spaces pX,Aq such that X is
compact and A Ă X is closed. For pairs of spaces, we shall write

pX 1, A1q Ă pX,Aq
when X 1 Ă X and A1 Ă A.
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Definition 49.17. An axiomatic homology theory h˚ is said to be compactly supported
if for every pX,Aq P Toprel and every c P hnpX,Aq, there exists a compact pair pX 1, A1q Ă pX,Aq
such that c lies in the image of the map hnpX 1, A1q Ñ hnpX,Aq induced by the inclusion.

Example 49.18. Singular homology is compactly supported since singular n-chains always
have images contained in compact subsets. More precisely, for any singular n-chain

ř
i aiσi P

CnpX ;Gq that is a relative n-cycle in pX,Aq, the same chain is also a relative n-cycle in the
compact pair pX 1, A1q Ă pX,Aq defined by X 1 :“Ť

i σip∆nq and A1 :“Ť
i σipB∆nq.

Proposition 49.19. Suppose h˚ is a compactly supported homology theory, pX 1, A1q Ă pX,Aq
is a compact pair, and c P h˚pX 1, A1q belongs to the kernel of the map h˚pX 1, A1q Ñ h˚pX,Aq
induced by the inclusion. Then c also belongs to the kernel of the map h˚pX 1, A1q Ñ h˚pX2, A2q
induced by the inclusion of pX 1, A1q into another compact pair pX2, A2q with

pX 1, A1q Ă pX2, A2q Ă pX,Aq.
Proposition 49.19 is one of those results that are easier to prove directly in the case of singular

homology, so let us do that before tackling the general case.

Proof of Prop. 49.19 for singular homology. Suppose pX 1, A1q is a compact pair with
an inclusion into pX,Aq, and c P CnpX 1q is a singular n-chain that is a relative cycle in pX 1, A1q,
and therefore also in pX,Aq, such that the class it represents in HnpX,Aq vanishes. The latter
means that there is an pn` 1q-chain b “ ř

i biσi P Cn`1pXq and an n-chain a “ ř
j ajσj P CnpAq

such that c “ Bb ` a. Setting X2 :“ Ť
i σip∆n`1q Y X 1 Ă X and A2 :“ Ť

j σjp∆nq Y A1 Ă A

then gives a compact pair pX2, A2q that contains pX 1, A1q and is contained in pX,Aq, such that
b P Cn`1pX2q and a P CnpA2q, showing that c represents the trivial class in HnpX2, A2q. �

Proof of Proposition 49.19 (general case). We first establish the absolute case, i.e. as-
suming X 1 Ă X is a compact subset and c P hnpX 1q vanishes under the map i˚ : hnpX 1q Ñ hnpXq
induced by the inclusion i : X 1 ãÑ X , we show that c also vanishes under the map induced by
the inclusion j : X 1 ãÑ X2 into some compact set X2 Ă X containing X . Indeed, the long exact
sequence

. . . ÝÑ hn`1pX,X 1q B˚ÝÑ hnpXq i˚ÝÑ hnpX 1q ÝÑ . . .

produces a class b P hn`1pX,X 1q such that B˚b “ c, and the compact support axiom then implies
the existence of a compact pair pA,A1q Ă pX,X 1q and an element a P hn`1pA,A1q that maps to b
under the homomorphism hn`1pA,A1q Ñ hn`1pX,X 1q induced by the inclusion. Let X2 :“ AYX 1,
and note that X2 is compact since A and X 1 both are. Using the inclusions ϕ : pA,A1q ãÑ pX2, X 1q,
k : X2 ãÑ X and j : X 1 ãÑ X2, the naturality of long exact sequences produces a commutative
diagram

hn`1pA,A1q

. . . hn`1pX2, X 1q hnpX 1q hnpX2q . . .

. . . hn`1pX,X 1q hnpX 1q hnpXq . . .

ϕ˚
B˚

k˚

j˚

1 k˚
B˚ i˚

,

in which the bottom two rows are exact. Since k˚ϕ˚a “ b, we deduce c “ B˚k˚ϕ˚a “ B˚ϕ˚a, and
thus j˚c “ j˚B˚ϕ˚a “ 0.

Now the relative case: we assume pX 1, A1q Ă pX,Aq is a compact pair and c P hnpX 1, A1q
vanishes under i˚ : hnpX 1, A1q Ñ hnpX,Aq, with i : pX 1, A1q ãÑ pX,Aq denoting the inclusion of
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pairs. The obvious inclusions and the naturality of long exact sequences produce the following
commutative diagram with exact rows:

. . . hnpA1q hnpX 1q hnpX 1, A1q hn´1pA1q hn´1pX 1q . . .

. . . hnpAq hnpXq hnpX,Aq hn´1pAq hn´1pXq . . .

j 1̊

i˚

ϕ1̊

i˚

B1̊

i˚

j 1̊

i˚ i˚
j˚ ϕ˚ B˚ j˚

The diagram implies that B 1̊ c P hn´1pA1q is in the kernel of i˚ : hn´1pA1q Ñ hn´1pAq, so the
absolute case of the result implies the existence of a compact set A2 Ă A containing A1 such that
B 1̊ c also vanishes under the map i1̊ : hn´1pA1q Ñ hn´1pA2q induced by the inclusion i1 : A1 ãÑ A2.
Setting

X2 :“ X 1 YA2

then produces a compact pair pX2, A2q with inclusions

pX 1, A1q pX2, A2q pX,Aqi1 i2
,

and thus a more elaborate commutative diagram with three exact rows,

. . . hnpA1q hnpX 1q hnpX 1, A1q hn´1pA1q hn´1pX 1q . . .

. . . hnpA2q hnpX2q hnpX2, A2q hn´1pA2q hn´1pX2q . . .

. . . hnpAq hnpXq hnpX,Aq hn´1pAq hn´1pXq . . .

j 1̊

i1̊

ϕ1̊

i1̊

B1̊

i1̊

j 1̊

i1̊ i1̊

j2̊

i2̊

ϕ2̊

i2̊

B2̊

i2̊

j2̊

i2̊ i2̊

j˚ ϕ˚ B˚ j˚

.

Since 0 “ i1̊ B 1̊ c “ B2̊i1̊ c, exactness of the middle row implies i1̊ c “ ϕ2̊ b for some b P hnpX2q,
and the hypothesis on c then implies 0 “ i2̊ i1̊ c “ i2̊ϕ2̊b “ ϕ˚i2̊b, so that by the exactness of the
bottom row, i2̊b “ j˚a for some a P hnpAq. By the compact support axiom, there is a compact
subset K Ă A such that the map hnpKq Ñ hnpAq induced by the inclusion has a in its image, and
after replacing both A2 and X2 by their respective unions with K, we can now assume without
loss of generality that a “ i2̊a2 for some a2 P hnpA2q. It follows that i2̊b “ j˚i2̊a2 “ i2̊j2̊a2, thus
b ´ j2̊a2 P ker i2̊ Ă hnpX2q. By the absolute case of the result, we can now replace X2 with a
larger compact set in order to assume without loss of generality that b´ j2̊a2 “ 0 P hnpX2q, or in
other words, b “ j2̊a2. This implies i1̊ c “ ϕ2̊ j2̊a2 “ 0 P hnpX2, A2q. �

49.5. Sections and fundamental classes. We would now like to formulate a relationship
between the R-module of sections ΓpΘ|Aq and the homology hnpM |Aq.

Lemma 49.20. Assume h˚ is a compactly supported axiomatic homology theory and Θ denotes
the associated orientation bundle over an n-manifold M with empty boundary. Then for every
closed subset A ĂM , there exists an R-module homomorphism

JA : hnpM |Aq Ñ ΓcpΘ|Aq : c ÞÑ sc

defined by scpxq :“ jx,Apcq for x P A.
Proof. We need to show two things about the map sc : AÑ Θ|A, first that it is continuous,

and second that its support is compact. After this it will be obvious that JA is a homomorphism.
Let’s consider first the support of sc.
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Given c P hnpM |Aq “ hnpM,MzAq, the compact support axiom provides a compact pair
pK,Lq with an inclusion i : pK,Lq ãÑ pM,MzAq such that c “ i˚c1 for some c1 P hnpK,Lq. For
x P A, we then have a composition of inclusions

pK,Lq pM,MzAq pM,Mztxuqi

j

such that scpxq “ j˚c1. But if x R K, then K Ă Mztxu and j thus factors through the pair
pMztxu,Mztxuq, whose homology is trivial, implying scpxq “ 0, i.e. the support of sc is contained
in K.

For continuity, we start with the observation that if A Ă X happens to have the property that
jx,A is an isomorphism for every x P Å, then the same argument as in the proof of Proposition 49.5
identifies Θ|A with AˆΘx so that sc looks like a “constant section” x ÞÑ px, gq for some g P Θx and is
thus obviously continuous. We can reduce the situation to this case as follows. Given c P hnpM |Aq,
write c “ i˚c1 as in the previous paragraph, with c1 P hnpK,Lq and the inclusion of a compact pair
i : pK,Lq ãÑ pM,MzAq. Since L is compact and disjoint from A, every x P A admits a disk-like
neighborhood sU ĂM disjoint from L, so that the inclusion pK,Lq ãÑ pM,Mztxuq factors through
pM,MzsUq, giving rise to a class

c2 P hnpM | sUq such that jx, sU pc2q “ scpxq for all x P U XA.

On a neighborhood of x, our section sc is therefore the restriction of a section defined on the
disk-like neighborhood U , and the latter is continuous for the reasons stated above. �

Here is the main theorem about the orientation bundle.

Theorem 49.21. If M is a topological n-manifold with empty boundary and h˚ is a compactly
supported homology theory, then for every closed subset A ĂM , the map JA : hnpM |Aq Ñ ΓcpΘ|Aq
is an isomorphism, and hkpM |Aq “ 0 for all k ą n.

The proof of this theorem is a bit long, so we will save it for the next lecture, and focus for
now on its corollaries.

Corollary 49.22. Assume M is a topological n-manifold with empty boundary, and h˚ is a
compactly supported homology theory with coefficients G. Then:

(1) hkpMq “ 0 for all k ą n.
(2) If M is noncompact and connected, then additionally hnpMq “ 0.
(3) If M is compact, connected and orientable, then hnpMq – G.
(4) If M is compact and connected but not orientable, then hnpMq – tg P G | 2g “ 0u.

Moreover, if h˚ has coefficients in the ring R and M is compact and R-orientable, then any choice
of R-orientation s P ΓpΘRq determines a unique element

rM s P hnpMq such that jx,M rM s “ spxq for all x PM,

and if M is additionally connected, then the R-module hnpMq is isomorphic to R and has rM s as
a generator.

Proof. We work through the claims one by one:
(1) Follows from hkpM |Aq “ 0 with A “M .
(2) If M is noncompact and connected then ΓcpΘq “ 0, since any section with compact

support must equal zero somewhere; indeed, continuity then implies that the subset
tx PM | spxq “ 0u is both open and closed, so it is all of M .
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(3) Taking A “ M gives an isomorphism hnpMq – ΓpΘq, where the compact support con-
dition is irrelevant since M is compact. Then given an orientation s P ΓpΘZq and the
natural group isomorphisms Φx : ΘZ

x b G Ñ ΘGx from the universal coefficient theorem
(cf. Proposition 49.15), we obtain an injective group homomorphism

GÑ ΓpΘGq : g ÞÑ sg where sgpxq :“ Φxpspxq b gq.
This homomorphism is also surjective if M is connected, because in this case, the value
of a section at any one point uniquely determines the section.

(4) For the submodule G0 “ tg P G | 2g “ 0u, we can again use the isomorphisms Φx :

ΘZ
x bGÑ ΘGx to define an injective homomorphism

G0 Ñ ΓpΘGq : g ÞÑ sg where sgpxq :“ Φxp˘rM sx b gq.
Here the choice of local orientation ˘rM sx P ΘZ

x is arbitrary and sgpxq does not depend
on it, since g “ ´g. We leave it as an exercise to show that this map is also surjective
whenever M is connected and non-orientable: in particular, since ĂM is connected, given
any x PM , there is no section taking the value rM sxbg at x for some generator rM sx P ΘZ

x

and g P G unless g “ ´g.
For the last statement, we observe that any R-orientation s P ΓpΘRq belongs to ΓcpΘRq if M is
compact, in which case the distinguished class rM s P hnpMq can be written as J´1

M psq. IfM is also
connected, then the map ΓpΘRq Ñ ΘRx : s ÞÑ spxq is an isomorphism for any chosen point x PM ,
thus s generates ΓpΘRq as an R-module, implying that rM s does the same for hnpMq. �

Definition 49.23. The generator rM s P hnpMq – R associated by Corollary 49.22 to any
R-orientation of a closed n-manifold M and a compactly supported homology theory h˚ with
coefficients R is called the fundamental class of M .

49.6. Exercises.

Exercise 49.1. Assume M is an n-manifold and thk : Toprel Ñ R-ModukPZ is an axiomatic
homology theory. Given a point x P M , let J denote the set of all open neighborhoods of x, and
write U ă V whenever V Ă U . This makes pJ,ăq into a directed set, and whenever U ă V there is
an associated homomorphism jsV, sU : hnpM | sUq Ñ hnpM | sVq, so that the collection of R-modules 
hnpM | sUq(

UPJ forms a direct system. Find a canonical isomorphism

limÝÑ
 
hnpM | sUq( –ÝÑ hnpM |xq.

Exercise 49.2. Suppose M is a manifold, G is an R-module, Θ “ ΘG is the assoiated orien-
tation bundle over M , and A ĂM is a subset. Show that ΓpΘ|Aq and ΓcpΘ|Aq are both naturally
R-modules, with addition of sections and scalar multiplication defined pointwise, i.e.

ps1 ` s2qpxq :“ s1pxq ` s2pxq P Θx, prsqpxq :“ rspxq P Θx

for s1, s2, s P ΓpΘ|Aq, r P R and x P A.
Exercise 49.3 (*). Prove Lemma 49.11 on the connected components of the orientation double

cover.
Hint: Show that the set of x P A for which ΘZ

x intersects a given component of π´1pAq is both
open and closed.

Exercise 49.4. Prove that if M is a non-orientable connected topological manifold, then
π1pMq contains a subgroup of index 2. In particular, this implies that every simply connected
manifold is orientable.

Exercise 49.5 (*). Suppose M is any connected topological manifold of dimension n P N.
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(a) Prove that the torsion subgroup of Hn´1pM ;Zq is Z2 ifM is compact and non-orientable,
and it is otherwise trivial.
Hint: Use the universal coefficient theorem to compute TorpHn´1pMq,Zpq “ 0 for various
values of p ě 2, and see what you can deduce from it (cf. Exercise 45.13). You may want
to consider separately the cases where M is noncompact, compact and orientable, or
compact and non-orientable.

(b) Deduce that if H˚pM ;Zq is finitely generated and M is orientable, then HnpM ;Zq –
HnpM ;Zq.

Exercise 49.6. Here is an interesting application of Čech cohomology to the question of
orientability of manifolds. Fix a space X and R-module G, and recall that the set OpXq of all
open coverings of X admits an ordering relation ă that makes it into a directed set: we write
U ă U1 whenever U1 is a refinement of U. There is a direct system of Z-graded R-modules over
OpXq whose direct limit is Čech cohomology, namelyqH˚pX ;Gq :“ limÝÑ

 
Ho̊

`
N pUq;G˘(

UPOpXq ,

where N pUq is the so-called nerve of the open covering U P OpXq, defining a simplicial complex,
and Ho̊

`
N pUq;G˘ is the cohomology with coefficients in G of its ordered simplicial complex.

Concretely, Ho̊

`
N pUq;G˘ is the cohomology of a cochain complex qC˚pU;Gq :“ Co̊

`
N pUq;Gq˘,

where qCnpU;Gq “ 0 for n ă 0 and, for each n ě 0, qCnpU;Gq is the R-module of all functions ϕ
that assign an element of G to each ordered pn ` 1q-tuple of sets U0, . . .Un P U with nonempty
intersection:

ϕpU0, . . . ,Unq P G assuming U0 X . . .X Un ‰ H.
The coboundary map δ : qCnpU;Gq Ñ qCn`1pU;Gq is defined by

pδϕqpU0, . . . ,Un`1q :“ p´1qn`1
n`1ÿ
k“0

p´1qkϕpU0, . . . , pUk, . . . ,Un`1q,

where the hat over pUk means that that term is skipped. The cohomologies of these cochain
complexes form a direct system over pOpXq,ăq because, as mentioned in Lecture 43, refinements
U
1 ą U give rise to chain maps Co˚

`
N pU1q˘Ñ Co˚

`
N pUq˘ that are canonical up to chain homotopy,

so dualizing these gives chain maps qC˚pU;Gq Ñ qC˚pU1;Gq that are also canonical up to chain
homotopy and therefore induce canonical maps on the cohomology groups.

Let us call an open covering U admissible if intersections between two sets in U are always
connected; this will be a useful technical condition in the following, and one can show that at least
if X is a smooth manifold, every open covering of X has an admissible refinement, so assume this
from now on.76 We are going to consider covering77 maps f : Y Ñ X of degree 2. Recall that two
such covering maps pYi, fiq for i “ 1, 2 are called isomorphic if there exists a homeomorphism
ϕ : Y1 Ñ Y2 such that the diagram

Y1 Y2

X

ϕ

f1

f2

76Alternatively, one could avoid the need for connected intersections by using Čech cohomology with sheaf
coefficients, cf. [Spa95, Chapter 6].

77Caution! This exercise now contains two distinct meanings of the word “cover”: one in the sense of “open
covering” (Überdeckung) and the other in the sense of “covering map” (Überlagerung). I am trying very hard to
ensure that it would be clear in each instance which meaning is intended.
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commutes. We will say that a covering map pY, fq is trivial if it is isomorphic to the trivial
double cover

X ˆ Z2 Ñ X : px, iq ÞÑ x.

Given f : Y Ñ X , any open covering U P OpXq can be replaced with a refinement such that every
U P U is evenly covered by f : Y Ñ X , meaning f´1pUq is the union of two disjoint subsets
V0,V1 Ă Y such that f |Vi

: Vi Ñ U is a homeomorphism for i “ 0, 1. After a further refinement,
assume U is also admissible. We can now choose for each U P U a so-called local trivialization,
meaning a homeomorphism

ΦU : f´1pUq Ñ U ˆ Z2

that sends f´1pxq to txu ˆ Z2 for each x P U . This determines a set of continuous transition
functions gU ,V : U X V Ñ Z2 for each intersecting pair U ,V P U, defined such that the map

pU X Vq ˆ Z2 pU X Vq ˆ Z2

ΦV˝Φ´1
U

takes the form px, iq ÞÑ px, i ` gU ,Vpxqq. Note that since U X V is always assumed connected, the
transition functions are all constant, i.e. they associate to each ordered pair pU ,Vq of sets in U with
U X V ‰ H an element ϕpU ,Vq :“ gU ,V P Z2. See if you can prove the following:

(a) ϕ P qC1pU;Z2q is a cocycle, and choosing different local trivializations changes ϕ by a
coboundary.

(b) Feeding rϕs P H1
o pN pUq;Z2q into the canonical map to the direct limit produces a class

w1pfq P qH1pX ;Z2q that is independent of the choice of admissible open covering.
(c) If X is an n-manifold and f : Y Ñ X is its orientation double cover, then

w1pXq :“ w1pfq P qH1pX ;Z2q
is zero if and only if X is orientable. (We call w1pXq the first Stiefel-Whitney class
of X .)

50. Existence of the fundamental class

I owe you a proof of Theorem 49.21, on which the general construction of fundamental classes
is based. First, we need to finish unpacking its consequences and say what can be said about
compact manifolds with boundary.

50.1. Relative fundamental classes. The construction of fundamental classes rM s P hnpMq
described in the previous lecture works specifically for manifolds that are closed, but only a little
bit more effort is required in order to extract from Theorem 49.21 a similar construction for com-
pact manifolds with nonempty boundary. We’ve already learned from the triangulated manifolds
in Lecture 30 what to expect: when M is compact but BM ‰ H, rM s should live in the relative
homology of the pair pM, BMq. Recall that when M has nonempty boundary, the orientability of
M is defined purely in terms of its interior

M̊ :“MzBM,

as the orientation bundle is not defined (or at least it does not have nice properties) along BM . We
will therefore need a basic observation from point-set topology in order to relateM and M̊ : namely,
if the boundary BM is compact, then it has a so-called collar neighborhood (Kragenumgebung)
in M , meaning a neighborhood U Ă M of BM that is homeomorphic to p´1, 0s ˆ BM via a
homeomorphism sending BM to t0u ˆ BM as the identity map. This is not completely obvious,
but the proof is not hard (see e.g. [Hat02, Proposition 3.42]). It follows that M is homotopy
equivalent to its interior, hence the latter has finitely generated homology if M is compact.
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Theorem 49.21 can be applied to M̊ , and gives an isomorphism

JA : hnpM̊, M̊zAq Ñ ΓcpΘ|Aq
for any closed subset A Ă M̊ . Taking h˚ “ thk : Toprel Ñ R-ModukPZ to be a homology theory
with coefficients h0pt˚uq – R, any R-orientation s P ΓpΘ|M̊ q determines a generator rM sx :“ spxq P
hnpM |xq – R for each interior point x P M̊ . We will refer to a relative homology class

rM s P hnpM, BMq
as a relative fundamental class for M if the natural map ix : hnpM, BMq Ñ hnpM |xq defined
via the inclusion pM, BMq ãÑ pM,Mztxuq sends rM s to a generator

rM sx :“ ix˚rM s P Θx – R such that RrM sx “ Θx

for every x P M̊ . In this way, a relative fundamental class rM s determines an R-orientation
s P ΓpΘ|M̊ q with spxq :“ rM sx, and we would now like to show that the converse also holds if M
is compact, i.e. that every R-orientation determines in this way a relative fundamental class. If
BM “ H, then rM s will be an absolute class in hnpMq, and its existence is a direct consequence of
the isomorphism hnpMq – ΓpΘq in Theorem 49.21. It is not difficult to show (see Exercise 50.1)
that if M is equipped with a triangulation, then the constructions of fundamental cycles in Lec-
ture 30 via simplicial homology give rise to relative fundamental classes in this sense, living in
HnpM, BM ;Zq if the triangulation is oriented, and HnpM, BM ;Z2q if orientations are ignored.
Without triangulations, we have the following more general result:

Theorem 50.1. If M is a compact manifold with boundary carrying an R-orientation s P
ΓpΘR|M̊ q, then for any compactly supported homology theory h˚ with coefficients R, s determines
a unique relative fundamental class rM s P hnpM, BMq with ix˚rM s “ spxq for all x P M̊ , and if M
is connected, then the R-module hnpM, BMq is isomorphic to R and is generated by rM s.

Proof. Identify a neighborhood of BM in M with p´1, 0s ˆ BM and for ǫ ą 0 small, let
Mǫ ĂM denote the complement of p´ǫ, 0sˆBM ĂM , which is a compact set homotopy equivalent
to M . Now if x PMǫ, consider the commuting diagram

hnpM, BMq hnpM,MzMǫq hnpM̊, M̊zMǫq

hnpM,Mztxuq hnpM̊, M̊ztxuq,

–
ix̊

jx,Mǫ

–
jx,Mǫ

–
where several maps are labeled as isomorphisms due to homotopy invariance. An R-orientation s P
ΓpΘ|M̊ q determines a generator rM sx :“ spxq P hnpM̊ |xq – R for each x P M̊ , and its restriction
to Mǫ is a compactly supported section of ΓpΘ|Mǫ

q, thus it also determines via Theorem 49.21
a unique rM sǫ P hnpM̊ |Mǫq such that jx,Mǫ

rM sǫ “ rM sx for every x P Mǫ. Following the two
isomorphisms at the top of the diagram, rM sǫ now determines a class rM s P hnpM, BMq that
satisfies ix˚rM s “ rM sx P hnpM |xq for all x P Mǫ. We leave it as an exercise to check that
this definition of rM s P hnpM, BMq does not depend on the choice of ǫ ą 0, which can always
be arranged sufficiently small so that any given interior point x P M̊ lies in Mǫ. (Hint: The
isomorphism of Theorem 49.21 can again be used to show that for two ǫ, δ ą 0, rM sǫ and rM sδ
have the same image under the natural maps to hnpM |Mǫ XMδq, which is an isomorphism.)

Since hnpM, BMq – hnpM̊ |Mǫq – ΓcpΘ|Mǫ
q “ ΓpΘ|Mǫ

q, we deduce hnpM, BMq – R with rM s
as a generator if M (and therefore also Mǫ) is connected, because the map ΓpΘ|Mǫ

q Ñ Θx – R

defined by evaluating sections at any point x P Mǫ is then an R-module isomorphism that sends
s|Mǫ

to rM sx. �
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50.2. The proof of Theorem 49.21. The unfinished business of the previous lecture was
the proof that the natural map

JA : hnpM |Aq Ñ ΓcpΘ|Aq : c ÞÑ sc

is an isomorphism and hkpM |Aq “ 0 for all k ą n, assumingM is a topological n-manifold without
boundary, A Ă X is a closed subset and h˚ is a compactly supported axiomatic homology theory.
The proof follows a certain pattern common to theorems about manifolds: we start by proving by
direct means that it holds whenever A is a special type of “small” subset that can be found in some
neighborhood of every point in a manifold. One can view this as the first step in a generalized
notion of proof by induction, where the “inductive step” involves using a Mayer-Vietoris sequence
to extend the validity of the theorem to unions or intersections of sets for which it is already known
to hold.

As a convenient bit of terminology, we shall call a compact subset A ĂM in an n-manifoldM
convex if A is contained in a Euclidean neighborhood U ĂM with a chart ϕ : U

–Ñ Rn such that
the set ϕpAq Ă Rn is convex. The usefulness of this condition lies in the fact that whenever we have
two overlapping compact convex subsets A,B Ă M that lie in the same Euclidean neighborhood
U ĂM and look convex with respect to the same chart ϕ : U

–Ñ Rn, it follows that AXB ĂM is
also convex, since intersections of convex subsets in Rn are always convex.

The following lemma is a simple exercise in point-set topology: the idea is to form a nested
sequence of sets that are finite unions of convex balls.

Lemma 50.2. In a topological n-manifold M , every compact subset A Ă M can be written as
A “ Ş8

i“1Ai for a nested sequence of subsets M Ą A1 Ą A2 Ą A3 Ą . . . Ą A such that each Ai is
a finite union of compact convex subsets. �

Proof of Theorem 49.21. The proof is divided into seven steps.
Step 1 : We claim that the theorem is true whenever A Ă M is a compact convex subset.

Indeed, A is in this case contained in a disk-like neighborhood sU Ă M , so that for every x P A,
the composition

hkpM | sUq hkpM |Aq hkpM |xqjA, sU

jx, sU
–

jx,A

is an isomorphism. We claim that the map jA, sU : hkpM | sUq Ñ hkpM |Aq is also an isomorphism.
Since A and sU are contained in a Euclidean neighborhood, this is equivalent via excision and
rescaling to the claim that

hkpRn,RnzDnq hkpRn,RnzKqjK,Dn

is an isomorphism for any compact convex subset K Ă D̊n Ă Rn containing the origin. This is true
because radial lines outward from the origin remain outside of K as soon as they leave K, giving
rise to a deformation retraction of RnzK to RnzDn. The inclusion thus induces an isomorphism
h˚pRnzKq Ñ h˚pRnzDnq, and the usual five-lemma trick using the long exact sequences of the
pairs pRn,RnzDnq and pRn,RnzKq then proves the claim. It follows now that jx,A : hkpM |Aq Ñ
hkpM |xq is also an isomorphism for every x P A. For k ą n, this proves hkpM |Aq “ 0, while for
k “ n, we observe that Θ admits a unique section on sU with any given value at x, and it follows
that JA : hnpM |Aq Ñ ΓpΘ|Aq is an isomorphism.

Step 2 : For the first of three “inductive” steps, we show that if A,B Ă M are two subsets
such that the theorem holds for A, B and AX B, then it also holds for AYB. The tool required
for this is the relative Mayer-Vietoris sequence from §34.6. Since A and B are both closed, the
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complements of these and A XB and AYB are all open, and the sets MzA and MzB thus form
an open covering of MzpAXBq. The obvious inclusions of pairs

pM,MzAq

pM,MzpAYBqq pM,MzpAXBqq

pM,MzBq
then give rise to a long exact sequence of the form

. . .Ñ hk`1pM |Aq ‘ hk`1pM |Bq Ñ hk`1pM |AXBq Ñ hkpM |AYBq
Ñ hkpM |Aq ‘ hkpM |Bq Ñ hkpM |AXBq Ñ . . .

If k ą n, then the sequence places hkpM |AYBq in between two vanishing terms and thus proves
hkpM |A Y Bq “ 0. To handle the case k “ n, observe that the groups of compactly supported
sections along these various subsets also fit into a natural exact sequence

0Ñ ΓcpΘ|AYBq Ñ ΓcpΘ|Aq ‘ ΓcpΘ|Bq Ñ ΓcpΘ|AXBq,
where the first map sends s P ΓcpΘ|AYBq to ps|A,´s|Bq P ΓcpΘ|Aq‘ΓcpΘ|Bq, and the second sends
ps, tq P ΓcpΘ|Aq ‘ ΓcpΘ|Bq to s|AXB ` t|AXB. Note that this is not a full “short” exact sequence:
we are not claiming that the last map in the sequence is surjective, as it might not be possible to
extend a given section along AX B to a section along A or B. It should be evident however that
the sequence is exact at all other terms. Moreover, the maps in both sequences commute with the
natural maps from homology groups to groups of sections; in order to fit the resulting commutative
diagram inside the margins, let’s abbreviate

hXk :“ hkpM |Xq for any k ě 0 and subset X ĂM,

so that the diagram in question looks like

hAn`1 ‘ hBn`1 hAXBn`1 hAYBn hAn ‘ hBn hAXBn

0 0 ΓcpΘ|AYBq ΓcpΘ|Aq ‘ ΓcpΘ|Bq ΓcpΘ|AXBq
– – JAYB JA‘JB– JAXB–

The five-lemma now implies that JAYB is also an isomorphism.
Step 3 : The second inductive step is to show that if the theorem holds for each set Ai Ă M

in a nested sequence of compact subsets A1 Ą A2 Ą A3 Ą . . ., then it also holds for A8 :“Ş8
i“1Ai ĂM . This requires a direct limit argument, and for this step we must make explicit use

of the assumption that the homology theory h˚ is compactly supported—or in the case of singular
homology, the fact that singular chains are always confined to compact subsets.

Observe first that the sequence of inclusions

pM,MzA1q ãÑ pM,MzA2q ãÑ pM,MzA3q ãÑ . . . pM,MzA8q
induces a sequence of homomorphisms

h˚pM |A1q Ñ h˚pM |A2q Ñ h˚pM |A3q Ñ . . .Ñ h˚pM |A8q,
so that th˚pM |Aiqu8i“1 forms a direct system of Z-graded R-modules, with h˚pM |A8q as a target.
We claim that the sequence of maps h˚pM |Aiq Ñ h˚pM |A8q satisfies the universal property so
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that h˚pM |A8q is in fact the direct limit limÝÑth˚pM |Aiqu8i“1. For this, we need to show that if
H is another R-module with a sequence of morphisms Φi : h˚pM |Aiq Ñ H making the diagram

(50.1)
h˚pM |A1q h˚pM |A2q h˚pM |A3q . . . h˚pM |A8q

H
Φ1

Φ3 Φ8

commute, then the map Φ8 indicated by the dashed arrow exists and is unique. Indeed, we
can define Φ8pcq for any given class c P hkpM |A8q using the compact support axiom: suppose
pK,Lq is a compact pair with an inclusion i : pK,Lq ãÑ pM,MzA8q such that c “ i˚cK for
some cK P hkpK,Lq. The sets L and A8 are then disjoint and are both compact, thus A8
has an open neighborhood A8 Ă U Ă M disjoint from L, and Ai must be contained in U for
all sufficiently large i P N, as one would otherwise find a nested sequence of nonempty compact
subsets A1 X pMzUq Ą A2 X pMzUq Ą . . . with empty intersection A8 X pMzUq “ H. It follows
that Ai is also disjoint from L for all i ą 0 sufficiently large, and we then have inclusions

pK,Lq ãÑ pM,MzAiq ãÑ pM,MzA8q,
so that feeding cK into the induced maps hkpK,Lq Ñ hkpM |Aiq produces classes ci P hkpM |Aiq
with c “ jA8,Ai

pciq. The uniqueness of Φ8pcq follows: the commutativity of the diagram (50.1)
requires setting Φ8pcq :“ Φipciq for some i " 0, and in light of the inclusions

pK,Lq ãÑ pM,MzAiq ãÑ pM,MzAjq for j ą i,

we have jAj ,Ai
pciq “ cj and conclude from this that our definition of Φ8pcq does not depend on

the choice of large number i P N. To see that it also does not depend on the choice of element
cK P hkpK,Lq, suppose we have c1K P hkpK,Lq with i˚cK “ i˚c1K “ c, so that cK ´ c1K lies in
the kernel of the map hkpK,Lq Ñ hkpM |A8q induced by the inclusion pK,Lq ãÑ pM,MzA8q.
By Proposition 49.19, we can then find another compact pair pK 1, L1q with inclusions pK,Lq ãÑ
pK 1, L1q ãÑ pM,MzA8q such that cK ´ c1K lies in the kernel of the induced map hkpK,Lq Ñ
hkpK 1, L1q. Since L1 is another compact set disjoint from A8, we also have L1 X Ai “ H for i
sufficiently large, giving inclusions

pK,Lq ãÑ pK 1, L1q ãÑ pM,MzAiq,
and it follows that the induced map hkpK,Lq Ñ hkpM |Aiq sends cK and c1K to the same element ci.
With this knowledge, it is easy to check that our definition of Φ8pcq is also independent of the
choice of compact pair pK,Lq Ă pM,MzA8q, and that Φ8 defined in this way is a homomorphism
that makes the diagram (50.1) commute.

By restricting sections to smaller domains, we also have a sequence of restriction homomor-
phisms

ΓpΘ|Ai
q Ñ ΓpΘ|A2

q Ñ ΓpΘ|A3
q Ñ . . .Ñ ΓpΘ|A8q,

and we can use a similar trick to identify limÝÑtΓpΘ|Ai
qu8i“1 with ΓpΘ|A8q. Indeed, the problem now

is to show that any sequence of homomorphisms ϕi : ΓpΘ|Ai
q Ñ H as in the diagram

ΓpΘ|A1
q ΓpΘ|A2

q ΓpΘ|A3
q . . . ΓpΘ|A8q

H

ϕ1

ϕ3 ϕ8

gives rise to a unique map ϕ8 : ΓpΘ|A8q Ñ H . The key here is the observation that since
p : Θ Ñ M is a covering map, A8 has an open neighborhood U Ă M such that every section
A8 Ñ Θ|A8 has a unique extension over U , which is therefore defined on Ai for i P N sufficiently
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large. The desired map ϕ8 is thus defined on any s P ΓpΘ|A8q by extending s to Ai and then
applying ϕi.

With these preliminaries in place, the hypothesis hkpM |Aiq “ 0 for k ą n and i P N now
implies

hkpM |A8q – limÝÑthkpM |Aiqu8i“1 “ 0 for k ą n.

For k “ n, we can combine both of the direct systems above into a commuting diagram

hnpM |A1q hnpM |A2q hnpM |A3q . . . hnpM |A8q

ΓpΘ|A1
q ΓpΘ|A2

q ΓpΘ|A3
q . . . ΓpΘ|A8q,

JA1– JA2– JA3– JA8

so that the sequence of isomorphisms JAi
: hnpM |Aiq Ñ ΓpΘ|Ai

q defines an isomorphism between
the two direct systems, and its limit is therefore an isomorphism between the direct limits. One can
make this precise by composing maps in this diagram so as to understand ΓpΘ|A8q as a target of
the system thnpM |Aiqu8i“1, whose limit map is necessarily JA8 , but since the JAi

are all invertible,
one can similarly understand hnpM |A8q as a target of tΓpΘ|Ai

qu8i“1 and obtain from this a limit
map ΓpΘ|A8q Ñ hnpM |A8q that is the inverse of JA8 .

Step 4 : Steps 1 and 3 applied only to compact subsets A Ă M , but the next inductive
step introduces noncompact subsets by allowing infinite disjoint unions. Let us call a collection
of compact subsets tAα Ă MuαPJ separated if they admit a collection of open neighborhoods
tAα Ă Uα Ă MuαPJ such that Uα X Uβ “ H for all α ‰ β. The claim now is that if the theorem
holds for every Aα in a separated collection of compact subsets, then it also holds for their union
A :“ Ť

αPJ Aα. The point of the separation condition is that if we write U :“ Ť
αPJ Uα, thenpU ,UzAq –š

αpUα,UαzAαq, so the excision and additivity axioms give natural isomorphisms

h˚pM |Aq – h˚pU |Aq –
à
α

h˚pUα |Aαq –
à
α

h˚pM |Aαq.
This already implies hkpM |Aq “ 0 for all k ą n. For degree n, these isomorphisms fit together
into a commutative diagram

hnpM |Aq hnpU |Aq À
α hnpUα |Aαq

À
α hnpM |Aαq

ΓcpΘ|Aq ΓcpΘ|Aq À
α ΓpΘ|Aα

q À
α ΓpΘ|Aα

q,

–

JA JA

–
À

α JAα

–

– À
α JAα

–

where the isomorphism
À

α ΓpΘ|Aα
q Ñ ΓcpΘ|Aq sends each ř

α sα P
À

α ΓpΘ|Aα
q to the unique

section s P ΓpΘ|Aq such that s|Aα
“ sα for every α P J . Note that s necessarily has compact support

since the sets Aα are compact and only finitely many of the summands in
ř
α sα P

À
α ΓpΘ|Aα

q
can be nonzero. Conversely, a section s P ΓpΘ|Aq with compact support can be nonzero only on
finitely many of the components Aα, and is therefore in the image of the map from the direct sum.
This proves that JA : hnpM |Aq Ñ ΓcpΘ|Aq is an isomorphism.

Step 5 : We claim that the theorem holds for every compact set A Ă M that is contained in
a Euclidean neighborhood. According to Lemma 50.2, any such set is the intersection of a nested
sequence of sets that are each finite unions of compact convex sets, where we can assume all the
convex sets are contained in the same Euclidean neighborhood. In this case, all intersections of
these sets are also compact and convex, so combining steps 1 and 2 proves that the theorem holds
for all the finite unions of convex sets, and step 3 then establishes it for A.

Step 6 : We extend the theorem to arbitrary compact subsets A ĂM . In light of Lemma 50.2,
this now follows directly from steps 5, 2 and 3, as A is the intersection of a nested sequence of
compact sets that are each finite unions of sets contained in Euclidean neighborhoods. (The fact
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that those sets can be assumed convex is no longer relevant, but since any intersection between
them is contained in a Euclidean neighborhood, step 5 now replaces step 1.)

Step 7 : The extension of the theorem to an arbitrary closed A Ă M can now be achieved as
follows. I need to appeal to a slightly nontrivial point-set topological fact about manifolds: every
finite-dimensional topological manifold M has a one-point compactificationM˚ that is metrizable.
Recall that the one-point compactification of any space X is defined as the union of X with one
extra point X˚ :“ X Y t8u with 8 R X , where a subset of X˚ is considered open if it is either
an open set in X or takes the form pXzKq Y t8u for some closed and compact set K Ă X .
While X˚ is always compact, it can easily have horrible topological properties unless X is an
especially nice space, e.g. X˚ is Hausdorff if and only if X is both Hausdorff and locally compact
(cf. Exercise 7.27 from last semester’s Topologie I class). The one-point compactification M˚ of
a manifold M is not usually a manifold (the major exception being pRnq˚ – Sn), but it is always
a metrizable space. This is easy to see if you believe the (also nontrivial) theorem that every
n-manifold admits a proper topological embedding into a Euclidean space RN of sufficiently high
dimension N . A proof of this is sketched in [Lee11, p. 116], with several details either left as
exercises or outsourced to other references. Since the embedding M ãÑ RN is proper, it extends
to an embedding M˚ ãÑ pRN q˚ – SN , so a metric on M˚ can be defined as the restriction of a
metric on SN .

With this detail in place, let distp , q denote a metric on M˚ and exhaust A by the countable
sequence of subsets

A1 :“  
x P A ˇ̌

1 ď distpx,8q ă 8(
,

A2 :“  
x P A ˇ̌

1{2 ď distpx,8q ď 1
(
,

A3 :“  
x P A ˇ̌

1{3 ď distpx,8q ď 1{2( ,
. . .

all of which are intersections of A with closed (and therefore compact) subsets of M˚, so they are
compact, and the theorem holds for each of them by step 6. We can now apply step 4 to conclude
that the theorem also holds for the noncompact subsets

B :“
8ď
j“1

A2j´1, C :“
8ď
j“1

A2j , B X C “
8ď
j“1

 
x P A ˇ̌

distpx,8q “ 1{j( ,
all of which are unions of separated collections of compact sets. We then conclude from step 2 that
the theorem also holds for A “ B Y C. �

50.3. Exercises.

Exercise 50.1. Show that under the natural isomorphism H∆˚ pKq – H˚p|K|q between sim-
plicial and singular homologies, the simplicial fundamental classes constructed in Lecture 30 for
compact triangulated manifolds also satisfy the conditions required in the present lecture for rela-
tive fundamental classes on general compact manifolds.
Hint: For each interior point x P M̊ , you can assume after a harmless modification of the triangu-
lation that x lies in the interior of one of its n-simplices.

Exercise 50.2. In this exercise, assume M is an n-manifold with boundary and h˚ is a
compactly supported homology theory whose coefficients are the ring R. Let ΘM Ñ M and
ΘBM Ñ BM denote the associated orientation bundles over M̊ and BM respectively, hence

ΘMy “ hnpM | yq – R, for y P M̊, ΘBM
x “ hn´1pBM |xq – R for x P BM.

The goal is to prove the following two statements:
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(1) There is a natural homomorphism B˚ : ΓpΘM q Ñ ΓpΘBM q that associates to any R-
orientation of M an R-orientation BM .

(2) If M is compact with an R-orientation s P ΓpΘM q and rM s P hnpM, BMq and rBM s P
hn´1pBMq are the fundamental classes corresponding to the R-orientations s and B˚s P
ΓpΘBM q, then the connecting homomorphism B˚ : hnpM, BMq Ñ hn´1pBMq in the long
exact sequence of the pair pM, BMq satisfies

B˚rM s “ rBM s.
If follows via the long exact sequence that rBM s P hn´1pBMq lies in the kernel of the map
hn´1pBMq Ñ hn´1pMq induced by the inclusion BM ãÑ M . One can use this e.g. to define
natural transformations of the form rpM,ϕqs ÞÑ ϕ˚rM s from bordism theory to singular homology,

ΩO
n pXq Ñ HnpX ;Z2q and ΩSO

n pXq Ñ HnpX ;Zq,
using fundamental classes rM s P HnpM ;Z2q of unoriented closed manifolds in the first case and
integral fundamental classes rM s P HnpM ;Zq of oriented closed manifolds in the second case.

Consider the following setup. Let Hn :“ r0,8qˆRn´1 Ă Rn and BHn :“ t0u ˆRn´1, and for
the closed unit disk Dn Ă Rn, denote

Dn` :“ Dn XHn, Dn´1 :“ Dn X BHn Ă Dn´1` .

Now given a point x P BM , choose a closed neighborhood Dn` Ă M of x in M , making Dn´1 :“
Dn` X BM likewise a closed neighborhood of x in BM , such that there exists a homeomorphism of
pairs

pM, BMq Ą pDn`,Dn´1q – pDn`,Dn´1q
identifying x P BM with the origin 0 P Dn´1 Ă Dn`. In this neighborhood, choose also an interior
point y P Dn`zDn´1 and let

ℓ Ă Dn`
denote the path from x to y that is identified under the homeomorphism pDn`,Dn´1q – pDn`,Dn´1q
with a straight line segment in Dn`. Note that topologically, Dn` is homeomorphic to Dn and is thus
a compact n-manifold with boundary, whose boundary we will denote as usual by BDn` – Sn´1.

(a) Stare for a while at the following diagram

ΘMy

hnpM, BMq hnpM | yq hnpDn` | yq hnpDn`, BDn`q

rhn´1pBMq rhn´1pMztyuq rhn´1pDn`ztyuq rhn´1pBDn`q

hn´1pBM |xq hn´1pMztyu,Mzℓq hn´1pDn`ztyu,Dn`zℓq hn´1pBDn` |xq

ΘBM
x hn´1pDn´1 |xq

B˚ B˚

–

B˚ « B˚ –

–

«

–

–
« – –

–

–
All maps in this diagram are either connecting homomorphisms from long exact sequences
of pairs or are induced by obvious inclusions of pairs. Convince yourself that the diagram
commutes, and then explain which of the Eilenberg-Steenrod axioms imply that each of
the maps labelled with the symbol “–” is an isomorphism.
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(b) Deduce from the diagram itself that each of the maps labelled with the symbol “«” is
also an isomorphism.

(c) Use the diagram in part (a) to construct homomorphisms Φ : hnpM, BMq Ñ hnpDn`, BDn`q
and Ψ : rhn´1pBMq Ñ rhn´1pBDn`q such that the following diagram commutes

ΘMy Θ
D

n`
y

hnpM, BMq hnpDn`, BDn`q

rhn´1pBMq rhn´1pBDn`q

ΘBM
x ΘD

n´1

x Θ
BDn`
x

–

Φ

B˚

–

B˚ –
Ψ

–
– –

,

where all maps are once again either connecting homomorphisms or induced by obvious
inclusions of pairs. Explain why each of the maps labelled with “–” is an isomorphism.

(d) Use the diagram in part (c) to construct an isomorphism ΘMy Ñ ΘBM
x that is associated

to any boundary point x P BM and any interior point y P M̊ in a sufficiently small
neighborhood of x in M , and convince yourself that this isomorphism does not depend
on the choices involved in the construction. Derive from it a homomorphism

ΓpΘM q B˚ÝÑ ΓpΘBM q
that sends R-orientations of M to R-orientations of BM .

(e) Assuming M and BM are endowed with R-orientations related via the map in part (d),
prove that the associated fundamental classes are related by B˚rM s “ rBM s.

Exercise 50.3. The following is a variant of Exercise 50.2 that applies specifically to singular
homology with coefficients in the ring R. Assume M satisfies the hypotheses of Theorem 50.1 and
thus has a relative fundamental class rM s P HnpM, BM ;Rq.

(a) Show that if M and BM are both connected and BM is nonempty, then BM is also R-
orientable, and the connecting homomorphism B˚ : HnpM, BM ;Rq Ñ Hn´1pBM ;Rq in
the long exact sequence of pM, BMq is an isomorphism sending rM s to the fundamental
class rBM s of BM (for a suitable choice of orientation of BM).
Hint: Focus on the case R “ Z. It is easy to prove that B˚ is injective; show that if
it were not surjective, then Hn´1pM ;Zq would have torsion, contradicting the result of
Exercise 49.5(a).

(b) Generalize the result of part (a) to prove B˚rM s “ rBM s without assuming BM is con-
nected.
Hint: For any connected component N Ă BM , consider the exact sequence of the triple
pM, BM, BMzNq and notice that Hn´1pBM, BMzNq – Hn´1pNq by excision.

Remark: In the setting of triangulated manifolds, a similar result with coefficients Z2 or Z can
be deduced from Propositions 30.3 and 30.10 via the natural isomorphism between simplicial and
singular homology, in light of Exercise 50.1.

Exercise 50.4 (*). The goal of this exercise is to prove that the product M ˆ N of two
R-oriented manifolds inherits a natural R-orientation, and in the compact case, the associated
fundamental class rM ˆ N s is given by the cross product rM s ˆ rN s. Note that if M and N
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are topological manifolds of dimensions m and n respectively with boundary, then M ˆ N is a
topological pm` nq-manifold with boundary

BpM ˆNq “ pBM ˆNq Y pM ˆ BNq,
thus in terms of the product for pairs of spaces defined in §48.2, we have

pM, BMq ˆ pN, BNq “ pM ˆN, BpM ˆNqq.
We work in the setting of an axiomatic homology theory h˚ with coefficients R, and assume the
existence of a cross product

hkpX,Aq b hℓpY,Bq Ñ hk`ℓppX,Aq ˆ pY,Bqq : ab b ÞÑ aˆ b

for arbitrary pairs of spaces pX,Aq and pY,Bq.78 One can formulate various axioms to guarantee
that the cross product in h˚ has desirable properties: these should include associativity, graded
commutativity and a unit property as in §47.1, plus e.g. a Leibniz rule for feeding products into
connecting homomorphisms. We will not go into the details here, but the crucial consequence
of these axioms should be that the cross product on h˚ matches the cellular cross product when
restricted to CW-pairs. This implies, for instance, that the map

(50.2) hmpDm, BDmq b hnpDn, BDnq Ý̂Ñ hm`npDm ˆ Dn, BpDm ˆ Dnqq
is an isomorphism; let us take this as an axiom in the following.

(a) Show that the analogues of the map (50.2) in cellular and singular homology with ring
coefficients are isomorphisms.
Remark: The Künneth formula offers one convenient approach to this, but only if R is a
principal ideal domain. Try to do without that assumption.

(b) Given an m-manifold M and an n-manifold N with interior points x P M̊ and y P N̊ , we
have

pM,Mztxuq ˆ pN,Nztyuq “ pM ˆN, pM ˆNqztpx, yquq,
so that the relative cross product defines a map

ΘMx bΘNy Ý̂Ñ ΘMˆN
px,yq .

Show that this map is an isomorphism, and that it gives rise to a homomorphism

ΓpΘM q b ΓpΘN q Ý̂Ñ ΓpΘMˆN q : sb t ÞÑ sˆ t

given by ps ˆ tqpx, yq “ spxq ˆ tpyq. Conclude that if s P ΓpΘM q and t P ΓpΘN q are
R-orientations, then so is sˆ t P ΓpΘMˆN q.

(c) Deduce via the naturality of the cross product with respect to maps of the form pM, BMq Ñ
pM,Mztxuq and pN, BNq Ñ pN,Nztyuq that if M and N are compact manifolds with R-
orientations andMˆN is equipped with the product R-orientation arising from part (b),
then the corresponding fundamental classes rM s P hmpM, BMq, rN s P hnpN, BNq and
rM ˆN s P hm`npM ˆN, BpM ˆNqq are related by

rM s ˆ rN s “ rM ˆN s.
78If necessary, it would also be possible to work with the less ambitious assumption that the cross product is

defined whenever the two subsets A ˆ Y,X ˆ B Ă X ˆ Y form an excisive couple for h˚. One can use excision
and collar neighborhoods to show that this is always true when the pairs are pM, BMq and pN, BNq for compact
manifolds M and N .
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51. Poincaré duality

51.1. The statement. The classical perspective on Poincaré duality is demonstrated by
Figure 27. The picture shows a portion of a closed triangulated manifold M of dimension n “ 2,
with the 1-simplices and vertices of the triangulation depicted in black. We’ve then added a red
dot at the barycenter of each n-simplex and drawn a red line segment connecting the barycenters
of any two n-simplices that share a boundary face. Note that sinceM is assumed to be a manifold
without boundary, every pn ´ 1q-simplex in the triangulation is a boundary face of exactly two
n-simplices. As a consequence, there is a one-to-one correspondence between the pn´ 1q-simplices
in the triangulation and the red line segments joining the red dots. Moreover, every vertex of the
triangulation is contained in a unique polygon bounded by the red segments. If we think of the red
dots as 0-cells, the red line segments as 1-cells and the polygons bounded by them as 2-cells, they
form what is called the dual cell decomposition of M determined by the original triangulation.
We could now write down two quite different chain complexes to compute the homology of M : let
us denote by C∆˚ pMq the simplicial chain complex of the original triangulation, and by CCW˚ pMq
the cellular chain complex for its dual cell complex. Evidently, there is a natural bijection

C∆
k pMq Ñ CCW

n´kpMq,
defined by sending each k-simplex of the triangulation to its dual pn´ kq-cell. You will notice an
interesting thing, however, if you try to understand what happens to the boundary map under this
bijection: it transforms the boundary map of C∆˚ pMq into the coboundary map of CC̊WpMq. Thus
it can be more properly interpreted as a bijective chain map

C∆˚ pMq Ñ Cn´˚CW pMq,
therefore giving rise to an isomorphism HkpMq –Ñ Hn´kpMq for each k “ 0, . . . , n.

Remark 51.1. Did you notice where we used the assumption that M is compact in the
above discussion? The notion of the dual cell decomposition makes sense on any triangulated
manifold, compact or not, so there is still a bijection C∆

k pMq Ñ CCW
n´kpMq, and simplicial and

cellular homology also still make sense in the noncompact case. A problem emerges, however, if
the triangulation is infinite and we try to pay attention to the boundary map by defining a chain
isomorphism C∆˚ pMq Ñ Cn´˚CW pMq. If you don’t immediately see why, then keep this question in
mind as you read the rest of this lecture, and we’ll come back to it at the end.

It would be a bit of an effort to make the idea of the dual cell decomposition precise and
general enough to prove an actual theorem, and it would then be a theorem that applies only
to triangulated manifolds, which is more restrictive than we would like. The key feature that
makes Poincaré duality possible is not the triangulation—there are many examples of compact
n-dimensional polyhedra X for which HkpXq fl Hn´kpXq. The important detail is rather that
we are talking specifically about manifolds, e.g. it is the locally Euclidean structure of M in the
above example that enables us to identify the regions surrounded by dual 1-cells as 2-cells in
bijective correspondence with the original vertices. Now that we know there is good reason to
expect an isomorphism HkpMq Ñ Hn´kpMq, we observe that a candidate for this isomorphism
arises naturally from the previous two topics we discussed in this course: the fundamental class,
and the cap product, neither of which had anything directly to do with triangulations. Here’s the
main theorem in its standard form.

Theorem 51.2 (Poincaré duality). For any closed n-manifold M with an R-orientation and
corresponding fundamental class rM s P HnpM ;Rq for some commutative ring R with unit, the map

HkpM ;Rq PDÝÑ Hn´kpM ;Rq : ϕ ÞÑ ϕX rM s
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PSfrag replacements

–

Figure 27. A triangulation of a surface and its dual cell decomposition.

is an isomorphism for every k P Z.

Remark 51.3. The proof of Theorem 51.2 will be based mostly on the formal (i.e. axiomatic)
properties of homology and cohomology, thus it would also be possible—with some effort—to
formulate a more general version of Poincaré duality that identifies axiomatic cohomology groups
hkpMq with axiomatic homology groups hn´kpMq under suitable assumptions. The use of the cap
product in the definition of the map PD : HkpM ;Rq Ñ Hn´kpM ;Rq gives a big hint that something
more than just the Eilenberg-Steenrod axioms is needed, as the axioms do not automatically give
rise to extra algebraic structures like the cup and cap products—in fact, the axioms do not even
provide an evaluation pairing of h˚pMq with h˚pMq, as seems natural in the realm of singular
(co)homology. It is possible and sometimes desirable, however, to add extra axioms so that the
existence of a cup product on h˚ satisfying reasonable properties is explicitly assumed, giving rise
to the notion of a multiplicative cohomology theory. One can similarly introduce axioms for cross
products on both h˚ and h˚, as well as a so-called duality pairing to play the role of a cap product
intertwining h˚ with h˚. The required definitions can be found e.g. in [tD08, §17.2–3 and §18.2].
In the following exposition of Poincaré duality and intersection theory, we will make our lives easier
by explicitly using singular homology and cohomology, but the properties we will make use of in
the proof are mostly axiomatic in nature.
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Convention. Unless otherwise specified, the coefficients for singular homology and cohomol-
ogy in this lecture will always be the fixed commutative ring R with unit, and R will usually be
omitted from the notation.

51.2. Applications. Before getting into the proof of the duality theorem, let’s pick some
low-hanging fruit and state a few corollaries. Recall that by the universal coefficient theorem, the
Betti numbers of a space can be expressed as ranks of either the homology or the cohomology
groups, which are the same in corresponding degrees. Poincaré duality thus gives a nontrivial
relation between them:

Corollary 51.4. For every closed orientable n-manifold M ,

bkpMq “ bn´kpMq
for all k P Z. Moreover, without any orientability assumption, the same relation also holds for the
so-called “Z2 Betti numbers,” i.e.

dimZ2
HkpM ;Z2q “ dimZ2

Hn´kpM ;Z2q
for all k P Z. �

Corollary 51.5. Every closed odd-dimensional manifold M satisfies χpMq “ 0.

Proof. In the oriented case, this follows because bkpMq and bn´kpMq cancel each other in
the alternating sum that defines χpMq. If M is not orientable, one can reach the same conclusion
using the Z2 Betti numbers, thanks to Exercise 45.12(c). �

Here is an application of Corollary 51.5 that plays a fundamental role in bordism theory.
For context, observe that every closed oriented surface is the boundary of a compact oriented 3-
manifold; we know this because we have a complete classification of such surfaces (see Lecture 19
from last semester), and we can realize all of them as boundaries of compact regions in R3. It
is harder to see, but nonetheless true, that every closed oriented 3-manifold bounds a compact
4-manifold. This fact is originally due to Rokhlin [Roh51], and it can also be deduced easily from
a slightly later result known as the Lickorish-Wallace theorem, which is fundamental in the study
of 3-manifolds: it states that every closed oriented 3-manifold M can be obtained by performing
surgery along a link in S3, and from this it is a short step to presentingM as the boundary of a 4-
manifold constructed by attaching 4-dimensional 2-handles to D4. The following result shows that
the question of which oriented manifolds are boundaries becomes more interesting from dimension
four upwards.

Corollary 51.6. There is no compact 5-manifold with boundary homeomorphic to CP2.

Proof. Suppose M is a compact manifold with BM – CP
2. We can then construct a closed

5-manifold xM by gluing M to a copy of itself along the matching boundary,xM :“M YCP2 M,

and by Corollary 51.5, χpxMq “ 0. But according to Exercise 51.1, we also have

χpxMq “ 2χpMq ´ χpCP2q,
a formula that admits an easy interpretation of we assumeM has a cell decomposition with BM as a
subcomplex: counting the cells in M >M with appropriate signs gives 2χpMq, but this overcounts
each cell in BM by a factor of 2, leading to ´χpCP2q as a correction term. Thanks to its cell
decomposition with one cell in each even dimension, we know the homology of CP2 and therefore
know its Euler characteristic: it is 3, implying that 2χpMq ´ χpCP2q can never be 0. �
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Poincaré duality also provides considerable information about the ring structure of H˚pMq as
a consequence of the relation xψ Y ϕ, rM sy “ xψ, ϕ X rM sy. For each k “ 0, . . . , n, consider the
bilinear form Q : HkpM ;Rq ˆHn´kpM ;Rq Ñ R defined via the R-module homomorphism

HkpMq bHn´kpMq QÑ R

ϕb ψ ÞÑ Qpϕ, ψq :“ xϕY ψ, rM sy.
For reasons that we will discuss in the next two lectures, this is called the intersection form
on M . In the case R “ Z, Qpϕ, ψq vanishes whenever either ϕ or ψ is torsion, thus it descends to
a bilinear map on the free part Hf̊reepMq :“ H˚pM ;Zq{torsion,

Hk
freepMq bHn´k

free pMq QÝÑ Z.

For a general pair of R-modules A and B, a bilinear map Q : A ˆ B Ñ G (or equivalently an
R-module homomorphism Q : A b B Ñ G) is called nonsingular if the maps A Ñ HompB,Gq :
a ÞÑ Qpa, ¨q and B Ñ HompA,Gq : b ÞÑ Qp¨, bq are both isomorphisms.

Corollary 51.7. For any closed n-manifold M with a K-orientation and corresponding fun-
damental class rM s P HnpM ;Kq for some field K, the intersection form

HkpM ;Kq bK H
n´kpM ;Kq QÝÑ K

is nonsingular for every k “ 0, . . . , n, and ifM is oriented, Q descends to the free part of H˚pM ;Zq
as a nonsingular bilinear form Hk

freepMq bHn´k
free pMq Ñ Z.

Proof. With integer coefficients, we saw in Exercise 45.12(a) that the canonical map h :

Hn´k
free pMq Ñ HompH free

n´kpMq,Zq : ϕ ÞÑ xϕ, ¨y is an isomorphism. Since the duality map PD :

HkpMq Ñ Hn´kpMq is also an isomorphism, it and its inverse each map torsion to torsion and
thus descend to the free parts as isomorphisms Hk

freepMq – H free
n´kpMq. We can then compose h

with the dualization of PD to form an isomorphism

Hn´k
free pMq Hom

`
H free
n´kpMq,Z˘ Hom

`
Hk

freepMq,Z˘h

–
Φ

–

PD˚
–

To see what this map actually is, we choose ψ P Hn´k
free pMq and ϕ P Hk

freepMq and compute:

Φpψqpϕq “ pPD˚ ˝hpψqqpϕq “ hpψq ˝ PDpϕq “ xψ, ϕX rM sy “ xψ Y ϕ, rM sy “ Qpψ, ϕq,
so this proves the first of two statements required for showing that Q is nonsingular on the free
parts with integer coefficients. But the second required statement is equivalent to this, since
Qpψ, ϕq “ p´1qkpn´kqQpϕ, ψq. The argument with field coefficients is completely analogous since,
in that case as well, the canonical map h : Hn´kpM ;Kq Ñ HomKpHn´kpM ;Kq,Kq is a vector
space isomorphism. �

Corollary 51.8. If M is a closed oriented n-manifold and ϕ P HkpM ;Zq is a primitive79

element for some k P t0, . . . , nu, then there exists some ψ P Hn´kpM ;Zq with Qpϕ, ψq “ 1. The
same result holds with coefficients in a field K for every ϕ ‰ 0 P HkpM ;Kq if M is K-oriented.

Proof. The primitivity hypothesis means that the projection of ϕ to Hk
freepMq is nontrivial

and generates a subgroup H Ă Hk
freepMq such that Hk

freepMq{H has no torsion, implying that it
is free (see e.g. [Lan02, Chapter I, Theorem 8.4]). It follows that ϕ can be taken as the first

79Recall that ϕ P HkpM ;Zq is primitive if ϕ is not mψ for any ψ P HkpM ;Zq and an integer m ě 2. In
particular, this rules out that ϕ is torsion, since mϕ “ 0 would imply pm` 1qϕ “ ϕ.
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element in a basis of Hk
freepMq, so that there exists a homomorphism Φ : Hk

freepMq Ñ Z satisfying
Φpϕq “ 1. The result then follows from the nonsingularity of Q. In the field case, one can instead
appeal to the fact that every nonzero element in a vector space can be an element of a basis. �

As important applications of the nonsingularity of the intersection form (see Exercises 51.3
and 51.4), one can fully compute the ring structures of H˚pCPn;Zq and H˚pRPn;Z2q, giving ring
isomorphisms of each to quotients of polynomial rings with one generator,

H˚pCPn;Zq – ZrαsLpαn`1q, |α| “ 2,

H˚pRPn;Z2q – Z2rαs{pαn`1q, |α| “ 1.

These results can also be extended without much difficulty to compute the cohomology rings of the
infinite-dimensional cell complexes CP8 and RP

8, which are not manifolds, but the fact that their
finite-dimensional skeleta are manifolds gives enough information to carry out the computation.
Note that the computation ofH˚pCPn;Zq fills in the last remaining gap in our proof from Lecture 41
(see Theorem 41.1) that all maps f : CPn Ñ CPn have fixed points when n is even.

51.3. The noncompact version. Like the construction of the fundamental class, the proof
of Poincaré duality starts by showing that the result is in some sense true “locally,” and then uses
a form of induction based on Mayer-Vietoris sequences and direct limits to piece together local
results into a global result. We therefore need to formulate a more general version of the theorem
that can make sense for small neighborhoods in manifolds, rather than just for an entire closed
manifold.

Fix a coefficient ring R, and suppose M is an n-manifold without boundary that is not nec-
essarily compact, but is endowed with an R-orientation s P ΓpΘq :“ ΓpΘRq. This section does
not have compact support if M is noncompact, but if we choose a compact subset K Ă M , then
s|K P ΓpΘ|Kq trivially does have compact support, and therefore corresponds under Theorem 49.21
to a distinguished homology class

rM sK :“ J´1
K psq P HnpM |Kq.

Recall from Lecture 48 that the relative cohomology with coefficients in the ring R admits a cap
product pairing

X : HkpM,MzKq bHnpM,MzKq Ñ Hn´kpMq,
which is well defined in this case because the subsets MzK and H in M trivially form an excisive
couple. We can therefore define a “restricted” duality map by

PDK : HkpM |Kq Ñ HnpMq : ϕ ÞÑ ϕX rM sK .
Now consider what happens to this map if we replace K by a larger compact subset K 1 ĂM that
contains K: first, since rM sK P HnpM |Kq and rM sK1 P HnpM |K 1q are determined by the same
globally-defined section s P ΓpΘq, the map induced by the inclusion

i : pM,MzK 1q ãÑ pM,MzKq
satisfies

i˚rM sK1 “ rM sK .
The naturality property (48.5) of the cap product then implies that for all ϕ P HkpM |Kq,

i˚ pi˚ϕX rM sK1q “ PDK1pi˚ϕq “ ϕX rM sK “ PDKpϕq,
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where “i˚” has disappeared in the second expression since PDK1pi˚ϕq is an absolute homology class
and i :M ÑM is just the identity map. The result is a commutative diagram

(51.1)
HkpM |Kq HkpM |K 1q

Hn´kpMq,

i˚

PDK

PDK1

which means that we can view the maps PDK : HkpM |Kq Ñ Hn´kpMq as defining a target of a
direct system of R-modules tHkpM |KquK over the directed set of compact subsets K ĂM , with
the partial order defined by inclusion. By the universal property of the direct limit, there is then
a uniquely determined homomorphism

PD : limÝÑ
 
HkpM |Kq(

K
Ñ Hn´kpMq.

Definition 51.9. For any space X , we define the compactly supported cohomology of
X with coefficients in an abelian group G as the direct limit

Hc̊ pXq “ Hc̊ pX ;Gq :“ limÝÑtH˚pX |K;GquK ,
where K ranges over the set of all compact subsets of X , ordered by inclusion and forming a direct
system via the mapsH˚pX |K;Gq Ñ H˚pX |K 1;Gq induced by inclusions pX,XzK 1q ãÑ pX,XzKq
whenever K Ă K 1.

With this definition in place, the previous discussion produces natural homomorphisms

PD : Hk
c pM ;Rq Ñ Hn´kpM ;Rq

for every k P Z whenever M is a (possibly noncompact) manifold of dimension n with a fixed
R-orientation. We can now state the noncompact version of Poincaré duality:

Theorem 51.10. For every R-oriented topological n-manifold M and every k P Z, the map

PD : Hk
c pM ;Rq Ñ Hn´kpM ;Rq,

defined as the direct limit of the maps PDK : HkpM |K;Rq Ñ Hn´kpM ;Rq : ϕ ÞÑ ϕ X rM sK for
all compact subsets K ĂM , is an isomorphism.

Before continuing, let us make some observations about the properties of compactly supported
cohomology, leaving the proofs as exercises.

First, Hk
c pMq is nothing new ifM is compact, as in this case the existence of a maximal element

M Ă M in the directed set of compact subsets gives rise to a natural isomorphism Hc̊ pMq –
H˚pMq. One can show moreover that this isomorphism identifies the map PD : Hk

c pMq Ñ
Hn´kpMq defined above with the usual map ϕ ÞÑ ϕ X rM s; see Exercise 51.5. For this reason,
Theorem 51.10 implies the compact version of Poincaré duality, Theorem 51.2.

Second, Hc̊ pMq is an invariant of M up to homeomorphism, but not homotopy type, and
certain simple computations therefore work out a bit differently than one might at first expect.
One important example (see Exercise 51.6) that we’ll need to make use of is

Hk
c pRn;Gq –

#
G if k “ n,

0 if k ‰ n,

which bears more resemblance to HkpRn |Dnq than HkpRnq, and this is of course not a coincidence.
It turns out thatHc̊ does not define a contravariant functor on Top, because an arbitrary continuous
map f : X Ñ Y does not induce a well-defined homomorphism f˚ : Hc̊ pY q Ñ Hc̊ pXq unless it
is also proper, meaning that preimages of compact sets are compact. Homeomorphisms do have
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this property, and that’s why Hc̊ pXq is a topological invariant, but it fails to be a homotopy type
invariant, as demonstrated by the result quoted above, which shows that

Hc̊ pRnq fl Hc̊ pt˚uq.
Finally, it is interesting to note that Hc̊ pXq can be constructed without direct limits as the
cohomology of a cochain complex consisting of “compactly supported” cochains; see Exercise 51.6
for the details.

51.4. Proof of the theorem. We proceed toward the proof of Theorem 51.10. The argument
that follows will bear a resemblance to the inductive construction of the fundamental class in the
previous lecture. We start with a purely local result to begin the induction.

Lemma 51.11. For either choice of orientation of Rn, the map PD : Hk
c pRnq Ñ Hn´kpRnq is

an isomorphism for every k P Z.

Proof. There is an obvious cofinal set of compact subsets to use in computing Hk
c pRnq “

limÝÑtHkpRn |KquK : every compact subset K Ă Rn is contained in the disk Dnr of sufficiently large
radius r ą 0, and the natural maps HkpRn |Dnr q Ñ HkpRn |Dnr1q are isomorphisms for all r1 ą r,
thus

Hk
c pRnq – HkpRn |Dnq –

#
R if k “ n,

0 if k ‰ n.

Similarly, Hn´kpRnq is R if k “ n and vanishes otherwise, so it suffices to prove that for any
chosen pair of generators ϕ P HnpRn |Dnq – R and rRnsDn P HnpRn |Dnq – R, ϕXrRnsDn is also a
generator of H0pRnq – R. This is true since the universal coefficient theorem gives an isomorphism
HnpRn |Dnq – HompHnpRn |Dnq, Rq by evaluation of cohomology classes on homology classes, so
that xϕ, ¨y generates Hom `

HnpRn |Dnq, R˘ and thus

x1, ϕX rRnsDny “ xϕ, rRnsDny P R
is a generator of R. �

The inductive step unsurprisingly requires Mayer-Vietoris sequences. To prepare for this,
we first need to understand the functoriality of Hc̊ slightly better. Exercise 51.6 reveals that
continuous maps f : X Ñ Y do not always induce homomorphisms f˚ : Hc̊ pY q Ñ Hc̊ pXq unless
an additional condition is imposed, i.e. f : X Ñ Y needs to be proper. We will be especially
interested in inclusion maps A ãÑ X for subspaces A Ă X , and these are typically not proper,
e.g. if A is open but not closed, which will be the main case of interest. In this situation, however,
there is a natural map going the other direction, fromHc̊ pAq toHc̊ pXq. This follows from excision:
if X is a Hausdorff space with subsets K Ă A Ă X such that A is open and K is compact, then
XzA is a closed subset contained in the open set XzK, hence the inclusion pA,AzKq ãÑ pX,XzKq
is an excision map and induces an isomorphism

H˚pX |Kq –ÝÑ H˚pA |Kq.
Now for any compact set L Ă X that contains K, composing the inverse of this isomorphism
with the natural map H˚pX |Kq Ñ H˚pX |Lq induced by the inclusion pX,XzLq ãÑ pX,XzKq
produces a map H˚pA |Kq Ñ H˚pX |Lq:

H˚pX |Kq

H˚pA |Kq H˚pX |Lq.
–
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If we then compose this with the natural map of H˚pX |Lq to the direct limit Hc̊ pXq, it produces
a map H˚pA |Kq Ñ Hc̊ pXq for every compact K Ă A, and one can easily check that this map is
independent of the choice of compact subset L Ă X containing K; moreover, if K 1 Ă A is another
compact set containing K, then the diagram

H˚pA |Kq H˚pA |K 1q

Hc̊ pXq
commutes. This makes Hc̊ pXq a target of the direct system tH˚pA |KquK , so that there is a
uniquely determined limit map

Hc̊ pAq Ñ Hc̊ pXq.
We will refer to this always as the natural map induced by the inclusion A ãÑ X , and it is important
to understand that it is only well defined when A Ă X is open.

Lemma 51.12. If M is an R-oriented n-manifold and A ĂM is an open subset, then for every
k P Z, the natural maps on Hc̊ and H˚ induced by the inclusion A ãÑ M fit into a commutative
diagram of the form

Hk
c pAq Hk

c pMq

Hn´kpAq Hn´kpMq
PD PD

Proof. Given a compact set K Ă A, pick any compact set L Ă M that contains K, and
denote the obvious inclusions

A
iãÑM, pA,AzKq iãÑ pM,MzKq, pM,MzLq jãÑ pM,MzKq.

We then claim that the diagram

HkpM |Kq

HkpA |Kq HkpM |Lq

Hn´kpAq Hn´kpMq

i˚
– j˚

PDK PDL

i˚

commutes. To see this, observe that there is another map we could add to this diagram and
sensibly denote by PDK , namely HkpM |Kq Ñ Hn´kpMq : ϕ ÞÑ ϕXrM sK; let’s call this one PD1

K

to avoid confusion, and note that by (51.1), it satisfies

PDL ˝j˚ “ PD1
K .

Viewing i as a map of pairs, we also have i˚rAsK “ rM sK , and naturality of the cap product then
implies that for all ϕ P HkpM |Kq,

i˚ ˝ PDK ˝i˚ϕ “ i˚ pi˚ϕX rAsKq “ ϕX i˚rAsK “ ϕX rM sK “ PD1
Kpϕq,
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thus proving the claim. This implies in particular that for the natural maps H˚pA |Kq Ñ
H˚pM |Lq that determine Hc̊ pAq Ñ Hc̊ pMq via the direct limit, the diagram

HkpA |Kq HkpM |Lq

Hn´kpAq Hn´kpMq
PDK PDL

always commutes. The rest is essentially abstract nonsense: if we let Ψ : Hk
c pAq Ñ Hn´kpMq

denote the difference between the maps defined via the two possible paths in the diagram of the
lemma, we can now view Ψ as the limiting map for a family of maps HkpA |Kq Ñ Hn´kpMq over
the directed set of compact subsets K Ă A, and the diagram above forces all these maps to vanish,
hence so does Ψ. �

Now suppose M “ A YB, where A,B ĂM are open subsets (and therefore also n-manifolds
without boundary). The Mayer-Vietoris sequence we need for Hc̊ arises from the natural maps
induced by the inclusions of A X B into A and B and of each of these into M . Concretely, given
any compact subsets K Ă A and L Ă B, there are natural inclusions of pairs

pM,MzKq

pM,MzpK Y Lqq pM,MzpK X Lqq

pM,MzLq
which give rise to a relative Mayer-Vietoris sequence in cohomology. The following diagram com-
bines this sequence with the natural excision isomorphisms and localized duality maps:
(51.2)

. . . HkpM |K X Lq HkpM |Kq ‘HkpM |Lq HkpM |K Y Lq Hk`1pM |K X Lq . . .

. . . HkpAXB |K X Lq HkpA |Kq ‘HkpB |Lq HkpM |K Y Lq Hk`1pAXB |K X Lq . . .

. . . Hn´kpAXBq Hn´kpAq ‘Hn´kpBq Hn´kpMq Hn´k´1pAXBq . . .

– – –

PDKXL PDK ‘PDL PDKYL PDKXL

We take the horizontal maps in the bottom row to be the usual maps in the Mayer-Vietoris sequence
for H˚pAYBq, and if the signs are chosen appropriately,80 then the same arguments as in the proof
of Lemma 51.12 imply that this diagram commutes, with the possible exception of the bottom right
square involving connecting homomorphisms. It turns out that this square also commutes, and
the proof is not especially deep, but it is a tedious calculation, so we will skip it and simply refer
to [Hat02, pp. 246–247]. The result is:

80Recall that in the Mayer-Vietoris sequence for H˚pAYBq, there needs to be a minus sign in the definition of
either of the maps HkpAXBq Ñ HkpAq ‘HkpBq or HkpAq ‘HkpBq Ñ HkpAYBq. For most purposes it does not
matter which term gets the minus sign, but since we are now relating two Mayer-Vietoris sequences to each other,
the signs in both need to be consistent.
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Lemma 51.13. The diagram in (51.2) commutes, and passing to the direct limit over all choices
of compact subsets K Ă A and L Ă B then produces a commutative diagram

(51.3)
. . . Hk

c pAXBq Hk
c pAq ‘Hk

c pBq Hk
c pMq Hk`1

c pAXBq . . .

. . . Hn´kpAXBq Hn´kpAq ‘Hn´kpBq Hn´kpMq Hn´k´1pAXBq . . .

PD PD‘PD PD PD

in which both rows are exact.

Sketch of the proof. Aside from the tedious verification that (51.2) commutes, the claim
that the top row of (51.3) is exact is slightly nontrivial: this follows from the general fact that
direct limits of exact sequences in the category of R-modules are always exact. A special case
of this phenomenon was discussed in §43.2 (along with the fact that it does not hold for inverse
limits), and more generally, it follows as a special case of Proposition 39.21, which states that the
functor taking chain complexes to their homologies is continuous under direct limits—an exact
sequence is nothing other than a chain complex with trivial homology. �

Applying the five-lemma now gives:

Corollary 51.14. If the duality map is an isomorphism on A, B and AX B, then it is also
an isomorphism on M “ AYB. �

Open convex sets in Euclidean neighborhoods are homeomorphic to Rn, and so is the inter-
section of any two such sets in the same Euclidean neighborhood, so Lemmas 51.11 and 51.13
are enough to prove that PD is an isomorphism on any finite union of open convex sets in a sin-
gle Euclidean neighborhood. Now observe that any open set in a Euclidean neighborhood is the
union of a countable collection of convex open sets: indeed, just take any covering collection of
open balls and reduce it to a countable subcover. Something similar is true in fact for any mani-
foldM : since manifolds are second countable, every open cover ofM has a countable subcover (see
Lemma 5.25), so one can start with any covering by convex sets in Euclidean neighborhoods and
reduce to a countable subcover. Since these coverings consist of countable collections V1,V2,V3, . . .,
one can also arrange them into nested sequences of open subsets

U1 :“ V1 Ă U2 :“ V1 Y V2 Ă U3 :“ V1 Y V2 Y V3 Ă . . .

whose unions cover everything. In other words, every manifold is the union of a nested sequence
of open subsets that are each finite unions of convex sets. We therefore need a lemma for passing
from a nested sequence of open subsets to its union.

Lemma 51.15. Suppose U1 Ă U2 Ă U3 Ă . . . Ă M is a nested sequence of open subsets of an
R-oriented n-manifold M such that

Ť8
i“1 Ui “M . If the duality map is an isomorphism on Ui for

every i P N, then it is also an isomorphism on M .

Proof. The idea is to present Hn´kpMq and Hk
c pMq as direct limits of the sequences of R-

modules Hn´kpUiq and Hk
c pUiq respectively. In the former case, we already know how to do this:

it is easy to check that the direct limit of the spaces tUiu8i“1 with respect to inclusion is M , and
since every compact subset of M must be contained in Ui for i sufficiently large, Theorem 39.24
provides a natural isomorphism

limÝÑtH˚pUiqu8i“1
–ÝÑ H˚

`
limÝÑtUiu8i“1

˘ “ H˚pMq.
For the cohomology, the fact that every Ui is open in Uj for j ą i and also open in M gives rise to
natural maps

Hc̊ pU1q Ñ Hc̊ pU2q Ñ Hc̊ pU3q Ñ . . .Ñ Hc̊ pMq,
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making tHc̊ pUiqu8i“1 a direct system, and we claim that Hc̊ pMq is its direct limit. This can proved
by establishing the universal property: if we have a sequence of morphisms fi : Hc̊ pUiq Ñ A to
some other Z-graded R-module A such that the diagram

Hc̊ pU1q Hc̊ pU2q Hc̊ pU3q . . . Hc̊ pMq

A

f1

f3 f8

commutes, then we need to show that the map f8 in this diagram exists and is unique. To
define f8pϕq for some ϕ P Hk

c pMq, observe that ϕ is necessarily in the image of the natural map
HkpM |Kq Ñ Hk

c pMq for some compact set K ĂM , and since K is compact, it must be contained
in UN for N P N sufficiently large. Excision then allows us to regard ϕ as an element of HkpUN |Kq,
which therefore represents some element of Hk

c pUN q, so we define f8pϕq by applying fN to this
element. Proving that this is independent of choices is now a routine matter of writing down
diagrams to check that they commute, so we shall leave it as an exercise.

By Lemma 51.12, we now obtain a commutative diagram

(51.4)
Hk
c pU1q Hk

c pU2q Hk
c pU3q . . .

Hn´kpU1q Hn´kpU2q Hn´kpU3q . . .

PD PD PD

in which the vertical maps are all isomorphisms, thus it defines an isomorphism between the two
direct systems. These therefore have a limiting map which is also an isomorphism, and one can
check that the limiting map is PD:

limÝÑ
 
Hk
c pUiq

(8
i“1

Hk
c pMq Hn´kpMq limÝÑtHn´kpUiqu8i“1 .

PD

–

�

Proof of Theorem 51.10. Lemmas 51.11 and 51.13 prove the theorem for all finite unions
of convex open sets Rn, and feeding this into Lemma 51.15 then establishes it for all open subsets
of Rn. In a manifold M , the intersection of two open sets contained in Euclidean neighborhoods is
also contained in a Euclidean neighborhood, so another application of Lemma 51.13 now proves the
theorem for all finite unions of open subsets in Euclidean neighborhoods, and we can then present
M is a nested union of such subsets and establish the theorem for M via a second application of
Lemma 51.15. �

In subsequent applications, it will be important also to have relative versions of the Poincaré
duality isomorphism that apply to an R-oriented compact n-manifold M with boundary. In this
situation, the fundamental class is a relative class rM s P HnpM, BM ;Rq, and the relative cap
product pairing

HkpX,Aq bHℓpX,AYBq XÝÑ Hℓ´kpX,Bq,
which was defined in (48.10) whenever A,B Ă X are an excisive couple, gives us two obvious
options for interpreting the formula PDpϕq :“ ϕX rM s, namely as a map

HkpM, BM ;Rq PDÝÑ Hn´kpM ;Rq or HkpM ;Rq PDÝÑ Hn´kpM, BM ;Rq.
In fact, both of these are isomorphisms, a result that is sometimes called Lefschetz duality. A
proof of this fact is sketched in Exercise 51.7.
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Remark 51.16. Here is the promised addendum to Remark 51.1. When M is compact and
has an oriented triangulation, Ck∆pM ;Zq has an obvious identification with the free abelian group
generated by all the k-simplices in the triangulation: indeed, if we fix an orientation on each k-
simplex and call KkpMq the resulting set of oriented k-simplices so that C∆

k pM ;Zq “À
σPKkpMq Z,

then the dual elements ϕσ : C∆
k pM ;Zq Ñ Z defined on generators τ P KkpMq by

ϕσpτq :“
#
1 if τ “ σ,

0 if τ ‰ σ

form a basis for Ck∆pM ;Zq. In this case, we obtain a chain isomorphism

Ck∆pM ;Zq Ñ CCW
n´kpM ;Zq

by sending each of the k-cochains ϕσ to the pn´kq-cell dual to σ, and the isomorphismHkpM ;Zq –
Hn´kpM ;Zq follows. The trouble if M is not compact is that C∆

k pM ;Zq is now an infinitely-
generated free abelian group, so its dual Ck∆pM ;Zq is not isomorphic to it, but is actually much
larger: the cochains ϕσ do not form a basis for Ck∆pM ;Zq since they only span the subgroup of
homomorphisms C∆

k pM ;Zq Ñ Z that are nonzero on finitely many simplices. As a consequence,
Ck∆pM ;Zq and CCW

n´kpM ;Zq are not isomorphic, but now that you’ve seen how Poincaré duality
works for singular homology on noncompact manifolds, you may be able to guess how to fix this:
the cochains ϕσ do span a subcomplex of C∆̊pM ;Zq, whose homology is the simplicial version
of Hc̊ pM ;Zq.

51.5. Exercises.

Exercise 51.1. Suppose X and Y are two compact n-manifolds with homeomorphic bound-
aries BX – BY –M , and Z :“ XYM Y is a closed n-manifold constructed by gluing them together
along their boundaries. Prove the formula

χpZq “ χpXq ` χpY q ´ χpMq.
Hint: This is easy if you assume X and Y have cell decompositions that restrict to their boundaries
as matching cell decompositions of M . Without that assumption, you can consider the Mayer-
Vietoris sequence for Z “ AY B, where B – p´1, 1q ˆM is the union of collar neighborhoods of
BX and BY , and A is a disjoint union of open subsets homotopy equivalent to X and Y . Don’t
try to compute H˚pZq with this, just view the Mayer-Vietoris sequence itself as a chain complex
whose homology is trivial. What does Corollary 40.6 then tell you?

Exercise 51.2. Show that the Klein bottle is homeomorphic to the boundary of a compact
(and necessarily non-orientable) 3-manifold, but RP2 is not.

Exercise 51.3 (*). We can now compute the ring structure of H˚pCPn;Zq. Take the usual
cell decomposition CPn “ e0Ye2Y . . .Ye2n, and for k “ 1, . . . , n, let αk P H2kpCPn;Zq – Z denote
the generator that evaluates to 1 on the generator of H2kpCPn;Zq represented by the 2k-cell.

(a) Use Corollary 51.8 to prove αk Y αn´k “ ˘αn for every k.
(b) Generalize part (a) to show that αk Y αℓ “ ˘αk`ℓ for every k, ℓ P N with k ` ℓ ď n.

Hint: There is a natural inclusion CPk`ℓ ãÑ CPn that is a cellular map. How does it act
on cohomology?

This proves that the ring H˚pCPn;Zq is generated by the single element α :“ α1 P H2pCPn;Zq,
subject only to the relation αn`1 “ 0 since HkpCPn;Zq “ 0 for all k ą 2n. We conclude that there
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is an isomorphism of Z-graded rings81

H˚pCPn;Zq – ZrαsLpαn`1q, |α| “ 2,

where Zrαs denotes the ring of integer-valued polynomials in one variable α, pαn`1q Ă Zrαs is the
ideal generated by αn`1, and the grading is determined by the condition that the variable α has
degree 2 while all coefficients have degree 0.

(c) Use inclusions CPn ãÑ CP8 to find a graded ring isomorphism H˚pCP8;Zq – Zrαs,
where again |α| “ 2.

Exercise 51.4 (*). Compute each of the following cohomology rings:
(a) H˚pRPn;Z2q – Z2rαs{pαn`1q with |α| “ 1.
(b) H˚pRP8;Z2q – Z2rαs with |α| “ 1.

Exercise 51.5 (*). Show that if M is compact, there is a natural isomorphism Hc̊ pMq –
H˚pMq which identifies the map PD : Hk

c pMq Ñ Hn´kpMq defined via the direct limit with the
usual duality map ϕ ÞÑ ϕX rM s.

Exercise 51.6. In the following, suppose G is any abelian group.
(a) Prove that Hn

c pRn;Gq – G and Hk
c pRn;Gq “ 0 for all k ‰ n.

(b) Construct a canonical isomorphism between Hc̊ pX ;Gq and the cohomology of the sub-
complex Cc̊ pX ;Gq Ă C˚pX ;Gq consisting of every cochain ϕ : CkpXq Ñ G that vanishes
on all simplices with images outside some compact subset K Ă X . (Note that K may
depend on ϕ).

(c) Recall that a continuous map f : X Ñ Y is called proper82 if for every compact set
K Ă Y , f´1pKq Ă X is also compact. Show that proper maps f : X Ñ Y induce
homomorphisms f˚ : Hc̊ pY ;Gq Ñ Hc̊ pX ;Gq, making Hc̊ p¨;Gq into a contravariant
functor on the category of topological spaces with morphisms defined as proper maps.

(d) Deduce from part (c) thatHc̊ p¨;Gq is a topological invariant, i.e. Hc̊ pX ;Gq andHc̊ pY ;Gq
are isomorphic whenever X and Y are homeomorphic.

(e) In contrast to part (c), show that Hc̊ p¨;Gq does not define a functor on the usual category
of topological spaces with morphisms defined to be continuous (but not necessarily proper)
maps.
Hint: Think about maps between Rn and the one-point space.

Exercise 51.7. Fix a coefficient ring R and assume M is a compact R-oriented n-manifold
with boundary, with rM s P HnpM, BMq “ HnpM, BM ;Rq as its relative fundamental class. The
relative cap product with rM s then gives rise to two natural maps

(51.5) PD : HkpM, BMq Ñ Hn´kpMq,

(51.6) PD : HkpMq Ñ Hn´kpM, BMq,
both defined by PDpϕq “ ϕ X rM s. We would now like to prove that both are isomorphisms, a
result known as Lefschetz duality.

81A Z-graded ring is a ring R that is split into a direct sum R “ÀnPZRn such that any a P Rk and b P Rℓ

have product ab P Rk`ℓ.
82This definition of properness is standard in the study of manifolds, though for certain purposes, it is sometimes

considered an inadequate definition if considering spaces that are not assumed second countable and Hausdorff (the
general definition of properness is then a slightly stronger condition). As far as I can tell, it’s still an adequate
definition for the purposes of Exercise 51.6.
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(a) Find a cofinal family of compact subsets A Ă M̊ :“ MzBM such that the natural maps
in the diagram

H˚pM̊ |Aq ÐÝ H˚pM |Aq ÝÑ H˚pM, BMq
are isomorphisms. Use this to find a natural isomorphism (cf. Exercise 39.2)

Hc̊ pMq – H˚pM, BMq,
and deduce via Theorem 51.10 that (51.5) is an isomorphism.

(b) Show that the long exact sequenes of the pair pM, BMq in homology and cohomology fit
together into a commutative diagram of the form

. . . HkpM, BMq HkpMq HkpBMq Hk`1pM, BMq . . .

. . . Hn´kpMq Hn´kpM, BMq Hn´k´1pBMq Hn´k´1pMq . . . ,

j˚

¨XrMs

i˚

¨XrMs

δ˚

¨XrBMs ¨XrMs
j˚ B˚ i˚

where i : BM ãÑM and j : pM,Hq ãÑ pM, BMq denote the usual inclusions.
(c) Deduce from the diagram in part (b) that the map in (51.6) is also an isomorphism.
(d) If M has a triangulation, interpret the isomorphisms (51.5) and (51.6) in terms of the

dual cell decomposition.

Exercise 51.8. For two closed, connected and oriented manifolds M,N of dimension n P N,
the degree degpfq P Z of a map f :M Ñ N is defined to be the unique integer d such that

HnpM ;Zq f˚ÝÑ HnpN ;Zq : rM s ÞÑ drN s.
Use the nonsingularity of the intersection form Q : HkpM ;Kq b Hn´kpM ;Kq Ñ K with coef-
ficients in a field K to show that if f : M Ñ N has nonzero degree d :“ degpfq and K is a
field whose characteristic does not divide d, the induced maps f˚ : HkpN ;Kq Ñ HkpM ;Kq and
f˚ : HkpM ;Kq Ñ HkpN ;Kq are injective and surjective respectively for every k.

52. The Thom class

52.1. A preview of intersection theory. Our next goal is to explain the intersection
product on the homology of a closed manifold, which sheds considerable light on the intuitive
geometric meaning of both the cup product and the Poincaré duality isomorphism. The following
quick sketch is for motivational purposes only; it will be supplemented by precise definitions and
proofs in the next lecture.

Convention. In order to simplify notation, for this and the next lecture we will generally
work with integer coefficients

H˚pMq :“ H˚pM ;Zq, H˚pMq :“ H˚pM ;Zq
for homology and cohomology, which requires imposing assumptions about orientations in several
places. Note that thanks to the universal coefficient theorem, most things that can be done with
integer coefficients can also be done with coefficients in an arbitrary commutative ring R, because
orientable manifolds are also R-orientable. If one prefers to drop the orientation assumptions, one
still always has the option to work with Z2 coefficients.

In the previous lecture, we defined the intersection form on the cohomology of a closed oriented
n-manifold M as

Qpα, βq :“ xαY β, rM sy P Z for α P HkpMq, β P Hn´kpMq.
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In light of the Poincaré duality isomorphism

HkpMq PDÝÑ Hn´kpMq : ϕ ÞÑ ϕX rM s
and the relation xαY β, rM sy “ xα, β X rM sy, the intersection form can also be written as

Qpα, βq “ xα,PDpβqy “ p´1qkpn´kqxβ,PDpαqy,
thus giving an interpretation of Poincaré duality: it identifies the cohomology class β P Hn´kpMq
with the homology class B :“ PDpβq P HkpMq such that feeding B into the evaluation by other
cohomology classes α P HkpMq is equivalent to feeding β into the intersection form Qpα, βq. That’s
nice, but of course it would be nicer if we also understood what the intersection form means, and
why it is called what it is.

The answer comes from the following relation, to be proved in the next lecture. For suitable
pairs of closed submanifolds A,B Ă M and cohomology classes α P HkpMq and β P HℓpMq that
are Poincaré dual to the homology classes represented by the submanifolds,

PDpαq “ rAs P Hn´kpMq and PDpβq “ rBs P Hn´ℓpMq
one has

(52.1) PDpαY βq “ rB XAs P Hn´pk`ℓqpMq.
In other words, Poincaré duality identifies the cup product with a so-called intersection product,
which measures intersections of closed submanifolds homologically. Some conditions are needed in
order to fully make sense of this, e.g. you can infer from (52.1) that B XA ĂM is expected to be
a closed submanifold with codimension equal to the sum of the codimensions of A and B, but this
is not automatic—it requires a technical condition that we will specify in the next lecture. This
condition necessitates working in the smooth category, so we will eventually add the assumption
that all manifolds in this picture are smooth.

Let us elaborate on what happens when the dimensions are complementary, i.e. the case
k ` ℓ “ n. In this situation, B X A is a closed 0-dimensional manifold, meaning a finite set of
points. If we are using integer coefficients and assuming everything to be oriented, then BXA will
also inherit an orientation, which means each point comes with a sign attached to it, and counting
these points with signs is equivalent to evaluating the unit cohomology class 1 P H0pMq on the
homology class rB XAs P H0pMq, giving

#pB XAq “ x1, rB XAsy “ x1, pαY βq X rM sy “ x1Y pαY βq, rM sy “ xαY β, rM sy
“ Qpα, βq.

That’s why it’s called the intersection form!

52.2. Tubular neighborhoods and vector bundles. Understanding the intersection prod-
uct will require understanding what neighborhoods of submanifolds Σ ĂM look like, which leads
inevitably to the subject of vector bundles. Assume that Σ and M are smooth manifolds, so they
have tangent spaces: we will denote by TxM the tangent space of M at a point x PM . If Σ ĂM

is a smooth submanifold, then its tangent space at each point x P Σ is naturally a linear subspace

TxΣ Ă TxM.

The quotient by this subspace is called the normal space of Σ in M at x, and will be denoted by

NxΣ “ NM
x Σ :“ TxM

L
TxΣ.

Intuitively, you can imagine the normal space as another subspace of TxM complementary to TxΣ,
and indeed, one can realize NxΣ in this way by choosing an inner product on TxM and identifying
the quotient with the orthogonal complement of TxΣ in TxM . The following vague statement
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should now seem intuitively plausible: every point in some neighborhood of Σ ĂM is obtained by
“pushing” some specific point x P Σ in the direction of some specific normal vector in NxΣ, after
identifying NxΣ with a subspace complementary to TxΣ Ă TxM . In other words, a neighborhood
of Σ can be identified with the union of all the normal spaces,

NΣ “ NMΣ :“ ď
xPΣ

NxΣ,

which is called the normal bundle of Σ. Here, the vector spaces NxΣ and NyΣ are regarded as
disjoint sets for x ‰ y, thus NΣ is set-theoretically their disjoint union. But one can give NΣ

a natural topology that is quite different from the disjoint union topology, along with a smooth
manifold structure, such that the obvious inclusion

Σ ãÑ NΣ : x ÞÑ 0 P NxΣ
is a smooth embedding onto a smooth submanifold, known as the zero section of NΣ, and
contracting each of the vector spaces NxΣ to 0 P NxΣ defines a deformation retraction of NΣ to
its zero section. This is standard material in differential geometry, and we will not go into the
details here except to say that none of them are especially deep or surprising. Both the normal
bundle and the tangent bundle

TM :“ ď
xPM

TxM

are examples of vector bundles, a notion that can be defined equally well in the topological or
smooth categories. Here are the main definitions.

Definition 52.1. A (real) vector bundle π : E Ñ X of rank k ě 0 over a space X (called
the base of the bundle) consists of a space E (the total space of the bundle) together with a
surjective continuous map π : E Ñ X (the bundle projection) such that for each point x P X ,
the so-called fiber

Ex :“ π´1pxq Ă E

over x is endowed with the structure of a real k-dimensional vector space, and additionally, the
following local triviality condition is satisfied. Every point x P X is contained in a neighborhood
U Ă X on which there exists a local trivialization, meaning a homeomorphism

E|U :“ π´1pUq ΦÝÑ U ˆ Rk

such that for each y P U , Φ defines a vector space isomorphism from Ey to tyu ˆ Rk. The zero
section of π : E Ñ X is the image of the topological embedding

X ãÑ E : x ÞÑ 0 P Ex,
and we shall therefore often regard the base X as a subspace X Ă E by identifying it with the
zero section.

We call π : E Ñ X a smooth vector bundle if, in addition to the conditions above, X
and E are smooth manifolds, the bundle projection π : X Ñ E is a smooth map, and the local
trivialization Φ : E|U Ñ U ˆ Rk can be arranged to be smooth. In this situation, the manifold E
has dimension

dimE “ dimX ` k,

and it contains the zero section X Ă E and the fibers Ex Ă E as smooth submanifolds. If X has
nonempty boundary, then E has boundary BE “ E|BX :“ π´1pBXq.

It is sometimes useful to choose some auxiliary structure on a vector bundle π : E Ñ X , such
as a bundle metric x , y, meaning a continuous family of inner products defined on the fibers Ex.
Bundle metrics always exist if the space X is somewhat reasonable: one can construct them via
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partitions of unity, which exist if X is paracompact, and this is always true e.g. if X is a manifold.
Once a bundle metric has been chosen, one can define various subspaces of E such as the unit
disk bundle

DE :“ ď
xPX

DEx, where DEx :“  
v P Ex

ˇ̌ xv, vy ď 1
( – Dk,

and if k ě 1, the unit sphere bundle

SE :“ ď
xPX

SEx, where SEx :“  
v P Ex

ˇ̌ xv, vy “ 1
( – Sk´1.

The spaces DE and SE with their projections π to X are not vector bundles, but are examples of
slightly more general objects called fiber bundles, and just as we use the notation

E|U :“ π´1pUq “ ď
xPU

Ex Ă E

for subsets U Ă X , we will similarly use the notation

DE|U :“ E|U X DE and SE|U :“ E|U X SE.

In the situation that will be of greatest interest for us, E is a smooth vector bundle over a
closed smooth n-manifold X :“ M , and in this case, choosing the bundle metric to be smooth
makes DE into a compact smooth pn` kq-manifold with boundary

BpDEq “ SE,

so that we can speak of relative fundamental classes living in Hn`kpDE, SEq.
Remark 52.2. There is almost never a canonical choice of bundle metric, and the definitions

of DE and SE depend on this choice, but the following observation should reassure you that none
of the important conclusions we draw from these spaces will be depend on it. In the situation
described above, relative fundamental classes of DE live in Hn`kpDE, SEq, but if we identify the
base M with the zero section M Ă E, then thanks to homotopy invariance, the inclusion of pairs
pDE, SEq ãÑ pE,EzMq induces an isomorphism

H˚pDE, SEq –ÝÑ H˚pE |Mq,
thus identifying rDEs P Hn`kpDE, SEq with a class in Hn`kpE |Mq that will be independent of
choices. It would in fact be possible to formulate everything we have to say about vector bundles
and their (co)homology in these terms, without ever choosing a bundle metric. Working with disk
bundles and sphere bundles has some intuitive advantages, however, and we will therefore do so.

If we are to work with integer coefficients, we will of course require our vector bundles to be
oriented, which requires first clarifying what it means for a real k-dimensional vector space V to
be oriented.

Since vector spaces are also manifolds, we could define this in terms of the local homology
groups HkpV | v;Zq at points v P V , but there is a simpler way that is also standard in differential
geometry. There, one defines an orientation of the vector space V to be an equivalence class of
ordered bases pv1, . . . , vkq of V , where two such bases are considered equivalent if and only if there
exists a continuous deformation of one to the other through a family of ordered bases. The bases in
the chosen equivalence class are then called positively oriented bases, and the others are called
negatively oriented. An ordered basis is equivalent to a vector space isomorphism V – Rk, so
another way of saying this is that an orientation is a deformation class of isomorphisms to Rk. If
we take V to be Rk itself, then such isomorhisms are literally elements of the general linear group
GLpk,Rq, and an orientation is thus equivalent to a choice of connected component of GLpk,Rq.
This group has two components, distinguished by the signs of determinants of matrices. We
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conclude that every finite-dimensional real vector space admits exactly two choices of orientation
in this sense. To see that this is equivalent to the usual definition we use on topological manifolds,
observe that Rk itself has canonical orientations in both senses: there is the equivalence class
of the standard basis, and there are also standard conventions for fixing a canonical generator
of HkpRk | v;Zq – HkpDk, Sk´1;Zq – rHk´1pSk´1;Zq – Z. A deformation class of isomorphisms
φ : Rk Ñ V then determines isomorphisms φ˚ : HkpRk | v;Zq Ñ HkpV |φpvq;Zq that determine an
orientation of V as a topological k-manifold in terms of the canonical orientation of Rk. For this
reason, the two notions we’ve defined for orientations of real finite-dimensional vector spaces can
be used interchangeably.

Definition 52.3. An orientation of the vector bundle π : E Ñ X is a choice of orientation
of the fibers Ex for each x P X such that for any local trivialization Φ : E|U Ñ U ˆ Rk over a
path-connected region U Ă X , the resulting vector space isomorphisms Ey Ñ tyu ˆ Rk for y P U

are all either orientation preserving or orientation reversing.

It is not difficult to show that if E Ñ X :“ M is a smooth and oriented vector bundle
over a smooth oriented manifold M , then the manifold E is also orientable. We will need to
fix a convention for defining this orientation of E, and to be consistent about it. Recall from
Exercise 50.4 that for any pair of oriented manifolds M and N , the product M ˆ N inherits a
natural orientation that can be defined via the homological cross product. In the smooth category,
there are also easier ways to define product orientations, because orientations ofM and N are then
equivalent to orientations of their tangent bundles TM Ñ M and TN Ñ N , and one can orient
the tangent space

Tpx,yqpM ˆNq – TxM ‘ TyN

at each point px, yq PM ˆN by insisting that for any pair of positively-oriented bases pv1, . . . , vmq
of TxM and pw1, . . . , wnq of TyN , the basis pv1, . . . , vm, w1, . . . , wnq of Tpx,yqpM ˆ Nq should be
positively oriented. Whether you prefer this definition or the equivalent one in Exercise 50.4, we
can use it as follows to define orientations of total spaces of vector bundles in terms of product
orientations:

Definition 52.4. Assume π : E Ñ M is a smooth oriented vector bundle over an oriented
manifoldM . We then endow the total space E with the unique orientation such that for any smooth
local trivialization Φ|U : E|U Ñ U ˆ Rk over an open subset U Ă M for which the isomorphisms
Ey

ΦÝÑ tyu ˆ Rk are all orientation preserving, the diffeomorphism

E|U –ÝÑ Rk ˆ U

defined by composing Φ with the obvious bijection U ˆ Rk Ñ Rk ˆ U is orientation preserving.
Here, Rk ˆ U is endowed with the product orientation as in Exercise 50.4, determined by the
canonical orientation of Rk and the given orientation of U ĂM .

Remark 52.5. The reversal of the order of U and Rk in Definition 52.4 is slightly unfortunate,
but it is really just an artefact of the arbitrary convention to define local trivializations as maps
to U ˆ Rk rather than Rk ˆ U . We will find that this is the most convenient convention to use if
we want to avoid unwanted signs in statements of the main results in intersection theory.

We can now turn the vague intuition at the beginning of this section into a precise statement
of a theorem:

Theorem 52.6 (tubular neighborhood theorem). Assume M is a smooth n-manifold without
boundary and Σ Ă M is a smooth k-dimensional submanifold without boundary, with normal
bundle π : NΣ Ñ Σ. Then there exists a diffeomorphism of the total space of NΣ onto an open
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neighborhood of Σ Ă M that restricts to the canonical identification of the zero section with Σ.
Moreover, if M and Σ both carry orientations, then the normal bundle π : NΣ Ñ Σ inherits a
unique orientation such that the diffeomorphism of NΣ with a neighborhood of Σ ĂM is orientation
preserving.

Proof sketch. This is a standard construction in differential geometry, so we provide a brief
sketch using a few ideas from that subject. As auxiliary data, one can choose a Riemannian metric
on M and use it to identify each fiber NxΣ of the normal bundle with the orthogonal complement
TxΣ

K Ă TxM of TxΣ Ă TxM , thus giving an isomorphism of vector bundles NΣ – TΣK Ă TM |Σ.
The metric also defines the notions of geodesics and the exponential map

TM Ą O
expÝÑM,

which is defined on an open neighborhoodO Ă TM of the zero section such that for each p PM and
X P TpM , γptq :“ expptXq is the unique geodesic in M satisfying the initial conditions γp0q “ p

and 9γp0q “ X . Restricting exp to the intersection of TΣK – NΣ with O then gives a smooth
map from some neighborhood of the zero section in NΣ to M that restricts to the zero section
as the identity map Σ Ñ Σ Ă M , and its derivative at each point along the zero section is an
isomorphism. The inverse function theorem then implies that this map sends a neighborhood of
the zero section diffeomorphically onto a neighborhood of Σ Ă M . The result now follows by
identifying neighborhoods of 0 in each fiber NxM diffeomorphically with the whole fiber. �

Remark 52.7. With a little care, the tubular neighborhood theorem can easily be extended to
manifolds with boundary: this works in particuar if Σ intersects BM transversely, with BΣ “ ΣX
BM , in which case the normal bundle NΣ restricts to BΣ as the normal bundle of the submanifold
BΣ Ă BM . The notion of transversality needed for this will be explained further in the next lecture.

52.3. The Thom isomorphism theorem. The main results about the intersection product
are based on two fundamental ingredients: one is Poincaré duality, and the other is some knowledge
of the cohomology of vector bundles, since by the tubular neighborhood theorem, these serve as
local models for neighborhoods of smooth submanifolds. For any vector bundle, the projection

E
πÝÑ X

is a homotopy equivalence, making H˚pEq isomorphic to H˚pXq. One obtains a more interesting
relation between E and X by identifying X with the zero section of E and looking at the restricted
cohomology H˚pE |Xq. Choosing a bundle metric in order to define the unit disk bundle DE and
sphere bundle SE with fibers SEx “ BpDExq, we recall from Remark 52.2 that the inclusion of
pairs pDE, SEq ãÑ pE,EzXq induces an isomorphism H˚pE |Xq – H˚pDE, SEq. The following
theorem could therefore be stated as a result about H˚pE |Xq without needing to choose a bundle
metric, but it looks a bit prettier as a result about H˚pDE, SEq, mainly because for each x P X ,
the fiber DEx – Dk has a well-defined relative fundamental class

rDExs P HkpDEx, SExq,
whose image under the homomorphism induced by the inclusion of pairs pDEx, SExq ãÑ pDE, SEq
we shall denote by

rDExsDE P HkpDE, SEq.
Theorem 52.8 (Thom isomorphism theorem). Assume π : E Ñ X is an oriented vector

bundle of rank k P N over a CW-complex X and is endowed with a bundle metric, which defines
the associated unit disk bundle DE and sphere bundle SE. Then:
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(1) There exists a unique relative cohomology class τpEq P HkpDE, SEq, called the Thom
class of the bundle π : E Ñ X, characterized by the condition that

xτpEq, rDExsDEy “ 1 for every x P X.
(2) For every m ě 0, the relative cup product pairing

HmpDEq bHkpDE, SEq YÝÑ Hm`kpDE, SEq
determines an isomorphism

HmpXq –ÝÑ Hm`kpDE, SEq : ϕ ÞÑ π˚ϕY τpEq,
where π˚ : HmpXq Ñ HmpDEq denotes the homomorphism induced by DE

πÝÑ X.

Remark 52.9. The Thom isomorphism theorem can be proved under somewhat more general
assumptions, as found e.g. in [tD08, §17.9]. In particular, one can allow X to be something more
general than a CW-complex, but keeping this assumption makes the proof especially simple. In
keeping with the convention stated at the beginning of this lecture, the assumption that E is
oriented can be dropped at the cost of using cohomology with coefficients in Z2 instead of Z.
More generally, one can define a notion of R-orientability for vector bundles with respect to an
arbitrary commutative ring R, and prove that any R-orientation of π : E Ñ X gives rise to a
unique Thom class τpEq P HkpDE, SE;Rq satisfying xτpEq, rDExsDEy “ 1 for every x P X , where
the relative fundamental classes rDExs P HkpDEx, SEx;Rq are determined by a continuous family
of R-orientations of the fibers.

The application to intersection theory in the next lecture will not require the full strength
of Theorem 52.8, but really only the first statement, which serves simultaneously as a definition
of the Thom class τpEq. The proof given below will also establish that there is an isomorphism
HmpXq – Hk`mpDE, SEq, but not that it takes the specific form stated in the theorem—in the
case where X is a closed oriented manifold, the latter can be deduced via Poincaré duality from
Exercise 52.1, using an important fact about Thom classes that will be proved in the next lecture.
In the main application we need, X will be a smooth manifold and therefore triangulable, and we
can therefore get away with assuming in our proof that X is a polyhedron; this assumption could
be relaxed by using a bit more knowledge of the general theory of bundles.

Proof of Theorem 52.8(1), assuming X is triangulable. We are interested in the co-
homology of the pair pDE, SEq in positive degrees, and since this is a “good” pair in the sense of
Definition 34.3, we are free to replace its relative cohomology with the absolute cohomology of the
quotient space,

ThpEq :“ DE
L
SE,

known as the Thom space. Topologically, ThpEq is homeomorphic to the one-point compactifi-
cation of E, and you can picture it as a family of k-spheres DEx

L
SEx – Dk{Sk´1 – Sk that all

intersect each other at exactly one point

8 P ThpEq,
namely the point obtained by collapsing SE Ă DE. The main idea behind the isomorphism
HmpXq – Hm`kpThpEqq – Hm`kpDE, SEq is then to construct out of a cell decomposition of X
a closely related cell decomposition of ThpEq, known as the Thom complex. Doing this with
an arbitrary cell decomposition of X requires the knowledge that vector bundles over disks Dn

are always globally trivializable, which is true but not completely trivial to prove, so we shall now
make our lives slightly easier by assuming that X comes with a triangulation. After subdivision, we
can then assume without loss of generality that every simplex σ Ă X in the triangulation is small
enough to be contained in a region U Ă X on which the disk bundle admits a local trivialization



52. THE THOM CLASS 465

DE|U – U ˆ Dk, and since π : E Ñ X is assumed oriented, we are also free to assume that
the resulting isomorphisms DEx – Dk for points x P σ are all orientation preserving. With this
assumption in place, we now construct a cell decomposition of ThpEq inductively as follows:

‚ The 0-skeleton of ThpEq consists of the single point 8 P ThpEq.
‚ Each 0-simplex x P X gives rise to a k-cell in ThpEq, namely the fiber DEx, which is
attached by collapsing its boundary to the 0-skeleton8 P ThpEq. The union of8 with all
the k-cells corresponding in this way to 0-simplices of X forms the k-skeleton of ThpEq.

‚ For each 1-simplex σ Ă X , we can use a local trivialization as indicated above to identify
DE|σ homeomorphically with σˆDk and thus regard DE|σ as the closure of a pk`1q-cell,
attached via a map BpσˆDkq Ñ ThpEq that sends σˆSk´1 to 8 and identifies BσˆDk

with a union of k-cells that were constructed in the previous step. This completes the
construction of the pk ` 1q-skeleton of ThpEq.

‚ Continuing inductively in this manner, everym-simplex σ Ă X gives rise to an pm`kq-cell
in ThpEq whose closure is the region DE|σ.

In light of the obvious bijective correspondence between the simplices in X and cells in ThpEq, one
obtains isomorphisms

C∆
mpXq –ÝÑ CCW

m`kpThpEqq
for every m ě 0, and one can check that these maps satisfy the chain map relation. A key detail
here is that the characteristic maps of the cells in ThpEq are defined using orientation-preserving
homeomorphisms DEx – Dk; if orientations were disregarded, then one would find unwanted signs
polluting the chain map relation, though this problem goes away of course if one uses coefficients
in Z2 instead of Z. Dualizing the chain map C∆˚ pXq Ñ CCW˚`kpThpEqq then produces a similar
isomorphism of cochain complexes, giving rise to isomorphisms

HmpXq Hm
∆ pXq Hm`k

CW pThpEqq Hm`kpDE, SEq–

–
Φ

– –

for every m ě 0.
For any simplicial 0-cocycle α P C0

∆pXq and any 0-simplex x P X in the given triangulation,
the construction of the isomorphism gives rise to the relation

xΦprαsq, rDExsDEy “ xrαs, rxsy,
where the evaluation on the right hand side takes place in the simplicial (co)homology of X , while
on the left hand side, it can be understood as the evaluation of a cellular k-cochain on the cellular
k-chain in ThpEq corresponding to x. There is exactly one choice of α that makes this evaluation
equal to 1 for every 0-simplex x P X , and we therefore define the Thom class in terms of the unit
1 P H0pXq, hence

τpEq :“ Φp1q P HkpDE, SEq.
Since every point in X is connected by a continuous path to a 0-simplex of the triangulation,
homotopy invariance then implies that xτpEq, rDExsDEy “ 1 also holds for every point x P X . �

52.4. Exercises.

Exercise 52.1. For the unit disk bundle DE
πÝÑ X associated to an oriented vector bundle

π : E Ñ X of rank k over a CW-complex, Theorem 52.8 states an explicit formula for the Thom
isomorphism Φ : HmpXq Ñ Hm`kpDE, SEq in terms of the Thom class τpEq P HkpDE, SEq, and
the relative cup product pairing HmpDEq bHkpDE, SEq Ñ Hm`kpDE, SEq, namely

Φpαq :“ π˚αY τpEq.
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We will show in the next lecture that in the special case where X :“ M is a closed oriented
n-manifold with fundamental class rM s P HnpMq and duality isomorphisms PDM : HℓpMq Ñ
Hn´ℓpMq, the Thom class satisfies

PDDEpτpEqq “ i˚rM s,
where PDDE denotes the relative duality isomorphism HkpDE, SEq Ñ HnpDEq and i : M ãÑ DE

is the inclusion of the zero section. Taking this as a black box, prove the formula

PDDE ˝Φ “ i˚ ˝ PDM ,
and conclude that Φ is an isomorphism.

53. The intersection product

As in the previous lecture, we continue now under the assumption that Z is the coefficient
group for homology and cohomology, with the understanding that Z2 coefficients can also be used
if we wish to drop any assumptions about orientations. When orientation assumptions are in place,
the universal coefficient theorem also makes it possible to replace Z with any commutative ring R
with unit.

The intersection product is defined on any closed oriented n-manifold M as a pairing

Hn´kpMq bHn´ℓpMq ¨ÝÑ Hn´pk`ℓqpMq : AbB ÞÑ A ¨B
that is Poincaré dual to the cup product, i.e. it is uniquely determined by the formula

PDpαq ¨ PDpβq “ PDpβ Y αq for all α P HkpMq, β P HℓpMq.
The reversal of the order of α and β in this definition looks unnatural at first glance, but should be
unsurprising if you keep in mind that the passage from homology to cohomology involves a process
of dualization, which automatically reverses the orders of compositions.

Our main goal in this lecture is to state and prove a precise version of the formula

(53.1) rAs ¨ rBs “ rAXBs
for suitable closed oriented submanifolds A,B Ă M . The precise statement will appear in §53.3
after clarifying in §53.2 the required transversality assumptions, which will ensure among other
things that AXB ĂM is a submanifold with codimpAXBq “ codimpAq ` codimpBq. In the case
dimA` dimB “ n, this makes AXB a closed oriented 0-manifold, meaning a finite set of points
with signs attached, and counting these points with signs then produces the intersection form of
the Poincaré dual cohomology classes: in precise terms, if we assume PDpαq “ rAs P Hn´kpMq
and PDpβq “ rBs P HkpMq, then (53.1) and the relation pϕY ψq X c “ ϕX pψ X cq imply

x1, rAXBsy “ x1, pβ Y αq X rM sy “ xβ Y α, rM sy
“ Qpβ, αq “ p´1qkpn´kqQpα, βq
“ xβ, rAsy “ p´1qkpn´kqxα, rBsy.

(53.2)

The formula (53.1) will be deduced from a more fundamental result that relates pullbacks of
cohomology classes to preimages of submanifolds: roughly speaking, we will show that for smooth
maps f : A Ñ M and smooth submanifolds B Ă M satisfying suitable conditions such that
f´1pBq Ă A is a smooth submanifold with the same codimension as B ĂM , one has

PDpβq “ rBs P H˚pMq ùñ PDpf˚βq “ rf´1pBqs P H˚pAq.
This gives a transparent geometric interpretation of the Poincaré duality isomorphism: it identifies
cohomology classes with homology classes such that pullbacks become preimages.
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Notation. Here are some useful notational conventions to be adopted throughout this lecture.
There will often be multiple compact manifolds in the picture, each having its own Poincaré duality
isomorphism, so it will be useful to specify which is which by writing

PDM : HkpMq Ñ Hn´kpMq,
rather than just “PD”. In some cases, M will also have nonempty boundary, and we recall from
Exercise 51.7 that there are two versions of the duality isomorphism for this situation: both will
be denoted by

PDM : HkpM, BMq Ñ Hn´kpMq and PDM : HkpMq Ñ Hn´kpM, BMq.
You will always be able to infer which of these two is meant by observing whether the cohomology
class fed into it is an absolute class or a relative class.

We will reserve the notation rM s P HnpM, BMq for fundamental classes of compact mani-
folds, thus for a closed k-dimensional submanifold A Ă M , rAs P HkpAq will be the fundamental
class of A, while the class that A represents in M , i.e. the one obtained by feeding rAs into the
homomorphism induced by the inclusion i : A ãÑM , will be denoted by

rAsM :“ i˚rAs P HkpMq.
Under these conventions, the main result about the intersection product can be written in the form

PDM pβ Y αq “ rAXBsM where PDM pαq “ rAsM and PDM pβq “ rBsM .
The notation for classes represented by submanifolds should not be confused with the notation

rM sK :“ J´1
K psq P HnpM̊ |Kq – HnpM |Kq

for fundamental classes restricted to compact subsets K Ă M̊ of the interior, where s P ΓpΘq is the
orientation corresponding to the fundamental class of M . This notation was used in Lecture 51,
and will occasionally still be useful in the following. The context in Lecture 51 was slightly different,
because M was assumed to be a (possibly noncompact) manifold without boundary, but if M is
compact with boundary and K lies in its interior, then we are free to regard rM sK as an element
of HnpM |Kq because the inclusion of pairs pM̊, M̊zKq ãÑ pM,MzKq is a homotopy equivalence.
In terms of the inclusion of pairs jK : pM, BMq ãÑ pM,MzKq, one could equivalently write

rM sK “ jK˚ rM s P HnpM |Kq.
53.1. The Poincaré dual of a Thom class. The following can be interpreted as a localized

special case of the formula rAs ¨ rBs “ rAXBs, and as such, it also serves as one of the main steps
in the proof of the general formula. We consider a smooth oriented vector bundle π : E Ñ M

of rank k over a closed, smooth, oriented n-manifold M . The motivation for this setup comes
from the tubular neighborhood theorem: a neighborhood of a smooth submanifold can always be
identified with a neighborhood of the zero section in the total space of a vector bundle, namely the
normal bundle of the submanifold. In the present situation, we are thus identifying M with the
zero section M Ă E and regarding it as an n-dimensional submanifold of the pn` kq-dimensional
manifold E.

Choose a bundle metric on π : E Ñ M in order to define the unit disk bundle DE, which is
a compact oriented pn` kq-manifold whose boundary is the unit sphere bundle BpDEq “ SE. Let
us pick any point x P M and count the intersections of the zero section M Ă DE with the fiber
DEx Ă DE, which has complementary dimension. The answer is obvious: they intersect precisely
at the point x P M Ă DE, and nowhere else. Since DE has nonempty boundary, this situation
does not fit precisely into the setup for the formula (53.1), though we will discuss in §53.6 relative
versions of the intersection product that can accommodate this situation. In any case, if there is a
relative version of the correspondence in (53.2) between the intersection product on homology and
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the intersection form on cohomology, then for the relative cohomology class τ P HkpDE, SEq that
is Poincaré dual to the zero section rM sDE P HnpDEq, one should expect to find

1 “ x1, rDEx XM sy “ xτ, rDExsDEy,
where rDExsDE P HkpDE, SEq is the image of the relative fundamental class of the fiber DEx under
the map induced by the inclusion of pairs pDEx, SExq ãÑ pDE, SEq. If this is true for every point
x PM , then according to Theorem 52.8, τ is the Thom class of E; in other words, the cohomology
class Poincaré dual to the zero section is the Thom class. That is what we shall now prove.

We can allow a slightly more general setup than what was considered above, in which M is
a compact oriented n-manifold that may also have nonempty boundary, and thus has a relative
fundamental class pM, BMq. In this situation, DE is still a compact pn`kq-manifold with boundary,
but its boundary is a union of two pieces

BpDEq “ SE Y DE|BM .
There is now a relative cap product pairing

HkpDE, SEq bHn`kpDE, BpDEqq XÝÑ HnpDE,DE|BM q,
and we let

rM sDE P HnpDE,DE|BM q
denote the image of rM s P HnpM, BMq under the homomorphism induced by the inclusion of the
zero section, regarded as a map of pairs pM, BMq ãÑ pDE,DE|BM q.

Theorem 53.1. In the setting described above,

τpEq X rDEs “ rM sDE.
Corollary 53.2. If M is closed, then the Thom class of π : E Ñ M corresponds under the

Poincaré duality isomorphism PD : HkpDE, SEq Ñ HnpDEq to the homology class represented by
the zero section. �

Remark 53.3. Combining Corollary 53.2 with Exercise 52.1 proves the portion of the Thom
isomorphism theorem (Theorem 52.8) that remained unproved in the previous lecture, in the special
case where the base of the bundle is a closed manifold.

The main step in the proof of Theorem 53.1 is to prove by explicit computation that it holds
in the special case of a trivial bundle over a disk.

Lemma 53.4. Theorem 53.1 holds in the special case of a trivial disk bundle DE :“ DkˆDn
πÝÑ

Dn : pv, xq ÞÑ x.

Proof. In the situation at hand, we have

SE “ Sk´1 ˆ Dn, DE|BDn “ Dk ˆ Sn´1, and DEx “ Dk ˆ txu
for each x P Dn. By Exercise 50.4, rDEs “ rDks ˆ rDns P Hn`kpDk ˆ Dn, BpDk ˆ Dnqq, and one
can check that τpEq P HkpDk ˆ Dn, Sk´1 ˆ Dnq and rDnsDE P HnpDk ˆ Dn,Dk ˆ Sn´1q are also
relative cross products, namely

τpEq “ αˆ 1 and rDnsDE “ r˚sDk ˆ rDns,
where 1 P H0pDnq is the unit, r˚sDk P H0pDkq is the homology class represented by a single
point, and α P HkpDk, Sk´1q – HompHkpDk, Sk´1q,Zq is the unique class such that xα, rDksy “ 1.
Indeed, for each x P Dn, the class rDExsDE P HkpDk ˆ Dn, Sk´1 ˆ Dnq represented by the fiber
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DEx “ Dk ˆ txu is rDks ˆ r˚sDn, where in this case r˚sDn P H0pDnq is again the class represented
by a single point, thus

xαˆ 1, rDks ˆ r˚sy “ xα, rDksyx1, r˚sDny “ 1,

verifying the claim that αˆ 1 is the Thom class. The identity in Corollary 48.7 now gives

τpEq X rDEs “ pαˆ 1q X `rDks ˆ rDns˘ “ `
αX rDks˘ˆ p1X rDnsq “ r˚sDk ˆ rDns “ rDnsDE ,

where the class αX rDks “ r˚sDk P H0pDkq is characterized by the property

x1, αX rDksy “ xα, rDksy “ 1.

�

Proof of Theorem 53.1. The inclusion pM, BMq ãÑ pDE,DE|BM q is a homotopy equiva-
lence of pairs and has the projection π : pDE,DE|BM q Ñ pM, BMq as a homotopy inverse. The goal
is thus to show that π˚pτpEq X rDEsq is the fundamental class rM s P HnpM, BMq, or equivalently,
that for each x P M̊ , the image in HnpM |xq of this class under the map induced by the inclusion
of pairs pM, BMq ãÑ pM,Mztxuq is the local orientation rM sx given by the orientation of M .
Choose a closed disk-like neighborhood U Ă M̊ of x on which there exists a local trivialization,
thus identifying E|U with a product bundle as in Lemma 53.4. Fix r P p0, 1q and define the subsets

DrE :“ ď
xPM

DrEx where DrEx :“  
v P DEx

ˇ̌ xv, vy ď r2
(
, and SrE :“ DEzDrE.

There is then a relative cap product of the form

HkpDE |DrEq bHn`kpDE |DrExq XÝÑ HnpDE |DExq,
giving us the middle row of the following diagram

HkpDE, SEq bHn`kpDE, BpDEqq HnpDE,DE|BM q HnpM, BMq

HkpDE |DrEq bHn`kpDE |DrExq HnpDE |DExq HnpM |xq

HkpDE|U , SE|Uq bHn`kpDE|U , BpDE|Uqq HnpDE|U ,DE|BUq HnpU , BUq

X

i˚ i˚

π˚
–

i˚–

j˚

X π˚
–

j˚–
X

j˚–
π˚
–

–

Here, i : DE Ñ DE is the identity map, which can be interpreted in various ways as an inclusion
of pairs that induces vertical arrows between the top two rows of the diagram, and the inclusion
j : DE|U ãÑ DE similar induces arrows between the bottom two rows. The maps on the right hand
side are likewise induced by obvious inclusions of pairs, and we observe that some of these maps are
isomorphisms due to homotopy invariance and/or excision. The meaning of the arrows in opposing
directions between the tensor products is the usual naturality relation for cap products, e.g. the
upper left square encodes the fact that for any τ P HkpDE |DrEq and A P Hn`kpDE, BpDEqq,
pushing forward a cap product from the top row gives a cap product from the middle row,

i˚pi˚τ XAq “ τ X i˚A.
By Lemma 53.4, plugging τpE|U q b rDE|Us into the bottom left corner of this diagram and then
following the bottom row to the right leads to rUs P HnpU , BUq, so that following it one step upward
then produces rM sx P HnpM |xq. The map i˚ in the upper left is an isomorphism, so there is a
unique class τ P HkpDE |DrEq such that i˚τ is the Thom class τpEq P HkpDE |SEq, and one
then deduces from the defining property of Thom classes that j˚τ is similarly the Thom class of
the restricted bundle E|U Ñ U . In the same manner, the defining property of fundamental classes
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implies that rDE|U s P Hn`kpDE|U , BpDE|Uqq and rDEs P Hn`kpDE, BpDEqq have the same image
in Hn`kpDE |DrExq, namely the restricted fundamental class rDEsDrEx

. One deduces from these
facts and the commutativity of the diagram that if τpEq b rDEs is plugged in at the upper left
corner, following it to the right and then down to HnpM |xq leads to rM sx. �

53.2. Transversality. We now discuss the technical conditions needed to ensure that in-
tersections of submanifolds are submanifolds of the expected dimension. It would be possible in
theory to formulate the entirety of this discussion in terms of topological manifolds, without men-
tioning smoothness, but working in the smooth category provides substantial advantages due to
the implicit function theorem, and in any case, the most important applications of the intersection
product are in the theory of smooth manifolds.

For a smooth manifold M , we denote its tangent space at a point p P M by TpM , and for a
smooth map f : M Ñ N , its derivative at a point p P M is a linear map TpM Ñ TfppqN that we
shall denote by

TpM
TpfÝÑ TfppqN.

The resulting map Tf : TM Ñ TN between tangent bundles is also called the tangent map of f .

Definition 53.5. Suppose f : A Ñ M is a smooth map between smooth manifolds and
B ĂM is a smooth submanifold. We say that f is transverse to B, written

f&B,

if for every x P f´1pBq and y :“ fpxq P B,
TyM “ impTxfq ` TyB.

If A ĂM is another smooth submanifold, we say that it is transverse to B and write

A&B

if the inclusion map A ãÑM is transverse to B, which means that for every point y P AXB,

TyM “ TyA` TyB.

The transversality condition f&B has the following important consequence, due to the implicit
function theorem. Assume none of the manifolds in the picture have boundary. Then locally,
smooth submanifolds B Ă M can always be presented as regular level sets g´1pqq of smooth
functions g : M Ñ Rk, where k :“ codimpBq, and f&B then implies that q is also a regular value
of the function g ˝ f , implying:

Theorem 53.6 (via the implicit function theorem). Assume f : A Ñ M is a smooth map
transverse to the submanifold B ĂM , where the manifolds A, M and B all have empty boundary.
Then f´1pBq is a smooth submanifold of A whose codimension matches the codimension of B inM .
In particular, if A,B Ă M are two submanifolds with A&B, then A X B Ă M is a submanifold
with

codimpAXBq “ codimpAq ` codimpBq.
�

We should also talk about orientations. The key observation here is that if f&B, then for
every x P f´1pBq Ă A, the tangent map Txf : TxA Ñ TfpxqM descends to an isomorphism of
normal spaces

NA
x pf´1pBqq –ÝÑ NM

fpxqB,
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thus producing a commutative diagram

NApf´1pBqq NMB

A M

Tf

π π

f

in which the top arrow is a family of vector space isomorphisms parametrized by x P A. If M and
B both carry orientations, then the total space of the normal bundle NMB inherits an orientation
via its identification with a neighborhood of B Ă M from the tubular neighborhood of theorem.
This in turn determines an orientation of the bundle NMB Ñ B itself via Definition 52.4. Using
the isomorphisms NA

x pf´1pBqq – NM
fpxqB, this determines an orientation of the normal bundle

NApf´1pBqq over f´1pBq, and using Definition 52.4 again, there is a unique orientation of f´1pBq
that is compatible with this orientation of its normal bundle and the given orientation of A. This
will be our convention for orienting preimages f´1pBq when f&B, and in the special case where
f is the inclusion of a submanifold A ãÑ M , this also determines an orientation of A X B. Note
that if we reverse the order and write B X A, then the implication is that the orientation may be
different, because we are now orienting AXB via its normal bundle as a submanifold of B instead
of A. One can check that the orientations of AXB and BXA differ if and only if the codimensions
of A and B are both odd.

53.3. Main results. Here is the precise version of the formula for rAs¨rBs that was advertised.
Theorem 53.7. Assume M is a closed oriented n-manifold, A,B Ă M are closed oriented

submanifolds such that A&B, and the closed submanifold A X B is endowed with the induced
orientation as explained in the previous section. Then

rAsM ¨ rBsM “ rAXBsM .
We shall deduce this from the following result, which is more fundamental.

Theorem 53.8. Assume M is a closed oriented n-manifold, B Ă M is a closed oriented
submanifold, A is a closed manifold, f : A Ñ M is a smooth map transverse to B, and the
submanifold f´1pBq Ă A is endowed with the induced orientation as explained in the previous
section. Then if β P H˚pMq is the class Poincaré dual to rBsM P H˚pMq, its pullback f˚β P H˚pAq
is Poincaré dual to rf´1pBqsA P H˚pAq.

Let us derive a generalization of Theorem 53.7 from this result. In the situation of Theo-
rem 53.8, suppose α, β P H˚pMq satisfy

PDM pαq “ f˚rAs and PDM pβq “ rBsM .
Using the associativity and naturality of the cap product, the theorem then implies

f˚rAs ¨ rBsM “ PDM pβ Y αq “ pβ Y αq X rM s “ β X pαX rM sq “ β X f˚rAs
“ f˚ pf˚β X rAsq “ f˚ PDApf˚βq “ f˚rf´1pBqsA.

Corollary 53.9. In the setting of Theorem 53.8,

f˚rAs ¨ rBs “ f˚rf´1pBqsA.
�

Theorem 53.7 is the special case of this corollary where f : AÑM is the inclusion of a smooth
submanifold.
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Figure 28. The surface and 1-dimensional submanifolds discussed in Example 53.10.

53.4. Applications. In many situations of geometric interest, the intersection product pro-
vides an easy criterion for recognizing when a homology class is nontrivial.

Example 53.10. Figure 28 shows a closed, connected and orientable surface Σ with four
oriented 1-dimensional submanifolds α, β, γ, δ Ă Σ, or equivalently, loops S1 ãÑ Σ. Since α bounds
a disk, it is clearly nullhomotopic, and therefore also nullhomologous, i.e. rαs “ 0 P H1pΣq. One
can show by computations of π1pΣq that β is not nullhomotopic, but it clearly is nullhomologous:
this follows from the observation that β splits Σ into two connected components, a pair of compact
oriented surfaces Σ˘ with boundary BΣ˘ “ β such that Σ “ Σ` Yβ Σ´. If we factor the inclusion
i : β ãÑ Σ through the inclusions β ãÑ Σ` and Σ` ãÑ Σ, we notice that the induced map
H1pβq Ñ H1pΣq is zero because the map H1pβq Ñ H1pΣ`q is zero (see Exercise 50.2),

H1pβq H1pΣ`q H1pΣq,0

i˚

hence i˚rβs “ 0. The case of γ Ă Σ is less obvious: it does not split Σ in two pieces, as Σzγ is
connected, thus it is hard to imagine a 2-chain in Σ that would have γ as its boundary, but this
on its own is not a proof that no such chain exists. The intersection product, however, provides a
clear criterion showing that rγs P H1pΣq cannot be zero: the reason is that there is another loop,
δ Ă Σ, which intersects γ exactly once transversely, hence their intersection product must satisfy

rγs ¨ rδs “ ˘1 P Z – H0pΣq.
This proves that both of the classes rγs, rδs P H1pΣq are not only nontrivial, but also primitive in
homology with integer coefficients.

The nonseparating loops in Example 53.10 admit the following interesting generalization. If
M is an n-manifold, a submanifold Σ ĂM is called a hypersurface if dimΣ “ n´ 1. Assuming
M is connected, we say that Σ ĂM separates M if MzΣ is disconnected.

Theorem 53.11. SupposeM is a closed, connected and oriented smooth n-manifold containing
a closed, connected and oriented smooth hypersurface Σ Ă M . Then the homology class rΣs P
Hn´1pM ;Zq is trivial if and only if Σ separates M .

Proof. If Σ separatesM then we can write M “M`YΣM´ where M˘ are two compact R-
oriented n-manifolds with boundary BM˘ “ Σ, so the same argument as in Example 53.10 implies
that rΣs “ 0. On the other hand, if Σ does not separate M , then MzΣ is connected, so we can fix
a point z P Σ and two nearby points z˘ PMzΣ that lie in a common Euclidean neighborhood with
z identifying Σ with Rn´1 ˆ t0u Ă Rn,83 but on opposite sides of Σ, i.e. the nth coordinates of z`

83One of the standard ways of characterizing a smooth submanifold Σ Ă M is through the existence of slice
charts: for every x P Σ, some neighborhood U Ă M of x admits a smooth chart ϕ : U

–Ñ ϕpUq openĂ Rn that
identifies a neighborhood of x in Σ with an open subset of the linear subspace Rk ˆ t0u Ă Rn for k “ dimΣ.
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and z´ have opposite signs. We can then find a smooth path γ joining z` to z´ in MzΣ, and then
complete it with a path in the Euclidean neighborhood that passes through Σ once, producing (as
in Figure 28) a smooth loop γ : S1 ÑM that intersects Σ exactly once and transversely. It follows
that

x1, γ˚rS1s ¨ rΣsy “ ˘1,
hence rΣs P Hn´1pMq and γ˚rS1s P H1pMq are both nontrivial. �

Remark 53.12. If one drops all orientation assumptions from Theorem 53.11, it remains valid
as a statement about homology with Z2 coefficients. This observation is relevant in the corollary
below.

If you’ve been wondering why non-orientable surfaces like RP2 and the Klein bottle cannot be
embedded in R3, we can now answer this question. If you can embed them in R3, then you can also
embed them in its one-point compactification, S3, which is prevented by the following corollary:

Corollary 53.13. For every n ě 2, closed smooth hypersurfaces in Sn are always orientable.

Proof. Suppose to the contrary that Σ Ă Sn is a closed non-orientable smooth hypersurface,
and without loss of generality assume Σ is connected. Then one can find (as in the proof of
Theorem 53.11) a path in SnzΣ that stays within a small neighborhood of Σ but starts and ends
on opposite sides of it, thus giving rise to a loop γ : S1 Ñ Sn that intersects Σ once transversely.
Using Z2 coefficients (since Σ is Z2-orientable), the intersection number of Σ with γ is then

x1, γ˚rS1s ¨ rΣsy “ 1 P Z2,

implying rΣs ‰ 0 P Hn´1pSn;Z2q and γ˚rS1s ‰ 0 P H1pSn;Z2q. This contradicts the computation
of H˚pSn;Z2q. �

Remark 53.14. The fact that Sn is orientable is not the decisive factor in Corollary 53.13,
as there is no obstruction in general to embedding closed non-orientable hypersurfaces into closed
orientable manifolds. An easy example is RP2 ãÑ RP3.

Another interesting application of the intersection product is explained in Exercise 53.2 at the
end of this lecture: it is a quantitative version of the Lefschetz fixed point theorem that applies to
smooth maps on a closed manifold, and interprets the Lefschetz number as an algebraic count of
fixed points.

53.5. Pullbacks and preimages. We now prove Theorem 53.8. In the setting of the theo-
rem, denote

Q :“ f´1pBq Ă A,

which is necessarily an oriented submanifold with

k :“ codimpQq “ codimpBq,
and let

β P HkpMq, γ P HkpAq
denote the cohomology classes satisfying PDM pβq “ rBsM and PDApγq “ rQsA. Our goal is to
prove f˚β “ γ.

Consider the inclusions of pairs

pM,Hq pM,MzBq pDNMB,SNMBq,i j

where the second inclusion arises from the tubular neighborhood theorem, and the maps it induces
on relative homology and cohomology are isomorphisms due to homotopy invariance and excision.
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As in the proof of Theorem 53.1, we can now represent three relative cap products and the naturality
relations between them via a diagram

HkpMq bHnpMq Hn´kpMq

HkpM |Bq bHnpM |Bq Hn´kpMq

HkpDNMB,SNMBq bHnpDNMB,SNMBq Hn´kpDNMBq

X

i˚ i˚“1i˚

j˚ –

X

j˚ –
X

j˚

By the defining property of fundamental classes, we have

i˚rM s “ rM sB “ j˚rDNMBs.
Moreover, since j˚ is an isomorphism on relative cohomology, there is a unique class pβ P HkpM |Bq
satisfying

j˚ pβ “ τpNMBq,
and in light of Theorem 53.1, the naturality relation represented by the bottom two rows of the
diagram implies

rBsM “ j˚rBsDNMB “ j˚
`
τpNMBq X rDNMBs˘ “ j˚

´
j˚ pβ X rDNMBs

¯
“ pβ X j˚rDNMBs

“ pβ X rM sB.
Applying the relation represented by the top two rows then gives

PDM pi˚ pβq “ i˚ pβ X rM s “ i˚
´
i˚ pβ X rM s

¯
“ pβ X i˚rM s “ pβ X rM sB “ rBsM ,

and since PDM is an isomorphism, it follows that

i˚ pβ “ β.

This calculation already has a deep and non-obvious consequence: the cohomology class β Poincaré
dual to rBsM is uniquely determined by a class living in the cohomology of M restricted to B,
i.e. it depends only on a neighborhood of B ĂM , and not on the rest of M . Pulling back via the
inclusion of the normal bundle NMB via the tubular neighborhood theorem, that class becomes
precisely the Thom class of NMB.

One can carry out a similar argument with the submanifold Q “ f´1pBq Ă A to show that γ
is similarly determined by the Thom class of the normal bundle NAQ, with a class pγ P HkpA |Qq
serving as intermediary between then two. To finish, we note that the embeddings of tubular
neighborhoods of Q Ă A and B ĂM can be arranged so that there is a commuting diagram,

pA,Hq pA,AzQq pDNAQ,SNAQq

pM,Hq pM,MzBq pDNMB,SNMBq
f

i

f

j

Tf

i j

where Tf : pDNAQ,SNAQq Ñ pDNMB,SNMBq restricts for each x P A to an orientation-
preserving homeomorphism pDNA

x Q,SN
A
x Qq – pDNM

fpxqB,SNM
fpxqBq, defined as a restriction of
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the vector space isomorphism Txf : NA
x QÑ NM

fpxqB. This induces a diagram

HkpAq HkpA |Qq HkpDNAQ,SNAQq

HkpMq HkpM |Bq HkpDNMB,SNMBq

i˚ j˚

–
f˚

i˚
f˚

j˚

–

pTfq˚ ,

and in light of the homeomorphisms pDNA
x Q,SN

A
x Qq – pDNM

fpxqB,SNM
fpxqBq defined via Tf , the

defining property of Thom classes implies

pTfq˚τpNMBq “ τpNAQq.
Since the maps j˚ are isomorphisms, this implies f˚pβ “ pγ, and pulling back to the left hand side
of the diagram then gives f˚β “ γ, concluding the proof of Theorem 53.8.

53.6. Relative intersection products. For M a compact, smooth, oriented n-manifold
with nonempty boundary, there are multiple ways to generalize the intersection product to relative
homology. We will give a quick sketch here and leave the details as exercises.

Just as there are two choices of relative Poincaré duality isomorphism to use, there are essen-
tially two interesting versions of the cup product: in the first variant, one can use the usual cup
product on absolute cohomology but identify this via duality with the relative homology of the
pair pM, BMq, giving a relative intersection product of the form

(53.3) Hn´kpM, BMq bHn´ℓpM, BMq ¨ÝÑ Hn´pk`ℓqpBMq.
Two slightly more subtle variants arise by using the relative cup products

HkpMq bHℓpM, BMq YÝÑ Hk`ℓpM, BMq, HkpM, BMq bHℓpMq YÝÑ Hk`ℓpM, BMq
together with the duality isomorphism PDM : HmpM, BMq Ñ Hn´mpMq. This produces intersec-
tion products of the form

Hn´kpM, BMq bHn´ℓpMq ¨ÝÑ Hn´pk`ℓqpMq,
Hn´kpMq bHn´ℓpM, BMq ¨ÝÑ Hn´pk`ℓqpMq.(53.4)

Finally, there is also a relative cup product

HkpM, BMq bHℓpM, BMq YÝÑ Hk`ℓpM, BMq,
which is dual to an absolute intersection product

(53.5) Hn´kpMq bHn´ℓpMq ¨ÝÑ Hn´pk`ℓqpMq,
the meaning of which turns out to be exactly the same as when BM “ H. This last variant
can actually be seen as a special case of (53.4): the product A ¨ B P H˚pMq of two absolute
classes A,B P H˚pMq becomes the same thing as in (53.4) if one first feeds either A or B into
the homomorphism H˚pMq Ñ H˚pM, BMq induced by the inclusion pM,Hq ãÑ pM, BMq, which is
equivalent to feeding its dual cohomology class into the pullback homomorphism H˚pM, BMq Ñ
H˚pMq and then computing a relative cup product. For these reasons, the absolute intersection
product in (53.5) can be ignored in favor of the relative products (53.4).

All of these variants are identical to the usual absolute intersection product if BM “ H. If
M is a connected manifold with BM ‰ H and we consider the case of complementary dimensions
k ` ℓ “ n, then the variants in (53.4) have an advantage over (53.3): these intersection products
give an absolute homology class in degree 0, which can therefore be paired with 1 P H0pMq to
recover the usual relation between the intersection product and the intersection form:

x1,PDM pαq ¨ PDM pβqy “ x1, pβ Y αq X rM sy “ xβ Y α, rM sy “ Qpβ, αq.
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Note that in general, this version of the intersection form Q pairs an absolute cohomology class with
a relative class in pM, BMq; the crucial detail is that the product is then in HnpM, BMq instead
of HnpMq, so that it can then be evaluated on the relative fundamental class rM s P HnpM, BMq.
The usual definition of the intersection form on absolute cohomology classes in this situation gives
something trivial, because the interior of M is a connected and noncompact n-manifold, implying
HnpMq – HnpM̊q “ 0.

To understand what the various relative intersection products mean, one can generalize Theo-
rem 53.8 as follows. Assume A,B,M are all compact, oriented smooth manifolds with boundary,
f : pA, BAq Ñ pM, BMq is a smooth map of pairs with f´1pBMq “ BA, B Ă M is a submanifold
with BB “ B X BM , and we additionally have the following transversality conditions:

‚ f&BM and B&BM ;
‚ The map f |Å : ÅÑ M̊ is transverse in M̊ to the submanifold B̊ Ă M̊ ;
‚ The map f |BA : BAÑ BM is transverse in BM to the submanifold BB Ă BM .

In this situation, if B ĂM has codimension k, then BB is similarly a codimension k submanifold
of BM , and

Q :“ f´1pBq Ă A

becomes a smooth codimension k submanifold of A that intersects BA transversely such that
BQ “ QX BA is a codimension k submanifold of BA. The generalization of Theorem 53.8 to this
setup is straightforward to state, and its proof only requires extending the arguments in §53.5 to a
slightly wider context: the result concerns the absolute cohomology classes in HkpMq and HkpAq
that are Poincaré dual to the relative homology classes rBsM P H˚pM, BMq and rQsA P H˚pA, BAq
respectively, and it simply says

PDM pβq “ rBsM ùñ PDApf˚βq “ rf´1pBqsA.
Taking f to be the inclusion of a submanifold pA, BAq ãÑ pM, BMq with boundary BA “ AXBM

such that A&BM and BA&BB in BM , one obtains AXB ĂM as a compact oriented submanifold
intersecting BM transversely in BpA X Bq “ A X B X BM , and the interpretation of (53.3) then
becomes

rAsM ¨ rBsM “ rAXBsM P Hn´pk`ℓqpM, BMq.
If one assumes additionally BA “ H, so that A ĂM is contained in the interior ofM , then one has
the freedom to interpret rAsM as living in H˚pMq instead of H˚pM, BMq, so that the second of the
relative intersection products in (53.4) makes sense, and its interpretation is the same: AXB is in
this case a closed oriented submanifold in the interior of M and thus represents a class in H˚pMq.
Exploiting the graded commutativity of the cup product, the first product in (53.4) inherits from
this a similar interpretation.

53.7. Exercises.

Exercise 53.1. SupposeM,N are closed, connected, oriented smooth manifolds of dimension
n P N and f : M Ñ N is a smooth map. Without appealing to the results of Lecture 36, use the
intersection product f˚rM s ¨ r˚sN with the homology class of a point r˚sN P H0pNq to prove that
under a suitable technical assumption on a point y P N , the degree degpfq P Z of f is a signed
count of points in f´1pyq ĂM . What exactly is the technical assumption you need?

Exercise 53.2. Throughout this exercise,M is a closed, connected and oriented smooth mani-
fold of dimension n P N. We consider intersection products of homology classes with complementary
degree and regard such products as integers

A ¨B P Z – H0pMq for A P HkpMq, B P Hn´kpMq,
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using the canonical isomorphism H0pMq Ñ Z : C ÞÑ x1, Cy. For smooth maps f : M Ñ M , there
is a sharp version of the Lefschetz fixed point theorem that can be stated as an intersection product
calculation, namely

(53.6) rΓf sMˆM ¨ r∆sMˆM “ Lpfq,
where Γf denotes the graph of f ,

Γf :“ tpx, fpxqq | x PMu ĂM ˆM,

and ∆ is the diagonal submanifold

∆ :“ ΓId “ tpx, xq | x PMu ĂM ˆM.

We equip Γf ĂM ˆM with the orientation such that the embedding

M
iãÑM ˆM : x ÞÑ px, fpxqq

defines an orientation-preserving diffeomorphism of M to Γf ; since ∆ is a special case of a graph,
it inherits an orientation in the same way. In light of the obvious correspondence between Γf X∆

and the fixed point set of f , (53.6) implies the Lefschetz fixed point theorem for smooth maps
on M ; moreover, it gives a quantitative interpretation of the Lefschetz number Lpfq as a signed
count of fixed points, under the technical condition that Γf and ∆ intersect transversely. Our goal
in this problem is to prove this formula.84

(a) Prove that if A,B,C,D P H˚pMq are homology classes (with integer coefficients) whose
degrees satisfy

|A| ` |B| “ n “ |C| ` |D|,
then we have the following formula for intersections of cross products of degree n inMˆM :

pAˆBq ¨ pC ˆDq “
#
p´1q|B|pA ¨ CqpB ¨Dq if |B| “ |C| and |A| “ |D|,
0 otherwise.

Remark: You should forgive yourself if you manage to figure out every detail of this
problem except the signs, but my advice on signs is this. For most of the calculation,
you’ll need to keep track of degrees of cohomology classes rather than homology classes.
The assumption |A| ` |B| “ n “ |C| ` |D| will allow you to view those degrees also as
degrees of homology classes if you prefer.

(b) For an arbitrary map f :M ÑM and homology classes A,B P H˚pMq of complementary
degree |A| ` |B| “ n, prove the formula

rΓf sMˆM ¨ pAˆBq “ p´1q|A|f˚A ¨B P Z.

Hint: Our definition of the orientation on Γf means rΓf sMˆM “ i˚rM s. You may
at some point find yourself needing to compute i˚pα ˆ βq for some cohomology classes
α, β P H˚pMq. Try transforming the cross product into a cup product.

Recall that the Lefschetz number Lpfq is an alternating sum of the traces of the homomorphisms
f˚ : HkpM ;Qq Ñ HkpM ;Qq for k “ 0, . . . , n. Choose a basis teiu of the rational vector space
H˚pM ;Qq “Àn

k“0HkpM ;Qq consisting only of homogeneous elements. The intersection product
on H˚pM ;Qq is equivalent to the intersection form on H˚pM ;Qq and is therefore nonsingular, so
that the basis teiu uniquely determines a dual basis te1iu satisfying the condition

ei ¨ e1j “ δij :“
#
1 if i “ j,

0 if i ‰ j,

84As usual, there is also a mod 2 version of (53.6) that holds without any orientability assumptions, in which
Lpfq is replaced by the Z2 Lefschetz number LZ2

pfq P Z2.
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with the convention that numerical intersection products A ¨ B P Z are understood to be 0 if
|A| ` |B| ‰ n. Note that by the Künneth formula, the set of all cross products of the form ei ˆ e1j
forms a basis of H˚pM ˆM ;Qq, and so does the set of products of the form e1i ˆ ej.

(c) Prove the formula r∆sMˆM “ř
k ekˆ e1k, where the sum ranges over all the chosen basis

elements ek.
Hint: By the nonsingularity of the intersection product, it suffices to check that both
sides have the same intersection pairing with e1i ˆ ej for every i, j.

(d) Prove (53.6).

54. Higher homotopy groups

The last two lectures in this semester will have more the character of a survey, as I want to
mention several important things but will not have time to prove many of them.

54.1. Definitions and basic properties. The higher homotopy groups πnpXq were men-
tioned informally last semester in Lecture 21. Let’s give a more formal definition. It will help to
have the following popular notation at our disposal: given spaces X and Y , we define the set

rX,Y s :“ tcontinuous maps X Ñ Y uL„,
where the equivalence relation is homotopy. Similarly, for pairs of spaces pX,Aq and pY,Bq,

rpX,Aq, pY,Bqs
will denote the set of homotopy classes of maps of pairs. Here one can also specialize to the case
where A and B are each a single point (homotopy classes of base-point preserving maps), or extend
the definition in an obvious way to allow triples pX,A,Bq where B Ă A Ă X . In this notation,
the fundamental group of a pointed space pX, x0q can be expressed in two equivalent ways as

π1pX, x0q “ rpS1, ˚q, pX, x0qs “ rpI, BIq, pX, x0qs,
where ˚ denotes an arbitrary choice of base point in S1, and I is the unit interval r0, 1s. Since the
latter is homeomorphic to the 1-dimensional unit disk D1, we could also equivalently write

π1pX, x0q “ rpD1, BD1q, pX, x0qs.
These definitions are equivalent to the definition in terms of S1 because S1 – D1{BD1. Note that
there are also higher-dimensional analogues of this statement: Sn is homeomorphic to Dn{BDn and
In{BIn for all n P N, where In here denotes the n-fold product of I, i.e. an n-dimensional unit
cube.

Definition 54.1. For each integer n ě 0, we define the set

πnpX, x0q :“ rpSn, ˚q, pX, x0qs.
When n ě 1, this can be expressed equivalently as

πnpX, x0q “ rpDn, BDnq, pX, x0qs “ rpIn, BInq, pX, x0qs.
As yet this is only a set; we have not given it a group structure. The case n “ 0 has occasionally

been mentioned before: since S0 “ t1,´1u and one of these two points must be chosen as a base
point and thus mapped to x0, π0pX, x0q is just the set of homotopy classes of maps of the other
point to X , so it has a natural bijective correspondence with the set of path-components of X .
This is indeed only a set, and not a group. The group structure of π1pX, x0q as we learned it in
Topologie I is based on the notion of concatenation of paths, which makes sense due to the fact
that if I1 and I2 denote two copies of the unit interval I “ r0, 1s, then the space obtained by gluing
them together end-to-end,

pI1 > I2q
LpI1 Q 1 „ 0 P I2q
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Figure 29. The homotopy in the proof of Proposition 54.3.

is homeomorphic to I. One can do the same thing with the cube In by singling out one of the
coordinates as the one to be concatenated, e.g. if In1 and In2 denote two copies of In, we have

pIn1 > In2 q
LpIn1 Q p1, t2, . . . , tnq „ p0, t2, . . . , tnq P In2 q – In,

where the equivalence relation now applies for all values of pt2, . . . , tnq P In´1. This observation
leads to the natural group structure on πnpX, x0q. We shall state it here only for n ě 2, since the
fundmental group is already familiar, and the standard notation for its group structure is slightly
different for reasons that we’ll get into in a moment.

Definition 54.2. For n ě 2 and two elements rf s, rgs P πnpX, x0q represented by maps
f, g : pIn, BInq Ñ pX, x0q, we define rf s ` rgs P πnpX, x0q to be the homotopy class of the map

pIn, BInq Ñ pX, x0q : pt1, . . . , tnq ÞÑ
#
fp2t1, t2, . . . , tnq if 0 ď t1 ď 1{2,
gp2t1 ´ 1, t2, . . . , tnq if 1{2 ď t1 ď 1.

This definition seems a bit arbitrary at first, e.g. one might wonder why the coordinate t1 is
singled out for special treatment when any of the other coordinates would work just as well. The
answer is that one could indeed formulate the definition in various alternative ways, but one would
always obtain the same result up to homotopy. This is easy to see once you’ve absorbed the proof
of the following related fact, which justifies our use of additive notation:

Proposition 54.3. For all n ě 2, the operation in Definition 54.2 makes πnpX, x0q an abelian
group.

Proof. The proof that πnpX, x0q is a group can be carried out by ignoring n ´ 1 of the
coordinates and repeating the same arguments with which we proved last semester that π1pX, x0q
is a group. The identity element is exactly what you think it should be: it is represented by the
constant map of Sn to x0.

The novel feature is that πnpX, x0q is abelian for n ě 2; as we’ve seen, the fundamental
group does not generally have this property. The proof is a homotopy depicted in Figure 29.
The shaded region in each picture represents a subset of In on which the map takes a constant
value, namely the base point x0. The leftmost picture shows the map representing rf s ` rgs as
specified in Definition 54.2, with the cube In divided into two halves on which the map restricts
to f or g. We then homotop this map by shrinking the two halves to smaller cubes and mapping
everything outside the smaller cubes to the base point—this is possible because f |BIn and g|BIn
are also constant maps to the base point. After shrinking both cubes far enough, there is enough
room to move them past each other so that the roles of f and g are reversed. It should be clear
why this trick does not work when n “ 1. �

With this group structure, πnpX, x0q is called the nth homotopy group of X .
There are also relative homotopy groups πnpX,A, x0q associated to any pair of spaces

pX,Aq with a base point x0 P A. One can define this as a mild generalization of πnpX, x0q “



480 SECOND SEMESTER (TOPOLOGIE II)

rpDn, BDnq, pX, x0qs by choosing a base point ˚ P BDn and setting

πnpX,A, x0q :“ rpDn, BDn, ˚q, pX,A, x0qs.
This reduces to πnpX, x0q if A “ tx0u, but in all other cases, we need to be aware that it only
makes sense for n ě 1; there is no definition of π0pX,A, x0q for A ‰ tx0u since n “ 0 is the one case
where the relation Sn – Dn{BDn fails to hold. For n “ 1, we can identify D1 with I and choose
0 P I as the base point so that π1pX,A, x0q becomes the set of all homotopy classes of paths in X
from x0 to arbitrary points in A. Since these paths do not need to be loops, there is no obvious
notion of concatenation here, so that π1pX,A, x0q does not have a natural group structure—it
is only a set. A group structure can be defined for πnpX,A, x0q if n ě 2. To explain this, we
reformulate the definition as a generalization of πnpX, x0q “ rpIn, BInq, pX, x0qs by singling out a
particular boundary face of In to play the role of BDn “ Sn´1 – In´1{BIn´1 and treating the rest
of BIn as if it were a base point: let

Jn :“ In´1 ˆ t0u Ă BIn
and redefine πnpX,A, x0q as

πnpX,A, x0q :“ rIn, BIn, BInzJn, pX,A, x0qs.
By this definition, the formula in Definition 54.2 still makes sense for n ě 2 and defines a group
structure on πnpX,A, x0q, though Proposition 54.3 no longer works in the n “ 2 case. You can
see why not if you look again at Figure 29 and imagine that the maps on the bottom edge of
each square are not required to be constant, but only to have their images in A: there is now
no obvious way to define the map on the shaded areas so that it gives a well-defined homotopy.
The argument can be rescued, however, if n ě 3, as we can then assume the two small cubes are
“rooted” to the bottom face Jn, but there are still enough dimensions to move them past each
other. To summarize:

Proposition 54.4. For general pairs of spaces pX,Aq with a base point x0 P A, πnpX,A, x0q
has a natural group structure for every n ě 2, and it is abelian for n ě 3. �

Like the fundamental group, the higher homotopy groups depend on a choice of base point,
but there is an isomorphism

Φγ : πnpX, yq –ÝÑ πnpX, xq
determined by any path γ from x to y in X . The definition is best explained with a picture:
Figure 30 shows a recipe for transforming any map f : pIn, BInq Ñ pX, yq into a map pIn, BInq Ñ
pX, xq by shrinking the domain of the original map f to a smaller cube within In, and then filling
the region between this and BIn with copies of the path x

γ
 y. The picture shows the n “ 2

case, but if you draw the analogous picture for n “ 1, you will find that it reproduces exactly
the isomorphism Φγ : π1pX, yq Ñ π1pX, xq described in last semester’s Lecture 9. We leave it as
an exercise to verify that this really is a well-defined isomorphism, and that it only depends on
the (end-point preserving) homotopy class of the path γ. With this in mind, we will sometimes
abbreviate

πnpXq :“ πnpX, x0q
when the space X is path-connected and the base point does not play a major role.

There is a fairly obvious way to view πn as a functor from the category Top˚ of pointed
spaces to the category Grp of groups (or Ab for n ě 2). Namely, every base-point preserving map
f : pX, x0q Ñ pY, y0q induces a homomorphism

f˚ : πnpX, x0q Ñ πnpY, y0q : rϕs ÞÑ rf ˝ ϕs.
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It is similarly easy to see that this homomorphism only depends on the (base-point preserving!)
homotopy class of f . The following property is less obvious, but important to know:

Theorem 54.5. If f : X Ñ Y is a homotopy equivalence, then f˚ : πnpX, x0q Ñ πnpY, fpx0qq
is an isomorphism for all n ě 0 and x0 P X.

Since we’ve been talking about homology for the rest of this semester, you may have forgotten
why Theorem 54.5 is already a nontrivial statement in the n “ 1 case, which took some effort to
prove in Topologie I. The annoying detail is the base point: if g : Y Ñ X is a homotopy inverse
for f , then it does not automatically induce an inverse for f˚ since g need not take fpx0q back
to the base point x0; in general, g˚ sends πnpY, fpx0qq to a different group, πnpX, gpfpx0qqq. But
this headache can be dealt with in the same way as in the n “ 1 case, using the isomorphism
Φγ : πnpX, gpfpx0qqq Ñ πnpX, x0q induced by a path x0  gpfpx0qq, which necessarily exists due
to the homotopy inverse condition. The proof is then a direct adaptation of what we already did
for the n “ 1 case in Lecture 9, so we’ll leave it as an exercise. The reason this detail was easier
in homology theory is that homology does not care about base points, so the homotopy invariance
of induced maps f˚ : H˚pXq Ñ H˚pY q immediately implied that H˚pXq depends only on the
homotopy type of X .

54.2. Sample computations. Let’s look at some examples now. It should be said that, in
general, higher homotopy groups are not easy to compute—there is nothing quite analogous to
cellular homology to produce a practical algorithm for computing πnpXq. But to start with, there
are some easy cases where theorems that we’ve proved for other purposes imply computations
of πnpXq.

Example 54.6. For every k ě 2 and n P N, πkpTnq “ 0. This is a consequence of the fact
that Tn has a contractible universal cover, namely p : Rn Ñ Tn. Since Sk is simply connected for
k ě 2, every map f : Sk Ñ Tn has a lift rf : Sk Ñ Rn, which is homotopic to a constant map since
Rn is contractible. Composing this homotopy with p : Rn Ñ Tn then gives a homotopy of f to a
constant map Sk Ñ Tn. (Strictly speaking, one should pay a bit more attention to the base point
in this discussion, but that is easy to do.) Note that the circle S1 “ T1 is a special case of this
computation, so we now know all the homotopy groups of S1.
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Example 54.7. For n P N and k ă n, πkpSnq “ 0. One can see this by proving that every
map f : Sk Ñ Sn with n ą k is homotopic to a map g : Sk Ñ Sn that is not surjective: then if
p P SnzgpSkq, it follows that the image of g is in Snztpu – Rn, and is then homotopic to a constant
since Rn is contractible. Here are two possible ways to prove the claim that f is homotopic to
something non-surjective: (1) The simplicial approximation theorem (see §31.5) implies that for
suitable choices of triangulations of Sk and Sn, f is homotopic to a simplicial map g : Sk Ñ Sn,
which is therefore also a cellular map and thus has image in the k-skeleton of Sn. When n ą k,
the k-skeleton cannot cover all of Sn, thus g is not surjective. (2) There is a very easy proof
using basic results of differential topology as in [Mil97]: f : Sk Ñ Sn is homotopic to a smooth
map g : Sk Ñ Sn that is C0-close to f , and Sard’s theorem then implies that almost every point
y P Sn is a regular value of g. This means the derivative Txg : TxS

k Ñ TyS
n is surjective for every

x P g´1pyq, but since that condition can never be satisfied for n ą k, it follows that g´1pyq “ H.

Example 54.8. Viewing elements of πnpSnq as represented by maps f : Sn Ñ Sn, the mapping
degree determines an isomorphism

πnpSnq –ÝÑ Z : rf s ÞÑ degpfq
for every n P N. This is a nontrivial result that does not follow directly from anything we’ve covered
in this course. The case n “ 2 is implied by a long exact sequence appearing in Example 54.17
below, which gives an isomorphism

π2pS2q – π1pS1q.
There are various approaches for proving the cases n ą 2. One is to deduce it from the Freudenthal
suspension theorem, which states that the natural map

πnpXq ΣÝÑ πn`1pΣXq
sending the homotopy class of a map f : Sn Ñ X to the homotopy class of its suspension Σf :

ΣSn – Sn`1 Ñ ΣX is an isomorphism under certain conditions; in particular, the theorem applies
to X :“ Sn for n ě 2, giving isomorphisms

πnpSnq πn`1pSn`1qΣ

– for each n ě 2.

A minor technical point: since homotopy groups depend on base points, the Freudenthal theorem
requires a slight modification to our usual suspension functor Σ : Top Ñ Top, called the reduced
suspension, which defines ΣX slightly differently and gives rise to a functor Σ : Top˚ Ñ Top˚
on the category of pointed spaces. We will prove the Freudenthal suspension theorem in next
semester’s Topologie III course, as an application of the homotopy excision theorem. There is an
alternative approach to proving πnpSnq – Z via differential topology as in [Mil97], using the so-
called Pontryagin-Thom construction, which elegantly defines a bijection for any closed, connected
and oriented k-manifold M between the set of homotopy classes rM,Sns and the set of “framed
bordism classes” in M . The latter have a natural correspondence with the integers when k “ n,
so in particular, when dimM “ n this proves that the map deg : rM,Sns Ñ Z is a bijection. One
must transform arbitrary homotopies into base-point preserving homotopies before this becomes a
statement about πnpSnq, but the gap is not hard to fill. The Pontryagin-Thom construction can
also be used to give an alternative proof of the suspension theorem, see e.g. [Fre12, Lecture 4].

Remark 54.9. Another approach sometimes cited for the computation πnpSnq – Z is to deduce
it from the Hurewicz theorem, which we will outline in the next lecture: for Sn, it gives a natural
isomorphism πnpSnq –ÝÑ HnpSn;Zq – Z for each n ě 2, generalizing the natural isomorphism
between H1pX ;Zq and the abelianization of the fundamental group for a path-connected space X .
There is a logical drawback to explaining πnpSnq in this way: the simplest proofs of the Hurewicz
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theorem are based on explicit computations in cell complexes that require the result πnpSnq – Z

as a prerequisite.

In Example 54.17 at the end of this lecture, we will discuss the interesting case of π3pS2q,
which is fairly easy to compute, but the answer may contradict the intuition you’ve developed
from homology, i.e. it is not trivial. Unlike HkpMq, there is no reason in general why πkpMq
should vanish when k ą dimM .

Example 54.10. Just to give you a taste of what is studied in modern homotopy theory: the
Freudenthal suspension theorem gives natural isomorphisms

πn`kpSnq πn`k`1pSn`1qΣ

–
for all k ě 0 as soon as n is sufficiently large. The resulting groups that depend only on k are
known as the stable homotopy groups of the spheres, and can be defined formally as direct limits

πsk :“ limÝÑtπn`kpSnqu8n“0 – πn`kpSnq for n " 0.

They have been computed in many cases, but they are not known in general for k ą 64. The
computation of higher homotopy groups of spheres is considered one of the most important open
problems in algebraic topology.

54.3. A taste of obstruction theory. The following definition makes the notions of path-
connectedness (n “ 0) and simple connectedness (n “ 1) into the first two items on an infinite
hierarchy of conditions.

Definition 54.11. For integers n ě 0, a space X is called n-connected if πkpXq “ 0 for all
k ď n.

We can now give an example of the kind of problem for which computing higher homotopy
groups is useful.

Theorem 54.12. If X is a CW-complex of dimension at most n and Y is an n-connected
space, then all maps X Ñ Y are homotopic.

Proof. We need to show that any two given maps f, g : X Ñ Y are homotopic. The method
of the proof is known as “induction over the skeleta”.85 As preparation, one needs to think through
the following exercise: if f |Xk : Xk Ñ Y is homotopic to g|Xk : Xk Ñ Y for some k ě 0, then f
is also homotopic on X to a map f 1 : X Ñ Y such that f 1|Xk “ g|Xk . This can be done by using
cutoff functions to extend the homotopy from the k-skeleton to all higher-dimensional cells.

Now to start the induction, note that since Y is path-connected, f |X0 and g|X0 are clearly
homotopic, as one can just pick a path from fpxq to gpxq for every x P X0. Now for a given
k P t1, . . . , nu, we need to show that if f has already been adjusted by a homotopy so that
f |Xk´1 “ g|Xk´1, then f |Xk is also homotopic to g|Xk . It suffices to show that the restrictions of
f and g to each k-cell ekα Ă X are homotopic via a homotopy that is fixed at the boundary of the
cell, i.e. on the pk ´ 1q-skeleton. Let Φα : pDk, Sk´1q Ñ pXk, Xk´1q denote the characteristic map
of ekα. Then f ˝Φα and g ˝Φα are two maps Dk Ñ Y that match at the boundary Sk´1, hence we
can glue their domains together to form a sphere Sk – Dk` YSk´1 Dk´ and define on this sphere a
continuous map

F : Sk Ñ Y : x ÞÑ
#
f ˝ Φαpxq if x P Dk`,
g ˝ Φαpxq if x P Dk´.

85It seems that the plural of the English word “skeleton” is different in topology than it is in the rest of the
English language. Dictionaries list both “skeletons” and “skeleta,” but I have never heard the latter outside of
mathematical contexts, e.g. one would not say that a politician with potentially damaging secrets has “skeleta in
the closet”.
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Since πkpY q “ 0, the map F : Sk Ñ Y is homotopic to a constant, which is equivalent to saying
that it extends to a map Dk`1 Ñ Y , and this extension can be used to define a homotopy between
f ˝ Φα and g ˝ Φα that is fixed along the boundary. This completes the induction. �

You may notice that Theorem 54.12 has an obvious converse: if Y is not n-connected, then
there clearly also exists a CW-complex X of dimension at most n (in particuar a sphere) such
that not all maps X Ñ Y are homotopic. This example is the beginning of the subject known as
obstruction theory, which finds necessary and sufficient conditions for the existence and/or unique-
ness (up to homotopy) of various geometric structures, particularly on manifolds. An example
of such a geometric structure is an orientation, whose existence on a manifold M is equivalent
to the vanishing of a particular element of H1pM ;Z2q, called the first Stiefel-Whitney class (see
Exercise 49.6). The standard procedure is to express the geometric structure of interest in terms of
sections of some fiber bundle associated to the manifold, so that the important question to answer
is whether a section of this bundle exists and under what conditions two such sections must be
homotopic. By induction over the skeleta, these questions are typically equivalent to the vanishing
of certain higher homotopy groups. A detailed exposition of this subject can be found e.g. [Ste51],
and we will have more to say about it in next semester’s Topologie III course.

54.4. Long exact sequences. We have not yet talked much about the relative homotopy
groups, and we won’t, but I should mention that they appear in a fairly obvious exact sequence.
Given a pair of spaces pX,Aq and a base point x0 P A, denote by

pA, x0q iãÑ pX, x0q and pX, x0, x0q jãÑ pX,A, x0q
the obvious inclusions. For each n ě 1 there is also a natural homomorphism

B˚ : πnpX,A, x0q Ñ πn´1pA, x0q : rf s ÞÑ rf |Sn´1s,
where we regard elements of πnpX,A, x0q as represented by maps f : pDn, Sn´1, ˚q Ñ pX,A, x0q.
You can easily check by translating this into the corresponding formula with f : pIn, BIn, BInzJnq Ñ
pX,A, x0q that it really is a homomorphism.

Theorem 54.13. For x0 P A Ă X, the sequence

. . .Ñ πn`1pX,A, x0q B˚Ñ πnpA, x0q i˚Ñ πnpX, x0q j˚Ñ πnpX,A, x0q B˚Ñ πn´1pA, x0q Ñ . . .

. . .Ñ π1pX, x0q j˚Ñ π1pX,A, x0q B˚Ñ π0pA, x0q i˚Ñ π0pX, x0q.
is exact.

Some comments on interpretation are required since the last three terms in this sequence are
not groups, but only sets. They do have a bit more structure than this, as the constant map to x0
defines in each case a distinguished element: if one interprets the kernel of each map in this part of
the sequence to mean the preimage of the distinguished element, then it makes sense to say that the
sequence is exact. The proof of exactness is more straightforward than for most exact sequences
that arise in homology theory: instead of constructing chain complexes with a short exact sequence
and chasing diagrams, one can just check directly that the image of each map equals the kernel of
the next. For details, see [Hat02, Theorem 4.3].

A particular application of this exact sequence leads to one of the most popular tools for
computing homotopy groups, called the homotopy exact sequence of a fibration. I will express the
theorem in the form that arises most often in geometric applications, though it is somewhat less
general than what is actually true. In the previous two lectures we saw some examples of vector
bundles, which can be imagined as families of vector spaces parametrized by an underlying space,
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carrying a topology determined by the notion of local trivialization. If one replaces vector spaces
with arbitrary topological spaces in this picture, one arrives at the following notion.

Definition 54.14. A fiber bundle consists of the following data: topological spaces E, B
and F known as the total space, base and standard fiber respectively, and a continuous map
p : E Ñ B, such that B can be covered by open sets U that admit local trivializations, meaning
homeomorphisms

Φ : p´1pUq Ñ U ˆ F

that send p´1pbq homeomorphically to tbu ˆ F for each b P U . The fibers of the bundle are the
subspaces Eb :“ p´1pbq – F for b P B.

Fiber bundles are often abbreviated with the notation

F ãÑ E
pÑ B,

where the inclusion F ãÑ E is not canonical but is defined by choosing any b P B and a local
trivialization near b to identify p´1pbq with F . Note that while every fiber of a fiber bundle is
homeomorphic to the standard fiber, there is typically no canonical homeomorphism, since there
may be many choices of local trivializations covering each b P B. If we choose base points b0 P B
and x0 P p´1pb0q Ă E, then it is natural to identify F with p´1pb0q so that we obtain base-point
preserving maps

pF, x0q ãÑ pE, x0q pÑ pB, b0q.
A trivial fiber bundle is one that admits a single trivialization covering all of B, so that E can
be identified globally with B ˆ F and the map p : E Ñ B becomes the obvious projection map
B ˆ F Ñ B.

There’s at least one general class of fiber bundles that you’ve definitely seen plenty of before:
a covering map p : E Ñ B is simply a fiber bundle whose standard fiber F is a discrete space, and
this is for instance why our terminology for the “orientation bundle” of a manifold makes sense. A
fiber bundle of this type admits a local trivialization over a subset U Ă B if and only if that subset
is evenly covered, and it is a trivial fiber bundle if and only if p : E Ñ B can be identified with
the trivial covering map, i.e. the one for which E is a disjoint union of copies of B and p : E Ñ B

is the identity map on each copy.
Here is a popular example of a fiber bundle that is not a covering map and is also not trivial—

we know it is not trivial since we know several ways of proving that S3 is not homeomorphic to
S2 ˆ S1.

Example 54.15. The Hopf fibration p : S3 Ñ S2 is defined by identifying S3 with the unit
sphere in C2 and S2 with the extended complex plane CY t8u, and then writing

p : S3 Ñ S2 : pz1, z2q ÞÑ z1

z2
.

Equivalently, one can identify S2 with CP1 so that this becomes the map

p : S3 Ñ CP
1 : pz1, z2q ÞÑ rz1 : z2s.

The fiber containing any given point pz1, z2q P S3 is the set peiθz1, eiθz2q P S3
ˇ̌
θ P R

( – S1.

We leave it as an exercise to check that local trivializations exist near every point.

Theorem 54.16. Given a fiber bundle pF, x0q iãÑ pE, x0q pÑ pB, b0q with base points, the map
p : pE,F, x0q Ñ pB, b0, b0q induces an isomorphism

p˚ : πnpE,F, x0q –ÝÑ πnpB, b0q
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for every n P N. Plugging this into the exact sequence of pE,F, x0q thus produces an exact sequence

. . . ÝÑ πn`1pB, b0q B˚ÝÑ πnpF, x0q i˚ÝÑ πnpE, x0q p˚ÝÑ πnpB, b0q B˚ÝÑ πn´1pF, x0q ÝÑ . . .

. . . ÝÑ π1pE, x0q p˚ÝÑ π1pB, b0q B˚ÝÑ π0pF, x0q i˚ÝÑ π0pE, x0q,
where the maps B˚ : πnpB, b0q Ñ πn´1pF, x0q send each rf s to r rf |Sn´1s for f : pDn, Sn´1q Ñ pB, b0q
and rf : pDn, Sn´1, ˚q Ñ pE,F, x0q solving the lifting problem

(54.1)
E

Dn B

p

f

rf

I will not say anything about the proof of this theorem except that the most important topo-
logical property of fiber bundles is the solvability of the lifting problem indicated in (54.1). The
proper formulation of this condition is something called the homotopy lifting property, and Theo-
rem 54.16 is true in fact for any map p : E Ñ B that has the homotopy lifting property for maps
of disks into B. Maps with this property are called Serre fibrations, and they are somewhat
more general than fiber bundles. We saw in Topologie I that the lifting problem (54.1) is solvable
in the special case of covering maps since Dn is simply connected; in fact, there exists a unique
lift that sends a given base point on BDn to the base point x0 P E. For more general Serre fi-
brations, the lift is not always unique, but it is unique up to homotopy, which is why the map
B˚ : πnpB, b0q Ñ πn´1pE, x0q described in the theorem is well defined.

Example 54.17. Returning to the Hopf fibration of Example 54.15, the homotopy exact se-
quence has segments of the form

0 “ π2pS3q ÝÑ π2pS2q B˚ÝÑ π1pS1q ÝÑ π1pS3q “ 0,

and
0 “ π3pS1q ÝÑ π3pS3q p˚ÝÑ π3pS2q ÝÑ π2pS1q “ 0.

The first yields the isomorphism π2pS2q – π1pS1q – Zmentioned in Example 54.8, while the second
proves that the map p˚ : π3pS3q Ñ π3pS2q is an isomorphism. Since π3pS3q – Z is generated by
the identity map S3 Ñ S3, this implies that π3pS2q – Z, with the Hopf fibration itself representing
a generator.

Example 54.18. In obstruction theory, one often needs to know the homotopy groups of
certain topological groups that arise as “structure groups” of fiber bundles. For example, the
structure group of any oriented vector bundle with n-dimensional fibers is

GL`pn,Rq :“  
A P GLpn,Rq ˇ̌ detA ą 0

(
.

Here is a trick for computing π1pGL`pn,Rqq. Polar decomposition provides a deformation retrac-
tion of GL`pn,Rq to SOpnq, the special orthogonal group, thus it suffices to compute π1pSOpnqq.
For n “ 1 and n “ 2, this is easy because SOp1q – t˚u and SOp2q – S1. For n “ 3, it is not hard
to find a homeomorphism of SOp3q to RP

3: this arises from the fact that every element of SOp3q
defines a rotation about some axis in R3, so there is a natural map

D3 Ñ SOp3q
that sends the origin to 1 and sends the point rx for 0 ă r ď 1 and x P S2 to the rotation by angle
πr about the axis spanned by x. By this definition, a rotation of angle πr about x is the same
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as a rotation of angle ´πr about ´x, so the map is injective on the interior of D3 but it sends
antipodal points on BD3 to the same point, thus descending to a homeomorphism

D3
L„ – SOp3q

where x „ ´x for all x P BD3. This quotient space is homeomorphic to RP
3, thus π1pSOp3qq –

π1pRP3q – Z2.
The remaining cases of π1pSOpnqq can now be deduced from the case n “ 3 via a homotopy

exact sequence. The fiber bundle we need for this purpose has the form

SOpnq iãÑ SOpn` 1q pÑ Sn,

where

ipAq :“
ˆ
1 0

0 A

˙
and ppAq “ Ae1,

for e1 “ p1, 0, . . . , 0q P Sn Ă Rn`1. The homotopy exact sequence then has segments of the form

. . . ÝÑ πk`1pSnq ÝÑ πkpSOpnqq i˚ÝÑ πkpSOpn` 1qq ÝÑ πkpSnq ÝÑ . . . ,

and taking k “ 1, both π2pSnq and π1pSnq vanish if n ě 3. This produces an infinite sequence of
isomorphisms

Z2 – π1pSOp3qq – π1pSOp4qq – π1pSOp5qq – . . . ,

proving that π1pGL`pn,Rqq – Z2 for all n ě 3.

55. The theorems of Hurewicz and Whitehead

55.1. Simply connected 3-manifolds. I have more to say about higher homotopy groups,
but I want to focus the discussion around a particular application:

Theorem 55.1. Every closed simply connected 3-manifold is homotopy equivalent to S3.

You may have heard of the Poincaré conjecture, which was open for most of the 20th century
and proved by Perelman early in the 21st: it strengthens the theorem above to the statement
that every closed simply connected 3-manifold is homeomorphic to S3. Actually, Poincaré himself
was originally more ambitious and suggested that every closed 3-manifold M with H˚pM ;Zq –
H˚pS3;Zq should be homeomorphic to S3, but he found a counterexample to this conjecture
a few years later, now known as the Poincaré homology sphere. It was not simply connected
and therefore, obviously, not homotopy equivalent to S3. Theorem 55.1 thus made Poincaré’s
strengthened conjecture seem plausible, but in general, there is a very wide gap between homotopy
equivalence and homeomorphism, i.e. even in dimension three, there are many known examples
of pairs of closed manifolds that are homotopy equivalent but not homeomorphic. The proper
statement of Poincaré’s conjecture is thus that there is something special about spheres which
makes homotopy equivalence imply homeomorphism, and in fact, that is also the right way to
state the higher-dimensional Poincaré conjecture, proved by Smale around 1960 for dimensions
n ě 5 and Freedman around 1980 for dimension 4. From dimension four upwards, it is easy to see
that simple connectedness would not be enough, e.g. CP2 is an easy example of a closed simply
connected 4-manifold that is not a sphere, and there are many more. But we can easily distinguish
CP

2 from S4 via its homology, of course. Part of the interest in Theorem 55.1, for our purposes,
is the way that the condition π1pMq “ 0 in dimension three produces just enough constraints
on H˚pMq to make all the familiar obstructions to a homotopy equivalence between M and S3

vanish, starting with the homology and cohomology groups, and then continuing with the higher
homotopy groups. Several of the important theorems we’ve proved in this semester have some role
to play in the proof, thus it will serve both as a review of the course and as motivation to introduce
two powerful new theorems involving the higher homotopy groups.
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55.2. From simply connected to homology sphere. This part of the argument will be
a review of techniques developed in the past semester. Our first main objective is to prove the
following lemma:

Lemma 55.2. If M is a closed and connected 3-manifold with π1pMq “ 0, then H˚pM ;Zq –
H˚pS3;Zq.

Any manifold for which this conclusion holds is called a homology 3-sphere. We shall prove
this as an amalgamation of several smaller lemmas. Assume henceforth that M is a closed and
simply connected 3-manifold.

Lemma 55.3. HnpM ;Zq is finitely generated for all n and vanishes for n ą 3.

Proof. The homology of every compact n-manifold is finitely generated since all such mani-
folds are Eulidean neighborhood retracts; see Theorem 49.1. The groupsHkpM ;Zq for k ą n vanish
by Corollary 49.22. Alternatively, one could in the present case appeal to the (much harder) fact
that all topological 3-manifolds are triangulable (see e.g. [Moi77]), thus M is a 3-dimensional
finite cell complex and the lemma therefore follows from cellular homology. �

Lemma 55.4. H1pM ;Zq “ 0.

Proof. This is immediate from the isomorphism ofH1pM ;Zq with the abelianization of π1pMq.
�

Lemma 55.5. M is orientable.

Proof. If it is not orientable, then its orientation double cover π : ĂM Ñ M is a connected
3-manifold. But the Galois correspondence identifies the set of connected covers of M up to
isomorphism with the set of all subgroups of π1pMq, and the latter has only one element, hence
the only connected cover of M is the identity map (which is the universal cover). �

Lemma 55.6. For every choice of coefficient group G, H3pM ;Gq – G.

Proof. This is true in the top dimension for every closed, connected and oriented manifold,
by Corollary 49.22. �

Lemma 55.7. H2pM ;Zq is torsion free.

Proof. This is true for Hn´1pM ;Zq whenever M is a closed oriented n-manifold; see Ex-
ercise 49.5(a). Since every closed manifold is the disjoint union of its finitely many connected
components, it suffices to consider the case where M is connected. The idea is then to apply the
universal coefficient theorem for homology with coefficients Zp for any prime number p: it gives
an isomorphism

HnpM ;Zpq – pHnpM ;Zq b Zpq ‘ TorpHn´1pM ;Zq,Zpq,
where we are working in the setting of Z-modules and therefore interpret the tensor product b and
the Tor functor in that context. Since HnpM ;Zpq – Zp and HnpM ;Zq – Z by Corollary 49.22, this
isomorphism implies the vanishing of TorpHn´1pM ;Zq,Zpq. SinceHn´1pM ;Zq is finitely generated,
we can then use the classification of finitely-generated abelian groups to write

Hn´1pM ;Zq – F ‘
˜

Nà
i“1

Zki

¸
for some free abelian group F and integers N ě 0, k1, . . . , kN ě 2, where N ą 0 if and only if
Hn´1pM ;Zq has torsion. According to the properties of Tor proved in Lecture 45, we then have

0 “ TorpHn´1pM ;Zq,Zpq –
Nà
i“1

TorpZki ,Zpq,
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implying TorpZki ,Zpq “ 0 for every i “ 1, . . . , N and every prime p. But if p is chosen to be any
prime factor of k1, then Theorem 45.1(6) also gives

TorpZk1 ,Zpq “ ker
´
Zp

¨k1ÝÑ Zp

¯
“ ker

´
Zp

0ÝÑ Zp

¯
“ Zp ‰ 0,

which is a contradiction unless N “ 0. �

The last step is to apply Poincaré duality and the universal coefficient theorem for cohomology:
the former gives

H2pM ;Zq – H1pM ;Zq “ 0,

and the latter then implies

0 “ H2pM ;Zq – HompH2pM ;Zq,Zq ‘ ExtpH1pM ;Zq,Zq,
hence HompH2pM ;Zq,Zq “ 0. Since H2pM ;Zq is torsion free, it follows that H2pM ;Zq “ 0.
We already have isomorphisms HnpM ;Zq – HnpS3;Zq for n ě 3 by Lemmas 55.3 and 55.6, and
H0pM ;Zq – H0pS3;Zq – Z is immediate since M is connected, so this completes the proof of
Lemma 55.2.

55.3. From homology sphere to homotopy sphere. The step from π1pMq “ 0 and
H˚pMq – H˚pS3q to M »

h.e.
S3 requires two theorems about homotopy groups that we will need

to quote without proof, though the proofs (explained e.g. in [Hat02, Chapter 4]) do not require
substantial machinery beyond what we have already discussed in this course. Both will appear as
important topics in next semester’s Topologie 3 course.

Definition 55.8. A map f : X Ñ Y is called a weak homotopy equivalence if for all
choices of base points x0 P X and y0 “ fpx0q P Y , f˚ : πnpX, x0q Ñ πnpY, y0q is an isomorphism
for all n ě 0.

Theorem 54.5 in the previous lecture implies that every homotopy equivalence is also a weak
homotopy equivalence. We also know of course that if f : X Ñ Y is a homotopy equivalence, then
the induced maps on homology and cohomology groups are isomorphisms, but we are not giving
any name to the latter condition because it is not sufficiently useful on its own. By contrast, the
notion of a weak homotopy equivalence justifies itself through the following result:

Theorem 55.9 (Whitehead’s theorem). If X and Y are both homotopy equivalent to CW-
complexes, then every weak homotopy equivalence f : X Ñ Y is a homotopy equivalence.

While I do not intend to discuss the proof of this theorem here, you will hopefully gain some
intuition about it from Theorem 54.12 in the previous lecture. In particular, it should be clear
why having cell decompositions of X and Y might be useful in the proof, as e.g. the homotopies
needed for showing that f : X Ñ Y is a homotopy equivalence could be constructed by induction
over the skeleta, one cell at a time.

With Whitehead’s theorem added to our toolbox, it would suffice to find a map f : M Ñ S3

that induces isomorphisms πnpMq Ñ πnpS3q for all n. This project seems hopeless if we don’t yet
even know how to compute πnpMq for n ě 2, so we first need another tool for transforming our
computation of H˚pMq into information about the higher homotopy groups. The obvious tool to
consider is the so-called Hurewicz map,

h : πnpX, x0q Ñ HnpX ;Zq : rf s ÞÑ f˚rSns,
defined in terms of the fundamental class rSns P HnpSn;Zq and maps f : pSn, ˚q Ñ pX, x0q
representing elements of πnpX, x0q. We’ve seen that for n “ 1, this map cannot generally be
an isomorphism since H1pX ;Zq is always abelian while π1pXq is not, but the next best thing is
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true: when π0pXq “ 0, h : π1pXq Ñ H1pX ;Zq descends to an isomorphism on the abelianization
of π1pXq. For n ě 2, both groups are abelian, so there is some hope of h : πnpXq Ñ HnpX ;Zq
actually being an isomorphism, though we’ve also seen cases where this is not true: e.g. π2pT2q “ 0

but H2pT2;Zq – Z. The Hurewicz theorem gives sufficient conditions for h to be an isomorphism,
or to put it another way, for every n-dimensional homology class in X to correspond to a unique
spherical homology class.

Theorem 55.10 (Hurewicz’s theorem). Suppose pX, x0q is a pointed space that is pn ´ 1q-
connected for some n ě 2. Then rHkpXq “ 0 for all k ď n ´ 1, and the Hurewicz map h :

πnpX, x0q Ñ HnpX ;Zq is an isomorphism.

A rough idea for the proof of this theorem can be summarized as follows. By a construction
based on induction over skeleta, one can first replace the spaceX with a CW-complex that is weakly
homotopy equivalent to it, in which case its homotopy groups and singular homology groups are
the same.86 Moreover, the assumption that X is pn ´ 1q-connected enables one to construct the
CW-complex so that its pn´1q-skeleton contains only a single point, i.e. one starts with a 0-cell and
then attaches n-cells and cells of higher dimension, skipping over dimensions 1, . . . , n´ 1 entirely.
For a CW-complex of this form, cellular homology tells us that rHkpXq “ 0 for k ď n ´ 1, and
it is also not difficult to compute both HnpXq and πnpXq and show that they match. The main
ingredients needed for computing πnpXq in this situation are the homotopy exact sequence for
pairs of spaces and the computation πnpSnq – Z, mentioned in Example 54.8.

Before we get back to discussing 3-manifolds homotopy equivalent to S3, here are a couple of
applications of the Hurewicz isomorphism.

Corollary 55.11. If X is path-connected and has universal cover rX Ñ X, then π2pXq –
H2p rX ;Zq.

Proof. Since S2 is simply connected, any map S2 Ñ X or homotopy of such maps can be
lifted to rX , implying π2pXq – π2p rXq. Since rX is simply connected, the Hurewicz theorem then
identifies π2p rXq with H2p rX ;Zq. �

Corollary 55.12. If X is a simply connected CW-complex with rH˚pX ;Zq “ 0, then X is
contractible.

Proof. The Hurewicz theorem gives an isomorphism π2pXq – H2pX ;Zq “ 0, proving X is
2-connected, so one can then apply the theorem again and conclude π3pXq – H3pX ;Zq “ 0, and
then again. . . by induction, we deduce πnpXq “ 0 for all n ě 0. It follows that the unique map
ǫ : X Ñ t˚u induces isomorphisms ǫ˚ : πnpXq Ñ πnpt˚uq “ 0 for all n ě 0 and is therefore
a weak homotopy equivalence. Whitehead’s theorem then implies that it is also a homotopy
equivalence. �

You can now imagine at least part of a strategy to complete the proof of Theorem 55.1: instead
of the map ǫ : X Ñ t˚u in the proof of Corollary 55.12, one could take any map f : M Ñ S3 of
degree 1 and try to prove that f˚ : πnpMq Ñ πnpS3q is an isomorphism for all n ě 0. This idea can
be carried out for all n ď 3, as Hurewicz now transforms the computation H˚pM ;Zq – H˚pS3;Zq
into π1pMq “ π2pMq “ 0 and π3pMq – Z. For n ě 4, however, we get stuck, among other reasons

86One of these statements is less obvious than the other: it is practically a tautology that homotopy groups are
invariants of weak homotopy type, but for singular homology, this invariance is a nontrivial theorem that depends
on the choice to use singular rather than any other axiomatic homology theory. On the other hand, most important
applications of the Hurewicz theorem concern spaces X that are already known to be homotopy equivalent to
CW-complexes, in which case Whitehead’s theorem eliminates the distinction between strong and weak homotopy
equivalences, thus making the invariance of singular homology more obvious.
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because it is not so clear what πnpS3q is, and the Hurewicz theorem provides no information about
this above the lowest dimension where rHnpS3;Zq ‰ 0.

To make further progress, we need a relative version of the Hurewicz theorem. Given x0 P A Ă
X , there is a relative Hurewicz map defined for each n P N by

h : πnpX,A, x0q Ñ HnpX,A;Zq : rf s ÞÑ f˚rDns,
where rf s P πnpX,A, x0q is represented by a map f : pDn, BDn, ˚q Ñ pX,A, x0q and rDns P
HnpDn, BDn;Zq denotes the relative fundamental class of Dn. One can check that this map is a
homomorphism for each n ě 2. Let us say that the pair pX,Aq is n-connected if πkpX,Aq “ 0 for
all k ď n. Since π2pX,A, x0q is not always abelian, we cannot generally expect h : π2pX,A, x0q Ñ
H2pX,A;Zq to be an isomorphism, even if pX,Aq is 1-connected. Observe however that if A is
additionally assumed to be simply connected, then the long exact sequence of homotopy groups
for pX,Aq has a segment of the form

. . .Ñ π2pXq Ñ π2pX,Aq Ñ π1pAq “ 0,

implying that π2pX,Aq is the surjective image of a homomorphism defined on the abelian group π2pXq,
and is therefore also abelian. This serves as a sanity check for the following generalization of The-
orem 55.10:

Theorem 55.13. Suppose pX,Aq is an pn´ 1q-connected pair of spaces for some n ě 2, where
A Ă X is also simply connected and x0 P A is a base point. Then HkpX,Aq “ 0 for all k ď n´ 1,
and the relative Hurewicz map h : πnpX,A, x0q Ñ HnpX,A;Zq is an isomorphism.

Corollary 55.14. Suppose X and Y are two simply connected spaces that are both homotopy
equivalent to CW-complexes, and f : X Ñ Y is a map that induces isomorphisms f˚ : HnpX ;Zq Ñ
HnpY ;Zq for every n ě 0. Then f is a homotopy equivalence.

Proof. We first prove it under the simplifying assumption that X Ă Y is a subspace with
f : X ãÑ Y as the inclusion map. The long exact sequence of the pair pY,Xq in homology converts
the assumption f˚ : HnpX ;Zq –ÝÑ HnpY ;Zq into

HnpY,X ;Zq “ 0 for all n ě 0.

Similarly, the long exact sequence of relative homotopy groups includes a segment of the form

0 “ π1pY q Ñ π1pY,Xq Ñ π0pXq “ 0,

implying π1pY,Xq “ 0, so that the relative Hurewicz theorem can be applied to the pair pY,Xq
with n “ 2, producing an isomorphism π2pY,Xq – H2pY,X ;Zq “ 0 and thus proving that pY,Xq
is 2-connected. One can then apply the relative Hurewicz theorem again with n “ 3, and continue
this process inductively to prove πnpY,Xq “ 0 for all n ě 0. In light of the exact sequence

0 “ πn`1pY,Xq Ñ πnpXq f˚Ñ πnpY q Ñ πnpY,Xq “ 0,

this proves that f : X ãÑ Y is a weak homotopy equivalence, so Whitehead’s theorem implies that
it is a homotopy equivalence.

To generalize beyond the case where f : X Ñ Y is an inclusion, we consider the mapping
cylinder of f , defined as the space

Mf :“ ppX ˆ Iq > Y q L„ where px, 1q „ fpxq for all x P X.
This space contains disjoint homeomorphic copies of X and Y , namely the images of the inclusion
maps

iX : X ãÑMf : x ÞÑ rpx, 0qs, and iY : Y ãÑMf : y ÞÑ rys,
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and the latter is a homotopy equivalence due to the obvious deformation retraction of Mf to
iY pY q Ă Mf defined by pushing the t-coordinate of each px, tq P X ˆ I upward toward 1. This is
one of two crucial properties that the mapping cylinder has; the other is that the diagram

Y Mf

X

iY

f
iX

commutes up to homotopy, meaning that while the two maps iX : X ÑMf and iY ˝ f : X ÑMf

have disjoint images and are thus obviously not equal, they are homotopic. As a consequence,
f : X Ñ Y is a homotopy equivalence if and only if iX : X Ñ Mf is a homotopy equivalence,
and the inclusion map iX : X ãÑ Mf can thus be used as a substitute for f : X Ñ Y in
arguments that depend only on homotopy type. In particular, if X and Y are simply connected
and f˚ : H˚pX ;Zq Ñ H˚pY ;Zq is an isomorphism, then Mf is also simply connected and piXq˚ :

H˚pX ;Zq Ñ H˚pMf ;Zq is also an isomorphism, so the argument of the previous paragraph makes
iX a homotopy equivalence, and so therefore is f . �

Conclusion of the proof of Theorem 55.1. We have shown thus far that if M is a
closed simply connected 3-manifold, then H˚pM ;Zq – H˚pS3;Zq. Now pick any map f :M Ñ S3

that has degree 1. Such maps are easily found by identifying S3 with the one-point compactifi-
cation R3 Y t8u, then choosing a Euclidean neighborhood U Ă M and defining f : M Ñ S3 to
be a homeomorphism U

–ÝÑ R3 on this neighborhood while sending every other point to 8. The
characterization of the mapping degree via local degrees in Lecture 36 implies degpfq “ 1.

It is trivial that f˚ : H0pM ;Zq Ñ H0pS3;Zq is an isomorphism, and so is f˚ : H3pM ;Zq Ñ
H3pS3;Zq due to the degree assumption. In all other dimensions, both homology groups vanish,
so we conclude that f˚ : H˚pM ;Zq Ñ H˚pS3;Zq is an isomorphism. Since M and S3 are both
simply connected, Corollary 55.14 now implies that f is a homotopy equivalence. �



Third semester (Topologie III)

56. Motivation: Detecting exotic 7-spheres

Most of the first lecture is meant to provide motivation for the rest of the semester by sketching
a proof of Milnor’s famous theorem that there exist smooth manifolds homeomorphic but not
diffeomorphic to S7. The proof makes use of several fundamental results that will be treated in
depth in this course.

Details will appear here in the first week of the semester.
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