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2 Review

Recall the following definitions from last lecture.

Definition 2.1. Given a (smooth) map 𝑓 ∶ ℝ𝑛 → ℝ𝑞 and a point 𝑥 ∈ ℝ𝑛, the string of derivatives of 𝑓 up to
order 𝑟

𝐽𝑟𝑓 (𝑥) = (𝑓(𝑥), 𝑓′(𝑥), … , 𝑓(𝑟)(𝑥)) ∈ ℝ𝑞𝛮𝑟

where𝛮𝑟 = (𝑛+𝑟)!
𝑛!𝑟! is called the 𝑟-jet of 𝑓 at 𝑥. Here 𝑓(𝑠) consists of all partial derivatives𝐷𝛼𝑓, 𝛼 = (𝛼1, … , 𝛼𝑛),

|𝛼| = 𝛼1 + ⋯ + 𝛼𝑛 = 𝑠, written lexicographically.

Remark 2.2. Note that the 𝑟-jet of 𝑓 contains the same information as the 𝑟th order Taylor polynomial of 𝑓.

Definition 2.3. If we allow 𝑥 to vary, we can view 𝐽𝑟𝑓 as a section ofℝ𝑛 ×ℝ𝑞𝛮𝑟 ∶= 𝐽𝑟(ℝ𝑛, ℝ𝑞), which we’ll call
the space of 𝑟-jets of sectionsℝ𝑛 → ℝ𝑛 × ℝ𝑞.

Remark 2.4. Observe that arbitrary sections of 𝐽(ℝ𝑛, ℝ𝑞) need not be realizable as the 𝑟-jet of amap𝑓 ∶ ℝ𝑛 →
ℝ𝑞.

In the Euclidean case, we saw that jets of functions (which we can view as sections ℝ𝑛 × ℝ𝑞 → ℝ𝑛) can be
uniquely characterized by their 𝑟th orderTaylor polynomial expansion at a given point. If wewant to generalize
the notion of a jet to a section of an arbitrary fibration𝛸 → 𝑉, then, a natural way to do it would be to identify
sections with their 𝑟th order Taylor approximation in a given trivialization.

Definition 2.5. Let 𝑣 ∈ 𝑉. Two local sections 𝑓 ∶ 𝒪𝑝 𝑣 → 𝛸 and 𝑔 ∶ 𝒪𝑝 𝑣 → 𝛸 of the fibration𝛸 → 𝑉 are
called 𝑟-tangent at the point 𝑣 if 𝑓(𝑣) = 𝑔(𝑣) and

𝐽𝑟𝜑∗𝑓(𝜑(𝑣)) = 𝐽𝑟𝜑∗𝑔(𝜑(𝑣))

for a local trivialization 𝜑 ∶ 𝑈 → ℝ𝑛 × ℝ𝑞 of𝛸 in a neighborhood𝑈 of the point 𝑥 = 𝑓(𝑣) = 𝑔(𝑣). Here 𝜑∗𝑓
and 𝜑∗𝑔 are the images of the sections 𝑓 and 𝑔.

Definition 2.6. Let𝛸 → 𝑉 be a fibration. The 𝑟-tangency class of a section 𝑓 ∶ 𝒪𝑝 𝑣 →𝛸 at a point 𝑣 ∈ 𝑉
is called the 𝑟-jet of 𝑓 at 𝑣 and denoted by 𝐽𝑟𝑓 (𝑣). The set of all 𝑟-jets of sections of the fibration 𝑝 ∶ 𝛸 → 𝑉 is
denoted by𝛸(𝑟), and comes equipped with a projection 𝑝𝑟 ∶ 𝛸(𝑟) → 𝑉.
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Remark 2.7. A helpful way to visualize a section 𝜎 ∶ 𝑉 → 𝛸(𝑟) is to imagine for each 𝑣 ∈ 𝑉, the graph of the
𝑟th order Taylor polynomial in an infinitesimal neighborhood𝑈 above 𝑣. In particular, a section of 𝛸(1) can
be visualized as a smooth surface with a non-vertical (and not necessarily tangent) plane at each point.1

We commented earlier that arbitrary sections of the jet space need not arise as jets of sections on their domain,
even if locally this is the case. As such, we give a special name to the sections that can be realized in such a way.

Definition 2.8. Given a section 𝜎 ∶ 𝑉 → 𝛸(𝑟), we will denote by bs 𝜎 the underlying section 𝑝𝑟0 ∘ 𝜎 ∶ 𝑉 → 𝛸.
A section 𝜎 ∶ 𝑉 → 𝛸(𝑟) is called holonomic if 𝜎 = 𝐽𝑟bs 𝜎. In particular, holonomic sectionsℝ𝑛 → 𝐽𝑟 (ℝ𝑛, ℝ𝑞)
have the form

𝑥 ↦ (𝑥, 𝑓(𝑥), 𝑓′(𝑥), … , 𝑓(𝑟)(𝑥))

so that holonomic sections of𝛸(𝑟) → 𝑉 are in one-to-one correspondence with sections of𝛸 → 𝑉.

Definition 2.9. A differential relation of order 𝑟 imposed on sections 𝑓 ∶ 𝑉 → 𝛸 of a fibration𝛸 → 𝑉 is a
subsetℛ of the jet space𝛸(𝑟). It is open/closed if it is open/closed as a subset ofℛ. A section 𝜎 ∶ 𝑉 → ℛ ⊂ 𝛸(𝑟)

is called a formal solution of the differential relationℛ. A (genuine) solution of a differential relationℛ ⊂ 𝛸(𝑟)

is a holonomic section 𝜎 ∶ 𝑉 → ℛ.

Now the reason we introduced this language of jets was because many geometric problems can be phrased in
terms of finding genuine solutions to a system of differential relations in the jet space. Finding formal solutions
to these equations is typically an easier algebraic-topological obstruction problem, whereas finding genuine
solutions directly is much harder. But for certain types of differential relations, this is enough, and the existence
of a formal solution implies the existence of a genuine solution. More specifically, for such relations, every
formal solution is homotopic to a genuine one. In this scenario, we say that the differential relation satisfies the
h-principle.

3 Motivation

So howdowe begin showing that a relation satisfies the ℎ-principle? Well, recall that a formal solution is simply
a section of the jet space with image contained in the relation, and that such a solution is genuine if it is holo-
nomic. A first step, then, might be to ask the question if an arbitrary section into the jet space can at least be
approximated by a holonomic one. To explore this question, let’s consider the following illustrative example.

Example 3.1. Suppose𝛢 = [0, 1] × {0}. Consider the section

𝜎 ∶ 𝒪𝑝 𝛢 → 𝐽1 (ℝ2, ℝ) , (𝑥1, 𝑥2) ↦ (𝑥1, 𝑥2, 𝑥1, 0, 0) .

Canwe find a holonomic approximation of this section on𝛢? Well, suppose there was such an approximation
𝑓̂. Then we would have a holonomic section

𝐽1𝑓̂ (𝑥1, 𝑥2) = (𝑥1, 𝑥2, 𝑓̂ (𝑥1, 𝑥2) ,
𝜕𝑓̂
𝜕𝑥1

(𝑥1, 𝑥2) ,
𝜕𝑓̂
𝜕𝑥2

(𝑥1, 𝑥2))

that is𝐶0-close to 𝜎.
1Let 𝑥 = 𝜎(𝑣). Note that we can view the plane above 𝑣 as 𝛲𝑥 ∶= 𝑑𝑣𝑓(𝛵𝑣𝑉) for some localized section 𝑓 ∶ 𝑈 → 𝛸 that is

1-tangent to 𝜎 at 𝑣. Now if the plane was vertical, then for every 𝑤 ∈ 𝛲𝑥, we would have 𝑑𝑥𝑝(𝑤) = 0. But 𝑝(𝑓(𝑣)) = 𝑣, so that
𝑑𝑥𝑝 ∘ 𝑑𝑣𝑓 = 𝑑𝑣(𝑝 ∘ 𝑓) = 𝑑𝑣id𝑈 = id𝛵𝑣𝑉 - a contradiction, since we can’t simultaneously have (𝑑𝑥𝑝 ∘ 𝑑𝑣𝑓)(𝛵𝑣𝑉) = 𝑑𝑥𝑝(𝛲𝑥) = 0 and
(𝑑𝑥𝑝 ∘ 𝑑𝑣𝑓)(𝛵𝑣𝑉) = id𝛵𝑣𝑉(𝛵𝑣𝑉) = 𝛵𝑣𝑉. So the planes must be non-vertical. A similar non-verticality argument allows us to identify
sections of the fibration 𝑝10 ∶ 𝛸(1) → 𝛸with connections on𝛸.
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Figure 1: We can get a good approximation if we allow ourselves to move sideways. Then the error goes from
order𝛰(1) to order𝛰(𝛿/𝜖).

Sincewe’re looking only on𝛢, we consider only points of the form (𝑥1, 0). Therefore, it suffices to consider the
single variable function𝑓(𝑥1) ∶= 𝑓̂(𝑥1, 0). Now𝑓′(𝑥1) =

𝜕𝑓̂
𝜕𝑥1 (𝑥1, 0) being𝐶

0-close to 0means that |𝑓(𝑥1)| < 𝜖
for some small 𝜖 > 0 for all 𝑥1 ∈ [0, 1]. Now by the mean value theorem, there is a 𝑐 ∈ (0, 1) such that

|𝑓(1) − 𝑓(0)| = 𝑓′(𝑐)(1 − 0) = 𝑓′(𝑐) < 𝜖.

But if 𝑓(0) ≈ 𝜎0(0, 0) = 0 and 𝑓(1) ≈ 𝜎0(1, 0) = 1 (where 𝜎0 represents the 0-derivative part of 𝜎), then
|𝑓(1) − 𝑓(0)| ≈ 1 − 0 = 1, a contradiction. The change of 𝑓must be𝛰(1) yet simulataneously𝛰(𝜖). So there
cannot be a holonomic approximation on this domain.

But what if we allow ourselves to deform our domain slightly via a diffeotopy? Then maybe I can move in the
𝑥2 direction so that the rise is gentler, and less than𝛰(1)
Think of how roads are designed on mountains - by doing a lot of switchbacks, we can climb the mountain
while staying relatively flat. Holonomic approximation tells us that on such a wiggled domain, we do have a
holonomic approximation.

Definition 3.2. A closed subset𝛫 ⊂ 𝛭 is called a polyhedron if it is a subcomplex of some smooth triangula-
tion of𝛭.

Remark 3.3. We assume that the manifold𝑉 is endowed with a Riemannian metric and the bundle𝛸(𝑟) is en-
dowedwith aEuclidean structure in a neighborhood𝑈of the section𝜎(𝑉) ⊂ 𝛸(𝑟), where a Euclidean structure
means that we have a smoothly varying inner product defined on the fibers of the bundle in a neighborhood.

Theorem 3.4 (Holonomic approximation). Let 𝜎 ∶ 𝑉 → 𝛸(𝑟) be a section of the 𝑟-jet bundle of a fibre bundle
𝑝 ∶ 𝛸 → 𝑉 and let𝛫 ⊂ 𝑉 be a polyhedron of positive codimension. Then there exists an isotopy 𝐹𝑡 ∶ 𝑉 → 𝑉 and
a holonomic section 𝜎̂ ∶ 𝒪𝑝 𝐹1(𝛫) → 𝛸(𝑟) such that the following properties hold:

• 𝜎̂ is𝐶0-close to 𝜎 on 𝒪𝑝 𝐹1(𝛫).
• 𝐹𝑡 is𝐶0-close to the identity.
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Figure 2: Reducing to the localized version

Furthermore, if 𝜎 is holonomic on 𝒪𝑝 𝛢 for some closed subset𝛢 ⊂ 𝑉, then we may take 𝐹𝑡 ≡ id𝑉

In the following, we’ll denote 𝛪 = [−1, 1].

Theorem 3.5 (Localized holonomic approximation). Fix 𝑘 < 𝑚. Let 𝜎 ∶ 𝛪𝑚 → 𝐽𝑟 (ℝ𝑚, ℝ𝑛) be a section such
that 𝜎 = 0 on𝒪𝑝 𝜕𝛪𝑚. Then there exists an isotopy 𝐹𝑡 ∶ 𝛪𝑚 → 𝛪𝑚 and a holonomic section 𝜎̂ ∶ 𝛪𝑚 → 𝐽𝑟 (ℝ𝑚, ℝ𝑛)
such that the following properties hold:

1. 𝜎̂ is𝐶0-close to 𝜎 on 𝒪𝑝 𝐹1(𝛪𝑘).
2. 𝐹𝑡 is𝐶0-close to the identity.

3. 𝐹𝑡 ≡ id𝛪𝑚 and 𝜎̂ = 0 on 𝒪𝑝 𝜕𝛪𝑚.

Note that localized holonomic approximation proves holonomic approximation. Indeed, in a local trivial-
ization of a contractible neighborhood, one can view the jet space 𝛸(𝑟) as 𝐽𝑟(ℝ𝑚, ℝ𝑛) if dim𝑉 = 𝑚 and
dim𝛸 = 𝑚 + 𝑛.
Working in this Euclidean picture, we can begin with the Taylor approximation on zero simplices. Locally, this
is𝐶0-close, and we can cut it off so it becomes 0 right when it begins to deviate from your desired closeness.

Now suppose we have a one simplex. If we look at a neighborhood of the interior of the simplex, one can
trivialize in such a way that locally, the neighborhood looks like 𝛪𝑚 and the 1-simplex looks like 𝛪 in 𝛪𝑚. If we
cut off the section near the boundaries, we can use Theorem 2.5 to give us a holonomic approximation along a
wiggled neighborhood with respect to that trivialization that respects the section being 0 near the boundaries.
Now we can pull this back to a holonomic section in the one simplex viewed in𝛸(𝑟).

Let’s consider a 1-simplex and its boundary points. How do we combine our approximations? Well since we
constructed our approximations so that they would become 0 near the boundary, on the intersection of the
Taylor neighborhoods and the neighborhood of the interior of the one simplex, one can glue the holonomic
approximations in a way that doesn’t affect𝐶0-closeness and pull it back to a holonomic section defined on the
1-simplex and its boundary points that’s𝐶0-close to the original section. I’m not too sure about this statement,
but I imaginewe can glue things together becausewe can consider a trivialization thatmaps a holonomic section
near the original section to 0, so when they glue along this 0, the pullback to the jet bundle still gives you
something holonomic and𝐶0-close. This needs clarification, of course, but I realizedmyoriginal argument that
I presented in lecture of ”adding sections” does not work, since adding holonomic sections in a trivialization
does not necessarily give you a holonomic section.

We can continue using a similar argumentative approach to obtain the general statement of holonomic approx-
imation from the localized statement.

Lemma 3.6 (Inductive holonomic approximation). Fix 𝑗 < 𝑘 < 𝑚. Let 𝜎 ∶ 𝛪𝑚 → 𝐽𝑟 (ℝ𝑚, ℝ𝑛) be a section
such that

1. 𝜎 = 0 on 𝒪𝑝 𝜕𝛪𝑚.
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Figure 3: The isotopy acts independently on each slice.

2. 𝜎 is holonomic along the cubes 𝛪𝑗 × 𝑦 × 0, 𝑦 ∈ 𝛪𝑚−𝑗−1.
Then there exists an isotopy 𝐹𝑡 ∶ 𝛪𝑚 → 𝛪𝑚 and a section 𝜎̂ ∶ 𝛪𝑚 → 𝐽𝑟 (ℝ𝑚, ℝ𝑛) such that the following properties
hold:

1. 𝜎̂ is𝐶0-close to 𝜎 on 𝒪𝑝 𝐹1 (𝛪𝑘).

2. 𝜎̂ is holonomic along the cubes 𝐹1 (𝛪𝑗+1 × 𝑦 × 0) , 𝑦 ∈ 𝛪𝑚−𝑗−2.
3. 𝐹𝑡 is𝐶0-close to the identity.

4. 𝐹𝑡 ≡ id𝛪𝑚 and 𝜎̂ = 0 on 𝒪𝑝 𝜕𝛪𝑚.

5. 𝐹𝑡 is fibered over the projection (𝑥1, … , 𝑥𝑚) ↦ (𝑥𝑗+2, … , 𝑥𝑚−1), hence can be viewed as a family of isotopies
𝐹𝑞𝑡 ∶ 𝛪𝑗+1 × 𝑞 × 𝛪 → 𝛪𝑗+1 × 𝑞 × 𝛪, where 𝑞 ∈ 𝛪𝑚−𝑗−2.

Remark 3.7. Let’s think about what this means for 𝑚 = 3, 𝑘 = 2, 𝑗 = 0. In this case, we have a section
𝜎 ∶ 𝛪3 → 𝐽𝑟(ℝ3, ℝ𝑛) that vanishes near the boundary of 𝛪3. If 𝑗 = 0, then the second condition tells us that
we want 𝜎 to be holonomic along the points {(𝑦1, 𝑦2, 0)}, where (𝑦1, 𝑦2) ∈ 𝛪2. In other words, it’s holonomic
at every point of the middle square. But since sections are always holonomic along points (as we can always
construct the Taylor polynomial in a neighborhood of a point), this condition is trivially satisfied for any 𝜎 for
𝑗 = 0.
The lemma then gives us an isotopy 𝐹1𝑡 ∶ 𝛪3 → 𝛪3 and a section 𝜎̂(1) ∶ 𝛪3 → 𝐽𝑟(ℝ3, ℝ𝑛) satisfying properties
1-5. We have, then, that 𝜎̂(1) is 𝐶0-close to 𝜎 (property 1) on 𝒪𝑝 𝐹11 (𝛪2 × 0) and that 𝜎̂(1) is holonomic along
the wiggled lines (parametrized left to right)2 𝐹11 (𝛪 × 𝑦 × 0)where 𝑦 ∈ 𝛪 (property 2). By properties 3 and 4, this
deformation is really small, in the sense that it’s𝐶0-close to the identity, and also doesn’t affect the boundary at
all (it’s supported in the interior), and finally, property 5 tells us that the isotopy is fibered over the projection
(𝑥1, 𝑥2, 𝑥3) ↦ 𝑥2, so that the deformation happens independently on the squares going left to right.

Now note 𝜎̂(1) is holonomic along each leaf (wiggled line) 𝐿𝑦 ∶= 𝐹1(𝛪×𝑦×0), 𝑦 ∈ 𝛪. So we have a neighborhood
𝒪𝑝 𝐿𝑦 such that the restriction to the leaf of 𝜎̂(1) can be extended to a holonomic section 𝜎̂(1)𝑦 ∶ 𝒪𝑝 𝐿𝑦 →
𝐽𝑟(ℝ3, ℝ𝑛).
For each 𝑦 ∈ 𝛪, we can intersect 𝒪𝑝 𝐿𝑦 with the plane 𝛪 × {𝑦} × 𝛪 to get 𝑈𝑦 = 𝐿𝑦 × (−𝜀, 𝜀)𝑥3 , and define a
smooth map 𝑓𝑦 = bs 𝜎̂(1)𝑦 |𝑈𝑦 ∶ 𝑈𝑦 → ℝ𝑛 where 𝐽𝑟 (𝑓𝑦) |𝑈𝑦 = 𝜎̂(1)∣

𝑈𝑦
. Since 𝐹1𝑡 is fibered over these leaves,

we can glue these to define a smooth function 𝑓 ∶ 𝑊 ∶= ⋃𝑦∈𝛪𝑈𝑦 → ℝ𝑛 ∶ 𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑓𝑥2(𝑥1, 𝑥3). This
is smooth because the local holonomic extensions 𝜎̂(1)𝑦 vary smoothly on the parameter 𝑦. Finally, extend this

2Left to right means in the 𝑥2 direction. Front and back refer to the 𝑥1 direction, and up and down refer to the 𝑥3 direction.
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using a cutoff function to a function 𝑓 ∶ 𝛪3 → ℝ𝑛 on the whole cube .

Now we have enough to continue the induction. Let 𝜎(1) ∶= 𝐽𝑟𝑓∘(𝐹11 )−1 ∶ 𝛪3 → 𝐽𝑟(ℝ3, ℝ𝑛). Note that 𝜎(1)
is holonomic along 𝛪 × 𝑦 × 0 with 𝑦 ∈ 𝛪 (straight lines going left to right) by construction (it is holonomic
everywhere , by definition!), so it satisfies condition 2 of the hypothesis. Note condition 1 is unaffected as near
the boundary, we’ll have 𝑓𝑦 = 0. Finally, observe that since 𝐽𝑟𝑓 = 𝜎̂(1) on some 𝒪𝑝 𝐹11 (𝛪2 × 0) (more specifically,
on𝑊), which is 𝐶0-close to 𝜎 on some 𝒪𝑝 𝐹11 (𝛪2 × 0) with 𝐹11 is itself 𝐶0-small, 𝜎(1) ∶= 𝐽𝑟𝑓∘(𝐹11 )−1 will also be
𝐶0-close to 𝜎 on 𝒪𝑝 𝐹11 (𝛪2 × 0).
So we can apply the lemma again to get a section 𝜎̂(2) ∶ 𝛪3 → 𝐽𝑟(ℝ3, ℝ𝑛) and isotopy 𝐹2𝑡 ∶ 𝛪3 → 𝛪3 satisfying
properties 1-5. Now 𝜎̂(2) is 𝐶0-close to 𝜎(1) (property 1) on 𝒪𝑝 𝐹21 (𝛪2 × 0), and since 𝜎(1) is 𝐶0-close to 𝜎 on
𝒪𝑝 𝐹11 (𝛪2 × 0) and 𝐹21 is 𝐶0-close to the identity, we have that 𝜎̂(2) is 𝐶0-close to 𝜎 as well on some 𝒪𝑝 (𝛪2 × 0)
which is the intersection of these two open neighborhoods. Property 2 then tells us that 𝜎̂(2) is holonomic
along 𝐹21 (𝛪2 × 0), so that it’s now holonomic over a deformed version of the bottom square of the cube. Like
before, property 3 and 4 preserve the boundary conditions and make it so that the isotopy can be made small
and property 5 becomes irrelevant (it’s not fibered over any coordinate).

Since 𝜎̂(2) is holonomic along𝐹21 (𝛪2×0), there is a holonomic extension𝜎(2) ∶ 𝒪𝑝𝐹21 (𝛪2×0) → 𝐽𝑟(ℝ3, ℝ𝑛) such
that 𝜎(2)|𝛪2×0 = 𝜎̂(2)|𝛪2×0. As before, take bs 𝜎(2) ∶ 𝒪𝑝 𝐹21 (𝛪2 × 0) → ℝ𝑛 and extend it to a map 𝑔 ∶ 𝛪3 → ℝ𝑛.
Consider 𝜎̂ = 𝐽𝑟𝑔 ∶ 𝛪3 → 𝐽𝑟(ℝ3, ℝ𝑛). This is a holonomic section where 𝐹𝑡 ∶= 𝐹2𝑡 ∘ 𝐹1𝑡 is 𝐶0-close to the
identity, 𝜎̂ is 𝐶0-close to 𝜎 on 𝒪𝑝 𝐹1(𝛪2 × 0) (by making neighborhoods small enough and composing the two
isotopies, we can get this contained in the intersection of neighborhoods 𝒪𝑝 𝐹11 (𝛪2 × 0) and 𝒪𝑝 𝐹21 (𝛪2 × 0)),
and 𝐹𝑡 ≡ id𝛪3 and 𝜎̂ = 0 on 𝒪𝑝 𝜕𝛪3. Hence, we’ve proved using the inductive holonomic approximation the
localized holonomic approximation theorem for𝑚 = 3, 𝑘 = 2.
Clearly, the same argument works for any𝑚 and any 𝑘. So the inductive holonomic approximation proves the
localized holonomic approximation.

Remark 3.8. For the proof of the inductive lemma, note that we will essentially state the proof in [AG24]
verbatim, with some mild annotation/elaboration.

Proof. We begin with the case 𝑚 = 2, 𝑗 = 0, 𝑘 = 1, 𝑟 = 1, 𝑛 = 1. In this case, we have a section 𝜎 ∶ 𝛪2 →
𝐽1 (ℝ2, ℝ1) that is 0 on an open neighborhood of the boundary. Note that since 𝑗 = 0, condition 2 is trivially
met like it was in the example above since we are asking 𝜎 to be holonomic along points 𝑦 × 0, 𝑦 ∈ 𝛪. For
each point 𝑥 = (𝑥1, 𝑥2) ∈ 𝛪2 we have a 1-jet 𝜎(𝑥) ∈ 𝐽1 (ℝ2, ℝ)∣𝑥 which consists of a 0 -jet part ℎ(𝑥) ∈ ℝ and
the two first order formal derivatives 𝜎1(𝑥), 𝜎2(𝑥) ∈ ℝ, so 𝜎(𝑥) = (𝑥, ℎ(𝑥), 𝜎1(𝑥), 𝜎2(𝑥)). For fixed 𝑥 ∈ 𝛪2,
let ℎ𝑥(𝑦) be the unique degree 1 polynomial in the variables 𝑦 = (𝑦1, 𝑦2) whose 2 -jet at 𝑥 is 𝜎(𝑥). We write
ℎ = ℎ ((𝑢1, 𝑢2) , (𝑤1, 𝑤2)) for the function ℎ(𝑢1,𝑢2) (𝑤1, 𝑤2), (where the first pair is the base point and the second
point is the evaluation of the polynomial) so we have

𝜎 (𝑥1, 𝑥2) = (ℎ ((𝑥1, 𝑥2) , (𝑥1, 𝑥2)) ,
𝜕ℎ
𝜕𝑤1

((𝑥1, 𝑥2) , (𝑥1, 𝑥2)) ,
𝜕ℎ
𝜕𝑤2

((𝑥1, 𝑥2) , (𝑥1, 𝑥2)))

Wewill build up our approximation on the wiggled domain by interpolating between these Taylor approxima-
tions, which work in neighborhoods of a point.

Given 𝜖, 𝛿 > 0 small such that 𝛿/𝜖 is also small (the extent will be quantified below), consider the curve

𝑤(𝑢) = 𝜖
2 sin (𝜋𝑢2𝛿 ) , 𝑢 ∈ ℝ

The idea behind this curve is to make precise the wiggling we talked about earlier in the mountain example.
The amplitude 𝜖/2 is there to make the total open neighborhood of our wiggled domain (which will be of size
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Figure 4: The condition supp(𝜎) ⊂ [−1 + 𝜀, 1 − 𝜀]𝑚

𝜖/2 ) within [−𝜖, 𝜖], and the factor of 𝜋𝑢/2𝛿 is to make the period of the oscillation on the order of 𝛿. The
factor of 4 is simply to make things look a bit more aesthetic.

Fix a cutoff function 𝜓 ∶ ℝ → ℝ such that 𝜓(𝑢) = 0 for |𝑢| < 1
2 and 𝜓(𝑢) = 1 for |𝑢| > 3/4. If 𝜀 > 0 is small

enough so that supp(𝜎) ⊂ [−1 + 𝜀, 1 − 𝜀]𝑚, define an isotopy 𝐹𝑡 ∶ 𝛪2 → 𝛪2 by the formula

𝐹𝑡 (𝑥1, 𝑥2) = (𝑥1, 𝑥2 + 𝜑𝑡 (𝑥1, 𝑥2))

𝜑𝑡 (𝑥1, 𝑥2) = 𝑡𝜓 (1 − |𝑥1|𝜀 ) 𝜓 (1 − |𝑥2|𝜀 ) 𝑤 (𝑥1) .

The cutoff functions ensure that the isotopy does not affect the boundary whatsoever, and note that we also
have ∣𝜑𝑡 (𝑥1, 𝑥2)∣ bounded by the maximum value of 𝑤 (𝑥1), which is 𝜖/2. So this wiggling being of order 𝜖 is
necessary to make the isotopy𝐶0-close to the identity.

Note that

𝑑𝐹𝑡 = ( 1 0
𝜕𝑥1𝜑𝑡 1 + 𝜕𝑥2𝜑𝑡

)

Through standard calculus, one gets that the 𝜕𝑥1𝜑𝑡 term hasmaximummagnitude 𝜋𝜖/4𝛿, so is of order𝛰(𝜖/𝛿).
Later, we will see that we must have 𝛿/𝜖 very small, so this constant is actually quite large, and will dominate
the other terms, which are of𝛰(1). Hence, we have the estimate

‖𝑑𝐹𝑡‖𝐶0 ≤ 𝐶𝜖𝛿

Note that though this estimate is quite large, it scales uniformlywith 𝜖 and 𝛿. In other words, the proportion of
the wiggling is maintained across different scales, and does not become infinite. It is controlled by the parame-
ters. We will now construct a holonomic approximation 𝜎̂ = 𝐽1𝑔 of the section 𝜎. The domain of definition of
the function 𝑔will be the wiggled neighborhood of 𝛪 × 0 ⊂ 𝛪2 given𝑈 = 𝐹1 ({|𝑥2| < 1

4 𝜀}) ⊂ 𝛪2. Essentially, we
should imagine𝑈 as a uniform neighborhood around the oscillation that goes between ( −3𝜖/4, 3𝜖/4 ).
To define 𝑔we fix a function 𝜂 ∶ ℝ → ℝ such that

• 𝜂(𝑢) = −1 for 𝑢 < −1
• 1 ≤ 𝜂(𝑢) ≤ 1 for −1 ≤ 𝑢 ≤ 1

7
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• 𝜂(𝑢) = 1 for 𝑢 > 1
This function will be a sort of interpolation parameter that’ll control how we go between our Taylor approxi-
mations at certain points.

We give an explicit formula for 𝑔 on each of the rectangles

𝑅𝑗 = [(2𝑗 − 1)𝛿, (2𝑗 + 1)𝛿] × [−𝜖, 𝜖] ⊂ 𝛪2

such that 𝑅𝑗 is contained in the support of 𝜎. Now imagine these rectangles as partitioning the support into
parts [−𝛿, 𝛿] where the wiggle is increasing/decreasing. Indeed, recall the period of the wiggle was 4𝛿, so these
size 2𝛿 intervals capture half a period.
Suppose first that 𝑗 ∈ ℤ is even. Then this is when the wiggle is increasing. We set

𝑔 ∶ 𝑅𝑗 → ℝ, 𝑔 (𝑥1, 𝑥2) = ℎ (𝑝 (𝑥1, 𝑥2) , 𝑥1, 𝑥2)

where

𝑝 (𝑥1, 𝑥2) = ((2𝑗𝛿) + 𝛿𝜂 (4𝑥2𝜀 ) , 0) , (𝑥1, 𝑥2) ∈ 𝑅𝑗

Let 𝑏(𝑢) = (2𝑗𝛿)+𝛿𝜂(4𝑢/𝜀), so that 𝑝 (𝑥1, 𝑥2) = (𝑏 (𝑥2) , 0). Let’s dissect this function. Basically, we smoothly
interpolate between the Taylor polynomials by moving the base point from left to right. Indeed, note that
𝛿𝜂 (4𝑥2/𝜖) is 𝛿when 𝑥2 > 𝜖/4 and −𝛿when 𝑥2 < −𝜖/4.
Using repeated applications of the chain rule, note that

∣𝑏(𝑖)∣ ≤ 𝐶 𝛿
𝜖𝑖

this estimate tells us that we are changing the base point in a way that keeps things close to the original section.
In particular, there’ll be error terms that involve the derivative of 𝑏 that can be made arbitrarily small, as long
as 𝛿/𝜖𝑖 is small.

For consistency, for 𝑗 ∈ ℤ odd, we define the function

𝑔 ∶ 𝑅𝑗 → ℝ𝑛, 𝑔 (𝑥1, 𝑥2) = ℎ (𝑝 (𝑥1, 𝑥2) , (𝑥1, 𝑥2))

where

𝑝 (𝑥1, 𝑥2) = ((2𝑗𝛿) − 𝛿𝜂 (4𝑥2𝜀 ) , 0) , (𝑥1, 𝑥2) ∈ 𝑅𝑗

The reason for this can be seen with a picture. In essence the right base point for the increasing part becomes
the left base point for the decreasing part. To keep the approximation the same, we flip the sign.

Note that we have designed this function to agree specifically on the wiggled neighborhood𝑈. In general, they
will not glue on the union of the rectangles. This gives us a globally defined function 𝑔 ∶ 𝑈 → ℝ.
Now let’s show that this 𝑔 gives us a good approximation. Note that the derivatives of 𝑏 are crucial in showing
that the error from moving further and further away from the Taylor approximation at a given point is neg-
ligible. Recall that the section 𝜎 ∶ 𝛪2 → 𝐽1 (ℝ2, ℝ) has value at a point 𝑞 ∈ 𝛪2 given by the 2 -jet at 𝑞 of a
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Figure 5: The moving base point.

degree 1 polynomial ℎ𝑞 ∶ ℝ2 → ℝ. We write ℎ = ℎ ((𝑢1, 𝑢2) , (𝑤1, 𝑤2)) for the function ℎ(𝑢1,𝑢2) (𝑤1, 𝑤2), so the
coordinates of 𝜎 are:

𝜎 (𝑥1, 𝑥2) = (ℎ ((𝑥1, 𝑥2) , (𝑥1, 𝑥2)) ,
𝜕ℎ
𝜕𝑤1

((𝑥1, 𝑥2) , (𝑥1, 𝑥2)) ,
𝜕ℎ
𝜕𝑤2

((𝑥1, 𝑥2) , (𝑥1, 𝑥2)))

We now explicitly compute

𝜕𝑔
𝜕𝑥1

(𝑥1, 𝑥2) =
𝜕ℎ
𝜕𝑤1

((𝑏 (𝑥2) , 0) , (𝑥1, 𝑥2))
𝜕𝑔
𝜕𝑥2

(𝑥1, 𝑥2) =
𝜕ℎ
𝜕𝑤2

((𝑏 (𝑥2) , 0) , (𝑥1, 𝑥2)) + 𝑏′ (𝑥2)
𝜕ℎ
𝜕𝑢1

((𝑏 (𝑥2) , 0) , (𝑥1, 𝑥2))

Observe that the terms 𝜕ℎ/𝜕𝑤𝑖 ((𝑏 (𝑥2) , 0) , (𝑥1, 𝑥2)) are very close to the terms 𝜕ℎ/𝜕𝑤𝑖 ((𝑥1, 𝑥2) , (𝑥1, 𝑥2)) be-
cause 𝑏 (𝑥2) is very close to 𝑥1 (it is 𝛿-close) since |𝑏 (𝑥2)| = ∣𝛿𝜂 ( 4𝑥2𝜀 )∣ ≤ 𝛿 ∣𝜂 ( 4𝑥2𝜀 )∣ ≤ 𝛿 ⋅ 1 = 𝛿, and 𝑥2 is very
small (it is 𝜀-small) (recall |𝑥2| < 𝜖 ), hence very close to 0 ( 𝜀-close). Hence (𝑏 (𝑥2) , 0) is very close to ( 𝑥1, 𝑥2 ),
and so continuity of 𝜕ℎ/𝜕𝑤𝑖 gives the desired conclusion.
The remaining term 𝑏′ (𝑥2) 𝜕ℎ/𝜕𝑢1 ((𝑏 (𝑥2) , 0) , (𝑥1, 𝑥2))will be shown to be small as soon as the germ 𝑏′ (𝑥2)
is shown to be small, since 𝜕ℎ/𝜕𝑢1 ((𝑏 (𝑥2) , 0) , (𝑥1, 𝑥2)) will be uniformly bounded above by some a priori
constant𝐶 > 0, by continuity of 𝜕ℎ/𝜕𝑢1 (indeed, the argumentswhere it is evaluated is confined to the compact
set [−𝛿, 𝛿], so by the extreme value theorem, it is bounded). But we may ensure that ∣𝑏′∣ is arbitrarily small by
choosing 𝜀, 𝛿 > 0 arbitrarily small such that 𝛿/𝜀 is arbitrarily small (for example perform the above construction
with 𝜀 = 1

𝛮 , 𝛿 = 1
𝛮2 and𝛮 large). Hence the 1-jet 𝐽1𝑔 (𝑥1, 𝑥2) is 𝐶0-close to 𝜎 (𝑥1, 𝑥2) on 𝑈 ⊃ 𝐹1(𝛪) and the

proof is complete for this case. Now let’s see how this case can be generalized. If 𝑛 > 1 is arbitrary, then we
simply apply the same argument to each of the 𝑛-coordinate output functions.
If 𝑟 > 1 is arbitrary, we do the same interpolation, but using the higher order Taylor polynomials. Analogous
computations show that we end up with a bound of order𝛰 (𝛿/𝜖𝑟). In particular, the computation involving
the derivatives of 𝑏 will go up to order 𝑟, so the estimate on the 𝑟-derivatives of 𝜖 we had above gives us the
bound. So it suffices to choose 𝜀, 𝛿 > 0 arbitrarily small such that 𝛿/𝜀𝑟 is arbitrarily small (for example perform
the above construction with 𝜀 = 1

𝛮 , 𝛿 = 1
𝛮𝑟+1 and𝛮 large).

For higher dimensional input, let’s consider the example 𝑚 = 3. Then we can simply do the construction
in the coordinates 𝑥1 and 𝑥3, then parametrize the construction by 𝑥2 to get something over the whole plane.
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You should then be able to do a similar ”base point” moving construction to get an isotopy 𝐹𝑡 (𝑥1, 𝑥2, 𝑥3) =
(𝑥1, 𝑥2, 𝑥3 + 𝜑𝑡 (𝑥1, 𝑥2)) and an open set𝑈. Our moving base point will be of form 𝑏(𝑥1, 𝑥2)
Controlling the size of the approximation will involvemore derivatives, but in the end, one will see a dominant
error term of order 𝛿/𝜖𝑟 at order 𝑟. In general, take the coordinates 𝑥1 and 𝑥𝑚 and apply the previous construc-
tion, parametrizingwith respect to the parameters (𝑥2, … , 𝑥𝑚−1). Thenwe get a section that is holonomic along
the first coordinate 𝑥1.
For the general case, we have that 𝜎 is holonomic along the first 𝑗 coordinates. One apply the same process as
the previous case to the coordinates 𝑥𝑗+1 and 𝑥𝑚 to construct a family of functions parametrized by 𝑦 ∈ 𝛪𝑚−𝑗−2.
Analogous calculations show that we have the same error term of order 𝛿/𝜖𝑟.
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