
Holonomic approximation theorem, part 2

This is a slightly edited version of the notes I took for my seminar talk on the
16th; apologies for the still crude formatting. All mathematical content is taken
from the chapters 3.7, 3.8, 4.1 and 4.2 of the second edition of Cieliebak-Eliashberg-
Mishachev’s book Introduction to the h-principle.

Recall that last week, our main result was the following theorem:
Holonomic approximation theorem:
Let p : X → V be a smooth fibre bundle, A ⊂ V a polyhedron of positive codimen-
sion, and F : OpA→ X(r) a smooth section of the r-jet bundle of p. Then you can
find isotopies ht : V → V, t ∈ I and holonomic sections F̃ : Oph1(A) → X(r) with
ht C

0-close to id and F̃ C0-close to F |Oph1(A)
. Furthermore, if F is holonomic on

some closed B ⊆ A, we can take ht = id and F̃ = F near B.

We will derive some more general variants of that, then look at some simple concrete
examples.

First, a parametric variant:
Parametric & relative holonomic approximation theorem:
Let p : X → V be a smooth fibration, A ⊂ V a polyhedron of positive codimension,
B ⊆ A a subpolyhedron, and Fz : Op A→ X(r), z ∈ Im a family of smooth sections
such that Fz is holonomic for all z ∈ ∂Im and all Fz are holonomic on a neigh-
bourhood of B. Then there exist families of diffeotopies htz : V → V, t ∈ I, z ∈ Im
and holonomic sections F̃z : Op h1z(A) → X(r), z ∈ Im such that htz(v) = v and
F̃z(v) = Fz(v) for (z, v) ∈ (Im × Op B) ∪ (∂Im × A), and they can be chosen with
htz C

0-close to idV and F̃z(v) C0-close to Fz(v) for all z ∈ Im, v ∈ Op h1z(A).

Recall how we proved the holonomic approximation theorem last time. We induc-
tively worked our way up the skeletons of our polyhedron A (first the points, then
the edges etc.), allowing us to work at a single simplex at a time; then since that
is contractible, we could find a local trivialisation and work in J i(Rn,Rq), with
n := dimV and q := dimX − n. The proof on (∆k, ∂∆k) ' (Ik, ∂Ik) was then
carried out using a lemma like this:

Holonomic approximation over a cube:
Let k < n, view Ik as Ik × {0}n−k ⊂ Rn, and suppose F : Op Ik → Jr(Rn,Rq) is a
section that is holonomic on Op ∂Ik. Then there exist a diffeomorphism

h : Rn → Rn, (x1, ..., xn) 7→ (x1, ..., xn−1, xn + ϕ(x1, ..., xn))

and a holonomic section F̃ : Oph(Ik)→ Jr(Rn,Rq) such that h = id and F̃ = F on
Op ∂Ik, with h C0-close to id and F̃ C0-close to F |Oph(Ik).

This is lemma 3.2.1 from the book; it is slightly more general than the lemma last
week in that F doesn’t need to vanish near ∂Ik. I won’t prove it again nonetheless.

Analogously, for parametric holonomic approximation it also suffices to prove the
result over a cube:
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Parametric holonomic approximation over a cube:
Let k < n and suppose Fz : Op Ik → Jr(Rn,Rq), z ∈ Im is a smooth family of
sections that are holonomic on Op ∂Ik for all z ∈ Im and holonomic on Op Ik for
z ∈ Op ∂Im. Then there exists a family of diffeomorphisms

hz : Rn → Rn, (x1, ..., xn) 7→ (x1, ..., xn−1, xn + ϕz(x1, ..., xn))

and holonomic sections F̃z : Ophz(I
k)→ Jr(Rn,Rq) such that:

� hz = id and F̃z = Fz on Op ∂Ik for all z ∈ Im,

� hz = id and F̃z = Fz for all z ∈ ∂Im,

� hz is C0-close to id,

� F̃z is C0-close to Fz|Ophz(Ik)
.

Proof : Let Jr(Rm+n|Rn,Rq) denote the bundle Rm × Jr(Rn,Rq) → Rm × Rn.
The family of sections Fz : Ik → Jr(Rn,Rq) can then viewed as a single section
F : Op Im+k → Jr(Rm+n|Rn,Rq), which in turn lifts along π : Jr(Rm+n,Rq) →
Jr(Rm+n|Rn,Rq) to a section F : Im+k → Jr(Rm+n,Rq) that can be chosen / exten-
ded to be holonomic near ∂Im+k. Applying holonomic approximation over Im+k, we

can get an approximation ˜̃F of F on a perturbed cube h(Im+k) for a diffeomorphism

h : Rm+n → Rm+n, (x1, ..., xm+n) 7→ (x1, ..., xm+n−1, xm+n + ϕ(x1, ..., xm+n)).

Then F̃ := π ◦ ˜̃F : h(Im+k) can be viewed as the required family {F̃z} of approxi-
mations of Fz near {hz(Ik)}. 2

This concludes the proof of the parametrised holonomic approximation theorem.
There is also a leafwise version for foliated manifolds; I skipped over it in the talk
because I was short on time and didn’t need it for applications, but will leave my
notes here just in case.

First a quick rundown of a few prerequisites: let F be a foliation on V with leaves
Lα. A submanifold M ⊆ V is transverse to F if it is transverse to all of its leaves
- or, if that isn’t possible because dimM + dimF < dimV , if TxM ∩ TxL = {0}
for all x ∈ M . For each foliation, there is a leafwise r-jet extension prF : X

(r)
F → V

by considering r-tangency only along the leaves, and there is a canonical projection
pF : X(r) → X

(r)
F factoring pr : X(r) → V as prF ◦ pF . The leafwise jet extension Jrf |F

of sections f : V → X is defined as pF ◦ Jrf , and sections of this form are called
leafwise holonomic.

Foliated holonomic approximation over a cube:
Let k < n, view Rk as Rk × {0}n−k ⊆ Rn and suppose that Rn is equipped with a

foliation F transversal to Rk. Then for any section F : Op Ik → X
(r)
F that is leafwise

holonomic near ∂Ik, there exist a leafwise diffeotopy ht : Rn → Rn, t ∈ I and a
leafwise holonomic section F̃ : Oph1(Ik) → X

(r)
F such that ht = id and F̃ = F on

Op ∂Ik, with ht C0-close to id and F̃ C0-close to F .
Proof : In the case k ≤ codimF this is simply the fact that sections admit holo-
nomic extensions pointwise (take ht := id and extend F |Ik leafwise holonomically
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to OpIk). Otherwise, lift F to a section G : Op Ik → X(r), change coordinates such
that the foliation contains everywhere coordinate direction xn, use holonomic ap-
proximation over a cube to get a diffeomorphism h : Rn → Rn and a holonomic
section G̃ : Oph(Ik)→ X(r), and take ht := (1− t)id + th as the leafwise diffeotopy
and pF ◦ G̃ as the leafwise holonomic section F̃ . 2

This again also implies a version for arbitrary fibrations p : X → V .
Foliated holonomic approximation theorem:
Let p : X → V a smooth fibre bundle whose base V is equipped with a foliation
F , and let A ⊂ V be a polyhedron of positive codimension such that all of its
strata (i.e. the interiors of the faces, the strata of the canonical stratification on
any polyhedron) are transversal to F . Furthermore, let B ⊆ A be a closed sub-

set and F : OpA → X
(r)
F a section that is leafwise holonomic near B. Then there

exist a leafwise diffeotopy ht : V → V, t ∈ I and a leafwise holonomic section
F̃ : Oph1(A) → X

(r)
F such that ht = id and F̃ = F near B, with ht C0-close to id

and F̃ C0-close to F .

Now we finally get to two examples showcasing the utility of the parametric ho-
lonomic approximation theorem.

Example (regular maps on an annulus):
Let V := Br,R = {(x, y) ∈ R2 | r <

√
x2 + y2 < R} be an annulus, r < 1 < R.

Then there exists a smooth family ft : V → R, t ∈ I with f0(x, y) = x2 + y2,
f1(x, y) = −x2 − y2 such that no ft has a critical point.
[Sketch: two rounded cones / bowls with the center missing, the second one upside-
down.]
Proof : The 1-jet space J1(V,R) is V ×R×R2, and holonomic sections are those of
the form J1

f = (idV , f, grad f). Identify R2 with C; then since grad f0 = − grad f1,

Ft := (idV , (1− t)f0 + tf1, e
iπt grad f0), t ∈ I

is a smooth homotopy J1
f0
 J1

f1
, holonomic for t = 0, 1. Applying parametric

holonomic approximation with A := S1, we get a family of holonomic sections
F̃t = J1

f̃t
: Ut → J1(V,R) for Ut neighbourhoods of perturbed circles, with Ut = V

and F̃t = Ft for t = 0, 1. Furthermore, for F̃t close enough to Ft, f̃t has no criti-
cal points because grad f̃t ≈ eiπt grad f0 6= 0. Let ϕt : V → V be an isotopy with
ϕ0 = ϕ1 = idV and ϕt(V ) ⊆ Ut; then gt := f̃t◦ϕt is the wanted family of functions.2

It is not too hard to find an explicit homotopy either; I won’t spoil it here. One
interesting observation though: you can’t do it without breaking most of the sym-
metry; if your homotopy is e.g. mirror-symmetric, it won’t work. That seems to be
a common theme at least for these simple examples.

Example (sphere eversion):
Let V := {x ∈ R3 | 1 − ε < |x| < 1 + ε} denote an ε-thickened sphere in R3,
iV : V ↪→ R3 the inclusion and inv the inversion map

R3 \ {0} → R3 \ {0}, x 7→ (x1, x2,−x3)
|x|2

.
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Then inv ◦ iV : V → R3 is regularly homotopic (i.e. homotopic through immersions)
to iV .
Note: the −x3 is necessary, because otherwise inv would be orientation-reversing.
Proof : Let f0 := inv ◦ iV , f1 := iV and note J1(V,R3) ' V × R3 × R3×3, J1

fi
=

(idV , fi, dfi). df0 and df1 both take value in GL+(3), so J1
f0

and J1
f1

are homotopic
because π2(GL+(3)) ' π2(SO(3)) ' 0; let Ft be a smooth homotopy (also easy to
construct directly). Applying parametric holonomic approximation with A := S2,
we get a family of holonomic sections F̃t = J1

f̃t
: Ut → J1(V,R3) for Ut neighbour-

hoods of perturbed spheres, with Ut = V and F̃t = Ft for t = 0, 1. Like before, for
F̃t close enough to Ft we have df̃t invertible so f̃t is a regular homotopy, and we can
compose it with an isotopy ϕt : V → V with ϕt(V ) ⊆ Ut and ϕ0 = ϕ1 = idV . 2

In fact, something stronger is true: by the same argument, every orientation-preserving
immersion V → R3 is regularly homotopic to iV . Since every immersion S2 → R3

can be extended to an orientation-preserving immersion V → R3, all immersions
S2 → R3 are regularly homotopic.

Also, this is again not possible without breaking most of the symmetry: with a
mirror symmetry you would have to turn a circle inside-out, which is impossible,
and with a continuous rotational symmetry around an axis it also doesn’t work out.
Discrete rotational symmetries are possible though, like the famous visualisations of
the result show.
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