Motivation

											· ·	lime" "6	positik"	"Relacivities"																
Given	an of	ben	diff	erentia	l nela	tion	R	ະ ງ	'(R	۳) = (R×ſ	R [¶] × I	R٩	(i.e. a	an ope	n Sub	ser) G	and	a f	Cormo	u sa	slutic	n						
= (f, f)): I —:	R,	+ 1-	»(†,₽	(4 7, †	°(+1)	Smoot	íh l	but ·	Supp	مSe	exte	end	R in	1he	Se	nse	than	t w	all	600	for	"mo	re V	le locit	fies i	at ti	ime 1	i and	
Position	fc1)".	More	over, .	Suppas	e th	a1 th	he e	:xter	nsion	oſ	R	noω	yie	old s	tha ·	t f	is	ه و	genu	ine	Sol	ution	(So	exte	nsian c	»PR	Capture	es <i>É</i> (1)),	
Con							<u>,</u> 0	2																						
can we	get	<u>а</u>	g cru.	ne s	016418	n of	' R	•																						
. The a	hswer	is	YES	l je	Can	ever	n Pi	ind a	a h	00001	laDv	61	hich	Conr	ects	F	(hiu)	ha	aen	uine	Sol	F	= (e	. ė.) 01	nd	ę ,	and	P.	
		.5	,								-77	,							3			1								
are C?	close	toge	ther.																											
		5																												
·To do	this,	we	use	a te	echnie	que	Calle	ed "	Conve	y i	ntegi	ation	n	In	the	Fol	ίοω:r	y,	I	war	1- F	• S	how	you	ho	w i	the	mai	n –	
orgume	nt for	the	Proc	of of	the	abo	ve	State	emen	+ (work	s (0	even i	l Some	maps b	elow are	not sh	neoffn) :	:											
•									•								_							-			,			
Regord	FEC) a	nd S	vppos	e th	ere	are	Ve	(o <i>c</i> i	+ies	a	1,,	Qn	in }	₹s.	1.	0€	in-t	(Co	nv (01,	., an)).	he	nω	e d	ecom	pose		
<u>Λ-</u> Γ		,												0																
U - Zx,	a: ar	ici o	i; giv	es us	ーカモ	Time	we	مې د	end	with	ve	COCIT	γα	י . ואין גרו	ole	inin) a	Pa	in, o	Uhici	n a	ways	900	s b	:twees	n fh	ie Q	; in		
hiah free	110400	and	indoo		ы	a.ste		15	^	".So	6.6.	4	wh	ich	is C		lose	to	0											
	orm o		17112 0	raing		3.46							,																	
Example																														
																	_							+						
Q1 = -1,	a2 = -	<u></u>	ossible	iclorities "	and	1 1	aı	+ 1	az =	0	+	•	<u>,</u> ^	-, {	S ¹ (+) =	{ ,	1	for	te.	[o,	发)	~>	۶ و ا	(o-) o	lo =	{+	if te	: Lo, 1/2)	
											-1	•	•				l.	1	for	+ + 4	: [½	.,17		-			(1-	† ;f +	€[⁴ 2,1	נ
																											-s right C=close	velanties l to C	but is not	
										(1	:0	101	4 1	-)						(_	.0		- .	1. 1					

 $\begin{array}{c} Make \text{ it oscilate fast between 1 and -1 } & S^{2}(1) = \begin{pmatrix} 1 & \text{if } t \in Lo, \exists \\ -1 & \text{if } t \in L^{3}, \exists \\ -1 & \text{if } t \in L^{3}, \exists \\ 1 & \text$

~ Will Cº approx. O

Rmk :

+ 1/8

ò

14 3/8 1/2 5/8

3/4 7/8

· "Map", "path" and "Section" Will always mean that the functions are \mathcal{C}^{∞} .

moortant Definitions

Interpretation of differential relations as "differential inclusions"

Let $R \subseteq J^1(\mathbb{R}, \mathbb{R}^3)$ be a differential relation and let $(t, y, \dot{y}) \in J^1(\mathbb{R}, \mathbb{R}^3)$. We define

Ω(t,y) := R∩ P,y := R∩ (p;) 1 (t,y), where pt : J1 (R,R1) → J"(R,R1). Moreove, we

 $\mathbb{R}^{\times}\mathbb{R}^{*}\times\mathbb{R}^{*}\longrightarrow\mathbb{R}^{\times}\mathbb{R}^{*}, (\tilde{\mathcal{H}},\tilde{y},\tilde{y}) \to (\tilde{\mathcal{H}},\tilde{y}) \to (\tilde{\mathcal{H}},\tilde{y})$ $\text{haturally identify } \Omega(\mathcal{H},Y) \simeq \left\{ \dot{y} \in \mathbb{R}^{*} \mid (\mathcal{H},y,\dot{y}) \in \mathbb{R} \right\}^{*} \text{ some of mask videous ary}^{*} \text{ and } get \text{ that } (\mathcal{H},Y,\dot{y}) \in \mathbb{R} \setminus => \dot{y} \in \Omega(\mathcal{H},Y).$

Def" 1: "Modifying Velocities"

Siven a differential relation $R \subseteq J^1(R, R^4)$ and a section $F = (P, P): R \longrightarrow R$ i.e. Some trape $P, R \rightarrow R^4$ s.e. (4, 60), the last a view of the section of the section

i) Conn F(1) (R) will denote the path component of Q((+, P(+))) Which contains F(+) = {+} × {P(+)} × R⁹, but we can always identify with subser of R⁹ as above

ii) $Conv_{F(4)}(R) := Conv(Conn_{F(4)}(R)) \subseteq P_{G(4)} = Uicitial R^{1}$

iii) $C_{ONV_{F}}(R) := \bigcup_{t \in \mathbb{R}} C_{ONV_{F(t)}}(R) \subseteq \mathbb{R} \times \mathbb{R}^{q} \times \mathbb{R}^{q} = J^{1}(\mathbb{R}, \mathbb{R}^{q}) \sim T_{his}$ is differential relation

iv) Suppose F is a formal solution of R. We will call F a short formal solution, if f: R-> Rª is a genuine solution of ConvFR in (1, 100, 101) = Comp (R) VIER.

V) We will Call R fiberwise path-connected if SL(1, y) is path-connected V(1, y) E Rx R?

Vi) REJ1(R, R9) is called ample if V(1, Y) E R×R9: Conv(Commy(Q(1, Y))) = R9 Vy E Q(1, Y) (if S(1) - 9, the ac

Main Lemma and Proof Idea

 $\frac{\mathcal{L}_{ennom}}{\mathcal{L}_{ennom}} \xrightarrow{1: \text{One-dimensional Convex integration}} (25.3.4)$ $\frac{\mathcal{L}_{et} \ \mathcal{R} \subseteq J^{4}(\mathbb{R}, \mathbb{R}^{q}) \text{ be an open differential relation and } F=(f, f): T \longrightarrow \mathbb{R} \text{ be a short formal solution of } \mathbb{R}.$ $Then there exists a Cont. map H: T \times T \longrightarrow \mathbb{R}, (\tau, t) \mapsto F_{\tau}(t):= (f_{\tau}(t), f_{\tau}(t))$ $i) \forall \tau \in \mathbb{L}_{0}, 1]: H(\cdot, \tau) \text{ is a Short formal solution and } f_{\tau} \text{ is } (arbitrarily) \mathbb{C}^{2} \text{ clase to } f.$ $ii) H(\cdot, 0) = F, H(\cdot, 1) \text{ is a genuine solution of } \mathbb{R} \text{ and } H(0, \tau) = F(0), H(1, \tau) = F(1) \forall \tau \in \mathbb{C}_{0}, 1].$

<u>Rmk</u>:

If the formal solution F is already genuine in near $\Im I$ is $(P_{1} = (P_{1} = (P_{1} = P_{1} = P_{1} = P_{2} = P_{2$

(1) Reduce to the case when $f \equiv 0$

2 Localize the problem and use the "good local form" of R

(3) Prove the Lemma in the easier setting that we got from localization

(4) Slue local solutions to get desired statement.

Proof of the Main Lemma

Lemma 2: "Reduction to F = 0"

· Suppose we have proven lemma 1 in the case where f=0. Then it holds in general.

Proof

· We define $\widetilde{R} := \{(+, 2, 2) \in T \times \mathbb{R}^q \times \mathbb{R}^q \mid (+, 2 + \beta(+), 2 + \beta(+)) \in \mathbb{R}\}$ Variation relation along β^*

• Then \widetilde{R} is open b.c. $\widetilde{R} = \Psi^{-1}(R)$ and $\Psi : I \times \mathbb{R}^{q} \times \mathbb{R}^{q} \longrightarrow I \times \mathbb{R}^{q} \times \mathbb{R}^{q}$ is cont.

Moreover \tilde{F} = (0, 1- \dot{F}): I→ \tilde{R} is a short formal solution b.c. OE Conv_F \tilde{R} . So we can apply lemma 1, get \tilde{H} : I×I→ \tilde{R} with

D

 $\widetilde{H}(+, \gamma) = (+, \widetilde{F}_{\gamma}(+), \widetilde{F}_{\gamma}). \text{ We old ine } H: I \times I \longrightarrow \mathbb{R}, (+, \gamma) \longmapsto (+, \widetilde{F}_{\gamma}(+) + f(+), \widetilde{F}_{\gamma}(+) + \dot{f}(+)), \text{ which yields the desired homotopy.}$

Defn 2: (Abstract) flowers

i) Let nEN and (Io, 0), (I1, 0),..., (In, 0), where I:= [0,1] Vi=on. We will call (S, Os):= Iov I1 v...v In

an abstract flower. The interval Io = S is called the stem of the flower, all other intervalls Ii = S, i=1,...,n

are called the petals. $OS := \{(1,1), (1,2), \dots, (1,n)\}$ the union of fire ends of the petals $I_{1,...,I_n}$ of the Riser S.

ii) A map 4: S-> Rª, and sometimes also its image 1:= 4(S), will be called a flower.

Note that giving a map 4: S -> R9 is equivalent to giving paths 4: I -> R8 Bor i=0,..., n where to (0) = 440 = ... = 4n (0).

· For a flower y=+(s), we set a:=+:(1) ==1,..., and Oy:=+(Os)={+4(1),..., +(1)}.

Lemma 3: "Localization of the Problem" (25.4.2)

· Let $R \subseteq I \times \mathbb{R}^{q} \times \mathbb{R}^{q}$ be an open differential relation and $F = (0, p) : I \longrightarrow R$ be a short formal solution.

Then 35 to s.t. $\forall t_0 \in [0, 1-S]$ one can choose a flower $\Psi = \Psi(S) \subseteq P_{t_0,0} = \xi_{t_0} \Im \times \xi_0 \Im \times \mathbb{R}^q$ s.t.

i) $O \in int(Conv(O \Psi))$

ii) $V_{0}(t) = P(t_{0} + S_{1}), t \in \mathbb{Z}$ "Ston is given by t"

iii) [to, to+S] × 10 = × 2 CR for sufficiently small E>0.

·Let to EI be arb. Since (to, 0, 0) E Conv_{E(10)} R = Conv (Conn_{E(10)} R) JnEIV, NI..., NE(0,1] with $\tilde{\Sigma}$ Xi = 1 and a1,..., an E Conn F(4) (R) S.t. O = 2 x: a: => OE Conv Ea1,..., an 3. Now there are two cases: Case 1: OE int (Conv Eq1,..., an 3) i.e. No (0,1) Vi Then since $f(t_0)$, $a_{1,...}$, $a_n \in Conn_{F(t_0)}(R)$ and by path connectedness of this space $\exists \psi_i : I \longrightarrow Conn_{F(t_0)}(R)$ with $\psi_i(0) = f(t_0)$ and 4; (1) = a;. These paths will be the petals of our flower I while the path Yo(+) := f(to+S+) is its stem. By openness of R, we get that for all t; \in [0,1] 3S; >0 and \in ; >0 S.t. $(t_i \cdot s_i, t_i \cdot s_i) \cap I \times O_{\varepsilon_i}^q \times I \subseteq R$. Can cover I by (ti-si, ti+si) nI ~> Only need Rin. many ~> Deline S:= min \$2. For any to CCO, 1-S] 3iE 3: [to, to+S] = (ti-Si, ti+Si) n I and hence for $\mathcal{E} := \min_{i \in \mathcal{I}} \mathcal{E}_i : \mathbb{Z}$ to, to $+S \supset X \bigcap_{\mathcal{E}}^q X \stackrel{q}{\perp} \subseteq \mathbb{R}$ <u>Case 2:</u> 31=1,...,n: 0=a; in x-1. Then by openness of R and by local path-connectedness of \mathbb{R}^{q} , $Conn_{F(1_{0})}(\mathbb{R}) \subseteq \mathbb{R}^{q}$ is open. Then $\exists \tau > 0 : B_{\tau}(0) \subseteq Conn_{F(1_{0})}(\mathbb{R})$ For $a_1 = \frac{1}{2}e_1, ..., a_{q_{11}} = -\frac{1}{2q}\sum_{i=1}^{q}e_i$ we get that $0 = \frac{1}{q+1}\sum_{i=1}^{q}a_i => 0 \in int(Conv(a_1, ..., a_{q_{11}}))$. Return to Case 1. \Box . In Order to prove Lemma 1 in the local case, we need the following concept: Depn 3: " (weighted) Product of paths and balanced paths " · Let $K \in \mathbb{N}$, $p_4, \dots, p_k : I \longrightarrow \mathbb{R}^9$ be paths and $\alpha_{4,\dots,4} \in \{0, 1\}$ s.t. $\alpha_{4+\dots,44} = 1$. We deline $p := p_1 \cdot p_2 \cdot \dots \cdot p_k : I \longrightarrow \mathbb{R}^q$, $t \mapsto p_i \left(\frac{t - t_{i-1}}{\kappa_i} \right)$ for $t \in (t_{i-1}, t_i]$ and $p(0) := p_1(0)$ where $t_i := \kappa_1 + \dots + \kappa_i$ for $i = 4_{\dots, K}$, $t_0 := 0$. We call p the weighted product of paths (not necessarily continues) and if at = 1/K Vi=1,..., K, we call p the uniform product of paths. · Siven a path p: I-> Rª, we will denote by p" the uniform product pomop of N Pactors and define p-1: I-> Rª, ++> p(1-+). Moreover, we will define Sprodo: $\mathbb{I} \longrightarrow \mathbb{R}^3$, $t \mapsto \overline{\mathbb{S}}$ prodo and we will call p balanced if Sprodo = 0. Property 1 : "Multiplicativity of the integral" (25.4.3)

On both sides are uniform.

· This shows in particular that promove is also balanced.

Proof:

$$\begin{aligned} & Le_{1} + \varepsilon I \text{ be orb. Then } \exists i \varepsilon \{1, \dots, N \} \text{ s. 4. } + \varepsilon \left(\frac{i-1}{N}, \frac{i}{N}\right) \text{ and } with this: \\ & \int_{N} \int_{N} \left(p_{1} \cdot \dots \cdot p_{N}\right) (\sigma) d\sigma = \int_{P} p_{1} \left(\frac{N(\sigma)}{N}\right) d\sigma + \int_{N} p_{2} \left(\frac{N(\sigma - 1)}{N}\right) d\sigma + \dots + \int_{N} p_{1} \left(\frac{N(\sigma - i-1)}{N}\right) d\sigma \\ & I \\ &$$

Property 2: "C-norm of uniform products" (25.4.4)

Proof:

 $= \frac{1}{W} \max \left\{ \sup_{t \in [0, 1\pi]} \| \int_{0}^{\infty} p_{1}(\sigma) d\sigma \|, \sup_{t \in [2\pi, 1\pi]} \| \int_{0}^{\infty} p_{2}(\sigma) d\sigma \|, \dots, \sup_{t \in [2\pi, 1\pi]} \| \int_{0}^{\infty} p_{1}(\sigma) d\sigma \| \right\}$ $= \frac{1}{W} \max \left\{ \sup_{t \in [0, 1\pi]} \| \int_{0}^{\infty} p_{1}(\sigma) d\sigma \|, \sup_{t \in [2\pi, 1\pi]} \| \int_{0}^{\infty} p_{2}(\sigma) d\sigma \|, \dots, \sup_{t \in [2\pi, 1\pi]} \| \int_{0}^{\infty} p_{1}(\sigma) d\sigma \| \right\}$

Π

= 1/ max { ||Sp1(0) of 1100, ||Sp2(0) do 1100,..., ||Sp1(0) do 1100 }

Rmk :

Property 2 implies that if $p: \mathbb{I} \longrightarrow \mathbb{R}^{q}$ is a balanced path, then $p^{N} \xrightarrow{M \to \infty} 0$ in \mathbb{C}^{q} -norm.

 $\frac{\mathcal{L}epnma 4: "Main-lemma in local setting"}{\mathcal{L}S:4,4}$ $\frac{\mathcal{L}e_{1} \quad \mathcal{L}e_{2} \quad \mathcal{L$

· Let Y= EP, Y1, ..., this be the parametrizing maps for the flower Y. By a slight reparametrisation

We may assume that $\Psi_i(t) \equiv P(o)$ near t=0 and $\Psi_i(t) \equiv a_i$ near t=1 for $i=1,...,\kappa$ (to ensure structuress)

· We consider the product 4 = 4. · a. · 4. · ... · 4. · a. · 4. · , where the weights of constant paths a: are (1-g) a: and the

Weights of the other paths are Sak.

=> $\|d\| \le \frac{q}{k} \left(\int_{|||1_{1}(r)|||dr} + ... + \int_{|||1_{1}(r)|||dr} \right) \le g \frac{r}{r} \frac{r}{2} \|\Psi(1)\| = g C.$ Since $O \in int (Conv(a_{1,...,a_{k}}))$ by assumption, $\exists r>0$: $Br(0) \le conv(a_{1,...,a_{k}})$ and Since $(1-g) Conv(a_{1,...,a_{k}}) = Conv((1-g)a_{1,...,}(1-g)a_{k})$, we also get $Br(1-g)(0) \le Conv((1-g)a_{1,...,r}(1-g)a_{k})$. For g > 0Small enough, we have $\|d\| \le \frac{r}{2} = > -d \in B_{r}(0) \le B_{r}(1-g)(0) \le Conv((1-g)a_{1,...,r}(1-g)a_{k}) = > -d = \frac{r}{4}(1-g)a_{1+...+r} + \frac{r}{4}(1-g)a_{$

· Now we construct a genuine solution for of R and the desired homotopy:

· Then Property 2 implies ||filleo = tu max & || Stordo lleo, || Stordo lleo 3 and (fi, fi) is a genuine solution of R = Ix Dex 2

b.c. In lies completely in I, since EP, 41,..., 443 parametrize I and Pa lies in De For N large enough. Moreover we have

 $f_1(0) = 0 = f_1(1)$ and $f_1(0) = \Psi(0) = \Psi_1(0) = \Psi(0)$ and $f_1(1) = \widetilde{\Psi}(1) = \Psi(1)$.

For the homotopy, we utilize the homotopy $\Psi_i \cdot a_i \cdot \Psi_i^{-1} \sim P(0)$ and deform the Ψ to the Constant path to $P(\omega)$ and $\tilde{\Psi}$ to $P(\omega)$.

· Utilizing the homotopy P(0)·P(0)~P(0) and P(0)·P~P, we get a homotopy H: IXI-> Y from P to the s.t. H(0,7)=P(0)

and H°(1,T) = P(1) VTE I. With this, deline H: Ix I -> R, (t,T) +> (t, TR(1), H°(1,T)), which satisfies the desired properties

Proof of Lemma 1 for f=0

· Recalling Lemma 3, we can subdivide the interval I into Finitely many subintervalls [0, 2], [2, 2], ..., [1-74, 1]

and we get that $3 \pm c \mathbb{R}^{q}$ flowers s.t. i) OE int (Conv(2±'))

ii) $\%^{i}(+) = P(\frac{i}{w} + \frac{4}{w}), t \in I$

iii) $L_{\frac{1}{2}}^{\frac{1}{2}}$ $\frac{114}{27}$ $] \times ID_{\varepsilon}^{9} \times \Psi^{1} \subset \mathbb{R}$

· On those intervals, we get homotopies H': ['W, ""] × I → ['W, ""] × ID = × L'CR with desired properties. Now we glue the

homotopics together to get $H: I \times I \longrightarrow R$, which is continuous b.e. we have $H^{i}(\frac{i\pi}{2}, \tau) = (0, \ell(\frac{i\pi}{2})) = H^{i+1}(\frac{i\pi}{2}, \tau)$.

ם

Moreover the maps P_T which we get from the homotopies are still smooth b.c. differentiating P_T on (!/w, !!/w), we get the map T_{i}^{i} from prove of Lemma 4. This map is smooth in E!w, !!/w] and $P_{i}^{i}(1) = P(!/w + !w) = P_{i}^{i+1}(0)$

which yields the desired megularity. For the map for, we get Smoothness by our construction of 4, \$ and P.

Corollary 1: (25.3.2)

· Let $R \subseteq J^1(R, \mathbb{R}^{\mathfrak{P}})$ be an open ample differential relation. Then any formal solution $F = (F, P) : I \longrightarrow R$ which

is genuine near OI there exists a homotopy of formal solutions, fixed near OI, H: IxI->R, (7, +) +> Fr(+)= (fr(+), fr(+)),

Fo = F such that F1 is a genuine solution of R and P1 is (arb.) C°-close to F.

Proof:

· By ampleness of of R, we get that any formal solution is short, so we can apply Lemma 1.

Corollary 2: (25 3.3)

·Let $R \subseteq J^{1}(R, R^{9})$ be an open and fiberwise path-connected differential relation R.

i) Eq: I→R^q smooth | q is a genuine sol. of R3 ⊆ Ef: I→R^q smooth | f is a genuine sol. of Conv(R)3

ii) If additionally, R is fiberwise non-empty and ample, then {g: I→R⁹ smooth | g is a genuine sol. of R 3 ⊆ ff: I→R⁹ smooth }.

D

D

Proof:

i) For this, we want to construct a smooth f s.t. f(t) E Ω(t, f(t)) YtEI.

For FEI ach., We have that 3 NEIN and VA(F),..., VW(F) EQ(F, F(F)): F'(F) = Si >: V:(F) b.c. F is a gen sol of Conv(R).

· By openness of R and by cont. of P, we con extend V1 in a small nobed. If it to a smooth map s.t. Vi (t) e Q(t, P(t)) Vte IT.

· By compactness of I, we only need finitely many $I_i = I_{i_i}$, $i = i_{\dots,N}$ to cover I. To globalize our construction, we use the fiberwise

path-connectedness. For FEI; n I : 1, we get by path-connectedness and openness a smooth path &: I-> D(F, P(T)) with &: (0) = V (F) and

8: (1) = Vin (7). By openness R and cont. of f, we can reparametrize and extend 8: in a small nord. [7-8, 7+8] to a smooth map

 $\delta_1^*(\cdot), s.t. \ \delta_1^*(t) \in \mathbb{Q}(t, P(t)) \ \forall t \in [T-S, T+S] \text{ and such that } \delta_1^*(t) = \forall_1(t) \text{ in a nbhd. of } T-S \text{ and } \delta_1^*(t) = \forall_1^{(i)}(t) \text{ in a nbhd. of } t+S.$

With this, we get a smooth map of on I s.t. F=(P, P): I->R is a short formal solution.

Applying lemma 1, we get a genuine solution g of R, which is E= close to f.

For ii), note that if $f: I \longrightarrow \mathbb{R}^{q}$ is smooth, $\Omega(1, f(t)) \neq \varphi$ $\forall t \in I$ by assumption and $Conv(\Omega(1, f(t)) = \mathbb{R}^{q} \forall t \in I, we get that <math>\{f: I \longrightarrow \mathbb{R}^{q} \text{ smooth } \} = \{f: I \longrightarrow \mathbb{R}^{q} \text{ smooth } | f \text{ is a genuine sol. of } Conv \mathbb{R}^{q}, so the statement follows by :).$

arametric case

• In this last part, we will state and prove the main lemma of parametric one-dimensional Convex integration. The idea of the prove is the same as in the non-parametric case, so I will omit details. Lemma 5: Parametric one-dimensional convex integration" (25.5.4) · Let $R \in I^* \to J(R, R^q)$ be an open fibered differential relation is an open steer of $T^* R \cdot R^q \cdot R^q$. and $F: I^* I \longrightarrow R$, $(p,t) \mapsto (p, t, f(p,t), f(p,t))$ be a fiberwise short formal solution of R i.e. $\forall p \in T^e$ the section $F(p, \cdot): I \longrightarrow Rp := R \cap p \times J^1(R, R^q)$ is a short formal solution of Rp. Suppose that F(p,t) depends smoothly on $p \in I^e$ and is a genuine solution of Rp when $p \in Op(\Im I^e)$. • Then there exists a homotopy of fiberwise short formal solutions $H: I \times I^* \times I \longrightarrow R$, $(\tau, p, t) \mapsto F_T(p, t) = (f_T(p, t), f_T(p, t))$ 8.1. Fo = F, F4 is a genuine solution of R and s.t. $\forall \tau \in [0, 1]$: a) fr is (arbitrarily) C^o close to f

b) $F_{\tau}(p,o) = F(p,o)$ and $F_{\tau}(p,1) = F(p,1) \quad \forall p \in I^{\mathcal{L}}$

C) Fr is constantly equal to Fo = F for pe Op (OIe) and

d) the first derivatives of f1(p,+) W.M.T. pEI^e are (arbitravily) C^e-close to the respective derivatives of F(p,t). 4 Again, if Fis already genine new OI, then Fix can be chosen fixed new PI.

As in the non-parametric case, it is enough to consider $f\equiv 0$.

Defn 4: Fibered flowers

· A fibered flower is a map 4: I * S -> I * R?, as well as the set 1 == 4(I * S) = I * R? parametrized by this map.

Siven a fibered flower \mathfrak{L} , we will denote by \mathfrak{L}_p the flower $\mathfrak{V}(p_XS) \subseteq p_X \mathbb{R}^q$, $p \in \mathcal{I}^q$.

Lemma 6: "Localization of the parametric problem" (25.6.2)

 \cdot Let $R \subseteq I \stackrel{<}{\times} J^1(R, R^3)$ be an open fibered differential relation and $F = (0, \gamma)$: $I \stackrel{<}{\times} I \longrightarrow R$ be a fiberwise short formal solution of R.

smooth dependence on p

Then 38>0 s.t. Vto E EO, 1-8] One can choose a fibered flower = +(I + S) = I + Pro, = I + Eto 3 + EO 3 + R + S.t. VpE I +:

a) DE int (Conv (24p))

b) $\Psi_{o}(p,+) = P(p, t_{o} + \delta +), + \epsilon I$

C) $P \times E_{to}, t_{o}+S] \times D_{e}^{q} \times Y_{p} \subseteq R_{p}$ for E > o small enough

· Let to E Eo, 1-8]. For fixed po E Ie, (0, Pp) is a short formal sol. of Rp. Recall that we constructed at (po),..., an (po) & Conner R S.t. $O \in int(Conv(a_{\ell}(p_0),...,a_n(p_0)))$. By openness of R, there is a small open normal. U of $p_0 \in \mathcal{I}^e$ s.t. ai (p) & ConnFig.t.) R is smooth and O & int (Conv (a1 (p), ..., an (p))) VP & U. Now again by Openness of R, we may deline paths 4: (p, 1) in Conn F(p, 1) R from P(p, 10) to a: (p) s.1. 4" = (P(p, 10 + 51), 4, (p, 1), ..., 4n (p, 1)) is a flower Ribert over U. · By compariness of I we can choose a finite covering of I by open sets Uj, j=1,..., L, such that we have above flower U's = (f(p, to 1st), Y1(p, t), ..., Yns(p,t)) Fibered over Us. Let U's CCUs for s=1,..., L s.1. I = UU's be slightly Smaller open sets. For every j=1,..., L choose a cut-off function B': I = > [0,1] s.1. B'= 1 on U' and B'=0 on I' Uj With those, we define $\Psi_i^{\hat{s}}: \mathbb{I}^{e_x} \mathbb{I} \longrightarrow \mathbb{I}^{e_x} P_{\bullet, \circ}$, $(p, t) \mapsto \begin{cases} \Psi_i^{u_{\hat{s}}}(p, \beta^{\hat{s}}(p)t) & \text{for } p \in U_{\hat{s}} \end{cases}$ for $i = 1, ..., N_{\hat{s}}$, j = 1, ..., L $P(p, t_{\hat{s}}) & \text{for } p \in \mathbb{I}^{e_x} U_{\hat{s}} \end{cases}$ and $\Psi := (\mathcal{P}(p, t_0 + St), \Psi_1^1, \Psi_2^1, \dots, \Psi_{N_1}^n, \Psi_1^2, \Psi_2^2, \dots, \Psi_{N_1}^1, \dots, \Psi_{N_k}^L)$, where we can choose S>O and E>O by openness of R and compaciness of I. ·With above Kemma 6, we get that it is enough to prove the parametric One-dimensional Convex integration for the case when i) the fibered relation R consists of fibers $R_p = p \cdot I \times D_e^q \times \Psi_p \subseteq p \times J^1(R, R^q)$, $p \in I^e$ where $\Psi = \Psi(S \times T^e) \subseteq I \times R^q$ is a fibered flower S.1. OE int (Conv (Otp)) for each pEI ii) $F = (o_1 t) : I^* \times I \longrightarrow R$ where t is the stem of Ψ . (25.6.1) . In order to prove above reduction we do the following 3 steps: Convex decomposition of a section ·Let I be a fibered flower and let ai(p) = 4; (p,1), i=1,..., N and let Ap := Convolp for peI^e. $\mathcal{L}_{e^{1}} d: I^{e} \longrightarrow I^{e_{x}} \mathbb{R}^{q}, p \mapsto (p, d(p)) \in p_{x} int(\Delta p) be a map. Then there exist maps a: I^{e} \to [o, 1], i=1, ..., N S.1.$ ×1(p)+...+ ×1(p)=1 and ×1(p)a1(p)+...+ ×1(p)a1(p)=d(p) (construct them loadly and globalize them

Construction of the homotopy Fr

We will use the proof for the non-parametric case (see proof of lemma 1):

· Take weights (1-g) d; (p) and 3/4 to define $\Psi = Y_4 \cdot q_0 \cdot T_1^{-1} \cdot \cdot \Psi_W \cdot q_W \cdot \Psi_W^{-1}$ as befor (p dependence) ~> Set smooth of (p) with || of (p) || < Cg.

Use that map:= sup Errol Br (0) = Ap } is cont. on It to get uniform gra s.t. d(p) E int (11-3) Ap), use convex decomp

to get new x; (p) to balance Y(p,t) VPET? Do the same for = 4. a. +1. ... +N. a. +1. ... +N. a.

Again, let 14 = 4 + . + uniform product of N factors and PA (p,1) = Sta (p, 0) do. Define homotopies as befor

and get desired homotopy Fir, which satisfies property a) and b).

For property c), let $\beta: I \xrightarrow{e} \text{Lo}_{1} \exists \exists I$. $\beta \equiv 0$ near $\Im I^{e}$ and $\beta \equiv 1$ on smaller cube $\equiv I^{e}$.

Then we redeline the homotopy $H: I \times I^{e} \times I \longrightarrow R$, $(\gamma, \rho, t) \longmapsto F_{B(\rho)\gamma}(\rho, t)$.

Derivatives with respect to the parameter

In order to show property d), we need to show that Op f1(p,t) arts. Co-close to O.

 $We have \partial p f_1(p,t) = \partial p \int_{\sigma}^{\sigma} f_1(p,\sigma) d\sigma = \int_{\sigma}^{\sigma} \partial p f_1(p,\sigma) d\sigma \text{ and } \partial p f_1(p,t) = \partial p \Psi(p,t) \cdots \partial p \Psi(p,t) \cdot \partial p \Psi($

Since 4 and \$ ore balanced => Op 4 and Op \$ ore balanced b.c. Sop 4(p, o) do = Op St(p, o) do = 0.

·Using property 2, we get that for any tEI, pEIe:

10pf1(p,+)1 = 1/2 max & sup 10pg(p,+)1, fex 10ph(p,+)] = 1/2 max & 10pg11eo, 110ph11eo}

=> 11 Op filles = \$ max Ellopgles, 11 Ophlles }, where g(p,1) = \$ \$ \$ (p, o) do, h(p,1) = \$ \$ \$ \$ \$ (p,o) do , So we get the desired statement.