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Abstract

In this talk we first review what has been done so far in the seminar: the holonomic approx-
imation theorem, h-principles for open di!-invariant di!erential relations (e.g. Smale-Hirsch)
and h-principles for symplectic and contact structures on open manifolds. Before moving on
to the main part of the talk, we mention what the rest of the seminar will do. The main dish
is an extension of the holonomic approximation theorem that does not require the di!erential
relation to be open. We explain the necessary conditions and how to adapt the proof of the
usual theorem to this one before finishing with some applications.

1 Context

Consider a smooth fiber bundle X →↑ V and recall that R usually denotes a di!erential relation,
i.e. R is a subset of the r-th jet-space X(r) of (sections of) X. Recall that a section of X(r) ↑ V
is called holonomic if it’s the r-jet of a section of X ↑ V . Given a di!erential relation R, a formal
solution is a section of X(r) →↑ V valued in R and a genuine solution is such a section that is
holonomic.

Interpretation of this: Think of immersions, the space of formal solutions is just the linear
monomorphisms of the tangent bundles, which may or may not be the di!erential of a function,
i.e. a genuine solution. Understanding these injective maps is linear algebra on smooth manifolds,
which is quite algebro-topological in nature. However, understanding the space of actual solutions
is very complicated a priori.

H-princpiple: A di!erential relation R is said to satisfy the h-principle if the natural inclusion
of solutions into formal solutions is a (weak) homotopy equivalence.

• In particular, this means that given a formal solution, we can connect it (i.e. homotope it)
in R (i.e. through formal solutions) to a genuine solution. We also have that paths of formal
solutions in R that join to genuine solutions can be deformed inside R to a path of genuine
solutions keeping the endpoints fixed. This corresponds to the surjectivity and injectivity of
the inclusion at the level of ω0 respectively. We could keep going with the higher homotopy
groups. This is what the book calls the parametric h-principle, usually just regarded as the
h-principle.

• We also have “local” versions of the (parametric) h-principle: satisfying the h-principle near
some A ↓ V will mean having formal and genuine solutions defined on some open neighbour-
hood of A as well as all of the homotopies to happen withtin the open set.

• Recall as well that the relative h-principle is as above but requiring the homotopies involved
to stay fixed in a fixed subset where the formal solutions are genuine.

• The book also defines the C0-dense h-principle: it requires formal solutions to be connected
in R to genuine ones in such a way that the base of this path (i.e. the underlying sections
of X ↑ V ) stays within an arbitrarily small neighborhood of the base of the original formal
solution.
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Goal of the seminar: We want to describe natural and general conditions on R that ensure it
satisfies the h-principle and then use this to study immersion theory for open and closed manifolds,
as well a similar theory in the symplectic and contact setting. There are two main ways to do the
first thing: holonomic approximation and convex integration.

So far, we have proven all forms of the local h-principle near a positive codimensional subset
for Di!-inviariant open di!erential relations through the holonomic approximation theorem. We
shall ellaborate on this next section but before, here are the consequences we have extracted from
these:

1. Open Di!-invariariant di!erential relations on open manifolds satisfy the h-principle. The
trick here was to observe that open manifolds can be compressed into their cores, which are
positive codimensional and the above local h-principle works. The compression, however,
breaks the C0-denseness property.

2. Immersions and submersions of open manifolds: the h-principle holds for these. This follows
from the fact that the di!erential relations defined by immersions and submersions are open
and di!-invariant.

3. Embeddings of open manifolds directed by open sets satisfy the h-principle. The proof is a
clever (one gets embeddings) application of the holonomic approximation theorem to approx-
imately integrate a deformation of the Gauss map of an embedding.

4. Smale-Hirsch theorem: The h-principle for positive-codimensional immersions of closed man-
ifolds holds. This refers to the parametric version but the relative version also holds and
even with the C0-density property. This follows from the previous theorem via the micro-

extension trick: h-principle for immersions of positive codimension is the h-principle for
their tubular neighbourhoods, which are open manifolds. Smale’s sphere eversion is a corol-
lary of this.

5. Immersions transverse to distributions for closed manifolds: as long as the dimension of the
domain plus the dimension of the target distribution are strictly smaller than the dimension
of the target, the h-principle holds for immersions transverse to a distribution. This is similar
to Smale-Hirsch. One can also show the analogous result for sections of a fibration that are
transverse to a distribution on the total space (under the same dimension condition). This
requires a slight modification of the di!-invariance open theorem.

6. H-principle for symplectic and contact structures on open manifolds. This required un-
derstanding certain approximation theorems of di!erential forms handled via the holonomic
approximation theorem. One should note that the analogue for closed manifolds is a lot,
lot, lot harder: for closed contact manifolds there is an h-principle for over-twisted contact
structures, leaving an interesting class of so called tight contact structures that do not obey
the h-principle; for closed symplectic manifolds very little is known aside from the fact that
the h-principle fails strongly. Philosophically, this is very interesting and I would say is one
of the main mysteries of symplectic topology. In current years, the extend of flexibility for
open manifolds has been worked on a lot, being able to handle symplectic invariants of so
called Lioucille-sectors through (hard) homotopy theory. Conjecturally, all stable infinity
categories are the Fukaya category of an (open) symplectic manifold, which showcases much
flexibility and promises applications in motivit and cromatic homotopy theory.

7. Isosymplectic and isocontact embeddings. We have not really studied this, but given the
tools at our current disposal we may as well have. The idea is that a type of h-principle
(the surjectivity of ω0) holds for isosympl/contc embeddings of comdimension at least 2 in
the open case and 4 in the closed case. By a micro-extension type trick (isotropic implies
cotangent extension is isosympl/contact) one can show the h-principle for subcritical isotropic
embeddings. Here the subcriticality is crucial, as for the critical ones (Lagrangians and
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Legendrians) embeddings do not behave flexibly in general. The proof of these requires work
to combine the h-principle for directed embeddings in the context of symplectic and contact
maps with stability results of symplectic and contact structures: deform the maps through
other maps that induce symplectic structures on the source in a careful enough way that
Moser or Gray tell you that these structures remain essentially unchanged.

Let us sketch what we want to do from now on.

• Prove a holonomic approximation theorem (refered to as R-holonomic approximation) that
allows us to prove the local h-principle near positive codimensional subsets for Di!-invariant
relations that are not necessarily open. For example, the R defined by isosymplectic, isocon-
tact and symplectic or contact isotropic immersions are not open. This we will do today.

• A direct consequence of this new approximation theorem we can deduce: the h-principle for
isotropic immersions of open symplectic (with a cohomological condition) or contact manifolds
and for subcritical immersions of closed manifolds via a micro-extension trick (this is a weaker
form of the harder to prove results stated before); the h-principle for maps transverse to a
contact distribution (with no assumptions on dimensions). This we will also do today.

Remark It is good to stop and ponder why these theorems we are using say something
about immersions but not embeddings, while at some point in the book an h-principle if
proven for embeddings.

• Further generalize the R-holonomic approximation theorem to allow for invariance under a
smaller but capacious enough subgroup of the di!eos of V . This will allow for a more h-
principly proof of the results on isotropic immersions positive codimensional isosympl/contact
immersions (note: not embeddings now), this includes the h-principle for Lagrangian and
Legendrian immersions of closed manifolds. This will happen next talk.

Remark As already mentioned in passing, the fact that Lagrangian embeddings behave
much more rigidly than immersions is a crucial fact in symplectic topology, where the em-
bedded Lagrangians encode deep information (e.g. a “silly” example is that that there are
no embedded Lagrangian Klein bottles in C2 proves the square peg proglem). The theory of
obstructing the existence of Lagrangians (even if formal solutions exist) is rich and interest-
ing. In fact, it could be said that the failure of the h-principle here implies the existence of
symplectically exotic R2n.1

• The seminar will end with the other known way to prove h-principles: convex integration.
So-called ample di!erential relations will satisfy the h-principle and this shall be employed
for further studying immersion theory (e.g. Nash-Kuiper).

• The last talk of the seminar will probabably be a survey on how Stein andWeinstein manifolds
(afine complex manifolds and the symplectic counterpart) behave flexibly (exploiting much
of the work done so far).

Remark. I was a bit sad writing all of this. Presented like this, it is easy to ignore all of the
individual history each of these problems has and consequently underappreciate the power of these
statements which are moreover treated with a “unified” method.

1More concretely: sometimes one can “resolve” an exact closed immersed Lagrangian in (R2n
,ωstd) (using h-

principle ideas), producing a symplectic form ω on R2n with an exact embedded Lagrangian, which can only mean
that ω and ωstd are not equivalent. This is because there are no closed exact Lagrangians embedded in the standard
R2n by another hallmark result of Gromov using the theory of holomorphic curves.
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2 Holonomic approximation theorem

We recall the motivation and ideas behind the holonomic approximation theorem we are already
familiar with. This theorem was introduced by Eliashberg and Mishachev to formalize or exaplain
some aspects of the proof of Gromov’s h-principle for microflexible relations.

Given a section of the jet bundle, can we find a nearby holonomic section?

Example 1. The answer is no, for example consider f(x) = x as a function R →↑ R and the
section (x, f(x), 0) of its 1-jet bundle, we cannot find a function g such that (x, g(x), g→(x)) is
C0-close to the above. We can only accomplish this at a point. DRAW THIS.

That being said, slightly generalizing this example, we get close to the correct question to ask.

Example 2. Set f(x, y) = x and consider the section (x, y, f(x, y), 0, 0) (draw: graph of f in
R3 along with the plane spanned by (1, 0, 1) and (1, 0, 0) for the 1-jet information). Again, it is
not possible to find a holonomic approximation but if we consider the subset over (x, y = 0) and
0 ↔ x ↔ 1, we see some hope: we want to go up a hill by walking aaalmooost horizontally. Goat
know how to do this well. Indeed, we make a lot of small wiggles to this interval. DRAW THIS.

So, it seems as though that we can find holonomic approximations of sections near positive-
codimensional submanifolds if we are allowed to make a C0-perturbation.2 This is the usual state-
ment of the holonomic approximation theorem. Moreover, we can do this procedure in the relative
sense. We state the version over the cube, which implies the full version doing induction over the
skeleton and using that the fibration is trivial over simplices.

Theorem 3. Let k < n and Ik ↓ Rk denote the unit cube considered in Rk ↗ 0n↑k ↓ Rn and
suppose given a section

F : OpIk →↑ J r(Rn,Rq)

that is already holonomic in OpεIk. Then we can find arbitrarily small ϑ, ϖ > 0, a ϖ C→-small
di!eomorphism

h : Rn →↑ Rn, (x1, . . . , xn) ↘→↑ (x1, . . . , xn↑1, xn + ϱ(x1, . . . , xn)),

a neighbourhood Oph(Ik) ↓ OpIk and a holonomic section

F̃ : Oph(Ik) →↑ J r(Rn,Rq)

such that h = id and F̃ = F in Op(εIk); and that F̃ is ϑ C0-close to F .

Remark 4. It is important to note that this perturbation we construct in the theorem will be
C0-small but C1-large.

Before sketching the proof, let us understand how it helps with the h-principle. Say that we
have some di!erential relation R on the r-th jet space of X ↑ V and a section F : Op(A) ↑ R,
and we want to find a homotopy of such sections to a holonomic one G : Op(A) ↑ R (showing a
basic h-principle). We can certainly find a very small di!eotopy hω of V such that near A→ = h1(A)
we can find a holonomic section F → : OpA→ ↑ R very close to F |OpA→ (F → will indeed map into R if
it is close to F and R is open for example)). Doing this for small enough parameters (this works if
R is open for example) we can assume that the linear homotopy F →

t interpolating F and F → in OpA→

is contained in R. It could look like we are done, but we are definitely not: the holonomic section
and homotopy need to be in OpA and not OpA→. We need a way to ”straighten” the sections over
A→: A→ is straightened by hω , so the sections will be straightned if we can manage to make hω on
the jet-space (this is naturality) in a way that R is preserved (di!-invariance). Once we have this,
the straightening of F → would be G and satisfy the desired properties. This shows (and the several
other variations of holonomic approximations):

2Formally: Let A → V be a polyhedron of positive codimension and F a section of X
(r) on OpA. Then for

arbitrariyly small ε, ϑ > 0 de can find a ε-small di!eotopy (hω )0↑ω↑1 of V , a neighbourhood OpÃ → OpA of
Ã := h

1(A) and a section of X(r) on OpÃ that is C0-close to F |
OpÃ

.
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3 Holonomic R-approximation theorem

We want to generalize this to di!erential relations that need not be open. The strategy is to find
conditions that allow us to carry out the steps above. To extend over points we require that the
Cauchy problem with initial data (v, F (v)) is locally solvable:

Definition 6. A di!erential relation R is locally integrable if for any section F : v ↑ R we can
find a holonomic section F → : Opv ↑ R such that F (v) = F →(v).

In fact, without further mention, we make use of a stronger version of this: a parametrized and
relative version. The parametrized version is necessary to construct the homotopy for the local
h-principle as well as for parametric and relative h-principles.

Example 7. Open di!erential relations are locally integrable. The isosympl/contact and isotropic
di!erential relations are locally integrable. For example, if we have a section of J 1(V,W ) at a
single point, i.e. (v, w, F : TvV ↑ TwW ) such that F is injective and F (TvV ) is a Lagrangian
subspace, we can then use a Darboux chart on W near w: at the origin a Lagrangian F (TvV )
has been selected, we can choose the same one in the nearby tangent spaces in a RdimV -family of
Lagrangians.

Example 8. As a non-example, consider Riemannian isometric immersions V ↑ W . This is due
to curvature: even if we can identify two inner products at a point, curvature may not allow that
extension.

To carry out the induction, the key step is the interpolation property that allow us to find
the neighbourhood and the approximating section. The condition that will enable this is micro-

flexibility. This will yield:

Theorem 9. Let k < n and Ik ↓ Rk denote the unit cube considered in Rk ↗ 0n↑k ↓ Rn and
suppose given a section

F : OpIk →↑ R ↓ J r(Rn,Rq)

that is already holonomic in OpεIk and R is a locally integrable and micro-flexible di!erential
relation. Then we can find arbitrarily small ϑ, ϖ > 0, a ϖ C→-small di!eomorphism

h : Rn →↑ Rn, (x1, . . . , xn) ↘→↑ (x1, . . . , xn↑1, xn + ϱ(x1, . . . , xn)),

a neighbourhood Oph(Ik) ↓ OpIk and a holonomic section

F̃ : Oph(Ik) →↑ R

such that h = id and F̃ = F in Op(εIk); and that F̃ is ϑ C0-close to F .

As before, a direct consequence is the following local h-principle:

Corollary 10. For a natural fibration X ↑ V , Di!-invariant, locally integrable and micro-flexible
di!erential relations satisfy the local h-principle near a polyhedron of positive dimension.

Proof. The proof is the same as before with one new complication: the linear homotopy between
F and F → may not be contained in R. The lazy approach to this is to assume that R is a local
neighborhood retract, because then one can just compress the linear homotopy into R by the
retraction. This is in fact su”cient for applications. The not so lazy applications consists of
understanding the parametric local integrability and using it to construct the homotopy.
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3.1 Micro-flexibility

The restriction of a (Serre) fibration to an open set is not a fibration. The following definition is
engineered to satisfy this property: it is a “short-time” homotopy lifting property.

Definition 11. A continuous map X ↑ A is called a (Serre) micro-fibration if given the following
diagram in Top

0↗B X

I ↗B A,
f

we can find an 0 < ϑ ↔ 1 and a lift f̃ such that the following commutes

0↗B X

[0, ϑ)↗B I ↗B A.

f̃

f

Example 12. Fibrations are micro-fibrations. The inclusion of two open sets is a micro-fibration,
and a homeomorphism if and only if it is a fibration. Restricting a micro-fibration to an open set
is a micro-fibration. A non-proper submersion is a micro-fibration, and if proper a fibration.

A sheaf is called (micro-)flexible if the restriction maps on compact are Serre (micro-)fibrations.
Hence, this defines the notion of (micro-)flexibility for partial di!erential relations asking the sheaf
of holonomic sections to have these properties.

Example 13. If the restriction map betweent the neighbourhoods of two compact sets is a fibration
and the h-principle is satisfied for those open sets, the relative h-principle is satisfied by the pair.
This follows from the LES on homotopy for the fibrations and the five lemma (using the h-principle
on four of the maps).

Remark 14. Gromov’s way to think about the general theorem we are showing today was di!erent
than the Eliashberg-Mishacev method. The basic idea is that the h-principle in the presence of
flexibility is “easy”, in the sense that it is just topology. But then, he shows the following amazing
theorem: consider the topological ≃-site Embn of smooth n-manifold with open embeddings. Given
an open manifold V , the following inclusion is an equivalence of ≃-categories

Shflexible(Embn /V ) →↑ Shmicro-flexible(Embn /V ).

From this he can deduce the h-principle for Di!-invariant and micro-flexible relations.

To get the definition of micro-flexibility we have in the book we must consider two things:
we consider pairs of compact sets di!eomorphic to (Kn = [→1, 1]n,Kk) to phrase the fibration
property, and do it in a relative way, which I do not think is implied by the above definition. Their
non-parametric flexibility is the path-lifting property for the restriction maps:

Definition 15. A di!erential relation R ↓ X(r) is called k-microflexible if for any su”ciently small
open ball U ↓ V , a pair (In, Ik) ↓ U (or a pair di!eo to it), a holonomic section F : OpIn ↑ R
and a holonomic homotopy (F ω : OpIk ↑ R)0↓ω↓1 constant over OpεB of the section F 0 = F
over OpB, we can find a number 0 < ϑ ↔ 1 and a holonomic homotopy (F ω : OpIn ↑ R)0↓ω↓ε that
is constant over OpεA extending (F ω : OpIk ↑ R)0↓ω↓ε. If ϑ can always 1 we call it k-flexible.
When it holds for 0 ↔ k ↔ n→ 1, we call it (micro-)flexible.
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Here is a diagram description for the flexibility property (without capturing the condition of
being constant near the boundary out of notational convenance):

0 Hol(OpKn,R)

[0, 1] Hol(OpKk,R)

F

(F ω )ω

Example 16. The section sheaf of the jet-space is flexible and hence open di!erential relations
are micro-flexible (this follows from the restriction property). These are not flexible.

Example 17. Symplectic and contact stability imply micro-flexibility of isocontact and isotropic
immersions and k-micro-flexibility of isosymplectic and isotropic immersions for k ⇐= 1. These are
not flexible.

Proof. Say we take the relation defining Lagrangian immersions. One must use Weinstein to look at
Lagrangian embeddings near the zero section of the cotangent bundle of V rather than immersions
into W . These sections can be thought of as one forms on V , and being Lagrangian is equivalent to
being closed. Hence one has to check the question of micro-flexibility for the relation of a one-form
being closed. As long as k is not 1, the Poincaré lemma provides the result: ς a closed one form
near Kn and ςω a homotopy of closed 1-forms near Kk matching ς near εKk. We can find a family
of functions f ω near Kn such that ςω = df ω so df ω → df0 = 0 near εKk, which implies f ω → f0 is
locally constant near εKk ⇒= Sk↑1, which will be connected (or empty) as long as k ⇐= 1, so locally
constant implies constant.

4 Immediate consequences

Using the local h-principle for micro-flexible di!erential relations along with the compression trick:

Theorem 18. Let V be an open manifold and X ↑ V a natural fiber bundle. Then any locally
integrable and microflexible Di! V -invariant di!erential relation R ↓ X(r) satisfies the h-principle.

Corollary 19. The h-principle holds for isocontact and isotropic immersions on open contact
manifolds. For closed manifolds, subcritical isotropic immersions also satisfy the h-principle.

Proof. The first statement follows from the fact that we have verified that isocontact and isotropic
immersions satisfy local integrability and micro-flexibility. The second follows from an application
of the micro-extension trick.

Corollary 20. The h-principle holds for isosympletic and isotropic immersions on open symplectic
manifolds. For closed manifolds, subcritical isotropic immersions also satisfy the h-principle.

Proof. This is is similar as before with a couple of di!erences: in the definition of formal isotropic
(isosymplectic) immersion one must add the cohomological condition tha the base map pulls back
the symplectic form to an exact form (pulls back the cohomology classes of symplectic structures
one to the other); and one must overcome the lack of micro-flexibility for k = 1. This is done by
reducing the problem to a contact problem, next talk will explain this further.

The holonomic approximation theorem was used to show that, under a dimensional condition,
maps transverse to a distribution satisfy the h-principle. It turns out that for contact structures
(and further, completely non-integrable distributions, though it is harder) the dimension condition
can be dropped or much improved.

Theorem 21. Let (M, φ) be a (possibly closed) contact manifold. Then the maps f : V ↑ M
transverse to φ satisfy the h-principle.
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Proof. Extend maps f : V ↑ M transverse to φ to maps V ↗ R ↑ M transverse to φ but
tangent to it along each fiber of V ↗ R ↑ V . This defines a locally integrable and microflexible
di!erential relation (the tangential part is locally integrable and microflexible while the transverse
part is open). This di!erential relation is not Di!(V ↗ R)-invariant but invariant under di!eos
that project to the idenitty of V . These are the kinds we can prove a modified h-principle with as
in last talk.

Theorem 22. Let (M, φ) be a (possibly closed) contact manifold and dimV < dimM . Then the
immersions f : V ↑ M transverse to φ satisfy the h-principle.

Proof. Same strategy as above but incorporating the immersion condition in the formal solutions
of the extended problem (immersions of V ↗ R makes the dimension condition pop up).
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