PROBLEM SET 1

Suggested reading

Note: reading suggestions in Lee's "Introduction to Smooth Manifolds" refer to the 2003 edition—section and chapter numbers in the 2013 edition may differ.

- Agricola and Friedrich: $\S 3.1$ (Chapters 1 and 2 are not prerequisites for this)
- Lee: Chapter 1 (skip the section on "Topological Properties...") and the first sections of Chapter 2 ("Smooth Functions...") and Chapter 3 ("Tangent Vectors") respectively

Problems

1. (a) Let $\mathcal{U} \subset \mathbb{R}^{n}$ be an open subset, $f: \mathcal{U} \rightarrow \mathbb{R}^{m}$ a smooth map and $\mathbf{v} \in \mathbb{R}^{n}$ a vector. Recall that the derivative of f at $\mathbf{x} \in \mathcal{U}$ is the unique linear transformation $d f(\mathbf{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that

$$
f(\mathbf{x}+\mathbf{h})=f(\mathbf{x})+d f(\mathbf{x}) \mathbf{h}+\eta(\mathbf{h}) \cdot|\mathbf{h}|
$$

for sufficiently small $\mathbf{h} \in \mathbb{R}^{n}$, where $\eta(\mathbf{h})$ is a function satisfying $\lim _{\mathbf{h} \rightarrow 0} \eta(\mathbf{h})=0$. A slightly simpler notion is the directional derivative in the direction \mathbf{v}, given by

$$
\left.\frac{d}{d t} f(\mathbf{x}+t \mathbf{v})\right|_{t=0} \in \mathbb{R}^{m}
$$

Use the chain rule to derive a simple expression for this directional derivative in terms of the linear transformation $d f(\mathbf{x})$. (This is easy.)
(b) Denoting $\mathbf{x}=\left(x^{1}, \ldots, x^{n}\right) \in \mathcal{U}, f(\mathbf{x})=\mathbf{y}=\left(y^{1}, \ldots, y^{m}\right)$ and $\mathbf{v}=\left(v^{1}, \ldots, v^{n}\right)$, write out the components of the above directional derivative in terms of v^{1}, \ldots, v^{n} and the partial derivatives $\frac{\partial y^{i}}{\partial x^{j}}$.
(c) Show that the above directional derivative is also equal to

$$
\left.\frac{d}{d t} f(\gamma(t))\right|_{t=0}
$$

if $\gamma:(-1,1) \rightarrow \mathcal{U}$ is any smooth path satisfying $\gamma(0)=\mathbf{x}$ and $\dot{\gamma}(0)=\mathbf{v}$. (This is also easy.)
2. An important definition: a diffeomorphism between open subsets of \mathbb{R}^{n} is a homeomorphism which is both smooth and has a smooth inverse. To prove the latter, it's often useful to recall the inverse function theorem:

If $\mathcal{U} \subset \mathbb{R}^{n}$ is an open subset and $f: \mathcal{U} \rightarrow \mathbb{R}^{n}$ is smooth, $f\left(x_{0}\right)=y_{0}$ and $d f\left(x_{0}\right)$ is invertible, then f maps some open neighborhood of x_{0} bijectively to an open neighborhood of y_{0}, the inverse f^{-1} is smooth and $d f^{-1}\left(y_{0}\right)$ is the inverse matrix of $d f\left(x_{0}\right)$.
(a) Consider the definition of polar coordinates in the plane:

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

Show that the map $F(r, \theta)=(x, y)$ defines a diffeomorphism

$$
F:(0, \infty) \times(0,2 \pi) \rightarrow \mathbb{R}^{2} \backslash \mathbb{R}_{+}
$$

where \mathbb{R}_{+}denotes the subset $\left\{(t, 0) \in \mathbb{R}^{2} \mid t \geq 0\right\}$. Note: you have permission to say it's patently obvious that F is smooth, but it's not obvious that this is true for F^{-1}. Prove it without deriving an expression for F^{-1}; use the inverse function theorem instead.
(b) Again without writing down F^{-1} explicitly, derive the following expressions for the partial derivatives of r and θ with respect to x and y :

$$
\begin{array}{ll}
\frac{\partial r}{\partial x}=\frac{x}{r} & \frac{\partial r}{\partial y}=\frac{y}{r} \\
\frac{\partial \theta}{\partial x}=-\frac{y}{r^{2}} & \frac{\partial \theta}{\partial y}=\frac{x}{r^{2}}
\end{array}
$$

3. Recall that the n-dimensional sphere is defined as the "unit sphere" in \mathbb{R}^{n+1},

$$
S^{n}=\left\{\mathbf{x} \in \mathbb{R}^{n+1}| | \mathbf{x} \mid=1\right\}
$$

A related n-manifold is the real projective n-space $\mathbb{R} P^{n}$, which is most easily defined as the set of equivalence classes

$$
\mathbb{R} P^{n}=S^{n} / \sim
$$

where we use an equivalence relation to identify antipodal points in $S^{n}: \mathbf{x} \sim-\mathbf{x}$. Find an explicit homeomorphism of S^{1} to $\mathbb{R} P^{1}$. (Beware: this is not true in higher dimensions!)
4. Another important definition: a diffeomorphism between smooth manifolds is a homeomorphism which is smooth and has a smooth inverse. This idea is not always as simple as it sounds.
It's crucial to understand that the data defining a smooth manifold include not just the space itself, but also a collection of smoothly compatible charts: this constitutes its smooth structure, also known as an atlas. Below is a slightly weird example.
Let $M=\mathbb{R}$, which we make into a smooth manifold in the most natural way, choosing the obvious chart $x: \mathbb{R} \rightarrow \mathbb{R}: t \mapsto t$, and defining the smooth structure to consist of all charts that are smoothly compatible with this one.
Now define $M^{\prime}=\mathbb{R}$ as well, but with a different smooth structure, including the chart $y: \mathbb{R} \rightarrow \mathbb{R}: t \mapsto$ t^{3}, and all others that are smoothly compatible with y. (Note that y is indeed a homeomorphism.)
(a) Show that the two charts x and y are not smoothly compatible.
(b) Let $\mathcal{U}=(-1,1) \subset M^{\prime}$ and show that the map

$$
\varphi: \mathcal{U} \rightarrow \mathbb{R}: t \mapsto \tan \left(\frac{\pi}{2} t^{3}\right)
$$

is a smoothly compatible chart on M^{\prime}. In other words, show that the coordinate transformations $\varphi \circ y^{-1}$ and $y \circ \varphi^{-1}$ are both smooth wherever they are defined. (What are their domains?)
(c) The identity map $M \rightarrow M^{\prime}: t \mapsto t$ is a homeomorphism, clearly. Show that it is also a smooth map, but it is not a diffeomorphism. Remember that this notion depends on the particular smooth structures we've chosen.
(d) Show that the map $M^{\prime} \rightarrow M: t \mapsto t^{2}$ is not smooth.
(e) All is not lost: there are diffeomorphisms from M to M^{\prime}. Find one!

