The Smale–Hirsch Immersion Theorem and other Applications to Closed Manifolds

Janek Wilhelm Humboldt-Universität zu Berlin

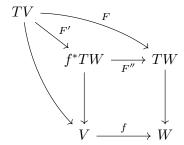
Sommersemester 2025

These are the notes for my talk in this semester's "The *h*-Principle" seminar. The main content of the talk were two proofs, one of the Smale–Hirsch *h*-principle and one of a generalization of it. In presenting this, I mostly follow the material in chapter 9 of the book by Cieliebak, Eliashberg and Mishachev [1]. I reworked the notes to fix some mistakes I made in the talk and hopefully make the contents more accessible.

1 The Smale–Hirsch immersion theorem

Theorem 1 (Smale–Hirsch *h*-principle for immersions). The relative parametric C^0 -dense *h*-principle holds for immersions of an *n*-dimensional manifold V into a manifold W of dimension q > n.

Proof. Let us only consider the nonparametric case. The let $F: \mathrm{T}V \to \mathrm{T}W$ be a formal solution of the differential relation defining immersions $\mathcal{R}_{\mathrm{imm}} \subset J^1(V, W)$. Set $f = \mathrm{bs} F$. The pullback bundle $f^*\mathrm{T}W$ is a pullback in the categorical sense, so we get the commuting diagram



where the unnamed maps to V and W are the bundle projections. As F is a formal solution, it acts injectively on tangent spaces, hence F' does too. Thus we can use F' to identify TV with a subbundle of f^*TW , i.e. F'(TV). Now let N denote (total space of) the subbundle of f^*TW that is the orthogonal complement of F'(TV) and $\pi: N \to V$ its bundle projection.

In the presentation there was some confusion about the following construction, so I will write about it in a bit more detail here. It is a standard construction not specific to the bundle at hand. For a reference on this see e.g. Proposition 15.6.7 (p. 376) in [2]. Additionally, a more concrete explanation of what this means for us will follow after.

I will denote by Tf the tangent map of a map f and by $T_p f$ the tangent map at a point p. For any $n \in N$ we have the short exact sequence of vector spaces

$$0 \longrightarrow N_{\pi(n)} \stackrel{\alpha}{\longrightarrow} \mathbf{T}_n N \stackrel{\mathbf{T}_n \pi}{\longrightarrow} \mathbf{T}_{\pi(n)} V \longrightarrow 0.$$

Where $N_{\pi(n)} := \pi^{-1}(\pi(n))$ denotes the fiber of N over $\pi(n)$ and α maps $a \in N_{\pi(n)}$ to the derivative of the curve $t \mapsto n + ta$ at t = 0. We may split this sequence by choosing an inner product on $T_n N$ and identifying $T_{\pi(n)} V$ with the orthogonal complement of im α . But we're not just interested in $T_n N$, we want to decompose the whole bundle TN. To approach this we modify the above into a short exact sequence of vector bundles over N

$$0 \longrightarrow \pi^* N \longrightarrow \mathrm{T} N \longrightarrow \pi^* \mathrm{T} V \longrightarrow 0$$

where we had to pull back N and TV in order to turn them into a bundles over N^1 . By choosing any bundle metric on TN we then get the splitting

$$\mathbf{T}N\cong\pi^*N\oplus\pi^*\mathbf{T}V.$$

Generally, π^*N and π^*TV (seen as subbundles of TN) are respectively referred to as the vertical bundle and horizontal bundle.

To see what this splitting means, consider what data elements of N and TN contain. Every point $n \in N$ consists of a point $\pi(n) \in V$ and a vector that is normal to $F'(T_{\pi(n)}V)$. The tangent space T_nN should then contain the data of the tangent space $T_{\pi(n)}V$ and some kind of tangent data of the normal vectors, which as the tangent space of a vector space is identified with the space itself. This is precisely what the above split gives us. So for any $x \in TN$ let n denote its usual projection into the base space N and let a and brespectively denote the corresponding points in N_n and $T_{\pi(n)}V$ given by the splitting.

With this notation, we can explicitly define a lift of F to TN as

$$\tilde{F} \colon \mathrm{T}N \to \mathrm{T}W$$
$$x \mapsto F''(a) + F(b),$$

where F'' is necessary as $N \subset f^*TW$. This extends F in the sense that we can consider V as a subset $V \subset N$ by lifting it into N as the zero section of π (and $TV \subset TN$ is e.g.² given by the tangent map of the inclusion $V \subset N$). With these identifications we can see that \tilde{F} extends F because $\tilde{F}|_{TV} = F$.

Now, because \tilde{F} is still formal immersion, we can apply the C^0 -dense local *h*-principle 8.3.1 near $V \subset N$. The restriction to V yields the sought-after deformation of F to an immersion $V \to W$ proving the *h*-principle for immersions.

It remains to be shown that the relative *h*-principle holds. Assume F is holonomic on $\mathcal{O}pA$ for a closed $A \subset V$. The book does not offer a specific construction to make \tilde{F} holonomic on $\mathcal{O}p_N A$ (open in N), but I believe the following is the easiest way.

For all $x \in TN$ decompose x as we did to define \tilde{F} abvoe. We redefine $\tilde{F}(x)$ as

$$\tilde{F}(x) = \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} \exp\Bigl(\varphi(n) \cdot F''(n) + t \cdot \left(F''(a) + F(b)\right) \Bigr)$$

where exp is the Riemannian exponential map on W. When n = 0, this reduces to the previous definition of \tilde{F} . Thus it will a formal immersion at least in a neighborhood of $V \subset N$ which is good enough. If $\pi(x) \in \mathcal{O}p A$, then

$$\tilde{F}(x) = \mathcal{T}(\exp \circ F'')(x)$$

¹To formally see how to find the map "T π ": T $N \to \pi^* TV$ just consider a diagram as the one above but switch the Ws for Vs, Vs for Ns and f for π .

²One may also define the inlusion of TV by referring to our hard-earned splitting of TN. In fact, both notions coincide as the splitting is canonical on the zero section $V \subset N$ (see Remark 15.6.8 [2]).

holds³. Hence \tilde{F} is holonomic on $\mathcal{O}p_N A$ and we can now apply the relative C^0 -dense *h*-principle.

Note that this proof does not work for submersions because the restriction of a submersion is not, in general, a submersion. In fact, the h-principle is false for submersions of closed manifolds. However, one can prove a generalization of the previous theorem.

Theorem 2. Let ξ be a subbundle of TW. If dim $V < \operatorname{codim} \xi$, then all forms of the *h*-principle hold for immersions $V \to W$ transverse to ξ .

2 Sections transverse to a distribution

To prove the following theorem, we need a modification of the local *h*-principle used above.

Theorem 3 (Special local *h*-principle). Let $X \to V \times R$ be a natural fibration and $\mathcal{R} \subset X^{(r)}$ an open differential relation which is invariant with respect to diffeomorphisms of the form

$$(x,t) \to (x,h(x,t)), \quad x \in V, t \in \mathbb{R}.$$

Then \mathcal{R} satisfies all forms of the local h-principle near $V \times 0$ and the global parametric h-principle over $V \times \mathbb{R}$.

The proof follows from the Holonomic Approximation Theorem 3.1.1 according to the same scheme as the proof of Theorem 8.3.1, with the additional observation that the perturbation h implied by Theorem 3.1.1 has the special form required here.

Given a fibration $X \to V$ we say that a section $f: V \to X$ is transverse to a tangent distribution/subbundle $\tau \subset TX$ if the composition

$$\mathrm{T}V \xrightarrow{\mathrm{T}f} \mathrm{T}X \longrightarrow \mathrm{T}X/\tau$$

is fiberwise injective when rank $\tau + \dim V \leq \dim X$ and surjective when rank $\tau + \dim V \geq \dim X$. Note that this may differ from what you expect transverseness to mean (i.e. requiring rank $\tau + \dim V = \dim X$).

Theorem 4 (*h*-principle for sections transverse to a distribution). Let $X \to V$ be a natural⁴ fibration and τ a subbundle of the tangent bundle TX. If

$$\operatorname{rank} \tau + \dim V < \dim X,$$

then sections $V \to X$ transverse to τ satisfy all forms of the h-principle.

There are two things to note about this. Firstly, the respective differential relation \mathcal{R} is *not* Diff V-invariant. This is why we will need the special local h-principle.

Secondly, note that for the trivial fibration $V \times W \to V$ and $\tau = TV \times 0$, this theorem is just the Smale–Hirsch *h*-principle.

³To see this note that in the usual trivializations of the pullback and tangent bundles, F'' becomes $f \times id_{\mathbb{R}^n}$ and for our choice of x we have F(b) = Tf(b) as F is holonomic.

⁴The book is missing this modifier but I believe it is necessary.

Proof. By choosing a sufficiently small triangulation of V and iterating over the skeleta, we can reduce the problem to the following relative version: $V = D^n$, $X = D^n \times \mathbb{R}^q$ and the section $V \to X$ already transverse to τ near $\partial V = \partial D^n$.

Let $\mathcal{R} \subset X^{(1)}$ be the differential relation of transversality to τ and $F: V \to \mathcal{R}$ a formal solution which is already holonomic near ∂V . We want to perform the inclusion $V = V \times 0 \subset V \times \mathbb{R}$ in order to use the special local *h*-principle. Hence we consider the fibration $X \times \mathbb{R} \to V \times \mathbb{R}$. Now, we need to define $\overline{\mathcal{R}} \subset (X \times \mathbb{R})^{(1)}$ such that solutions of $\overline{\mathcal{R}}$ yield solutions of \mathcal{R} . If a vector in $T(X \times \mathbb{R})$ is transverse to $\tau \times T\mathbb{R} \subset T(X \times \mathbb{R})$ then its image in the quotient $T(X \times \mathbb{R})/T\mathbb{R} \cong TX$ will be transverse to τ . Thus we let $\overline{\mathcal{R}}$ be the relation which defines sections transverse to $\tau \times T\mathbb{R}$.

What is left is for us to do is to extend F to our new bundle as a formal solution of $\overline{\mathcal{R}}$. This means we need to find an appropriate place to map tangent vectors in the new dimension of our base space. Concretely, to preserve transverseness to $\tau \times \mathbb{R}$, the image vector should not be linearly dependent on $\tau \times \mathbb{R}$ and ξ , the subbundle of $TX|_V$ defined by F (as injectivity of the tangent map is required for transverseness). Consider the bundle

$$\nu = \mathrm{T}X|_V / (\tau|_V \oplus \xi).$$

A global non-vanishing section of ν could be lifted to a section $V \to TX$ and subsequently $V \times \mathbb{R} \to T(X \times \mathbb{R})$ to yield precisely what we are looking for. Such a section exists because ν is a trivial bundle and rank $\nu > 0$. To see that ν is trivial just note that its base space $V = D^n$ is contractible (this is the only reason for using the triangulation). To see that rank $\nu > 0$ note that

$$\begin{aligned} \operatorname{rank} \nu &= (\dim X + \dim X - \dim V) - (\operatorname{rank} \tau + \dim X - \dim V) - \dim V \\ &= \dim X - \operatorname{rank} \tau - \dim V \\ &> 0 \end{aligned}$$

by assumption. The two dim X – dim V terms arise because we are considering TX and τ as bundles over V instead of X.

The relation \mathcal{R} is open and invariant under diffeomorphisms in the form required by the special local *h*-principle. Thus we can apply it to \overline{F} near $V \times 0 \subset V \times \mathbb{R}$ which by restriction implies the *h*-principle for \mathcal{R} .

References

- [1] Kai Cieliebak, Yakov Eliashberg, and Nikolai Mishachev. Introduction to the h-Principle. American Mathematical Society, second edition, 2024.
- [2] Tammo tom Dieck. Algebraic Topology. 2008.