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For the entirety of this chapter, we assume π : E → M is a smooth
vector bundle. We have already seen that any extra structure attached
to a bundle determines a preferred class of connections. We now examine
a variety of other situations in which a given vector bundle may inherit a
natural class of connections—or a unique preferred connection—from some
external structure. A particularly important case is considered in §4.2 and
§4.3, where E is the tangent bundle of M , and we find that there is a
preferred metric connection for any Euclidean structure on TM . This is
the fundamental fact underlying Riemannian geometry.
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4.1 Direct sums, tensor products and bun-

dles of linear maps

Suppose πE : E → M and πF : F → M are two vector bundles of rank m

and ` respectively, and assume they are either both real (F = R) or both
complex (F = C). In this section we address the following question: given
connections on E and F , what natural connections are induced on the
other bundles that can be constructed out of E and F ? We answer this by
defining parallel transport in the most natural way for each construction
and observing the consequences.

Direct sums

To start with, the direct sum E ⊕ F → M inherits a natural connection
such that the parallel transport of (v, w) ∈ E ⊕ F along a path γ(t) ∈ M

takes the form
P t

γ(v, w) = (P t
γ(v), P t

γ(w)).

We leave it as an easy exercise to the reader to verify that the covariant
derivative is then

∇X(v, w) = (∇Xv,∇Xw)

for v ∈ Γ(E), w ∈ Γ(F ) and X ∈ TM .
If E and F have extra structure, this structure is inherited by E ⊕ F .

For example, bundle metrics on E and F define a natural bundle metric
on E ⊕ F : this has the property that if (e1, . . . , em) and (f1, . . . , f`) are
orthogonal frames on E and F respectively, then (e1, . . . , em, f1, . . . , f`)
is an orthogonal frame on E ⊕ F . In fact, E and F need not have the
same type of structure: suppose they have structure groups G ⊂ GL(m, F)
and H ⊂ GL(`, F) respectively. The product G × H is a subgroup of
GL(m, F) × GL(`, F), which admits a natural inclusion into GL(m + `, F):

GL(m, F) × GL(`, F) ↪→ GL(m + `, F) : (A,B) 7→

(
A

B

)
. (4.1)

The combination of G-compatible and H-compatible trivializations on E
and F respectively then gives E⊕F a (G×H)-structure. If the connections
on E and F are compatible with their corresponding structures, it’s easy
to see that our connection on E ⊕ F is (G × H)-compatible.

Example 4.1 (Metrics on direct sums). Let us see how the general
framework just described applies to the previously mentioned construction
of a bundle metric on E⊕F when E and F are both Euclidean bundles. In
this case, the structure groups of E and F are O(m) and O(`) respectively,
so the direct sum has structure group O(m) × O(`), which is included
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naturally in O(m+`) by (4.1). Thus E⊕F inherits an O(m+`)-structure,
that is, a bundle metric. To see that it matches the metric we defined
earlier, we only need observe that by definition, any pair of orthogonal
frames for Ex and Fx defines an O(m)×O(`)-compatible frame for Ex⊕Fx,
which is therefore also an orthogonal frame.

Tensor products

Things are slightly more interesting for the tensor product bundle E ⊗ F .
Parallel transport is defined naturally by the condition

P t
γ(v ⊗ w) = P t

γ(v) ⊗ P t
γ(w).

Indeed, since every element of E ⊗ F is a sum of such products, this
defines P t

γ on E ⊗ F uniquely via linearity. Computation of the covariant
derivative makes use of the following general fact: bilinear operations give
rise to product rules.

Exercise 4.2. Suppose V , W and X are finite dimensional vector spaces,
β : V × W → X is a bilinear map and v(t) ∈ V , w(t) ∈ W are smooth
paths. Then

d

dt
β(v(t), w(t)) = β(v̇(t), w(t)) + β(v(t), ẇ(t)).

It follows that the covariant derivative satisfies a Leibnitz rule for the
tensor product: if γ̇(0) = X ∈ TxM ,

∇X(v ⊗ w) =
d

dt

(
P t

γ

)
−1

[v(γ(t)) ⊗ w(γ(t))]

∣∣∣∣
t=0

=
d

dt

[
(P t

γ)
−1(v(γ(t))) ⊗ (P t

γ)
−1(w(γ(t)))

]
t=0

= ∇Xv ⊗ w + v ⊗∇Xw.

We express this more succinctly with the formula

∇(v ⊗ w) = ∇v ⊗ w + v ⊗∇w.

Bundles of linear maps

For the bundle Hom(E, F ) → M , it is natural to define parallel transport
so that if A ∈ Hom(Eγ(0), Fγ(0)) and v ∈ Eγ(0), then

P t
γ(Av) = P t

γ(A)P t
γ(v).
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Applying Exercise 4.2 to the bilinear pairing Hom(E, F ) ⊕ E → F :
(A, v) 7→ Av, we find that the covariant derivatives on these three bun-
dles are related by

∇X(Av) = (∇XA)v + A(∇Xv) (4.2)

for A ∈ Γ(Hom(E, F )) and v ∈ Γ(E). In particular for the dual bundle
E∗ = Hom(E, M×F), one chooses the trivial connection on M×F (i.e. ∇ =
d) so that for α ∈ Γ(E∗) and v ∈ Γ(E), (4.2) becomes

LX(α(v)) = (∇Xα)(v) + α(∇Xv). (4.3)

Observe that the left hand side of this expression has no dependence on
the connection—evidently this dependence for E and E∗ on the right hand
side cancels out.

Tensor bundles and contractions

By the above constructions, a choice of any connection on a vector bundle
E → M induces natural connections on the tensor bundles

Ek
` =

(
⊗`E∗

)
⊗

(
⊗kE

)
.

Recall that one can interpret the fibers (Ek
` )p as spaces of multilinear maps

Ep × . . . × Ep︸ ︷︷ ︸
`

×E∗

p × . . . × E∗

p︸ ︷︷ ︸
k

→ F,

and by convention E0
0 is the trivial line bundle M ×F; for this it is natural

to choose the trivial connection ∇ = d. Then the convariant derivative
satisfies a Leibnitz rule on the tensor algebra:

∇X(S ⊗ T ) = ∇XS ⊗ T + S ⊗∇XT.

It also commutes with contractions: recall that there is a unique linear
bundle map

tr : E1
1 → E0

0

with the property that tr(α ⊗ v) = α(v) for any v ∈ E and α in the
corresponding fiber of E∗. Writing A ∈ E1

1 in components Ai
j with respect

to a chosen frame, tr(A) is literally the trace of the matrix with entries Ai
j

(see Appendix A). Then combining the Leibnitz rule for the tensor product
with (4.3), we see that

LX tr(A) = tr (∇XA)
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for any A ∈ Γ(E1
1). More generally for any p ∈ 1, . . . , k + 1 and q ∈

1, . . . , ` + 1, one can define a contraction operation tr : Ek+1
`+1 → Ek

` by the
condition

tr(α1 ⊗ . . . ⊗ α`+1 ⊗ v1 ⊗ . . . ⊗ vk+1) =

αq(vp) · α
1 ⊗ . . . ⊗ α̂q ⊗ . . . ⊗ α`+1 ⊗ v1 ⊗ . . . ⊗ v̂p ⊗ . . . ⊗ vk+1,

where the hat notation is used to indicate the lack of the corresponding
term. A similar argument then shows that for any such operation,

∇X tr(T ) = tr (∇XT ) (4.4)

for all T ∈ Γ(Ek+1
`+1 ).

Exercise 4.3. Verify (4.4)

Another perspective on compatibility

If E → M is a vector bundle with structure group G, we have thus far
defined G-compatibility for a connection purely in terms of parallel trans-
port, which is not always the most convenient description. We shall now
see, at least in certain important special cases, how this definition can be
framed in terms of covariant derivatives.

The case of greatest general interest is when G = O(m) or U(m), so
E is equipped with a bundle metric g( , ) ∈ Γ(E0

2), and compatibility of
a connection means precisely that parallel transport always preserves this
inner product on the fibers. More generally, suppose there is a covariant
tensor field T ∈ Γ(E0

k) with the property that a family of parallel transport
isomorphisms P t

γ : Eγ(0) → Eγ(t) is G-compatible if and only if

T (P t
γ(v1), . . . , P

t
γ(vk)) = T (v1, . . . , vk)

for all v1, . . . , vk ∈ Eγ(0). Special cases of this situation include not only
bundle metrics but also volume forms and symplectic structures. By the
above constructions, a connection on E induces a connection on E0

k.

Proposition 4.4. If E → M is a vector bundle with G-structure defined
by a fixed covariant tensor field T ∈ Γ(E0

k) as described above, and ∇ is a
connection on E, then the following statements are equivalent:

(i) ∇ is G-compatible

(ii) ∇T ≡ 0

(iii) For any sections v1, . . . , vk ∈ Γ(E) and vector X ∈ TM ,

LX (T (v1, . . . , vk)) = T (∇Xv1, v2, . . . , vk)

+ T (v1,∇Xv2, . . . , vk) + . . . + T (v1, . . . , vk−1,∇Xvk).
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Proof. It follows from the various Leibnitz rules that (ii) and (iii) are equiv-
alent. We can show the equivalence of (i) and (iii) by a direct computation:
assume first that ∇ is G-compatible, and choose a path γ(t) ∈ M with
γ(0) = p, γ̇(0) = X ∈ TpM . Then

LX (T (v1, . . . , vk)) =
d

dt
T (v1(γ(t)), . . . , vk(γ(t)))

∣∣∣∣
t=0

=
d

dt
T

(
(P t

γ)
−1(v1(γ(t))), . . . , (P t

γ)
−1(vk(γ(t)))

)∣∣∣∣
t=0

= T

(
d

dt
(P t

γ)
−1(v1(γ(t)))

∣∣∣∣
t=0

, . . . , vk(p)

)
+ . . .

+ T

(
v1(p), . . . ,

d

dt
(P t

γ)
−1(vk(γ(t)))

∣∣∣∣
t=0

)

= T (∇Xv1, . . . , vk(p)) + . . . + T (v1(p), . . . ,∇Xvk) ,

where we’ve used the obvious generalization of Exercise 4.2 for multilinear
maps. Conversely if (iii) holds, then it follows from this calculation that
for any v1, . . . , vk ∈ Ep,

d

dt
T

(
P t

γ(v1), . . . , P
t
γ(vk)

)∣∣∣∣
t=0

=
d

dt
T (v1, . . . , vk)

∣∣∣∣
t=0

= 0.

Since there’s nothing intrinsically special about the condition t = 0, we
conclude that T

(
P t

γ(v1), . . . , P
t
γ(vk)

)
is independent of t, and the connec-

tion is therefore G-compatible.

4.2 Tangent bundles

4.2.1 Torsion and symmetric connections

For the remainder of this chapter we consider connections on the tangent
bundle TM of a smooth n-dimensional manifold M . In this setting there
turns out to be a special class of connections, resulting from the simultane-
ous interpretation of elements X ∈ TM as vectors in the bundle TM → M
and as velocity vectors of smooth paths in M . In particular, given a con-
nection on TM , one can ask the following rather imprecise question:

If γ(t) ∈ M is a smooth path and X ∈ Tγ(0)M , how much does X twist
around γ as it moves by parallel translation?

For general vector bundles this question has no meaning: one can certainly
choose a trivialization and define some notion of twisting with respect
to this choice, but the answer may change if a different trivialization is
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chosen. For tangent bundles it turns out that more can be said, and there
is a special class of connections for which the twisting is in some sense
minimal. We will now make this precise.

Assuming dim M ≥ 2, consider a smooth embedding

α : (−ε, ε) × (−ε, ε) → M,

which traces out a surface in M . We wish to measure the degree to
which parallel vector fields along γ(s) := α(s, 0) twist. Note that with-
out changing γ(s), the map α(s, t) can be chosen so that the vector field
X(t) := ∂sα(0, t) along the path t 7→ α(0, t) is parallel, i.e. ∇tX ≡ 0. Now
we ask: defining the vector field Y (s) := ∂tα(s, 0) along γ(s), can we also
choose α(s, t) so that Y (s) is parallel? If so then

∇s∂tα(0, 0) = ∇t∂sα(0, 0),

a relation that looks reasonable enough, but as we’ll see in a moment,
it’s not always possible. The failure of the commutation formula ∇s∂tα =
∇t∂sα can be interpreted as a measure of twisting under parallel transport.

With this motivation, define an antisymmetric bilinear map T : Vec(M)×
Vec(M) → Vec(M) by

T (X, Y ) = ∇XY −∇Y X − [X, Y ].

Exercise 4.5. Show that the map T defined above is C∞-linear in both
variables, i.e. for any f ∈ C∞(M), T (fX, Y ) = fT (X, Y ) and T (X, fY ) =
fT (X, Y ).

The result of Exercise 4.5 implies that T defines a tensor field of type
(1, 2): we call it the torsion tensor associated to the connection. If T

vanishes identically, then referring again to the embedding α(s, t) above,
it’s easy to see that ∇s∂tα ≡ ∇t∂sα: this follows because one can extend
X = ∂sα and Y = ∂tα to commuting vector fields in a neighborhood of
α(s, t), so that

T (X, Y ) = ∇s∂tα −∇t∂sα ≡ 0.

In fact, this remains true without assuming that α is an embedding; it
could in general be any smooth map (we leave the details as an exercise to
the reader). This “commuting partials” relation will often come in useful
in computations.

Definition 4.6. A connection on TM → M is called symmetric (or equiv-
alently torsion free) if its torsion tensor vanishes identically.

We will see shortly that symmetric connections always exist, and in
fact there is a unique symmetric connection compatible with any bundle
metric on TM (see §4.3.1).
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Given local coordinates (x1, . . . , xn), Equation (3.13) gives an expres-
sion for the components of T in terms of the Christoffel symbols:

T i
jk = Γi

jk − Γi
kj. (4.5)

Thus a connection is symmetric if and only if the Christoffel symbols Γi
jk

are always symmetric under interchange of the two lower indices.

Exercise 4.7. Check that the components T i
jk satisfy the appropriate

transformation formula for a tensor under coordinate transformations (see
Exercise A.11 in Appendix A and Exercise 3.17 in Chapter 3).

By the constructions of §4.1, a choice of connection on TM → M defines
connections on each of the tensor bundles T k

` M → M ; in particular, we can
now take covariant derivatives of tensor fields and differential forms. We
now give two applications of this that require symmetry for the connection
on TM . The first is a new formula for the exterior derivative d : Ωk(M) →
Ωk+1(M), which we state below for k = 1, referring to [GHL04] for the
general case.

Proposition 4.8. If ∇ is a symmetric connection on TM → M , then for
any 1-form λ and vector fields X and Y on M ,

dλ(X, Y ) = (∇Xλ)(Y ) − (∇Y λ)(X).

Proof. We use the formula dλ(X, Y ) = LX (λ(Y ))−LY (λ(X))−λ([X, Y ])
together with the Leibnitz rule for the covariant derivative, thus

dλ(X, Y ) = LX (λ(Y )) − LY (λ(X)) − λ([X, Y ])

= (∇Xλ)(Y ) + λ(∇XY ) − (∇Y λ)(X) − λ(∇Y X) − λ([X, Y ])

= (∇Xλ)(Y ) − (∇Y λ)(X) + λ(T (X, Y )),

which implies the stated formula if T (X, Y ) = 0.

We state the second application as an exercise. Recall that for any
covariant tensor field S ∈ Γ(T 0

k M) and vector field X ∈ Vec(M), the Lie
derivative of S with respect to X is the tensor field LXS ∈ Γ(T 0

k M) defined
by

LXS =
d

dt
(ϕt

X)∗S

∣∣∣∣
t=0

,

where ϕt
X denotes the flow of X.

Exercise 4.9. Show that if ∇ is a symmetric connection on TM → M ,
then for any S ∈ Γ(T 0

k M) and X ∈ Vec(M), the Lie derivative LXS
satisfies the formula

LXS(Y1, . . . , Yk) = (∇XS)(Y1, . . . , Yk) + S(∇Y1
X, Y2, . . . , Yk)

+ S(Y1,∇Y2
X, . . . , Yk) + . . . + S(Y1, . . . , Yk−1,∇Yk

X).
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4.2.2 Geodesics

A connection on TM → M defines a special class of smooth curves γ(t) ∈
M which generalize the notion of a “straight path” in Euclidean space.
Observe that a path γ(t) ∈ Rn is a straight line if its velocity γ̇(t) is
constant. Replacing Rn with an n-manifold M , it no longer makes sense
to say that γ̇(t) is constant unless we first choose a connection, since γ̇(t)
generally belongs to a different tangent space Tγ(t)M at different times t.
Once a connection is chosen, the natural generalization is clear: a path
γ : (a, b) → M is called a geodesic if its velocity γ̇(t) is a parallel vector
field along γ, in other words

∇tγ̇ ≡ 0.

This is the geodesic equation; in local coordinates (x1, . . . , xn), we write
γ(t) = (x1(t), . . . , xn(t)) and express the equation as

ẍi + Γi
jk(x

1, . . . , xn)ẋiẋj = 0.

The geodesic equation is therefore a system of n second-order nonlinear
ordinary differential equations, and as such has a unique solution

γ : (t0 − ε, t0 + ε) → M

for some ε > 0 and any choice of initial position γ(t0) ∈ M and velocity
γ̇(t0) ∈ Tγ(t0)M .

Geodesics are most important in Riemannian geometry, where they
serve as length-minimizing paths between nearby points, as we will show in
the next section. Before discussing their geometric significance further, we
shall establish the existence of symmetric connections by way of answering
the following question:

Given a connection, how many other connections are there that have
the same geodesics?

To be precise, we say that two connections ∇ and ∇̃ have the same
geodesics if solutions to ∇tγ̇ = 0 are also solutions to ∇̃tγ̇ = 0 and vice
versa.

Proposition 4.10. Given a connection ∇ on TM → M , all other con-
nections with the same geodesics are of the form

∇̃XY = ∇XY + A(X, Y )

where A : TM ⊕ TM → TM is an arbirary antisymmetric bilinear bundle
map, and there is a unique symmetric connection of this form.
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Proof. Given ∇ and an antisymmetric bilinear bundle map A : TM ⊕
TM → TM , it’s easy to check that ∇̃XY = ∇XY + A(X, Y ) satisfies the
appropriate Leibnitz rule and therefore defines a connection. Moreover for
any smooth path γ(t) ∈ M ,

∇̃tγ̇ = ∇tγ̇ + A(γ̇, γ̇) = ∇tγ̇, (4.6)

so the two connections clearly have the same geodesics. Conversely, if ∇
and ∇̃ are any two connections, they are related by the formula above
for some bilinear bundle map A : TM ⊕ TM → TM (not necessarily
antisymmetric). Suppose now that they have the same geodesics. Then
for any X ∈ TM , we can choose a geodesic γ(t) with γ̇(0) = X and use
(4.6) to find A(X, X) = 0. It follows now by evaluating the expression
A(X + Y, X + Y ) that A is antisymmetric. In this case the torsions for ∇

and ∇̃ are related by

T̃ (X, Y ) − T (X, Y ) = ∇̃XY − ∇̃Y X − [X, Y ] − (∇XY −∇Y X − [X, Y ])

= A(X, Y ) − A(Y, X) = 2A(X, Y ).

Thus the unique symmetric connection with the same geodesics is found
by setting

∇̃XY = ∇XY −
1

2
T (X, Y ).

In light of this result (as well as Theorem 4.13 below), it is common to
restrict attention to symmetric connections when the bundle is a tangent
bundle. This has a number of advantages (cf. Prop. 4.8 and Exercise 4.9
above) and is usually the most natural thing to do, though not always:
e.g. if TM → M has a complex structure (this is called an almost complex
structure on M), there may not exist a connection that is both compatible
with this structure and symmetric. Therefore we will not universally as-
sume that all connections under consideration on TM are symmetric, but
will always specify when this assumption is being made.

Definition 4.11. For any point p ∈ M and a suitably small neighborhood
0 ∈ Up ⊂ TpM , define the exponential map

expp : Up → M

by expp(X) = γ(1), where γ(t) is the unique geodesic through p with γ̇(0) =
X. When there is no ambiguity we denote simply exp(X) := expp(X).

The local existence of geodesics guarantees that expp is well defined
if the neighborhood Up is sufficiently small; in fact in most examples of
interest, expp will be globally defined as an immersion TpM → M .
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Exercise 4.12. Show that for any p ∈ M , X ∈ TpM , the curve γ(t) =
exp(tX) defined for t in some neighborhood of 0 is the unique geodesic
with γ̇(0) = X.

The choice of notation and terminology reflects the close analogy be-
tween expp : TpM → M and the corresponding concept for a Lie group G

and its Lie algebra g: in that case X ∈ g = TeG defines not a geodesic
but rather a Lie group homomorphism R → G : t 7→ exp(tX) ∈ G (cf. Ap-
pendix B).

4.3 Riemannian manifolds

4.3.1 The Levi-Civita connection

Recall from §2.4.2 that a Riemannian metric on a manifold M is a bundle
metric on the tangent bundle TM → M . This is defined by a symmetric,
positive definite tensor field of type (0, 2) traditionally denoted by g ∈
Γ(T 0

2 M), and can be used to define the lengths of tangent vectors X ∈ TpM
by

|X| =
√

g(X, X),

as well as angles between them according to the formula

g(X, Y ) = |X||Y | cos θ

for X, Y ∈ TpM . The length of a smooth path γ : [t0, t1] → M is then
defined to be

length(γ) =

∫ t1

t0

|γ̇(t)| dt.

The pair (M, g) is called a Riemannian manifold.
We will show in this section that a Riemannian metric defines a unique

special connection on TM , for which the geodesics take on geometric sig-
nificance as length-minimizing paths. Since g is a bundle metric on TM ,
it is natural to consider only connections that are compatible with this
structure. This is a serious restriction, but as we will see presently, not
enough to achieve uniqueness.

Let us try to motivate heuristically how the natural connection on a
Riemannian manifold is defined. As mentioned above, the geodesics in
this context can be characterized by the property of minimizing length.
Specifically, one could in principle take the following as the definition of a
geodesic:

A geodesic γ(t) ∈ M is a smooth curve such that |γ̇(t)| is constant and
such that for any two sufficiently close values a < b of the parameter,
γ|[a,b] : [a, b] → M minimizes the length among all smooth paths from
γ(a) to γ(b).
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Figure 4.1: Parallel transport preserving the inner product along a geodesic
in a surface.

As a definition this is sound, though proving it would take some work
which we’ll forego for the moment. Just assume for now that there exists a
connection that’s compatible with the bundle metric and whose geodesics
have this property. Is this connection unique? If dim M = 2 the answer
is clearly yes: as shown in Figure 4.1, there are unique parallel transport
isomorphisms that preserve both the velocity vector of the geodesic and a
unit vector orthogonal to this.

The situation is less clear however if dim M > 2. There are then in-
finitely many admissible ways to translate an orthonormal basis along a
geodesic. If dim M = 3 for instance, one can easily picture two of the basis
vectors twisting around the path in arbitrary ways. But this mention of
“twisting” suggests the remedy: we add the requirement that the connec-
tion should be symmetric, so that twisting is minimized. The next result
shows that this is precisely the right thing to do; it is sometimes called the
“fundamental lemma of Riemannian geometry.”

Theorem 4.13. On any Riemannian manifold (M, g), there exists a unique
connection on TM that is both symmetric and compatible with g.

Proof. We first show uniqueness: assuming ∇ is such a connection, com-
patibility with g implies that for any vector fields X, Y and Z, we have
the three relations

LX (g(Y, Z)) = g(∇XY, Z) + g(Y,∇XZ),

LY (g(Z, X)) = g(∇Y Z, X) + g(Z,∇Y X),

LZ (g(X, Y )) = g(∇ZX, Y ) + g(X,∇ZY ).

Adding the first two, subtracting the third and using the assumption
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T (X, Y ) = ∇XY −∇Y X − [X, Y ] ≡ 0, we find

LX (g(Y, Z)) + LY (g(Z, X))− LZ (g(X, Y ))

= g(∇XY + ∇Y X, Z) + g(Y,∇XZ −∇ZX) + g(X,∇Y Z −∇ZY )

= g(2∇XY, Z) − g([X, Y ], Z) + g([X, Z], Y ) + g([Y, Z], X),

thus

g(∇XY, Z) =
1

2

[
LX (g(Y, Z)) + LY (g(Z, X))− LZ (g(X, Y ))

+ g([X, Y ], Z) − g([X, Z], Y ) − g([Y, Z], X)
]
. (4.7)

A straightforward (though slightly tedious) calculation shows that the right
hand side of this expression is C∞-linear with respect to X and Z.

Observe now that at any point p ∈ M , the inner product g( , ) on TpM

defines an isomorphism

[ : TpM → T ∗

p M : X 7→ X [

by X [(Y ) = g(X, Y ). It’s clear that this is a linear map; the fact that it’s an
isomorphism follows from the positivity of g (see Appendix A, §A.4). Thus
for any X, Y ∈ Vec(M) and p ∈ M , (4.7) gives a formula for (∇X(p)Y )[,
proving the uniqueness of ∇X(p)Y . Moreover, in light of the above remark
on C∞-linearity, this formula can be taken as a definition of the covariant
derivative ∇XY for any X ∈ TpM and Y ∈ Vec(M); one checks by another
calculation that the resulting object satisfies the Leibnitz rule and therefore
defines a connection.

Definition 4.14. The connection constructed in Theorem 4.13 is called
the Levi-Civita connection on (M, g).

Henceforward, whenever a manifold M has a Riemannian metric g, we
will assume that all calculations requiring a connection on TM → M use
the Levi-Civita connection.

4.3.2 Geodesics and arc length

We shall now explore the relationship between the geodesics of the Levi-
Civita connection and the problem of finding paths of minimal length be-
tween fixed points. This uses some basic concepts from the calculus of
variations, which deals with optimization problems on infinite dimensional
spaces. Fix two points p, q ∈ M and real numbers a < b. We denote by

C∞([a, b], M ; p, q)
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the space of all smooth paths γ : [a, b] → M such that γ(a) = p and
γ(b) = q. We then use the metric g to define on this space two maps to
the real numbers, the length functional

`b
a(γ) =

∫ b

a

|γ̇(t)| dt

and the energy functional

Eb
a(γ) =

∫ b

a

|γ̇(t)|2 dt.

The geometric meaning of the first is clear: `b
a(γ) is the length of the

path traced out by γ. As such, it depends only on the image, and is thus
invariant under reparametrizations, i.e. for any diffeomorphism ϕ : [a, b] →
[a′, b′] and smooth path γ ∈ C∞([a′, b′], M ; p, q), we have

`b
a(γ ◦ ϕ) = `b′

a′(γ).

It is less obvious what geometric meaning the energy functional may have,
but we will find it convenient as a computational tool in order to understand
the length functional better.

We wish to view C∞([a, b], M ; p, q) informally as an infinite dimensional
manifold, and Eb

a and `b
a as “smooth functions” on this manifold which can

be differentiated. The word functional is generally used to describe real
valued functions on infinite dimensional spaces such as C∞([a, b], M ; p, q).
Given a functional

F : C∞([a, b], M ; p, q) → R,

the goal of the calculus of variations is then to find necessary conditions
on a path γ ∈ C∞([a, b], M ; p, q) so that F (γ) may attain a minimal or
maximal value among all paths γε ∈ C∞([a, b], M ; p, q) close to γ; this
condition will take the form of a differential equation that γ must satisfy.
To make this precise, we say that a smooth 1-parameter family of paths
from p to q is a collection γs ∈ C∞([a, b], M ; p, q) for s ∈ (−ε, ε) such that
the map (s, t) 7→ γs(t) is smooth. We think of this as a smooth path in
C∞([a, b], M ; p, q) through γ0. The “velocity vector” of this path at s = 0
is then given by the partial derivatives ∂sγs(t)|s=0 ∈ Tγ0(t)M for all t, which
defines a section

η := ∂sγs|s=0 ∈ Γ(γ∗

0TM)

such that η(a) = 0 and η(b) = 0. We therefore think of the vector space

{η ∈ Γ(γ∗TM) | η(a) = 0 and η(b) = 0}

as the “tangent space” to C∞([a, b], M ; p, q) at γ. It is now clear how
one should define a “directional derivative” of F in a direction defined by a
section of γ∗TM . This motivates the following definition, which generalizes
the notion of a critical point.
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Definition 4.15. The path γ ∈ C∞([a, b], M ; p, q) is called stationary for
the functional F : C∞([a, b], M ; p, q) → R if for every smooth 1-parameter
family γs ∈ C∞([a, b], M ; p, q) with γ0 = γ,

d

ds
F (γs)

∣∣∣∣
s=0

= 0. (4.8)

Note that for an arbitrary functional, it is not a priori clear that the
derivatives in (4.8) will always exist. This is however true in many cases
of interest, and in such a situation, it’s easy to see that (4.8) is a necessary
condition for F to attain an extremal value at γ.

Proposition 4.16. The energy functional Eb
a is stationary at γ if and only

if γ is a geodesic with respect to the Levi-Civita connection.

Proof. Pick any smooth 1-parameter family γs ∈ C∞([a, b], M ; p, q) with
γ0 = γ and denote η = ∂sγs|s=0 ∈ Γ(γ∗TM). Differentiating under the
integral sign and using the properties of the Levi-Civita connection,

d

ds
Eb

a(γs)

∣∣∣∣
s=0

=

∫ b

a

∂

∂s
g
(
∂tγs(t), ∂tγs(t)

)∣∣∣∣
s=0

dt

=

∫ b

a

(
g
(
∇s∂tγs(t)|s=0 , γ̇(t)

)
+ g

(
γ̇(t), ∇s∂tγs(t)|s=0

))
dt

= 2

∫ b

a

g
(
γ̇(t),∇t ∂sγs(t)|s=0

)
dt = 2

∫ b

a

g
(
γ̇(t),∇tη(t)

)
dt.

We now perform a geometric version of integration by parts, using the fact
that η(t) vanishes at its end points. It follows indeed from the fundamental
theorem of calculus that

0 =

∫ b

a

d

dt
g
(
γ̇(t), η(t)

)
dt =

∫ b

a

g
(
∇tγ̇(t), η(t)

)
dt +

∫ b

a

g
(
γ̇(t),∇tη(t)

)
dt,

thus
d

ds
Eb

a(γs)

∣∣∣∣
s=0

= −2

∫ b

a

g
(
∇tγ̇(t), η(t)

)
dt.

Since choosing arbitrary 1-parameter families γs leads to arbitrary sections
η ∈ Γ(γ∗TM) with η(a) = η(b) = 0, this expression will vanish for all such
choices if and only if ∇tγ̇ ≡ 0, which means γ is a geodesic.

To see what this tells us about the length functional, we take advantage
of parametrization invariance. Assume γs ∈ C∞([a, b], M ; p, q) is a smooth
1-parameter family of paths which are all immersed. Then we claim that
there exists a unique smooth 1-parameter family βs ∈ C∞([a, b], M ; p, q)
with the following two properties for each s:
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1. βs is a reparametrization of γs,

2.
∣∣∣β̇s(t)

∣∣∣ is constant with respect to t.

Indeed, a straightforward calculation shows βs(t) = γs(ϕs(t)), where for
each s, ϕs : [a, b] → [a, b] is found by solving the initial value problem

dϕs

dt
=

`a
b (γs)

(b − a)γ̇s(ϕs)
,

ϕs(a) = a.

We say that the paths βs ∈ C∞([a, b], M ; p, q) have constant speed. Let
vs = |β̇s(t)|. Then since length is independent of parametrization,

d

ds
`b
a(γs)

∣∣∣∣
s=0

=
d

ds
`b
a(βs)

∣∣∣∣
s=0

=

∫ b

a

∂

∂s

√
g

(
β̇s(t), β̇s(t)

)∣∣∣∣∣
s=0

dt

=

∫ b

a

1

2

√
g

(
β̇0(t), β̇0(t)

)
∂

∂s
g

(
β̇s(t), β̇s(t)

)∣∣∣∣
s=0

dt

=
1

2v0

d

ds
Eb

a(βs)

∣∣∣∣
s=0

.

Thus if γ is stationary for `b
a, then it has a reparametrization with constant

speed that is stationary for Eb
a, and is therefore a geodesic. Conversely,

every geodesic is stationary for `b
a, and also has constant speed since ∇tγ̇ =

0 implies
d

dt
|γ̇(t)|2 = 2g(∇tγ̇(t), γ̇(t)) = 0.

This proves:

Corollary 4.17. An immersed path γ ∈ C∞([a, b], M ; p, q) is a geodesic if
and only if it both is stationary for `b

a and has constant speed.

We conclude that any path γ ∈ C∞([a, b], M ; p, q) which minimizes the
length `b

a(γ) among all nearby paths from p to q can be parametrized by
a geodesic. One must be careful in stating the converse to this, for it is
not always true that a geodesic gives the shortest path between two points.
This is however true in a local sense, as shown in the next result; we refer
to [Spi99] for the proof.

Proposition 4.18. Suppose (M, g) is a Riemannian manifold. Then every
point p ∈ M has a neighborhood p ∈ Up ⊂ M such that for every q ∈ Up,
there is a unique geodesic γq : [0, 1] → Up with γq(0) = p and γq(1) = q.
This geodesic is embedded and parametrizes the shortest path from p to q.
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4.3.3 Computations

It’s useful for computational purposes to have a formula for the Levi-Civita
connection in coordinates: in particular, given a chart (x1, . . . , xn) : U →
Rn, we can write the Christoffel symbols Γi

jk explicitly in terms of the
components

gij(p) = g(∂i|p, ∂j|p) ∈ R

of the metric. At any point p ∈ U , denote by gij(p) the entries of the n-by-n
matrix inverse to gij(p), so using the Einstein summation convention,

gijgjk = δi
k,

where the Kronecker δ is defined by δi
k = 1 if i = k and otherwise 0.1

Recall now that the Christoffel symbols Γi
jk : U → R are defined so that

for any vector field X = X j∂j ∈ Vec(U), ∇jX
i = ∂jX

i + Γi
jkX

k. Setting
X = ∂k, this implies

Γi
jk = (∇j∂k)

i.

Using the assumption that ∇ is compatible with the metric, we find

∂igjk = ∂i (g(∂j, ∂k)) = g(∇i∂j, ∂k) + g(∂j,∇i∂k)

= g`m(∇i∂j)
`δm

k + g`mδ`
j(∇i∂k)

m

= g`kΓ
`
ij + gj`Γ

`
ik

(4.9)

Exercise 4.19. Use (4.9) to derive the following formula for the Christoffel
symbols of the Levi-Civita connection:

Γk
ij =

1

2
gk` (∂igj` + ∂jg`i − ∂`gij) . (4.10)

Hint: write down three copies of (4.9) with cyclic permutations of the
indices i, j and k. Add the first two and subtract the third (notice the
resemblance to the proof of Theorem 4.13). Remember that symmetry
implies Γk

ij = Γk
ji.

Remark 4.20. With a bit more effort one could turn Exercise 4.19 into an
alternative proof of Theorem 4.13: in fact deriving (4.10) from the assump-
tions that ∇ should be symmetric and compatible with g already proves
the uniqueness of ∇. To show that this formula really does define a connec-
tion, it remains to check that the right hand side transforms properly under
coordinate changes, namely according to the formula in Exercise 3.17.

We are now finally in a position to give some examples of Riemannian
manifolds and compute their geodesics.

1For an explanation as to why one might sensibly denote the inverse to the matrix
gij by the same symbol with raised indices, see Appendix A, §A.4.
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Exercise 4.21. Show that if M = Rn and g is the standard inner product
(also known as the flat metric on R

n), then in the obvious coordinate
system, all the Christoffel symbols vanish, and the geodesics are all straight
lines.

Example 4.22. The hyperbolic half-plane (H, h) is the open set

H = {(x, y) ∈ R
2 | y > 0}

with Riemannian metric

h(X, Y ) =
1

y2
〈X, Y 〉R2

for X, Y ∈ T(x,y)H = R2, where 〈 , 〉R2 denotes the standard inner product
on R

2. As we will see in Chapter 5, this is an example of a surface with
constant negative curvature; it plays an important role in complex analysis,
particularly the theory of Riemann surfaces (see, for example [SS92]).

Exercise 4.23. Using the obvious global coordinates on H, derive the
Christoffel symbols and show that the geodesic equation can be written as

ẍ −
2

y
ẋẏ = 0,

ÿ +
1

y
(ẋ2 − ẏ2) = 0

for a smooth path γ(t) = (x(t), y(t)).

Exercise 4.24. Show that (H, h) has geodesics of the form

γ(t) = (c, y(t)),

for any constant c ∈ R and appropriately chosen functions y(t) > 0, and
that it also has geodesics of the form

γ(t) = (r cos θ(t) + c, r sin θ(t))

for any constants c ∈ R, r > 0 and appropriately chosen functions θ(t) ∈
(0, π). In fact, these are all the geodesics on (H, h): they consist of all
vertical lines and circles that meet the x-axis orthogonally.

Exercise 4.25. Show that any two points in (H, h) are connected by a
unique geodesic segment, and compute the length of this segment.
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4.3.4 Riemannian submanifolds and surfaces in R3

Consider (M, g) = (R3, gE), where gE is defined by the standard Euclidean
inner product on R3, and suppose Σ ⊂ R3 is an embedded surface. This
inherits a Riemannian metric j∗gE via the inclusion map j : Σ ↪→ R

3,
which is the same thing as defining the inner product of X and Y in TpΣ
to be 〈X, Y 〉R3. As we’ve seen, it’s easy enough to compute the geodesics
in (R3, gE): these are straight lines with constant velocity. We now ask
how this information can be used to identify the geodesics on the surface
(Σ, j∗gE).

The question can be framed somewhat more generally without making
it any harder. Suppose indeed that (M, g) is an arbitrary Riemannian
manifold and Σ ⊂ M is a submanifold, to which we assign the pullback
metric j∗g using the inclusion map j : Σ ↪→ M . There is a linear bundle
map

πΣ : TM |Σ → TΣ

which for each p ∈ Σ acts as the projection from TpM to TpΣ along the
orthogonal complement of TpΣ.

Proposition 4.26. If ∇ is the Levi-Civita connection for (M, g), the Levi-

Civita connection ∇̃ for (Σ, j∗g) is defined by

∇̃XY = πΣ(∇XY )

for X ∈ TΣ and Y ∈ Vec(Σ).

Proof. We check first that ∇̃ satisfies the Leibnitz rule: for f ∈ C∞(Σ),

∇̃X(fY ) = πΣ (∇X(fY )) = πΣ ((LXf)Y + f∇XY )

= (LXf)πΣ(Y ) + fπΣ(∇XY ) = (LXf)Y + f∇̃XY,

thus ∇̃ defines a connection on TΣ → Σ. To see that it is compatible with
the metric j∗g, pick vector fields X, Y, Z ∈ Vec(Σ): then extending these
to vector fields on M and using the fact that ∇ is compatible with g,

LX (j∗g(Y, Z)) = LX (g(Y, Z))

= g(∇XY, Z) + g(Y,∇XZ)

= g(πΣ(∇XY ), Z) + g(Y, πΣ(∇XZ))

= j∗g(∇̃XY, Z) + j∗g(Y, ∇̃XZ).

Here we’ve used the fact that for any v ∈ TpM , the difference v − πΣ(v)
is orthogonal to TpΣ, thus if w ∈ TpΣ, g(v, w) = g(πΣv, w). Finally to see

that ∇̃ is symmetric, we evaluate the corresponding torsion tensor T̃ on a
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pair of vector fields X, Y ∈ Vec(Σ), noting that the bracket [X, Y ] is also
tangent to Σ, thus

T̃ (X, Y ) = ∇̃XY − ∇̃Y X − [X, Y ]

= πΣ (∇XY −∇Y X − [X, Y ]) = πΣ (T (X, Y )) = 0.

The result now follows by the uniqueness of the Levi-Civita connection.

Corollary 4.27. Let ∇ denote the Levi-Civita connection on (M, g) and
suppose Σ ⊂ M is a submanifold with induced metric j∗g. Then a smooth
path γ(t) ∈ Σ is a geodesic with respect to j∗g if and only if ∇tγ̇(t) is
orthogonal to Tγ(t)Σ for all t.

Proof. Using ∇̃ = πΣ ◦ ∇, the geodesic equation on (Σ, j∗g) reads

0 = ∇̃tγ̇ = πΣ(∇tγ̇),

which is satisfied precisely when ∇tγ̇(t) belongs to the orthogonal comple-
ment of Tγ(t)Σ.

It’s quite easy to apply this result to the case of a surface in Euclidean
3-space: ∇ is now the trivial connection, thus the geodesic equation for
γ(t) ∈ Σ ⊂ R3 reduces to the condition that γ̈(t) be always orthogonal to
Σ.

Exercise 4.28. Let S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1} and define the
usual spherical polar coordinates (φ, θ) by

x = cos φ cos θ,

y = sin φ cos θ,

z = sin θ.

Show that for any constants a, b ∈ R, the path

(φ(t), θ(t)) = (a, bt)

is a geodesic. Use a symmetry argument to conclude that the geodesics on
S2 are precisely the great circles, i.e. circles which divide the sphere into
two parts that are mirror images of each other.
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