Holonomic approximation theorem, part 2

This is a slightly edited version of the notes I took for my seminar talk on the
16th; apologies for the still crude formatting. All mathematical content is taken
from the chapters 3.7, 3.8, 4.1 and 4.2 of the second edition of Cieliebak-Eliashberg-
Mishachev’s book Introduction to the h-principle.

Recall that last week, our main result was the following theorem:

Holonomic approximation theorem:

Let p: X — V be a smooth fibre bundle, A C V' a polyhedron of positive codimen-
sion, and F : Op A — X a smooth section of the 7-jet bundle of p. Then you can
find isotopies hy : V — V,t € I and holonomic sections F : Op hy(A) — X) with
hy C%-close to id and F' C-close to F |lophy(4)- Furthermore, if /7 is holonomic on

some closed B C A, we can take h; = id and F = F near B.

We will derive some more general variants of that, then look at some simple concrete
examples.

First, a parametric variant:

Parametric & relative holonomic approximation theorem:

Let p: X — V be a smooth fibration, A C V" a polyhedron of positive codimension,
B C A a subpolyhedron, and F, : Op A — X 2 € I"™ a family of smooth sections
such that F. is holonomic for all z € 9I™ and all F, are holonomic on a neigh-
bourhood of B. Then there exist families of diffeotopies bl : V — Vit € I,z € I™
and holonomic sections F, : Op hL(A) — X z € I'™ such that h'(v) = v and
E.(v) = F.(v) for (z,v) € (I"™ x Op B) U (0I™ x A), and they can be chosen with

ht C%-close to idy and F,(v) CO-close to F,(v) for all z € I™,v € Op hl(A).

Recall how we proved the holonomic approximation theorem last time. We induc-
tively worked our way up the skeletons of our polyhedron A (first the points, then
the edges etc.), allowing us to work at a single simplex at a time; then since that
is contractible, we could find a local trivialisation and work in J¢(R",R?), with
n = dimV and ¢ := dim X — n. The proof on (A* 0A*) ~ (I* 0I*) was then
carried out using a lemma like this:

Holonomic approximation over a cube:
Let k < n, view I* as I* x {0}"~* c R", and suppose F : Op I* — J"(R",RY) is a
section that is holonomic on Op &I*. Then there exist a diffeomorphism

h:R™ = R™ (21, ...,2,) ¥ (L1, 00y Tno1, T + (21, .y )

and a holonomic section F : Op h(I*¥) = J"(R",RY) such that i = id and F=Fon
Op 0I*, with h C%close to id and F' C°-close to Flopn(rky-

This is lemma 3.2.1 from the book; it is slightly more general than the lemma last
week in that ' doesn’t need to vanish near I*. I won’t prove it again nonetheless.

Analogously, for parametric holonomic approximation it also suffices to prove the
result over a cube:



Parametric holonomic approximation over a cube:

Let & < n and suppose F, : OpI¥ — J"(R*,R%),z € I™ is a smooth family of
sections that are holonomic on Op dI* for all z € I"™ and holonomic on Op I* for
z € OpdI™. Then there exists a family of diffeomorphisms

hy :R" = R (21, ..., p) = (21, 0oy T1, T + 02 (21, 00y )
and holonomic sections F, : Op h.(I*¥) — J"(R",R9) such that:
e h,=id and F, = F, on OpdI* for all z € I",
e h,=id and F, = F, for all z € 9I"™,
e I, is C%close to id,
o F. is C%close to FZ|Ophz(lk)'

Proof: Let J"(R™"|R" RY) denote the bundle R™ x J"(R", R?) — R™ x R™.
The family of sections F, : I* — J"(R",R%) can then viewed as a single section
F : OpI™* — Jr(R™™m|R" RY), which in turn lifts along 7 : J"(R™*" RY) —
JT(R™R™ R?) to a section F : [™+* — J7(R™*" RY) that can be chosen / exten-
ded to be holonomic near 01 m+k - Applying holonomic approximation over I™** we

can get an approximation F of F on a perturbed cube h(I™*k) for a diffeomorphism
h:R™™ — R™ (21, oo, Topin) = (T15 ooy Tt 15 T + @(T15 s Tintn))-

Then F := mo F : h(I™**) can be viewed as the required family {FZ} of approxi-
mations of F, near {h.(I*)}. O

This concludes the proof of the parametrised holonomic approximation theorem.
There is also a leafwise version for foliated manifolds; I skipped over it in the talk
because I was short on time and didn’t need it for applications, but will leave my
notes here just in case.

First a quick rundown of a few prerequisites: let F be a foliation on V' with leaves
L. A submanifold M C V is transverse to F if it is transverse to all of its leaves
- or, if that isn’t possible because dim M + dim F < dimV, if T,M N T,L = {0}
for all z € M. For each foliation, there is a leafwise r-jet extension p' : X_(Fr) -V
by considering r-tangency only along the leaves, and there is a canonical projection
pr: XM - X](f) factoring p” : X — V as p% o pr. The leafwise jet extension J;If
of sections f : V' — X is defined as pr o J}, and sections of this form are called
leafwise holonomic.

Foliated holonomic approximation over a cube:

Let k < n, view R¥ as R* x {0}"* C R" and suppose that R" is equipped with a
foliation F transversal to R*. Then for any section F : Op I* — X g) that is leafwise
holonomic near 9I*, there exist a leafwise diffeotopy A* : R® — R",¢ € I and a
leafwise holonomic section F' : Op h'(I¥) — XJ(TT) such that h* = id and F = F on
Op AI*, with ht CP-close to id and F' C%close to F.

Proof: In the case k£ < codim F this is simply the fact that sections admit holo-
nomic extensions pointwise (take h' := id and extend F|;x leafwise holonomically
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to OpI*). Otherwise, lift F' to a section G : Op I* — X ), change coordinates such
that the foliation contains everywhere coordinate direction x,,, use holonomic ap-
proximation over a cube to get a diffecomorphism h : R” — R" and a holonomic
section G : Op h(I*) — X) and take h' := (1 — t)id + th as the leafwise diffeotopy
and pr o G as the leafwise holonomic section F. O

This again also implies a version for arbitrary fibrations p : X — V.

Foliated holonomic approximation theorem:

Let p : X — V a smooth fibre bundle whose base V' is equipped with a foliation
F, and let A C V be a polyhedron of positive codimension such that all of its
strata (i.e. the interiors of the faces, the strata of the canonical stratification on
any polyhedron) are transversal to F. Furthermore, let B C A be a closed sub-
set and F': OpA — X ;r) a section that is leafwise holonomic near B. Then there
exist a leafwise diffeotopy h! : V. — V.t € I and a leafwise holonomic section
F:Oph'(A) = X;_T) such that k' = id and F = F near B, with h* C°-close to id
and F C%close to F.

Now we finally get to two examples showcasing the utility of the parametric ho-
lonomic approximation theorem.

Example (regular maps on an annulus):

Let V := B,r = {(z,y) € R* | r < /22 +y? < R} be an annulus, r < 1 < R.
Then there exists a smooth family f; : V. — Rt € I with fo(x,y) = 22 + 92,
fi(z,y) = —x? — y? such that no f; has a critical point.

[Sketch: two rounded cones / bowls with the center missing, the second one upside-
down.]

Proof: The 1-jet space J'(V,R) is V x R x R?, and holonomic sections are those of
the form J} = (idy, f, grad f). Identify R? with C; then since grad fo = — grad fi,

Fy = (idy, (1 — t) fo + tf1,e™ grad fo),t € I

is a smooth homotopy J} ~» Jj, holonomic for ¢ = 0,1. Applying parametric
holonomic approximation with A := S, we get a family of holonomic sections
F, = J}} : Uy — JYV,R) for U; neighbourhoods of perturbed circles, with U; = V

and Z:} = F, for t = 0, L. Furthermore, for Ft close enough to Fi, ft has no criti-
cal points because grad f; ~ €™ grad f, # 0. Let ; : V. — V be an isotopy with
w0 = p1 = idy and (V') C Uy; then g, := f,0¢; is the wanted family of functions.O

It is not too hard to find an explicit homotopy either; I won’t spoil it here. One
interesting observation though: you can’t do it without breaking most of the sym-
metry; if your homotopy is e.g. mirror-symmetric, it won’'t work. That seems to be
a common theme at least for these simple examples.

Example (sphere eversion):
Let V := {2z € R®* | 1 —¢ < |z| < 1+ ¢} denote an e-thickened sphere in R?,
iy : V < R3 the inclusion and inv the inversion map

(.Tl, X2, _:C?))
|z[?

R*\ {0} — R*\ {0}, 2 —



Then invoiy : V — R3 is regularly homotopic (i.e. homotopic through immersions)
to iv.

Note: the —z3 is necessary, because otherwise inv would be orientation-reversing.
Proof: Let fy := invoiy, fi := iy and note JH(V,R?) ~ V x R? x R3*3, J}i =
(idv, fi, dfi). dfo and dfy both take value in GL,(3), so Jj, and Jj are homotopic
because mo(GL(3)) =~ m(SO(3)) ~ 0; let F; be a smooth homotopy (also easy to
construct directly). Applying parametric holonomic approximation with A := S?
we get a family of holonomic sections F; = legt : Uy — JYV,R3) for U; neighbour-

hoods of perturbed spheres, with U; = V' and }?t = F, for t = 0, 1. Like before, for
F; close enough to F; we have df; invertible so f; is a regular homotopy, and we can
compose it with an isotopy ¢; : V' — V with ¢,(V) C U; and ¢ = ¢ = idy. O

In fact, something stronger is true: by the same argument, every orientation-preserving
immersion V' — R3 is regularly homotopic to iy. Since every immersion S? — R3
can be extended to an orientation-preserving immersion V' — R3, all immersions
S? — R? are regularly homotopic.

Also, this is again not possible without breaking most of the symmetry: with a
mirror symmetry you would have to turn a circle inside-out, which is impossible,
and with a continuous rotational symmetry around an axis it also doesn’t work out.
Discrete rotational symmetries are possible though, like the famous visualisations of
the result show.



