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These are the notes for my talk in this semester’s ”The ℎ-Principle” seminar. The
main content of the talk were two proofs, one of the Smale–Hirsch ℎ-principle and one
of a generalization of it. In presenting this, I mostly follow the material in chapter 9 of
the book by Cieliebak, Eliashberg and Mishachev [1]. I reworked the notes to fix some
mistakes I made in the talk and hopefully make the contents more accessible.

1 The Smale–Hirsch immersion theorem
Theorem 1 (Smale–Hirsch ℎ-principle for immersions). The relative parametric 𝐶0-dense
ℎ-principle holds for immersions of an 𝑛-dimensional manifold 𝑉 into a manifold 𝑊 of
dimension 𝑞 > 𝑛.

Proof. Let us only consider the nonparametric case. The let 𝐹 ∶ T𝑉 → T𝑊 be a formal
solution of the differential relation defining immersions ℛimm ⊂  𝐽1(𝑉 , 𝑊). Set 𝑓 = bs 𝐹 .
The pullback bundle 𝑓∗T𝑊 is a pullback in the categorical sense, so we get the commuting
diagram

𝑇 𝑉

𝑓∗𝑇 𝑊 𝑇 𝑊

𝑉 𝑊

𝐹 ′
𝐹

𝐹 ″

𝑓

where the unnamed maps to 𝑉 and 𝑊 are the bundle projections. As 𝐹 is a formal
solution, it acts injectively on tangent spaces, hence 𝐹 ′ does too. Thus we can use 𝐹 ′ to
identify T𝑉 with a subbundle of 𝑓∗T𝑊 , i.e. 𝐹 ′(T𝑉 ). Now let 𝑁 denote (total space of)
the subbundle of 𝑓∗T𝑊 that is the orthogonal complement of 𝐹 ′(T𝑉 ) and 𝜋 ∶ 𝑁 → 𝑉 its
bundle projection.

In the presentation there was some confusion about the following construction, so I
will write about it in a bit more detail here. It is a standard construction not specfic
to the bundle at hand. For a reference on this see e.g. Proposition 15.6.7 (p. 376) in [2].
Additionally, a more concrete explanation of what this means for us will follow after.

I will denote by T𝑓 the tangent map of a map 𝑓 and by T𝑝𝑓 the tangent map at a
point 𝑝. For any 𝑛 ∈ 𝑁 we have the short exact sequence of vector spaces

0 ⟶ 𝑁𝜋(𝑛)
𝛼⟶ T𝑛𝑁

T𝑛𝜋
⟶ T𝜋(𝑛)𝑉 ⟶ 0.
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Where 𝑁𝜋(𝑛) ≔ 𝜋−1(𝜋(𝑛)) denotes the fiber of 𝑁 over 𝜋(𝑛) and 𝛼 maps 𝑎 ∈ 𝑁𝜋(𝑛) to the
derivative of the curve 𝑡 ↦ 𝑛 + 𝑡𝑎 at 𝑡 = 0. We may split this sequence by choosing an
inner product on T𝑛𝑁 and identifying 𝑇𝜋(𝑛)𝑉 with the orthogonal complement of im 𝛼.
But we’re not just interested in T𝑛𝑁 , we want to decompose the whole bundle T𝑁 . To
approach this we modify the above into a short exact sequence of vector bundles over 𝑁

0 ⟶ 𝜋∗𝑁 ⟶ T𝑁 ⟶ 𝜋∗T𝑉 ⟶ 0

where we had to pull back 𝑁 and T𝑉 in order to turn them into a bundles over 𝑁1. By
choosing any bundle metric on T𝑁 we then get the splitting

T𝑁 ≅ 𝜋∗𝑁 ⊕ 𝜋∗T𝑉 .

Generally, 𝜋∗𝑁 and 𝜋∗T𝑉 (seen as subbundles of T𝑁) are respectivey referred to as the
vertical bundle and horizontal bundle.

To see what this splitting means, consider what data elements of 𝑁 and T𝑁 contain.
Every point 𝑛 ∈ 𝑁 consists of a point 𝜋(𝑛) ∈ 𝑉 and a vector that is normal to 𝐹 ′(T𝜋(𝑛)𝑉 ).
The tangent space T𝑛𝑁 should then contain the data of the tangent space T𝜋(𝑛)𝑉 and
some kind of tangent data of the normal vectors, which as the tangent space of a vector
space is identified with the space itself. This is precisely what the above split gives us. So
for any 𝑥 ∈ T𝑁 let 𝑛 denote its usual projection into the base space 𝑁 and let 𝑎 and 𝑏
respectively denote the corresponding points in 𝑁𝑛 and 𝑇𝜋(𝑛)𝑉 given by the splitting.

With this notation, we can explicitly define a lift of 𝐹 to T𝑁 as

̃𝐹 ∶ T𝑁 → T𝑊
𝑥 ↦ 𝐹 ″(𝑎) + 𝐹(𝑏),

where 𝐹 ″ is necessary as 𝑁 ⊂ 𝑓∗T𝑊 . This extends 𝐹 in the sense that we can consider
𝑉 as a subset 𝑉 ⊂ 𝑁 by lifting it into 𝑁 as the zero section of 𝜋 (and T𝑉 ⊂ T𝑁 is e.g.2
given by the tangent map of the inclusion 𝑉 ⊂ 𝑁). With these identifications we can see
that ̃𝐹 extends 𝐹 because ̃𝐹 |T𝑉 = 𝐹 .

Now, because ̃𝐹 is still formal immersion, we can apply the 𝐶0-dense local ℎ-principle 8.3.1
near 𝑉 ⊂ 𝑁 . The restriction to 𝑉 yields the sought-after deformation of 𝐹 to an immersion
𝑉 → 𝑊 proving the ℎ-principle for immersions.

It remains to be shown that the relative ℎ-principle holds. Assume 𝐹 is holonomic
on 𝒪p 𝐴 for a closed 𝐴 ⊂ 𝑉 . The book does not offer a specific construction to make ̃𝐹
holonomic on 𝒪p𝑁 𝐴 (open in 𝑁), but I believe the following is the easiest way.

For all 𝑥 ∈ T𝑁 decompose 𝑥 as we did to define ̃𝐹 abvoe. We redefine ̃𝐹 (𝑥) as

̃𝐹 (𝑥) = d
d𝑡∣

𝑡=0
exp(𝜑(𝑛) ⋅ 𝐹 ″(𝑛) + 𝑡 ⋅ (𝐹 ″(𝑎) + 𝐹(𝑏)))

where exp is the Riemannian exponential map on 𝑊 . When 𝑛 = 0, this reduces to the
previous definition of ̃𝐹 . Thus it will a formal immersion at least in a neighborhood of
𝑉 ⊂ 𝑁 which is good enough. If 𝜋(𝑥) ∈ 𝒪p 𝐴, then

̃𝐹 (𝑥) = T(exp ∘𝐹 ″)(𝑥)
1To formally see how to find the map ”T𝜋” ∶ T𝑁 → 𝜋∗T𝑉 just consider a diagram as the one above

but switch the 𝑊 s for 𝑉 s, 𝑉 s for 𝑁s and 𝑓 for 𝜋.
2One may also define the inlusion of T𝑉 by referring to our hard-earned splitting of T𝑁. In fact, both

notions coincide as the splitting is canonical on the zero section 𝑉 ⊂ 𝑁 (see Remark 15.6.8 [2]).
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holds3. Hence ̃𝐹 is holonomic on 𝒪p𝑁 𝐴 and we can now apply the relative 𝐶0-dense
ℎ-principle.

Note that this proof does not work for submersions because the restriction of a sub-
mersion is not, in general, a submersion. In fact, the ℎ-principle is false for submersions
of closed manifolds. However, one can prove a generalization of the previous theorem.

Theorem 2. Let 𝜉 be a subbundle of T𝑊 . If dim 𝑉 < codim 𝜉, then all forms of the
ℎ-principle hold for immersions 𝑉 → 𝑊 transverse to 𝜉.

2 Sections transverse to a distribution
To prove the following theorem, we need a modification of the local ℎ-principle used above.

Theorem 3 (Special local ℎ-principle). Let 𝑋 → 𝑉 ×𝑅 be a natural fibration and ℛ ⊂ 𝑋(𝑟)

an open differential relation which is invariant with respect to diffeomorphisms of the form

(𝑥, 𝑡) → (𝑥, ℎ(𝑥, 𝑡)), 𝑥 ∈ 𝑉 , 𝑡 ∈ ℝ.

Then ℛ satisfies all forms of the local ℎ-principle near 𝑉 × 0 and the global parametric
ℎ-principle over 𝑉 × ℝ.

The proof follows from the Holonomic Approximation Theorem 3.1.1 according to the
same scheme as the proof of Theorem 8.3.1, with the additional observation that the
perturbation ℎ implied by Theorem 3.1.1 has the special form required here.

Given a fibration 𝑋 → 𝑉 we say that a section 𝑓 ∶ 𝑉 → 𝑋 is transverse to a tangent
distribution/subbundle 𝜏 ⊂ T𝑋 if the composition

T𝑉
T𝑓
⟶ T𝑋 ⟶ T𝑋/𝜏

is fiberwise injective when rank 𝜏 + dim 𝑉 ≤ dim 𝑋 and surjective when rank 𝜏 + dim 𝑉 ≥
dim 𝑋. Note that this may differ from what you expect transverseness to mean (i.e.
requiring rank 𝜏 + dim 𝑉 = dim 𝑋).

Theorem 4 (ℎ-principle for sections transverse to a distribution). Let 𝑋 → 𝑉 be a
natural4 fibration and 𝜏 a subbundle of the tangent bundle T𝑋. If

rank 𝜏 + dim 𝑉 < dim 𝑋,

then sections 𝑉 → 𝑋 transverse to 𝜏 satisfy all forms of the ℎ-principle.

There are two things to note about this. Firstly, the respective differential relation ℛ
is not Diff 𝑉 -invariant. This is why we will need the special local ℎ-principle.

Secondly, note that for the trivial fibration 𝑉 × 𝑊 → 𝑉 and 𝜏 = T𝑉 × 0, this theorem
is just the Smale–Hirsch ℎ-principle.

3To see this note that in the usual trivializations of the pullback and tangent bundles, 𝐹 ″ becomes
𝑓 × idℝ𝑛 and for our choice of 𝑥 we have 𝐹(𝑏) = T𝑓(𝑏) as 𝐹 is holonomic.

4The book is missing this modifier but I believe it is necessary.
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Proof. By choosing a sufficiently small triangulation of 𝑉 and iterating over the skeleta,
we can reduce the problem to the following relative version: 𝑉 = 𝐷𝑛, 𝑋 = 𝐷𝑛 × ℝ𝑞 and
the section 𝑉 → 𝑋 already transverse to 𝜏 near 𝜕𝑉 = 𝜕𝐷𝑛.

Let ℛ ⊂ 𝑋(1) be the differential relation of transversality to 𝜏 and 𝐹 ∶ 𝑉 → ℛ a
formal solution which is already holonomic near 𝜕𝑉 . We want to perform the inclusion
𝑉 = 𝑉 × 0 ⊂ 𝑉 × ℝ in order to use the special local ℎ-principle. Hence we consider the
fibration 𝑋 × ℝ → 𝑉 × ℝ. Now, we need to define ℛ̄ ⊂ (𝑋 × ℝ)(1) such that solutions of
ℛ̄ yield solutions of ℛ. If a vector in T(𝑋 × ℝ) is transverse to 𝜏 × Tℝ ⊂ T(𝑋 × ℝ) then
its image in the quotient T(𝑋 × ℝ)/Tℝ ≅ T𝑋 will be transverse to 𝜏 . Thus we let ℛ̄ be
the relation which defines sections transverse to 𝜏 × Tℝ.

What is left is for us to do is to extend 𝐹 to our new bundle as a formal solution of
ℛ̄. This means we need to find an appropriate place to map tangent vectors in the new
dimension of our base space. Concretely, to preserve transverseness to 𝜏 × ℝ, the image
vector should not be linearly dependent on 𝜏 ×ℝ and 𝜉, the subbundle of T𝑋|𝑉 defined by
𝐹 (as injectivity of the tangent map is required for transverseness). Consider the bundle

𝜈 = T𝑋|𝑉 /(𝜏|𝑉 ⊕ 𝜉).

A global non-vanishing section of 𝜈 could be lifted to a section 𝑉 → T𝑋 and subsequently
𝑉 ×ℝ → T(𝑋 ×ℝ) to yield precisely what we are looking for. Such a section exists because
𝜈 is a trivial bundle and rank 𝜈 > 0. To see that 𝜈 is trivial just note that its base space
𝑉 = 𝐷𝑛 is contractible (this is the only reason for using the triangulation). To see that
rank 𝜈 > 0 note that

rank 𝜈 = (dim 𝑋 + dim 𝑋 − dim 𝑉 ) − (rank 𝜏 + dim 𝑋 − dim 𝑉 ) − dim 𝑉
= dim 𝑋 − rank 𝜏 − dim 𝑉
> 0

by assumption. The two dim 𝑋 − dim 𝑉 terms arise because we are considering T𝑋 and
𝜏 as bundles over 𝑉 instead of 𝑋.

The relation ℛ is open and invariant under diffeomorphisms in the form required by
the special local ℎ-principle. Thus we can apply it to ̄𝐹 near 𝑉 × 0 ⊂ 𝑉 × ℝ which by
restriction implies the ℎ-principle for ℛ.
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